
nutrients

Review

Dietary Sugars and Endogenous Formation of
Advanced Glycation Endproducts:
Emerging Mechanisms of Disease

Manuela Aragno and Raffaella Mastrocola *

Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Italy;
manuela.aragno@unito.it
* Correspondence: raffaella.mastrocola@unito.it; Tel.: +39-011-6707-758

Received: 13 February 2017; Accepted: 11 April 2017; Published: 14 April 2017

Abstract: The rapid increase in metabolic diseases, which occurred in the last three decades in both
industrialized and developing countries, has been related to the rise in sugar-added foods and
sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases
related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be
ingested with high temperature processed foods, but also endogenously formed as a consequence
of a high dietary sugar intake. Animal models of high sugar consumption, in particular fructose,
have reported AGE accumulation in different tissues in association with peripheral insulin resistance
and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid
and effective glycating agents when compared to other sugars has prompted the investigation of
the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as
sweetener has been ascribed by many experimental and observational studies for the enhancement of
lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to
interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and
mitochondrial metabolism. Moreover, emerging evidence also in humans suggest that this impact of
dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver,
skeletal and cardiac muscle, and the brain, affecting not only metabolic control, but global health.
Indeed, the most recent reports on the effects of high sugar consumption and diet-derived AGEs on
human health reviewed here suggest the need to limit the dietary sources of AGEs, including added
sugars, to prevent the development of metabolic diseases and related comorbidities.
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1. Dietary Sugars as a Risk for Health

1.1. Sugar Consumption in Modern Society

Significant modifications of human diet composition, as well as of frequency and timing of
energy and nutrients intake, have been observed in the last forty years, representing potential
risk factors for the development of metabolic diseases. An increase of the daily energy intake of
505 kcal, corresponding to 25%, from 1970 to 2010 [1] has been described, and a rise in per capita food
consumption from 5 kg to 70 kg per year from 1800 to 2006 has been estimated [2]. Based on these
observations, the current Guidelines of Nutrition and Health Recommendations suggest that a healthy
diet must provide no more than 5% of total energy intake as simple sugars. In contrast, currently,
13% of the American population consumes over 25% of their daily energy intake as sugar [3].
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In addition, clinical evidence suggests that sugar-sweetened foods create psychological
dependence [4]. Indeed, clinical observations report that removing sugar from the diet causes effects
like hyperactivity, conduct problems, and mental disturbances [5,6].

On the other hand, results from experimental models confirm that the consumption of
sugar-added foods is associated with increased risk for obesity [7], as well as cardiovascular
diseases [8,9], metabolic disorders [10], non-alcoholic fatty liver disease (NAFLD) [11,12], and cognitive
decline [13]. Actually, some controversial conflicts over the role of an excessive intake of sweetened
foods and beverages on public health and the interest of food and beverage industry have been
debated [14]. Recent reviews report several critical issues on the criteria and low quality evidence used
for recommendations and guidelines [15–17].

However, sugar added to foods and drinks adds considerable calories without any benefits
and may take the place of other nutrient-dense foods in the diet. Thus, many of the clinical and
epidemiological observations indicating that excess glucose and fructose intake exacerbates metabolic
complications in different tissues are possibly due to the increased calories intake. At present, there
seems to be reliable evidence of results obtained from experimental models about the negative effects
of high dietary sugar intake, but no clear reliable evidence indicating daily caloric thresholds for sugar
intake to exert negative health effects in human.

1.2. Fructose Consumption and Prevalence of Metabolic Diseases

Sucrose, formed by 50% fructose and 50% glucose joint by a glycosidic bond, has been the
most easily consumed sweetener in the last decade. The introduction of corn-derived sweeteners,
in particular of high-fructose corn syrup (HFCS), which is provided with high sweetening power,
organoleptic properties, the ability to confer a long shelf life and to maintain a long-lasting hydration
in industrial bakeries, together with its low cost, has rapidly reduced the use of sucrose in many
industrial preparations [2]. The fructose content in HFCS is in a range between 42% and 55% of total
sugar, and both fructose and glucose are in their pure form, without glycosidic bond. The commercial
use of HFCS as a common sweetener has strongly raised the content of fructose in the human diet
through consumption of sweetened beverages, tea, coffee, sodas, snacks, and bakeries.

