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Abstract

This chapter presents a tool called Hypha for the type-based analysis of
processes that communicate on linear channels. We describe the specification
language used to model the systems under analysis (Section 9.1) followed by
the typing rules on which the tool is based in order to verify two properties
of systems, deadlock freedom and lock freedom (Section 9.2). In the final part
of the chaper we illustrate the expressiveness and the limitations of the tool
discussing a number of examples inspired by representative communication
patterns using in parallel computing (Section 9.3) and then discuss closely
related work (Section 9.4). The tool can be downloaded from the author’s
home page, the type system has been described by Padovani [18] and the
corresponding reconstruction algorithms by Padovani et al. [19, 20].

9.1 Language

The Hypha specification language is a mildly sugared variant of the linear π-
calculus [16] whose grammar is shown in Table 9.1. It makes use of booleans,
integers, an infinite set X of names, and comprises expressions and processes.
The syntax shown here is somewhat simplified and tailored to the modeling of
the examples discussed in this chapter. Hypha supports other forms that may
be useful in the description of protocols with branching points and provide
convenient syntactic sugar on top of those given in Table 9.1. The Hypha
specification language is appropriate for modeling concurrent processes that
exchange messages on private (or session) channels [10].
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Table 9.1 Syntax of Hypha input language (partial)

Notation b ∈ {true, false} Booleans
h, k,m, n ∈ Z Integers

x, y, z, u, v ∈ X Names

Expression e ::= b Boolean constant
| n Integer constant
| u Name
| · · ·

Process P,Q ::= { } Idle process
| u!(e1, . . . , en) Output
| u?(x1, . . . , xn).P Input
| *u?(x1, . . . , xn).P Replicated input
| new u1, . . . , un in P Channel creation
| if e then P else Q Conditional execution
| P | Q Parallel composition
| { P} Grouping

For simplicity, in the provided syntax expressions are limited to values
and comprise booleans, integers, and names. In the examples we will also
make use of a few binary operators (such as +) and relations (such as <).
Processes comprise the usual terms of the π-calculus. The term { } models
the idle process that performs no actions. The term u!(e1, . . . , en) models
a process that outputs the tuple (e1, . . . , en) on the channel u. We omit the
parentheses when n is 1 and write, for example, u!n in place of u!(n). We
consider two forms of input processes. The term u?(x1, . . . , xn).P models
an ephemeral input process that waits for one message from u, which is
supposed to be an n-tuple, and then executes P where xi is replaced by the
i-th component of the tuple. The term *u?(x1, . . . , xn).P models a persistent
input process (also called service) that waits for an arbitrary number of
messages. Each time a message is received, a new copy of P (with the
variables xi suitably instantiated) is spawned and the service makes itself
available again for further receptions. The term new u1, . . . , un in P models
a process creating new channels u1, . . . , un with scope P. As usual in the π-
calculus, the scope of a channel may broaden as a result of communications
(scope extrusion). The terms if e then P else Q and P | Q respectively
model conditional and parallel processes P and Q. Finally, {P} represents
the same process as P and is useful to disambiguate the way processes are



9.1 Language 195

*fibo?(n,c).
if n ≤ 0 then c!1
else new a,b in { fibo!(n-1,a) | fibo!(n-2,b) | a?(x).b?(y).c!(x+y) }

Listing 9.1 Modeling of the recursive Fibonacci function.

grouped. The notions of free and bound names of a process P, respectively
denoted by fn(P) and bn(P), are as expected.

Example 1 (recursive Fibonacci function). Listing 9.1 shows the modeling
of a service that computes the n-th number in the Fibonacci sequence. The
service waits for invocations on channel fibo, each invocation consisting of
the number n and a channel c on which the n-th Fibonacci number will be
sent. The body of the service closely follows the familiar structure of the
recursive definition of the Fibonacci sequence. When n ≤ 0 the answer is
immediately sent over c. When n > 0, two new channels a and b are created,
the service invokes itself twice to compute the (n−1)-th and (n−2)-th numbers
in the sequence, and then the sum of the two partial results is sent over c. �

As usual, the operational semantics of the language is defined in terms
of a structural congruence relation, which identifies terms that are meant
to have the same semantics, and a reduction relation that defines the proper
computation steps. We omit the formal definition of structural congruence,
which is essentially the same as in the π-calculus and includes commutativity
and associativity laws for parallel composition and the usual laws for shrink-
ing and extending the scope of channels. The second one is the least relation
defined by the rules in Table 9.2 and closed by structural congruence and
under the following reduction contexts:

Reduction context C ::= [ ] | C | P | new u1, . . . , un in C
The fully-fledged formalization of the language also includes an evalua-

tion relation for compound expressions [18].
To formulate the properties enforced by our typing discipline we intro-

duce a few predicates that describe the pending communications of a process

Table 9.2 Operational semantics of processes

u!(e1, . . . , en) | u?(x1, . . . , xn).P −→ P{e1/x1} · · · {en/xn}
u!(e1, . . . , en) | *u?(x1, . . . , xn).P −→ P{e1/x1} · · · {en/xn} | *u?(x1, . . . , xn).P

if true then P else Q −→ P
if false then P else Q −→ Q
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P with respect to some channel a. We use the obvious extension of bound
names we have introduced for processes to reduction contexts:

in(a, P)
def⇐⇒ P = C[a?(x1, . . . , xn).Q] ∧ a � bn(C)

*in(a, P)
def⇐⇒ P = C[*a?(x1, . . . , xn).Q] ∧ a � bn(C)

out(a, P)
def⇐⇒ P = C[a!(e1, . . . , en)] ∧ a � bn(C)

sync(a, P)
def⇐⇒ (in(a, P) ∨ *in(a, P)) ∧ out(a, P)

wait(a, P)
def⇐⇒ (in(a, P) ∨ out(a, P)) ∧ ¬sync(a, P)

