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Abstract. The logic V is the basic logic of counterfactuals in the family
of Lewis’ systems. It is characterized by the whole class of so-called sphere
models. We propose a new sequent calculus for this logic. Our calculus
takes as primitive Lewis’ connective of comparative plausibility �: a
formula A � B intuitively means that A is at least as plausible as B.
Our calculus is standard in the sense that each connective is handled
by a finite number of rules with a fixed and finite number of premises.
Moreover our calculus is “internal”, in the sense that each sequent can
be directly translated into a formula of the language. We show that the
calculus provides an optimal decision procedure for the logic V.

1 Introduction

In the recent history of conditional logics the work by Lewis [15] has a prominent
place (among others [5,18,12,10]). He proposed a formalization of conditional log-
ics in order to represent a kind of hypothetical reasoning (if A were the case then
B), that cannot be captured by classical logic with material implication. The
original motivation by Lewis was to formalize counterfactual sentences, i.e. con-
ditionals of the form “if A were the case then B would be the case”, where A
is false. But independently of counterfactual reasoning, conditional logics have
found an interest also in several fields of artificial intelligence and knowledge
representation. Just to mention a few: they have been used to reason about
prototypical properties [7] and to model belief change [10,8]. Moreover, condi-
tional logics can provide an axiomatic foundation of nonmonotonic reasoning
[4,11], here a conditional A ⇒ B is read as “in normal circumstances if A then
B”. Finally, a kind of (multi)-conditional logics [2,3] have been used to formalize
epistemic change in a multi-agent setting and in some kind of epistemic “games”,
here each conditional operator expresses the “conditional beliefs” of an agent.

In this paper we concentrate on the logic V of counterfactual reasoning stud-
ied by Lewis. This logic is characterized by possible world models structured by
a system of spheres. Intuitively, each world is equipped with a set of nested sets
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of worlds: inner sets represent “most plausible worlds” from the point of view
of the given world and worlds belonging only to outer sets represent less plau-
sible worlds. In other words, each sphere represent a degree of plausibility. The
(rough) intuition involving the truth condition of a counterfactual A ⇒ B at a
world x is that B is true at the most plausible worlds where A is true, whenever
there are worlds satisfying A. But Lewis is reluctant to assume that most plau-
sible worlds satisfying A exist (whenever there are A-worlds), for philosophical
reasons. He calls this assumption the Limit Assumption and he formulates his
semantics in more general terms which do need this assumption (see below). The
sphere semantics is the strongest semantics for conditional logics, in the sense
that it characterizes only a subset of relatively strong systems; there are weaker
(and more abstract) semantics such as the selection function semantics which
characterize a wider range of systems [18].

From the point of view of proof-theory and automated deduction, conditional
logics do not have a state of the art comparable with, say, the one of modal logics,
where there are well-established alternative calculi, whose proof-theoretical and
computational properties are well-understood. This is partially due to the lack of
a unifying semantics. Similarly to modal logics and other extensions/alternatives
to classical logics two types of calculi have been studied: external calculi which
make use of labels and relations on them to import the semantics into the syntax,
and internal calculi which stay within the language, so that a “configuration”
(sequent, tableaux node...) can be directly interpreted as a formula of the lan-
guage. Limiting our account to Lewis’ counterfactual logics, some external calculi
have been proposed in [9] which presents modular labeled calculi for preferential
logic PCL and its extensions, including all counterfactual logics considered by
Lewis. An external sequent calculus for Lewis’ logic VC is also presented in [17].
Internal calculi have been proposed by Gent [6] and by de Swart [20] for VC

and neighbours. These calculi manipulate sets of formulas and provide a deci-
sion procedure, although they comprise an infinite set of rules and rules with a
variable number of premises. Finally in [14] the authors provide internal calculi
for Lewis’ conditional logic V and some extensions. Their calculi are formulated
for a language comprising the comparative plausibility connective, the strong
and the weak conditional operator. Both conditional operators can be defined
in terms of the comparative plausibility connective. These calculi are actually
an extension of Gent’s and de Swart’s ones and they comprise an infinite set of
rules with a variable number of premises. We mention also a seminal work by
Lamarre [12] who proposed a tableaux calculus for Lewis’ logic, but it is actually
a model building procedure rather than a calculus made of deductive rules.