Some epidemiological studies show an association between fructose-containing sweeteners
intake and body weight gain [8,18]. Moreover, clinical evidence indicates that a high-fructose diet is
associated with the onset of dyslipidemia, insulin resistance, and related metabolic diseases [19,20].
These observations in humans have been confirmed and further extended by animal studies indicating
that fructose added to the diet contributes to the development of obesity, inflammation, and decrease
of the activity of the mitochondrial metabolism regulator peroxisome proliferator-activated receptor
alpha (PGC1-alpha) [10,21]. High-sugar fed animals are commonly used as suitable experimental
models to highlight pathogenic mechanisms related to metabolic diseases onset following imbalanced
high-calories diets [22–24]. However, although the negative effects of fructose have been observed and
described in these models, the mechanisms proposed are not yet exhaustive to define whether dietary
fructose, when consumed in moderate amounts, is actually deleterious for human health.

1.3. Dietary Fructose and Glucose Metabolism

Dietary sugars, including glucose and fructose, are absorbed in the small intestine, but the
absorptive capacity for fructose is lower than for glucose or sucrose. However, the addition of
glucose, as in case of HFCS-added foods, facilitates the absorption of fructose [25]. After absorption,
nevertheless, the metabolism of the two monosaccharides follows different pathways, since glucose
can be used directly by the cells to produce energy in a variety of organs, while fructose is primarily
metabolized in the liver, which takes up at least 50% of the initial fructose flux [26]. In the
cells, glucose is phosphorylated by hexokinase to glucose-6-phosphate, which is then converted
to fructose-1-6-diphosphate by the phosphofructokinase, the rate limiting enzyme of glycolysis.
The cleavage of fructose-1,6-diphosphate by fructose diphosphate aldolase produces the triose
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phosphate intermediates dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate
(GAP). Conversely, the fructose metabolism bypasses the need of insulin and the phosphofructokinase
regulation step, and enters glycolysis directly at the step of triose phosphate intermediates generation.
Indeed, fructose is phosphorylated by ATP to fructose-1-phosphate, catalyzed by fructokinase.
Fructose-1-phosphate is then split by hepatic aldolase B into glyceraldehyde (GA) and DHAP, which
can be both converted to GAP. These metabolites are at the centre of metabolic crossroads that lead to
glycolysis, gluconeogenesis, glycogenesis and lipogenesis [27] (see Scheme 1).
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Scheme 1. Fructose and glucose metabolism and proposed effects for dietary sugar-induced glycation.
Fructose bypasses the rate limiting step of glycolysis leading to a faster generation of dicarbonyl precursors
than glucose. AGE accumulation in tissues can interfere with many protein functions contributing to the
onset of metabolic diseases and related comorbidities.

2. Dietary Sugars and Glycation

2.1. Advanced Glycation Endproducts (AGEs)

AGEs are toxic compounds deriving from non-enzymatic glycoxidation reactions of reducing
sugars with proteins, which then result as being structurally and functionally compromised [28].
Protein glycation is initiated by a nucleophilic addition reaction between the free amino group
from a protein, lipid or nucleic acid and the carbonyl group of monosaccharides. This reaction
forms a reversible Schiff base, which rearranges over a period of days to produce ketoamine or
Amadori products. The Amadori products undergo dehydration and rearrangements followed by
other reactions involving dicarbonyl compounds, such as cyclization, oxidation and dehydration,
to form irreversible AGEs [29]. Proteins glycation occurs in vivo in physiological conditions and
the Maillard reaction represents a type of post-translational modification of molecules that takes
place slowly and continuously throughout the life span, driving AGE accumulation in tissues during
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ageing [20]. For this reason, AGEs have been involved in the pathogenesis of age-related diseases,
such as neurodegenerative diseases, atherosclerosis, and chronic inflammatory diseases [30], but in
particular conditions, such as diabetes and insulin resistance, the accumulation of AGEs is accelerated,
leading to early developing of comorbidities [31]. Indeed, hyperglycemia is known to induce high
rates of protein glycation, which is responsible for the development of long-term complications [30].