In words, in(a, P) holds if there is a sub-process Q within P that is waiting
for a message on channel a. Note that, by definition of reduction context, the
input cannot be guarded by other actions. The condition a � bn(C) implies
that a is not captured by a binder in C, i.e. it occurs free in P. The predicates
out(a, P) and *in(a, P) are similar, but they regard outputs and persistent
inputs, respectively. Therefore, when in(a, P) holds it means that there is a
pending ephemeral input on a and when out(a, P) holds it means that there
is a pending output on a. Then, sync(a, P) means that there are pending
input/output operations on a, but a synchronization on a is immediately
possible. On the contrary, wait(a, P) means that there is a pending output
or a pending ephemeral input on a, but no immediate synchronization on a is
possible. Note the asymmetry in the way pending inputs and outputs trigger
the wait predicate. We do not interpret *in(a, P) as a pending input operation,
meaning that we do not require a persistent input process to run infinitely
often. At the same time, any pending output triggers the wait predicate, even
when the output represents a service invocation.

We say that a process P is deadlock free if every residual of P that cannot
reduce further contains no pending communications. Formally:

Definition 9.1. P is deadlock free if whenever P −→∗ new c1, . . . , cn inQ �−→
we have ¬wait(a,Q) for every a.

We say that a process P is lock free if every residual Q of P in which
there are pending communications can reduce further to a state in which such
operations complete. Formally:

Definition 9.2. P is lock free if whenever P −→∗ new c1, . . . , cn in Q and
wait(a,Q) there is R such that Q −→∗ R and sync(a,R).

In Definitions 9.1 and 9.2, it is important to universally quantifiy over the
topmost channel restrictions in a residual of P so that the notion of (dead)lock
freedom for P concerns both free and bound channels of P.
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It is easy to prove that lock freedom implies deadlock freedom [19]. On
the other hand, there exist deadlock-free processes that are not lock free, as
shown in the example below.

Example 2 (deadlock-free, locked process). The process

new c in { *forever?(x).forever!x | forever!c | c!42 }

is deadlock free but not lock free. Indeed, the process reduces forever, but no
input operation is ever performed on the c channel. As a result, the pending
output on c cannot be completed. �

9.2 Type System

In this section we describe a type system that enforces the properties intro-
duced in Section 9.1: well-typed processes are guaranteed to be (dead)lock
free. The tool Hypha then implements a type reconstruction algorithm for
this type system and finds a typing derivation for a given process, provided
there is one. Note that, while the type reconstruction algorithm is complete
with respect to the type system, the type system itself is not complete with
respect to (dead)lock freedom: there exist (dead)lock free processes that are
ill typed according to the type system. In fact, it is undecidable in general
to establish whether a π-calculus process is (dead)lock free, hence the type
system is necessarily conservative.

Polarities, qualifiers, and types are defined by the following grammar:

Polarity p, q ⊆ {?, !}
Qualifier q ::= *

∣∣∣ h
k

Type t, s ::= bool
∣∣∣ int ∣∣∣ κ[t]q ∣∣∣ α ∣∣∣ μα.t

Types comprise the base types bool and int of boolean and integer
values, channel types κ[t]q, and the usual forms α and μα.t for representing
recursive types. A channel type κ[t]q consists of:

• A polarity p specifying the operations allowed on the channel: ∅ means
none, {?} means input, {!}means output, and {?, !} means both. We will
abbreviate {?, !} with # and {?} and {!} with ? and !, respectively.
• A sequence t1, . . . , tn of types, abbreviated as t, specifying that each

message exchanged over the channel is an n-tuple of values where the
i-th value has type ti.
• A qualifier q specifying how many times the channel can or must be

used according to its polarity. The qualifier *means that the channel can
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be used any number of times. A qualifier of the form h
k means that the

channel can only be used once. In this case, h and k are respectively the
level and the tickets associated with the channel: channels with smaller
levels must be used before channels with greater levels; a channel with
k tickets can be sent as a message on another channel at most k times.

We require that, in a recursive type μα.t, the type variable α can only
occur guarded by a channel type constructor. For example, μα.α is illegal
while μα.?[α]* is allowed. We identify two types modulo renaming of
bound type variables and if they have the same infinite unfolding, that is
if they denote the same (regular) tree [4]. In particular, we have μα.t =
t{μα.t/α}.

Qualifiers distinguish service channels (with qualifier *) from linear
channels (with qualifiers of the form h, k). Service channels are used for
modeling persistent services, such as fibo in Listing 9.1 and forever in
Example 2. Linear channels are used for modeling private communications
between pairs of processes. Examples of linear channels are a and b in
Listing 9.1 and c in Example 2. The fact that a linear channel can be used
for one communication only is not a limitation in practice. Structured private
conversations made of arbitrarily many communications can be encoded
using a continuation-passing style [5, 12]. We will see several examples of
this technique at work in the rest of the chapter. On the other hand, knowing
that a channel is linear provides some guarantees on the fact that the channel
will not be discarded without being used. This is a necessary (although not
sufficient) condition for guaranteeing that communications on linear channels
eventually occur.