In this paper we tackle the problem of providing a standard proof-theory for
Lewis’ logic V in the form of internal calculi. By “standard” we mean that we
aim to obtain analytic sequent calculi where each connective is handled by a
finite number of rules with a fixed and finite number of premises. As a first
result, we propose a new internal calculus for Lewis’ logic V. This is the most
general logic of Lewis’ family and it is complete with respect to the whole class
of sphere models. Our calculus takes as primitive Lewis’ comparative plausibility
connective �: a formula A � B means, intuitively, that A is at least as plausible
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as B, so that a conditional A ⇒ B can be defined as A is impossible or A∧¬B is
less plausible than A1. In contrast to previous attempts, our calculus comprises
structured sequents containing blocks, where a block is a new syntactic structure
encoding a finite combination of �. In other words, we introduce a new modal
operator (but still definable in the logic) which encodes finite combinations of
�. This is the main ingredient to obtaining a standard and internal calculus for
V. We show a terminating strategy for proof search in the calculus, in particular
that it provides an optimal decision procedure for the logic V: indeed, we show
that provability in IV is in PSpace, matching the known complexity bound for
the logic V.

2 Lewis’ Logic V

We consider a propositional language L generated from a set of propositional
variables Varprop and boolean connectives plus two special connectives � (com-
parative plausibility) and ⇒ (conditional). A formula A � B is read as “A is at
least as plausible as B”. The semantics is defined in terms of sphere models, we
take the definition by Lewis without the limit assumption.

Definition 1. A model M has the form 〈W, $, [ ]〉, where W is a non-empty set
whose elements are called worlds, [ ] : Varprop −→ Pow(W ) is the propositional
evaluation, and $ : W −→ Pow(Pow(W )). We write $x for the value of the
function $ for x ∈ W , and we denote the elements of $x by α, β.... Models have
the following property:

∀α, β ∈ $x α ⊆ β ∨ β ⊆ α.

Truth definitions are the usual ones in the boolean cases; [ ] is extended to the
other connectives as follows:

– x ∈ [A � B] iff ∀α ∈ $x if α ∩ [B] 
= ∅ then α ∩ [A] 
= ∅
– x ∈ [A ⇒ B] iff either ∀α ∈ $x α ∩ [A] = ∅ or there is α ∈ $x, such that

α ∩ [A] 
= ∅ and α ∩ [A ∧ ¬B] = ∅.
The semantic notions, satisfiability and validity are defined as usual. For the
ease of reading we introduce the following conventions: we write x |= A, where
the model is understood instead of x ∈ [A]. Moreover given α ∈ $x, we use the
following notations:

α |=∀ A if α ⊆ [A], i.e. ∀y ∈ α y |= A
α |=∃ A if α ∩ [A] 
= ∅, i.e. ∃y ∈ α such that y |= A

Observe that with this notation, the truths conditions for � and ⇒ become:

– x |= A � B iff ∀α ∈ $x either α |=∀ ¬B or α |=∃ A
– x |= A ⇒ B iff ∀α ∈ $x either α |=∀ ¬A or there is β ∈ $x, such that β |=∃ A

and β |=∀ A → B.
1 This definition avoids the Limit Assumption, in the sense that it works also for
models where at least a sphere containing A worlds does not necessarily exist.
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It can be observed that the two connectives � and ⇒ are interdefinable, in
particular:

A ⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

Also the � connective can be defined in terms of the conditional ⇒ as follows:

A � B ≡ ((A ∨B) ⇒ ⊥) ∨ ¬((A ∨B) ⇒ ¬A)
The logic V can be axiomatized taking as primitive the conditional operator

⇒ which gives the axiomatization here below [15]:
– classical axioms and rules
– if A ↔ B then (C ⇒ A) ↔ (C ⇒ B) (RCEC)
– if A → B then (C ⇒ A) → (C ⇒ B) (RCK)
– ((A ⇒ B) ∧ (A ⇒ C)) → (A ⇒ B ∧C) (AND)
– A ⇒ A (ID)
– ((A ⇒ B) ∧ (A ⇒ C)) → (A ∧B ⇒ C) (CM)
– (A ∧B ⇒ C) → ((A ⇒ B) → (A ⇒ C)) (RT) 2

– ((A ⇒ B) ∧ ¬(A ⇒ ¬C)) → ((A ∧ C) ⇒ B) (CV)
– ((A ⇒ C) ∧ (B ⇒ C)) → (A ∨B ⇒ C) (OR)

together with the definition of � in terms of ⇒ given above. The flat versions
(i.e. without nested conditionals) of these axioms are part of KLM systems of
nonmonotonic reasoning [11,13].