2.2. In Vitro Protein Glycation of Different Sugars

It has been a long time since studies started to investigate the glycative potential of different
monosaccharides by in vitro incubations with physiologically relevant proteins such as haemoglobin
and serum albumin [32,33]. The first comparison among sugars for their non-enzymatic reactivity
with haemoglobin has been published by Bunn and Higgins in 1981, showing that fructose has a
reaction rate 7.5-fold higher than glucose [32]. A few years later, Suarez et al. found that the rate of
glycoxidation of bovine serum albumin by fructose was about 10 times higher than that by glucose [34].
Since then, other studies have confirmed the sequence ribose > fructose > glucose for the rate of
glycoxidation [35,36], even if some of them failed to detect relevant differences on the glycation
potential of fructose compared to glucose in terms of time and intensity of browning during incubation
with amino acids [37,38].

The papers reporting a different kinetic in AGE formation from glucose and fructose have
attributed it to the different forms in which the two sugars exist in physiological conditions. Glucose,
a D-aldohexose, exists in solution as a stable ring structure. Since only the open chain form of sugar
can react with an amino group in protein to form a Schiff base, the high reactivity of fructose may
reflect its higher quote of existing as an open chain in solution than glucose [32,33]. The main glycating
sugar present in the body at the highest concentration is glucose. However, fructose can be produced
in conditions of hyperglycemia by the polyol pathway where glucose is converted to fructose through
the consecutive action of aldose reductase and sorbitol dehydrogenase. Oxidation of sorbitol by
sorbitol dehydrogenase (SDH) yields NADH and causes an increase in the ratio NADH/NAD+ that
may contrast GAP-dehydrogenase activity, thus leading to accumulation of the triose phosphates
(see Scheme 2). This conversion of excessive glucose to fructose leads to an increase in fructose levels
in tissues of diabetic patients [39]. A second aspect linking high fructose levels to AGE production is
related to the peculiar fructose metabolism that evokes rapid generation and accumulation of GAP
and DHAP, both effective glycating agents and precursors of the dicarbonyls compounds glyoxal and
methylglyoxal, which, in turn, are precursors of more stable AGEs [40].

There are differences between glucose and fructose also concerning the glycating process, since
the rearrangement of the Schiff base derived from fructose generates Heyns products that are quite
different from the Amadori products formed by glucose, for they undergo a more rapid conversion to
irreversible AGEs [34]. However, in addition, the opposite observation of a slower rate of Maillard
fluorescence generation for the Haynes products derived from fructose compared to Amadori products
derived from glucose has been reported [41].

2.3. Dietary Intake of Exogenous AGEs and of Simple Sugars as Potential Sources for Endogenous AGEs

In recent years, several studies have highlighted some dietary aspects that can influence extra- and
intra-cellular accumulation of AGEs.

First, the high-temperature and long-time cooking of foods can generate AGEs that are
exogenously introduced with the diet [42]. A relevant number of intervention studies, reviewed
by Kellow and Savige, have investigated the effects of an AGE-restricted diet on inflammatory markers
and insulin sensitivity. Their meta-analysis of the literature provided evidence that, although the
reduction of AGEs introduced with foods is associated to reduced CML plasma levels, a direct
relationship with improved insulin sensitivity and inflammatory profile is still not clearly demonstrated
by high quality clinical trials [43].
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Scheme 2. The polyol pathway. In conditions of excess of glucose, as occurring in diabetes, glucose
undertakes the polyol pathway to be converted to fructose through the consecutive action of aldose
reductase and sorbitol dehydrogenase. This alternative pathway for the metabolism of glucose leads
to the increase in fructose levels in tissues of diabetic patients and of the NADH/NAD+ ratio that
contrasts GAP-dehydrogenase activity leading to accumulation of the triose phosphates GAP and
DHAP, precursors of the dicarbonyls compounds glyoxal (GO) and methylglyoxal (MGO).