The level of a linear channel measures the urgency with which the channel
must be used: the lower the level is, the sooner the channel must be used. We
extend this notion from linear channels to arbitrary types. To compute the
level of a type, we define an auxiliary function | · | such that |t| is an element
of Z ∪ {⊥,�} where ⊥ < n < � for every n ∈ Z:

|t| def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊥ if t = p[s]* and ? ∈ p
n if t = p[s]n

m and p � ∅
� otherwise

(9.1)

According to this definition, service channels with input capability have
the lowest level ⊥ (first equation). This way we guarantee input receptiveness
of services, for the use of a service channel with input capability cannot
be postponed by any means. Base values, service channels with output
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capability, and linear channels with no capabilities have the highest level �
(last equation) because they do not affect (dead)lock freedom in any way.
Linear channels with non-empty polarity must be used according to their level
(second equation). We say that a (value with) type t is unlimited if |t| = �,
that it is linear if |t| ∈ Z, that it is relevant if |t| = ⊥.

We define another auxiliary function $h
k to shift levels and tickets: $h

k t is
the same as t except when t is a linear channel. In this case, the level/tickets
in t are transposed by h and k respectively. Formally:

$h
k t

def
=

{
p[s]n+h

m+k if t = p[s]n
m and p � 0

t otherwise
(9.2)

Note that positive/negative shifting of levels corresponds to decreasing/
increasing the urgency with which a value of a given type must be used.

The type system makes use of type environments Γ to keep track of the
type of names occurring free in processes. A type environment is a finite
map from names to types written u1 : t1, . . . , un : tn. We write dom(Γ ) for
the domain of Γ , namely the set of names for which there is an association
in Γ , and Γ , Γ ′ for the union of Γ and Γ ′ when dom(Γ ) ∩ dom(Γ ′) = ∅. We
also need a more general way of composing type environments that takes into
account the level and tickets of linear channel types and the fact that we can
split channel types by distributing different capabilities to different processes.
Following [16], we define a partial operator + between types, thus:

t + t = t if t is unlimited
p[t]* + q[t]* = (p ∪ q)[t]*
p[t]n

h + q[t]n
k = (p ∪ q)[t]n

h+k if p ∩ q = ∅
(9.3)

Informally, unlimited types combine with themselves without restrictions.
The combination of two unlimited/relevant channel types has the union of
their polarities. Two linear channel types can be combined only if they have
the same level and disjoint polarities, and their combination has the union of
their polarities and the sum of their tickets. We extend the partial operator +
to type environments:

Γ + Γ ′ def
= Γ , Γ ′ if dom(Γ ) ∩ dom(Γ ′) = ∅

(Γ , u : t) + (Γ ′, u : s)
def
= (Γ + Γ ′), u : t + s

(9.4)

Note that Γ + Γ ′ is undefined if there is u ∈ dom(Γ ) ∩ dom(Γ ′) such that
Γ (u) + Γ ′(u) is undefined and that dom(Γ + Γ ′) = dom(Γ ) ∪ dom(Γ ′). We let
|Γ | denote the lowest level of the types in the range of Γ , that is
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|Γ | def
= min{|Γ (u)| | u ∈ dom(Γ )} (9.5)

We say that Γ is unlimited if |Γ | = �.
We now turn our attention to the typing rules, which are meant to enforce

the following properties of channels:

1. a service channel with input capability must be used by a replicated input
process (we refer to this condition as input receptiveness);

2. a linear channel cannot be discarded until both its input and output
capabilities have been used (we refer to this condition as linearity);

3. an operation on a linear channel cannot block channels with lower or
equal level (with linearity, this condition guarantees deadlock freedom);

4. the use of a linear channel cannot be postponed forever (with linearity
and deadlock freedom, this condition guarantees lock freedom).

The typing rules allow us to derive judgments of the form Γ � e : t,
stating that e is well typed in the environment Γ and has type t, and of the
form Γ �k P, stating that P is well typed in the environment Γ . The parameter
k ∈ {0, 1} intuitively represents the “cost” for sending a channel over another
channel: each output operation consumes k tickets from the channels being
sent. The type system is designed in such a way that a well typed, closed
process P is guaranteed to be deadlock free if ∅ �0 P and lock free if ∅ �1 P.

Expressions. Because the model has an extremely simple expression lan-
guage, the corresponding typing rules, shown below, are fairly obvious and
extend easily to more complex expressions:

[t-bool]
∅ � b : bool

[t-int]
∅ � n : int

[t-name]
u : t � u : t

The important remark concerning these rules is that the type environment
used for typing an expression e only contains associations for the free names
occurring in e. This makes sure that no linear or relevant resource (namely,
channels that must be used at least once) is left unused. Later on we will
discuss a structural rule that allows us to discard resources whose use is not
necessary in order to enforce (dead)lock freedom.

Idle and grouped processes. Rule [t-idle] states that the idle process is well
typed in the empty environment only:

[t-idle] ∅ �k { }
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For example, the judgment a : ![int]n
m �k { } is not derivable, because

the linear channel a is supposed to be used for one output operation, whereas
the process { } does nothing. This typing rule illustrates a key trait of the
type system, making sure that linear channels with pending capabilities are
not discarded. If this were not the case, one could write processes like

new a in a?(x)

which are stuck waiting for messages that will never arrive.
The typing rule for a grouped process is simple and does not enforce any

constraint other than typability of the process itself:

[t-group]
Γ �k P

Γ �k { P }

Outputs. Rule [t-out] is used for typing output operations on linear channels:

[t-out] u : ![t]m
n + v : $n

k t �k u!v 0 < |t|
First of all, the channel u being used for the output must indeed have

capability !. The type of the message v must be t (as specified in the type of
the channel u) except that its level is shifted by m and its tickets are shifted by
k. The shifting of the level means that the level of t in ![t]m

n is relative to m.
This, together with the side condition 0 < |t|, makes sure that the level of v
(the channel being sent as a message) is strictly greater than the level of u.
The shifting of the tickets in t accounts for the fact that, by sending v as a
message, one ticket from v is consumed. Note that this is necessary only in
the judgments for lock freedom (k = 1). Below are a few examples:

• The judgment a : ![?[int]1
0]

2
0, b : ?[int]3

1 �1 a!b is derivable
because ?[int]3

1 = $
2
1 ?[int]

1
0. Note in particular that the channel to

be sent on a must have no tickets, which is in fact what happens to b
after 1 ticket is consumed from its type before it travels on a.
• The judgment a : ![![int]1

0]
0
0, b : ![int]1

0 �1 a!b is not derivable
because b has no tickets and so it cannot travel on a.
• Let t = ?[t]0

0 and observe that #[t]1
0 = ![t]

1
0 + ?[t]

1
0. The judgment

a : #[t]1
0 �0 a!a is not derivable, despite the message a has the “right”

type ?[t]1
0 = $

1
0 t, because the condition 0 < |t| = 0 is not satisfied. A

process like a!a is deadlocked because the occurrence of a that is meant
to be used for matching this output operation is the very message sent
on a itself.
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• The judgment a : ![?[int]*]0
0, b : ?[int]* �0 a!b is not derivable

because 0 ≮ |?[int]*| = ⊥. A service channel with input capability
such as b cannot be sent as a message to guarantee input receptiveness.

Rule [t-out*] is used for typing outputs on unlimited channels.

[t-out*] u : ![t]* + v : $n
k t �k u!v ⊥ < |t|

There are two key differences between [t-out] and [t-out*]. First, the
condition ⊥ < |t|, where t is the type of v means that only unlimited channels
with input capability cannot be communicated. Second, the type of v does
not need to match exactly the type t in the channel type of u, but its level
can be shifted by an arbitrary amount n. This is the technical realization of
polymorphism. In particular, each distinct output on u can shift the type of the
message by a different amount, therefore allowing polymorphic recursion. We
will often use this feature in the extended examples in the second half of this
chapter.

Both [t-out] and [t-out*] generalize easily to an arbitrary number of
message arguments. As an example, the former rule can be generalized as
follows:

u : ?[t1, . . . , th]
m
n + v1 : $m

k t1 + · · · + vh : $m
k th �k u!(v1, . . . , vh) 0 < |ti|

Inputs. Rule [t-in] is used for typing linear input operations:

[t-in]
Γ , x : $n

0 t �k P

Γ + u : ?[t]n
m �k u?(x).P

n < |Γ |

The channel u must have type ?[t]n
m and the continuation P is typed

in an environment where the input polarity of u has been removed and the
received message x has been added. The level of the type of x is shifted by
n, consistently with the relative interpretation of levels of message types that
we have already discussed for [t-out]. The tickets of u are irrelevant since u
is used for an input operation, not as the content of a message. The condition
n < |Γ | ensures that the input on u does not block operations on other channels
with equal or lower level. In particular, Γ cannot contain service channels with
input capability. Below are some typical examples of ill-typed processes that
violate this condition:

• a : ?[int]1
0, b : ![int]0

0 �k a?(x).b!x is not derivable because 1 ≮ 0:
the input on a blocks the output on b, but b has lower level than a;
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• a : #[int]h
0 �k a?(x).a!x is a degenerate case of the previous exam-

ple, where the input on a blocks the very output that should synchronize
with it. Note that this process is well-typed in the traditional linear
π-calculus [16].
• a : ?[int]h

0, c : ?[int]* �k a?(x).*c?(y) is not derivable because
|?[int]*| = ⊥. To guarantee input receptiveness, we require that
replicated inputs cannot be guarded by other operations.

Rule [t-in*] is used for typing replicated input operations corresponding
to persistent services:

[t-in*]
Γ , x : t �k P

Γ + u : ?[t]* �k *u?(x).P
� ≤ |Γ |

This rule differs from [t-in] in three important ways. First of all, u must
be a service channel with input capability. Second, the side condition � ≤ |Γ |
makes sure that the environment Γ used for typing the body of the service
is unlimited. This is because the service can be invoked an arbitrary number
of times, hence its body cannot contain linear resources. Third, it may be
the case that u ∈ dom(Γ ), because ?[t]* + ![t]* = #[t]* according to
(9.3) and ![t]* is unlimited. This means that services may recursively invoke
themselves. We use this feature in several examples, including Example 1.

As for [t-out] and [t-out*], both [t-in] and [t-in*] can be easily generalized
to handle arbitrary tuples of message arguments.

Conditional and parallel processes. The typing rule for conditional pro-
cesses is shown below:

[t-if]
Γ1 � e : bool Γ2 �k P Γ2 �k Q

Γ1 + Γ2 �k if e then P else Q

As usual, the condition must have type bool and + is used for combining
the type environments used in different parts of the process. Note that both
branches must be typable using the same type environment, meaning that the
linear channels occurring in P and Q must be used in the same order. For
example, the judgment

a : ?[int]1
0, b : ?[int]2

0 �k if e then a?(x).b?(y) else b?(y).a?(x)

is not derivable because the else branch uses the two linear channels a and
b in an order not allowed by their levels.
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The typing rule for parallel compositions is shown below:

[t-par]
Γ1 �k P Γ2 �k Q

Γ1 + Γ2 �k P | Q

Because of the definition of the + operator, which combines the types
of linear channels only provided that such channels have the same level,
the order in which linear channels are used in the branches of the parallel
composition must be consistent. For example, the judgment

a : #[int]1
0, b : #[int]2

0 �k a?(x).b!x | b?(y).a!y

cannot be derived because the second branch violates the side condition of
[t-in] requiring b to have a strictly smaller level than a. Indeed, the whole
process is deadlocked.