On the other hand, we can axiomatize V taking as primitive the connective
� and the axioms are the following [15]:
– classical axioms and rules
– if B → (A1 ∨ . . . ∨ An) then (A1 � B) ∨ . . . ∨ (An � B)
– (A � B) ∨ (B � A)
– (A � B) ∧ (B � C) → (A � C)
– A ⇒ B ≡ (⊥ � A) ∨ ¬(A ∧ ¬B � A)

3 An Internal Sequent Calculus for V

We present IV, a structured calculus for Lewis’ conditional logic introduced in
the previous section. The basic constituent of sequents are blocks of the form:

[A1, . . . , Am � B1, . . . , Bn]

where Ai, Bj are formulas. The interpretation is as follows: x |= [A1, . . . , Am �
B1, . . . , Bn] iff ∀α ∈ $x either α |=∀ ¬Bj for some j, or α |=∃ Ai for some i.
Observe that

[A1, . . . , Am � B1, . . . , Bn] ↔
m∨

i

n∨

j

(Ai � Bj)

2 It is worth noticing that (CM) + (RT) are equivalent (in CK+ID) to the axiom
known as (CSO):

((A ⇒ B) ∧ (B ⇒ A)) → ((A ⇒ C) ↔ (B ⇒ C)) (CSO)
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Therefore a block represents n×m disjunctions of � formulas.
We shall abbreviate multi-sets of formulas in blocks by Σ, Π , so that we shall

write (since the order is irrelevant) [Σ � Π ], [Σ,A � Π ], [Σ � Π,B] and so on.
A sequent Γ is a multi-set G1, . . .Gk, where each Gi is either a formula or a

block. A sequent Γ = G1, . . . Gk, is valid if for every model M = 〈W, $, [ ]〉, for
every world x ∈ W , it holds that x |= G1 ∨ . . . ∨Gk. The calculus IV comprises
the following axiom and rules:

– Standard Axioms (given P ∈ Varprop): (i) Γ,� (ii) Γ,¬⊥ (iii) Γ, P,¬P
– Standard external rules of sequent calculi for boolean connectives

– Specific rules:

Γ, [A � B]
(� +)

Γ, A � B

Γ,¬(A � B), [B,Σ � Π] Γ,¬(A � B), [Σ � Π,A]
(� −)

Γ,¬(A � B), [Σ � Π]

Γ, [⊥ � A],¬(A ∧ ¬B � A)
(⇒ +)

Γ,A ⇒ B

Γ,¬(⊥ � A) Γ, [A ∧ ¬B � A]
(⇒ −)

Γ,¬(A ⇒ B)

Γ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2] Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1]
(Com)

Γ, [Σ1 � Π1], [Σ2 � Π2]

¬Bi, Σ
(Jump)

Γ, [Σ � B1, . . . , Bn]

Some remarks on the rules: the rule (�+) just introduces the block structure,
showing that � is a generalization of �; (�−) prescribes case analysis and con-
tributes to expanding the blocks; the rules (⇒+) and (⇒−) just apply the defini-
tion of⇒ in terms of �. The communication rule (Com) is directly motivated by
the nesting of spheres, which means a linear order on sphere inclusion; this rule
is very similar to the homonymous one used in hypersequent calculi for handling
truth in linearly ordered structures [1,16].

As usual, given a formula G ∈ L, in order to check whether G is valid we look
for a derivation of G in the calculus IV. Given a sequent Γ , we say that Γ is
derivable in IV if it admits a derivation. A derivation of Γ is a tree where:

– the root is Γ ;

– every leaf is an instance of standard axioms;

– every non-leaf node is (an instance of) the conclusion of a rule having (an
instance of) the premises of the rule as children.