Second, emerging evidence indicates that high dietary simple sugars consumption can represent
a substantial source of endogenous AGEs [44]. In light of the in vitro observation that fructose is
much more reactive than glucose in generating glycation precursors, the modern nutrition implicating
a much higher fructose intake than decades ago is an important factor contributing to the increase
in plasma fructose concentration in healthy subjects [45], possibly contributing to AGE formation.
Thus, among the sugars mostly used for sweetening of foods and drinks, the fructose might represent
the most hazardous for AGE accumulation. Population studies have evidenced that, in individuals
with NAFLD, the concomitant presence of metabolic syndrome is related to the consumption of
sugar-sweetened beverages [46,47] and, in particular, a high intake of fructose-containing drinks and
foods in the general population is associated with induction of lipogenesis with hypertriglyceridemia,
and insulin resistance, paralleled by oxidative stress, which is a relevant factor contributing to the
glycation process [48–50]. Indeed, plasma and tissue AGE accumulation has been reported in animal
models of high fructose consumption [12,51], while experimental data on in vivo fructose-derived
glycation consequences are still limited.

3. Dietary Sugar-Induced Glycation: Interference on Cell Functions

In addition to the effects attributed to the excess of calorie intake induced by high sugars
consumption on metabolism, the sugar-derived AGEs have been shown in animal models to contribute
to the development of pathological metabolic conditions through the interference with several protein
functions and the activation of pro-inflammatory signals [52,53], as illustrated above in Scheme 1.

3.1. Interference with the SCAP/SREBP Lipogenic Pathway

Several studies have demonstrated that excessive fructose consumption is associated with
increased ectopic lipid deposition in liver and skeletal muscle both in experimental models and
in humans [48,49,54,55], and that fructose is able to promote hepatic lipogenesis [56,57] by inducing
the expression and activation of transcription factors including sterol regulatory element-binding
protein-1c (SREBP-1c) and carbohydrate response element binding protein (ChREBP) [52,58,59].
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A positive correlation between lipogenesis and plasma triglyceride has been described in patients with
isocaloric feeding added with high fructose level [60].

Besides the alterations of plasma lipid profile, fructose is suggested to be an important risk
factor for the development of NAFLD [11]. The pathogenic mechanisms related to intrahepatic fat
content induced by fructose consumption are related to an imbalance among fatty acid synthesis,
beta-oxidation and triglyceride outflow from the liver [24]. Indeed, the direct comparison between
saturated fats- and fructose-rich diets revealed that these two dietary components differently affect liver
lipid metabolism, with fructose enhancing both beta-oxidation and fatty acids export, counteracted by
a strong activation of lipogenesis and palmitate production [53].

The fructose-induced ectopic lipid deposition has been attributed to the activation of the
transcription factor SREBP1c, which regulates the expression of several enzymes responsible for
fatty acids de novo synthesis [61]. In studies directly comparing the effect of pure fructose and glucose
in lipid metabolism a greater impact of fructose on lipogenesis activation has been demonstrated [48].
In particular, the chronic consumption of fructose- and glucose-sweetened beverages in mice revealed
activation of the SCAP/SREBP pathway was, to a greater extent, in fructose-drinking mice [12].
The lipogenesis activation was associated with a different pattern of AGEs in the plasma and liver of
sugar-drinking mice, with a higher amount of glyoxal derived AGEs, such as glyoxal-lysine dimer
(GOLD) and carboxymethyl lysine (CML), which are more resistant to AGE-degrading enzymes,
in the livers of the fructose group. The hypothesis that excessive intake of dietary sugars might
interfere with lipid metabolism through the action of AGEs has been confirmed by the observation
that the SREBP-activating protein SCAP is highly glycated by CML, a modification evoking prolonged
activation of SCAP by inhibiting its degradation [12,52,62].

The same mechanism has been proposed to enhance intramyocellular lipid deposition in the
skeletal muscle of high-fructose consuming mice [52]. Interestingly, in skeletal muscle of mice, the
overactivation of lipogenesis induced by high fructose intake was accompanied by modifications of
muscle metabolic reprogramming and mitochondrial functions that were effectively reverted by the
administration of an anti-glycative agent, demonstrating the relevant impact of fructose-derived AGEs
on tissue specific signaling pathways.