Channel creation. Restrictions can be used to introduce both linear and
service channels. In the former case, the typing rule is

[t-new]
Γ , a : p[t]n

m �k P

Γ �k new a in P
p ∈ {0, #}

Note that the rule “guesses” the right level and number of tickets that
are necessary for typing P. The polarity is either #, meaning that a must be
used for both one input and one output operation in P, or 0, meaning that a
is a depleted channel that is not supposed to be used at all in P. The reason
why the typing rule accounts for this possibility is purely technical and is
necessary to prove that process reductions preserve typing [18].

The typing rule for introducing a service channel is essentially the same:

[t-new*]
Γ , a : #[t]* �k P

Γ �k new a in P

Unlike linear channels, the capability of restricted unlimited channels
is always #. Since an unlimited channel a with input capability must be
used (cf.[t-in*]), this guarantees that there is always a service waiting for
invocations on a. On the other hand, a service channel with output capability
does not have to be used (cf. (9.1)), therefore imposing that the capability of
a is # does not mandate invocations on a.
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Unused resources. The following structural rule provides a limited form
of weakening whereby it is possible to add unused resources in a type
environment, provided that these resources have an unlimited type:

[t-weak]
Γ �k P

Γ + Γ ′ �k P
� ≤ |Γ ′|

For example, both a : 0[int]m
n �k { } and x : int �k { } are derivable,

because the type environments only contain resources that impose no usage
and therefore can be discarded using [t-weak]. On the contrary, neither a :
![int]m

n �k { } nor a : ?[int]* �k are derivable.
The type system refines the one for the linear π-calculus [16], hence all

the properties of the linear π-calculus (partial confluence, linear usage of
channels, etc.) are still guaranteed. The added value is that the type system
also guarantees deadlock/lock freedom.

Theorem 9.3. The following properties hold:

1. If ∅ �0 P, then P is deadlock free.
2. If ∅ �1 P, then P is lock free.

Example 3 (recursive Fibonacci function). Let P be the process shown in
Listing 9.1. Then it is possible to derive

fibo : #[int, ![int]0
0]
* �k P

if and only if k = 0. It is not possible to find a derivation for k = 1 since
the type system cannot establish an upper bound to the time after which the
continuation channel c will be used in an invocation fibo!(n,c). In fact,
such upper bound depends on n and on the fact that the recursion of the fibo
service is well-founded This latter property requires a kind of analysis that
eludes the capabilities of the type system. �

9.3 Extended Examples

9.3.1 Fibonacci Stream Network

In this section we discuss an alternative modeling of system that computes
the sequence of Fibonacci numbers and that is an example of stream net-
work, that is a network of communicating processes that exchange infinite
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add source(1) copy

source(0)

e a
b

c

d

Figure 9.1 Graphical representation of the Fibonacci stream network [8, 22].

sequences (streams) of messages. Figure 9.1 depicts the Fibonacci stream
network [8, 22] where the boxes represent processing units and the arrows
represent communication channels.

Each source(n) process sends n on the outgoing channel followed by
each message received from the incoming channel. The copy process for-
wards each received message on each of its two outgoing channels. Finally,
add sends on the outgoing channel the sum of corresponding messages
received from the two incoming channels. Overall, it is easy to see that
the stream of messages flowing on channel a corresponds to the Fibonacci
sequence 1, 1, 2, 3, 5, . . ..

The modeling of the Fibonacci stream network in Hypha’s input language
is shown in Listing 9.2. There is a service for each of the boxes in Figure 9.1,
with source that makes use of an auxiliary service link that acts as a
persistent message forwarder. The network itself is created on line 5, where
the services are invoked and connected by the channels a through e. The
most distinctive aspect of the modeling is the use of continuation passing
for the representation of message streams: each channel that connects two
combinators is in fact a linear channel (a channel that is meant to be used for
one communication only); whenever a message is exchanged on the channel,
the payload is paired with a fresh (linear) channel on which the subsequent
message will be exchanged. This pattern can be clearly observed in the
definitions of link, add, and copy. To improve readability, hereafter we write
x̄ for a channel name that is meant to represent the continuation of x.

{ *link?(x,y).x?(v,x̄).source!(v,x̄,y)
| *source?(n,x,y).new ȳ in { y!(n,ȳ) | link!(x,ȳ) }
| *add?(x,y,z).x?(v,x̄).y?(w,ȳ).new z̄ in { z!(v+w,z̄) | add!(x̄,ȳ,z̄) }
| *copy?(x,y,z).x?(v,x̄).new ȳ,z̄ in { y!(v,ȳ) | z!(v,z̄) | copy!(x̄,ȳ,z̄) }
| source!(1,e,a) | copy!(a,b,c) | source!(0,b,d) | add!(d,c,e) }

Listing 9.2 Term representation of the Fibonacci stream network [8, 22].
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Hypha infers the following types for the channels used in the system

source : #[int, ?[int, μα.?[int, α]3
2]

2
1, ![int, μβ.?[int, β]

3
1]

0
0]
*

link : #[?[int, μα.?[int, α]3
2]

0
0, ![int, μβ.?[int, β]

3
1]

1
1]
*

add : #[?[int, μα.?[int, α]3
1]

0
0, ?[int, μβ.?[int, β]

3
1]

1
0,

![int, μγ.?[int, γ]3
2]

2
0]
*

copy : #[?[int, μα.?[int, α]3
1]

0
0,

![int, μβ.?[int, β]3
2]

2
0, ![int, μγ.?[int, γ]

3
1]

1
0]
*

a, d : #[int, μα.?[int, α]3
1]

0
2

b, e : #[int, μα.?[int, α]3
2]