3.2. Interference on Sphingolipids Metabolism

The deregulated enhancement of the de novo lipid synthesis can have relevant repercussions
on the overall lipids metabolism. Recently, alterations of the sphingolipid metabolism have
been evidenced in obese and diabetic patients, with increased plasma levels of ceramide and
sphingosine-1-phosphate, which are hypothesized to elicit an inflammatory condition [63,64]. In animal
models of the western diet, high in fats and fructose, increased ceramide de novo synthesis has
been reported, in relation with reduced insulin sensitivity [65,66]. In parallel, two very recent
studies highlighted a possible role for diet-derived AGEs on this unbalance among sphingolipid
intermediates through the action of the AGE-receptor RAGE [67,68]. In particular, according to the
work from Geoffrey and colleagues, the dose- and time-dependent effect of exposition to AGEs on
mesangial cells proliferation was mediated by the modulation of the sphingolipids intermediates
ceramide/sphingosine/sphingosine-1-phospahate and activities of related enzymes [67]. Similarly,
the findings from Chen et al. demonstrated that polydatin, through its anti-glicative effect, evokes the
reduction of sphingosine kinase activity and its byproduct sphingosine-1-phosphate, and this may be
the underlying mechanism for the prevention of diabetic nephropathy and glomerular mesangial cells’
pro-fibrogenic signalling [68]. The pro-inflammatory profile induced by high levels of ceramide and
sphingosine-1-phosphate has been demonstrated to contribute to cardiac impairment and peripheral
insulin resistance, and the modulation of enzymes involved in their accumulation has been shown
to ameliorate metabolic derangements [69,70]. However, the beneficial effects of prevention of AGE
accumulation induced by high fructose intake on sphingolipids metabolism remains to be explored.
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3.3. Interference on Inflammatory Response

Since the last few years, there has been strong evidence for a causative association between
central (visceral) obesity and the development of type 2 diabetes and cardiovascular complications,
though the mechanisms are not fully understood. However, in this context, a low-grade, chronic
inflammation orchestrated by metabolic cells in response to excess nutrients and energy in metabolic
tissues including adipose, liver, muscle, pancreas, and brain, has been defined as a causative factor
underlying metabolic dysfunctions development and related comorbidities [71].

Besides indications that a high fructose intake is also associated with the onset of a generic
inflammatory response in several tissues, recent studies have addressed the specific activation of
the NLRP3 inflammasome complex in models of a high-fructose diet [25,53,72]. In a comparative
study performed on mice fed a normal or a western-style diet, associated or not to fructose-sweetened
beverages, the peculiar effect of fructose drinking was the renal activation of NLRP3 inflammasome [73].
Indeed, the targeting of inflammasome activation by antioxidant and antidiabetic compounds or
selective NLRP3 inhibitors, has been demonstrated to be effective in reducing the inflammatory
response in kidneys, hearts, livers, skeletal muscles, and brains of mice fed a fructose-containing
diet [74–78]. The inflammasomes are multiporotein platforms activated by interaction of a variety
of danger signals with membrane and cytoplasmic receptors. Among these receptors, a role for two
AGE receptors, namely RAGE and Galectin-3, in inflammasome activation has been proposed [79–82].
However, there is still contrasting data about the exact mechanisms by which both Galectin-3 and
RAGE act on inflammasome assembling. If the pro-inflammatory effect of RAGE signalling through
activation of the NFkB pathway is already well known [83], whether Galectin-3 exerts a positive
or negative stimulus for NLRP3 activation is still under debate [84,85]. In this perspective, further
investigations are needed to definitely clarify whether the fructose-induced inflammasome activation
is mediated by AGE accumulation and to understand the involved mechanisms.

3.4. Interference with Mitochondrial Function and Oxidative Stress

Mitochondrial dysfunction and oxidative stress are strictly interconnected events representing
the common features of metabolic disorders and chronic inflammatory diseases. It has been reported
that a high intake of dietary sugars can evoke a mitochondrial overload in tissues with a high rate of
energy metabolism, such as liver and cardiac and skeletal muscle, leading to enhanced mitochondrial
respiratory chain activity and oxidative stress [65,86,87]. In particular, complexes I and III being the
key-point for reactive oxygen species production, the enhancement of their activity due to increased
energy influx results in oxidative stress, which, in turn, can compromise the activity of the iron-sulfur
center enzymes, such as the complex I and II, and the complex III itself [88]. It is well known that
oxidative species favour the glycoxidation reaction of proteins in the presence of reducing sugars, thus
resulting in AGE accumulation. In turn, AGEs exert a pro-oxidant effect compromising antioxidant
enzymes activity and mitochondrial functions, thus creating a vicious cycle [89]. In this regard, a very
recent study evidenced that fructose feeding activates in rats the so-called AROS axis, featured by
the consecutive enhancement in plasma AGEs level—tissue RAGE activation—mitochondrial ROS
production, with subsequent intracellular AGE formation [44]. In particular, recent research has
provided evidence that overconsumption of carbohydrates in the diet, especially sugars, may represent
a risk factor for neurodegenerative diseases through the development of mitochondrial dysfunction,
oxidative stress, and inflammatory reaction, and the cerebral accumulation of AGEs is considered a
key mediator [90–92].

In addition, further recent findings highlighted in models of high-fructose intake the impairment
of the transcriptional activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), a central player
in the regulation of many antioxidant enzymes, including glyoxalase-1, the main enzyme responsible
for AGE detoxification [53,92,93], suggesting a twofold contribution of fructose on glycation through
both enhanced production and reduced detoxification of AGEs.
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4. Dietary Sugar-Induced Glycation and Pathogenic Role in Diseases

4.1. Data from Animal Studies

As mentioned above, the glycation induced by dietary sugars, through interference with many
cell functions and signalling pathways, may contribute to the development of tissue damage and
organ disease. However, most research studies on the pathogenic role of endogenous sugar-derived
glycation have been performed in animal models, often through the employment of very high doses of
sugars, particularly of fructose, not comparable to the general human nutrition.

Notably, in animals, the metabolic outcomes of a caloric restriction were attenuated by the diet
enrichment with methyl glyoxal, demonstrating that dietary AGEs can induce oxidative stress, insulin
resistance, and profibrotic conditions independently from total calorie amount [94]. In addition,
in animal models, an involvement of AGEs specifically derived from dietary sugars in metabolic
disturbances or in organ dysfunction has been demonstrated by the use of anti-glycative agents.
Betanin, an antioxidant compound also provided with anti-glycative properties in vitro, prevented
in rats’ hearts the collagen cross-link and expression of markers of fibrosis that were increased after
60 days of drinking 30% fructose solution [95]. In a very recent work, the administration to rats of the
PPARγ agonist Rosiglitazone was able to improve most of the signs of metabolic syndrome induced
by a 60% fructose drinking for 21 days, through the reduction of urine and plasma AGE levels and of
kidney and liver RAGE expression [44]. Our research group has previously reported the beneficial
effects of a specific anti-glycative compound, pyridoxamine, in a mouse model of metabolic syndrome
induced by a 12-week 60% fructose diet, where the prevention of AGE accumulation in plasma, skeletal
muscle, and brain was paralleled by an improvement of systemic glucose and lipid metabolism and
reduction of inflammatory and oxidative stress markers and restoration of mitochondrial function in
skeletal muscle and brain [52,92]. Pyridoxamine administration has also been found to be effective
in the amelioration of glucose homeostasis and insulin sensitivity, and in the prevention of visceral
adipose tissue expansion and local expression of inflammatory markers in a mouse model of high-fat
diet, suggesting an involvement of diet-induced endogenous formation of AGEs in the pathogenesis
of obesity [96]. In this regard, in mice with genetically-induced deletion of leptin receptors Db-/-),
which are prone to consume excessive calories and develop obesity and insulin resistance, high levels
of CML were trapped by the adipose tissue, while the deletion of RAGE reverted CML accumulation
in adipose tissue, increasing its plasma levels, indicating a RAGE-dependent mechanism underlying
endogenous AGE-induced obesity [97].