2
3

c : #[int, μα.?[int, α]3
1]

1
2

confirming that the system is well typed and therefore lock free. In particular,
Theorem 9.3(2) allows us to deduce that every number in the sequence of
Fibonacci is computed in finite time. We make some observations concerning
the inferred channel types: first, Hypha correctly distinguishes between the
channels representing services (such as copy and source) from the linear
channels that connect them (such as a and b). Second, the levels associated
with linear channels give hints concerning the order of synchronizations in
the system. The synchronizations on a and d (with level 0) happen first,
followed by that on c (level 1), and then by that on e (level 2). Note however,
that the total order on levels does not necessarily reflect the partial order
that represents dependencies between channels. For example, b has a strictly
greater level than c and yet the synchronizations on these two channels
may happen in any order. Concerning the ticket annotations, note that all
linear channels require at least 2 tickets because they are used to connect
2 services. For example, a connects source(1) and copy. By contrast, b
and e need one more ticket because they are also forwarded by source
to link.

9.3.2 Full-Duplex and Half-Duplex Communications

Many parallel algorithms use batteries of processes arranged in a grid that
iteratively update array elements and communicate with processes assigned
to neighbor elements (Figure 9.2). Processes may communicate according
to one out of two modalities: when communication is full-duplex, pro-
cesses simultaneously send messages to each other; when communication
is half-duplex, only one message travels between two processes at any



208 Type-Based Analysis of Linear Communications

0 1
a

b

Figure 9.2 Graphical representation of a 4 × 3 bi-dimensional stencil.

moment in time. Correspondingly, we can model the dotted grid fragment in
Figure 9.2 as

e!(0, a, b) | f!(1, b, a) (9.6)

where e and f are service channels defined as either

*full?(n,x,y).new x̄ in { x!(n,x̄) | y?(m,ȳ).full!(n+m,x̄,ȳ) }

in case of full-duplex communication or as

*half?(n,x,y).y?(m,ȳ).new x̄ in { x!(n,x̄) | half!(n+m,x̄,ȳ) }

in case of half-duplex communication. In both cases, x is used for sending
messages to, and y for receiving messages from, a neighbor process. Each
message sent on x carries a payload n as well as a continuation channel x̄ used
for the communication at the next iteration. Symmetrically, each message
received from y contains the neighbor’s payload m and a continuation ȳ. The
difference between full and half is that, in the latter case, the sender waits
for the message from its neighbor before sending its own.

Overall there are 4 possible configurations of the system (9.6) obtained
by instantiating e and f with either full or half. It is easy to see that a
configuration is lock free as long as at least one of e or f is instantiated with
full. Indeed, Hypha infers the types

a, b : #[int, μα.?[int, α]1
1]

0
2

when e = f = full and the types

a : #[int, μα.?[int, α]2
1]

1
2 b : #[int, μα.?[int, α]2

1]
0
2

when e = half and f = full. The case when e = full and f = half
is symmetric, while the one when e = f = half is ill typed for deadlock
freedom and, therefore, for lock freedom as well.
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Figure 9.3 Master-worker (left) and producer-consumer (right).

9.3.3 Load Balancing

Figure 9.3 shows two network topologies aimed at taking advantage of
parallelism by distributing multiple tasks to independent workers. They differ
in that in the master-worker topology the same process that produces tasks
is also the one that collects the results, whereas in the producer-consumer
topology (sometimes called “farm”) producer and consumer are different
processes. The distinction between the two topologies has important conse-
quences at the communication layer since the channels are bi-directional in
the former network and uni-directional in the latter.

Listings 9.3 and 9.4 show the modeling of the network topologies in
Figure 9.3, both of which are well-typed according to the lock freedom type
system implemented in Hypha. For the master-worker network, Hypha infers
the types

a : #[int, μα.![int, ![int, α]2
1]

1
0]

0
2

b : #[int, μα.![int, ![int, α]2
1]

1
0]

1
2

{ *master?(n,x,y).
new x̄,ȳ in { x!(n,x̄) | y!(n+1,ȳ) | x̄?(v, ¯̄x).ȳ?(w, ¯̄y).master!(n+2, ¯̄x, ¯̄y) }

| *worker?(n,z).z?(m,z̄).new ¯̄z in z̄!(m mod n,¯̄z).worker!(n,¯̄z)
| master!(0,a,b) | worker!(2,a) | worker!(3,b) }

Listing 9.3 Term representation of master-worker (half-duplex channels).

{ *producer?(n,x,y).new x̄,ȳ in { x!(n,x̄) | y!(n+1,ȳ) | producer!(n+2,x̄,ȳ) }
| *consumer?(x,y).x?(v,x̄).y?(w,ȳ).{ print!v | print!w | consumer!(x̄,ȳ) }
| *worker?(n,x,y).x?(m,x̄).new ȳ in { y!(m mod n,ȳ) | worker!(n,x̄,ȳ) }
| producer!(0,a,b) | worker!(2,a,c) | worker!(3,b,d) | consumer!(c,d) }

Listing 9.4 Term representation of producer-consumer.
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which describe a communication protocol whereby the master sends a task
(represented as an integer number) to each worker along with a continuation
channel. By using this continuation channel, the worker will answer back
with the processed task (again represented as an integer number) and another
continuation that the master uses for starting another iteration.

For the producer-consumer network Hypha infers the types

a : #[int, μα.?[int, α]2
1]

0
2

b : #[int, μα.?[int, α]2
1]

1
2

c : #[int, μα.?[int, α]2
1]

1
2

d : #[int, μα.?[int, α]2
1]

2
2

again confirming that the network is lock free.

9.3.4 Sorting Networks

Figure 9.4 depicts an example of so-called sorting network, that is a network
of communicating processes whose overall effect is that of sorting an input
vector of fixed size, 6 in this case. The network is made of two different
kinds of processes: comparators (the rectangular boxes) input two values
and possibly swap them if the first happens to be larger than the second;
buffers (the square boxes) simply forward the input value. The input values
go through three identical phases; in each stage, the odd-indexed inputs and
then the even-indexed inputs are compared to, and possibly swapped with,
their successor.

The sorting network in Figure 9.4 is modeled in the linear π-calculus
as shown in Listing 9.5. Note the use of auxiliary services odd and even
corresponding to the two sub-phases of each phase and linked together by

0 5

1 4

2 3

3 2

4 1

5 0

a61 a62 a63 a64

a51 a52 a53 a54

a41 a42 a43 a44

a31 a32 a33 a34

a21 a22 a23 a24

a11 a12 a13 a14

Figure 9.4 Graphical representation of an odd-even 6-input sorting network.
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1 { *compare?(x,y,l,h).
2 new z in { x?(v).z!v | y?(w).z?(v).if v<w then l!v | h!w else l!w | h!v }
3 | *buffer?(x,y).x?(v).y!v
4 | *provide?(x,n).x!n
5 | *consume?(x,n).x?(v).print!(n,v)
6 | *even?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).

7 { compare!(x1,x2,y1,y2) | compare!(x3,x4,y3,y4) | compare!(x5,x6,y5,y6) }

8 | *odd?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).

9 { buffer!(x1,y1) | compare!(x2,x3,y2,y3)

10 | buffer!(x6,y6) | compare!(x4,x5,y4,y5) }

11 | *phase?(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6).new z1,z2,z3,z4,z5,z6 in

12 { even!(x1,x2,x3,x4,x5,x6,z1,z2,z3,z4,z5,z6)

13 | odd!(z1,z2,z3,z4,z5,z6,y1,y2,y3,y4,y5,y6) }

14 | phase!(a11,a21,a31,a41,a51,a61,a12,a22,a32,a42,a52,a62)

15 | phase!(a12,a22,a32,a42,a52,a62,a13,a23,a33,a43,a53,a63)

16 | phase!(a13,a23,a33,a43,a53,a63,a14,a24,a34,a44,a54,a64)

17 | provide!(a11,0) | provide!(a21,1) | provide!(a31,2)

18 | provide!(a41,3) | provide!(a51,4) | provide!(a61,5)

19 | consume!(a14,0) | consume!(a24,1) | consume!(a34,2)

20 | consume!(a44,3) | consume!(a54,4) | consume!(a64,5) }

Listing 9.5 Term representation of an odd-even 6-input sorting network.

restricted channels zi. This network is well-typed and Hypha infers the types

comparator : #[?[int]0
0, ?[int]

0
0, ![int]

2
0, ![int]

2
0]
*

buffer : #[?[int]0
0, ![int]

2
0]
*

ai j : #[int]4( j−1)
2

confirming that each value sent on ai1 is eventually received on some aj4.
More specifically, the level 12 assigned with the aj4 channels gives an upper
bound to the number of synchronizations needed for producing the output.

Comparators input values in parallel (from the channels x and y) and
perform an internal synchronization (on a private linear channel z) to join the
results of the two receptions and output the results. Alternatively, one could
model comparators in such a way that the receive operations on x and y are
performed in a fixed order. The choice of a particular modeling affects the lev-
els associated with the input channels, but not the typeability of the network
as a whole. This is not the case for buffers: they are operationally irrelevant
and are usually omitted in standard presentations of sorting networks. Their
use in Listing 9.5 is key for the lock freedom analysis to succeed as they
make sure that the levels of the channels connecting one phase to the next
one remain aligned.
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9.3.5 Ill-typed, Lock-free Process Networks

In general, the problem of verifying whether a π-calculus process is
(dead)lock free is undecidable. For this reason, the type system on which
Hypha is based is necessarily incomplete, in the sense that there exist pro-
cesses satisfying Definitions 9.1 and 9.2 which are ill typed according to the
type system described in Section 9.2. In this section, we discuss two repre-
sentative examples of processes that cannot be handled by our type system. In
all cases, the inability to find a typing derivation is tightly related to the fact
that the type system uses integer numbers for reasoning on the dependencies
between linear channels and such numbers measure the (abstract) moment of
time at which the synchronization occurs on these channels.

Listing 9.6 shows a process that computes the sequence of prime num-
bers. The process is modeled after Eratosthenes’ sieve: the from process emits
the infinite stream of natural numbers starting from 2; the sequence goes
through a growing pipeline of filters, each filter removing those numbers
of the sequence that happen to be a multiple of a given prime number m; if
a number n manages to cross the entire pipeline and hits the emitter process
output, then it is prime. In this case n is sent on print and a new filter
removing the multiples of n is inserted at the end of the pipeline. Hypha
is able to distinguish linear from service channels and to infer the type of
messages exchanged therein, but the process is ill-typed for deadlock freedom
even though it is deadlock free. The problem can be traced to the body of
filter: when the received number n turns out to be a multiple of m, the
number is simply discarded and no output is sent on y. So, the recursive
invocation of filter on line 3 reuses the same output channel y that was
received as input. Observe that x̄ is received from x, meaning that the level
of x̄ must necessarily be greater than the level of x, and that the level of
x̄ must be strictly smaller than the level of y, since the input on performed
on x̄ at the next iteration of filter blocks the possible output on y. Given
that the distribution of prime numbers is irregular, there is no upper bound
to the number of inputs on x that may be necessary before the next output

1 { *from?(n,x).new x̄ in { x!(n,x̄) | from!(n+1,x̄) }
2 | *filter?(m,x,y).x?(n,x̄).{ if n mod m = 0 then filter!(n,x̄,y)
3 else new ȳ in { y!(n,ȳ) | filter!(m,x̄,ȳ) } }
4 | *output?(x).x?(n,x̄).{ print!n | new y in { filter!(n,x̄,y) | output!y } }
5 | from!(2,a) | output!a }

Listing 9.6 Stream Network computing the sequence of prime numbers.