4.2. Data from Human Studies

On the other hand, epidemiological and observational studies in humans have not univocally
demonstrated a relation between high sugar intake and organ diseases, such as liver steatosis, cardiac
impairment, or neurodegeneration, so far. Excessive soft drink consumption has only been associated
with increased risk for metabolic disorders such as obesity and insulin resistance [98,99], but their
effects are often attributed to an unspecific calorie excess [100,101]. In this regard, two recent studies
revealed that an isocaloric fructose restriction, where the calories of fructose were substituted by
starch, was sufficient to improve metabolic parameters and lipoprotein markers of CVD risk, in
particular reducing apoC-III, which has been associated with atherogenic hypertriglyceridemia, in
children with obesity and metabolic syndrome, irrespective of weight change, indicating that the
detrimental effects of sugar, specifically fructose, are independent of its caloric value or effects on
adiposity [102,103]. Moreover, a very recent double-blind randomized crossover trial analysed acute
metabolic and endocrine responses induced by fructose and glucose load in healthy young subjects
and showed that fructose leads to unfavorable modifications of some metabolic parameters, including
increased serum concentrations and 3 h-AUC of uric acid, aldose reductase, and lactic dehydrogenase,
increased systolic blood pressure, and decreased endothelial nitric oxide production in comparison
with the same amount of glucose [104].
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Nevertheless, the involvement of endogenous glycation in dietary sugar-induced dysmetabolism
is far from being demonstrated in humans. Though, the reduction of dietary (exogenous)
AGEs in type 2 diabetes or obese patients, without modification of the total calories intake, has
also been demonstrated to be effective in amelioration of insulin sensitivity, with reduction of
inflammatory markers and restoration of AGEs detoxifying systems and mitochondrial metabolism
regulators [42,105]. In this regard, to induce the expression and activity of the AGE-detoxyfying
enzyme glyoxalase-1, through the synergic action of trans-resveratrol and hesperetin, is likely to be a
promising strategy to prevent the onset of insulin resistance and vascular inflammation in overweight
individuals [106].

Moreover, endogenous and exogenous AGEs have been related to cognitive decline and impaired
memory in two different studies, indicating that serum levels of methylglyoxal in elderly individuals
were directly correlated with dietary AGE intake and cognitive decline assessed by the Mini Mental
State Examination [107,108].

Recent cross-sectional studies from DeChristopher and colleagues indicated that the consumption
of HFCS or fructose-sweetened beverages is associated with asthma and bronchitis in adults and to
asthma in children [109–111]. Authors suggest an interesting mechanistic hypothesis, according to
the in vitro observations of Bains and Gugliucci [112], of an intestinal formation of AGEs from excess
free fructose intake, which may be absorbed in the circulation and induce a systemic inflammatory
condition through the binding to RAGE, thus contributing to lung diseases and impaired immune
response. This fascinating theory, described in detail in the very recent review from Gugliucci [113],
however, is still not supported by in vivo experimental data.

5. Conclusions

In the present review, we provide experimental data and epidemiological observations indicating
the negative effects of excessive intake of sugar-added foods and beverages, particularly of fructose.
The data here reported also suggest that the glycation process following high sugar intake may play
a central role in the development of metabolic disturbances by interfering with many cell signaling
pathways and influencing the pro-inflammatory and pro-oxidant status that contributes to tissue injury
and organ dysfunction.

However, these mechanisms need to be deepened through animal models trying to mimic the
real human sugar consumption and aimed to clarify the significance of dietary sugar-derived AGEs in
metabolic diseases and increase the transferability to the human nutrition.

Nevertheless, it is difficult to definitely establish limits for sugar intake above which risks for
human health are increased. The guidelines to limit sugar addition in foods are not always free of
conflicts of interest between public health and the food industry. Thus, since to date it is not possible
to discriminate in human nutrition the contribution of different monosaccharides and the general
calorie excess to protein glycation, high quality clinical trials are needed to evaluate the sugar daily
intake, particularly of fructose, that can represent a feasible risk for human health, through the design
of appropriated dietary interventions.
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