9.3 Extended Examples 213

on y is guaranteed to be performed. In general, the type system can handle
those cases in which communications occur following a regular pattern that
is independent of the content of messages themselves.

The second example we consider is a process stream network (Figure 9.5)
that computes the so-called Thue-Morse sequence, that is the sequence of
binary digits 011010011001 · · · starting with 0 and obtained by appending
the boolean complement of the sequence obtained thus far. The term repre-
sentation of the process network (Listing 9.7) is modeled after its definition
in terms of lazy streams [7] and makes use of a set of combinators some of
which we have already used for the Fibonacci stream network (Section 9.3.1).
The network is lock-free, as witnessed by the fact that the corresponding lazy
stream definition can be shown to be productive [7], but also ill typed for
deadlock freedom and hence for lock freedom as well. In this network the
problematic combinator is zip, which interleaves on the output channel f the
digits received from the input channels d and e hence producing messages on
f at twice the rate at which they are consumed from d and e. This means that
there is no fixed offset between the levels of d and e and that of f that could
be dealt with by the typing rule [t-out*]. Note that this phenomenon does not
manifest in the Fibonacci stream network (Figure 9.1) despite its seemingly
similar topology. The key difference is that in the Fibonacci network the add
process combines the messages received from the two input channels into a
single message sent on the output channel. The example is interesting also

zip source(0) copy

tail

invert

f a
b

c

d

e

Figure 9.5 Stream network computing the Thue-Morse sequence.

1 { *zip?(x,y,z).x?(u,x̄).new z̄ in { z!(u,z̄) | zip!(y,x̄,z̄) }
2 | *invert?(x,y).x?(u,x̄).new ȳ in { y!(1-u,ȳ) | invert!(x̄,ȳ) }
3 | *tail?(x,y).x?(_,x̄).link!(x̄,y)
4 | *link?(x,y).x?(v,x̄).source!(v,x̄,y)
5 | *copy?(x,y,z).x?(v,x̄).new ȳ,z̄ in { y!(v,ȳ) | z!(v,z̄) | copy!(x̄,ȳ,z̄) }
6 | *source?(n,x,y).new ȳ in { y!(n,ȳ) | link!(x,ȳ) }
7 | source!(0, f,a) | copy!(a,b,c) | invert!(b,d) | tail!(c,e) | zip!(d,e, f) }

Listing 9.7 Term representation of the stream network computing the Thue-Morse sequence.
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because the impossibility to type the term is due to an excess of produced
messages rather than the lack thereof, as it was with the sequence of prime
numbers.

9.4 Related Work

Binary session type disciplines [12] provide intra-session guarantees of lock
freedom but cannot enforce this property in general when multiple sessions
are interleaved for types do not carry any information concerning the depen-
dencies between different sessions. Some session type systems [1, 24] are
designed in such a way that a plain session type discipline is sufficient
to guarantee deadlock freedom. However, only networks with a tree-like
communication topology are well typed. Among the examples we have
considered, just the recursive Fibonacci (Listing 9.1) and the master-worker
(Listing 9.3) fall in this category.

Multiparty session type disciplines [11,12] extend (dead)lock freedom to
sessions involving multiple processes. In these framework a global type is
used to describe the interactions between participants of a session as opposed
to the actions that participants perform on the channel of the session. The
global type is given explicitly by the system designer/programmer and a
tool is then used to check the consistency of the global type against (a
model of) the code that is meant to realize it. This top-down approach is
complementary to the one we have pursued in this chapter: Hypha analyzes
assemblies of processes knowing nothing about the intended communication
topology. In general, global types have been designed for describing delim-
ited interactions within sessions, but they cannot dispense completely from
the need of interleaving different sessions, in which case they are unable to
prevent (dead)locks. This has led to the study of hybrid approaches [2, 3]
that keep track of the order in which different sessions interleave with the
purpose of detecting mutual dependencies between sessions that could lead
to (dead)locks.

The works most closely related to our own are those where each
input/output operation described by a channel/session type is annotated with
information that captures the dependencies between different channels/ses-
sions. Such annotations come in the form of integer numbers as in our
case, or as abstract events, or as combinations thereof. The original tech-
nique and the corresponding analysis tool TyPiCal, which our type system
and Hypha are heavily inspired by, were described by Kobayashi [13–15].
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These type systems and our own are uncomparable: on the one hand, in
Kobayashi’s works annotations can be used to reason about dependencies
between arbitrary channels, whereas we focus on linear channels only. On
the other hand, the form of level polymorphism allowed by rule [t-out*]
enables the verification of cyclic networks of recursive processes (most of
the examples we have examined in this chapter fall in this category) that
cannot be successfully handled by Kobayashi’s type systems [13–15]. A more
recent work [9] improves the precision of the technique, although recursive
types (hence recursive communication protocols) are not considered. The
annotation-based technique has also been applied directly to binary [17, 23]
and multiparty sessions [21].

It has been shown that the approaches imposing a tree-like communica-
tion topology [1, 24] are subsumed by those those annotating I/O actions in
session types with dependency information [6].

Acknowledgments I’m grateful to the anonymous reviewers whose com-
ments helped me improving both content and presentation of this chapter.
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