Here below we show some examples of derivations in IV.
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Example 1. A derivation of (P � Q) ∨ (Q � P ).

¬P, P
(Jump)

[P � Q,P ], [P,Q � P ]

¬Q,Q
(Jump)

[Q � Q,P ], [P,Q � Q]
(Com)

[P � Q], [Q � P ]
(�+)

[P � Q], Q � P
(�+)

P � Q,Q � P
(∨+)

(P � Q) ∨ (Q � P )

Example 2. A derivation of an instance of Lewis’ axiom CV.

¬P,P,⊥
(Jump)

. . . , [P,⊥ � P ]

⊥,¬⊥
(Jump)

. . . , [⊥ � P,⊥]

(�−)

(P ∧ Q) ⇒ R,¬(⊥ � P ), [⊥ � P ],¬(P ∧ ¬¬Q � P )

(⇒+)

(P ∧ Q) ⇒ R, P ⇒ ¬Q,¬(⊥ � P )

♣
P ⇒ ¬Q, (P ∧ Q) ⇒ R, [P ∧ ¬R � P ]

(⇒−)

¬(P ⇒ R), P ⇒ ¬Q, (P ∧ Q) ⇒ R

(¬)

¬(P ⇒ R),¬¬(P ⇒ ¬Q), (P ∧ Q) ⇒ R

(∧−)

¬((P ⇒ R) ∧ ¬(P ⇒ ¬Q)), (P ∧ Q) ⇒ R

(→+)

((P ⇒ R) ∧ ¬(P ⇒ ¬Q)) → ((P ∧ Q) ⇒ R)

where ♣ is the following derivation:

We terminate this section by proving the soundness of the calculus IV and by
stating some standard structural properties of it3.

Theorem 1 (Soundness). Given a sequent Γ , if Γ is derivable then it is valid.

Proof. By induction on the height of derivation. For the base case, we have to
consider sequents that are instances of standard axioms. The proof is easy and
left to the reader. For the inductive step, we have to consider all the possible

3 To save space, detailed proofs are given in the accompanying report [19].
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rules ending a derivation. We only show the most interesting cases of (�−) and
(Com).
(�−): the derivation of Γ is ended by an application of (�−) as follows:

(i) Γ ′,¬(A � B), [B,Σ � Π ] (ii) Γ ′,¬(A � B), [Σ � Π,A]
(�−)

Γ ′,¬(A � B), [Σ � Π ]

By inductive hypothesis, (i) and (ii) are valid sequents. By absurd, suppose
that the conclusion is not, that is to say there is a model M = 〈W, $, [ ]〉 and
a world x ∈ W such that (1) x 
|= Gi, for all Gi ∈ Γ ′, (2) x 
|= ¬(A � B) and
(3) x 
|= [Σ � Π ]. From (1), (2) and the fact that (i) is valid, we conclude that
(a) x |= [B,Σ � Π ]. Reasoning in the same way, from (1), (2) and the validity
of (ii), we conclude that (b) x |= [Σ � Π,A]. By the interpretation of a block,
for all α ∈ $x, from (a) we have that either α |=∀ ¬Bj for some Bj ∈ Π or
α |=∃ Ai for some Ai ∈ Σ or (∗) α |=∃ B. Similarly, from (b) we have that either
α |=∀ ¬Bj for some Bj ∈ Π or (∗∗) α |=∀ ¬A or α |=∃ Ai for some Ai ∈ Σ. If
α |=∀ ¬Bj for some Bj ∈ Π , then, by the interpretation of a block, we have that
x |= [Σ � Π ], and this contradicts (3). For the same reason, it cannot be also
the case that α |=∃ Ai for some Ai ∈ Σ. The only case left is when (∗) α |=∃ B
and (∗∗) α |=∀ ¬A. This contradicts (2). Indeed, (2) x 
|= ¬(A � B) means that
x |= A � B, namely, by the truth condition of �, for all α ∈ $x we have that
either α |=∀ ¬B, and this contradicts (*), or α |=∃ A, and this contradicts (**);
(Com): the derivation of Γ is ended by an application of (Com) as follows:

(i) Γ ′, [Σ1 � Π1,Π2], [Σ1, Σ2 � Π2] (ii) Γ ′, [Σ2 � Π1,Π2], [Σ1, Σ2 � Π1]
(Com)

Γ ′, [Σ1 � Π1], [Σ2 � Π2]

By inductive hypothesis, (i) and (ii) are valid. Suppose the conclusion Γ ′, [Σ1 �
Π1], [Σ2 �Π2] is not, namely there is a model M = 〈W, $, [ ]〉 and a world x ∈ W
such that (1) x 
|= Gk for all Gk ∈ Γ ′, (2) x 
|= [Σ1 � Π1] and (3) x 
|= [Σ2 � Π2].
By the interpretation of blocks, from (2) it follows that there is α ∈ $x such that
α 
|=∃ Ai, for all Ai ∈ Σ1, and α 
|=∀ ¬Bj for all Bj ∈ Π1. Similarly, from (3) it
follows that there is β ∈ $x such that β 
|=∃ Ck, for all Ck ∈ Σ2, and β 
|=∀ ¬Dl

for all Dl ∈ Π2. By Definition 1, either (*) β ⊆ α or (**) α ⊆ β. (*) If β ⊆ α,
we have also that β 
|=∃ Ai, for all Ai ∈ Σ1, and β 
|=∀ ¬Bj for all Bj ∈ Π1. Let
us consider (ii): we have that β 
|=∃ Ck, for all Ck ∈ Σ2, as well as β 
|=∀ ¬Bj for
all Bj ∈ Π1 and β 
|=∀ ¬Dl for all Dl ∈ Π2: by the definition of interpretation
of a block, we have that (4) x 
|= [Σ2 � Π1, Π2]. Furthermore, since β 
|=∃ Ai, for
all Ai ∈ Σ1, β 
|=∃ Ck, for all Ck ∈ Σ2 and β 
|=∀ ¬Bj for all Bj ∈ Π1, then
we have that (5) x 
|= [Σ1, Σ2 � Π1]. However, from (1), (4) and (5) we obtain
that (ii) is not valid, against the inductive hypothesis. (**) If α ⊆ β, we reason
analogously. We can observe that also α 
|=∃ Ck, for all Ck ∈ Σ2, and α 
|=∀ ¬Dl

for all Dl ∈ Π2. Therefore, we have that (6) x 
|= [Σ1 � Π1, Π2], since α 
|=∃ Ai,
for all Ai ∈ Σ1, α 
|=∀ ¬Bj for all Bj ∈ Π1 and α 
|=∀ ¬Dl for all Dl ∈ Π2.
Furthermore, (7) x 
|= [Σ1, Σ2 �Π2] since α 
|=∃ Ai, for all Ai ∈ Σ1, α 
|=∃ Ck, for
all Ck ∈ Σ2, and α 
|=∀ ¬Dl for all Dl ∈ Π2. From (1), (6) and (7) we have that
(ii) is not valid, again against the inductive hypothesis. �
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Proposition 1 (Weakening). Weakening is height-preserving admissible in
the following cases: (1) if Γ is derivable, then Γ, F is derivable where F is
a formula or a block; (2) if Γ, [Σ � Π ] is derivable, so are Γ, [Σ,A � Π ] and
Γ, [Σ � Π,B].

Proposition 2 (Contraction). Contraction is height-preserving admissible in
the following cases: (1) if Γ, [A,A,Σ �Π ] is derivable then Γ, [A,Σ �Π ] is deriv-
able too. (2) if Γ, [Σ � Π,B,B] is derivable then Γ, [Σ � Π,B] is derivable too.
(3) if Γ, F, F is derivable then Γ, F is derivable too, where F is either a formula
or a block.

4 Termination and Completeness

In this section we prove both the termination and the completeness of the calculus.
Both results make use of the notion of saturated sequent : intuitively any sequent
that is obtained by backwards applying the rules “as much as possible”. To get ter-
mination we show that any derivation without redundant applications of the rules
is finite and its leaves are axioms or saturated sequents. Completeness is proved by
induction on the modal degree of a sequent (defined next), by taking advantage of
the fact that backward applications of the rules do not increase the modal degree
of a sequent and eventually reduce it (the (Jump) rule).

Definition 2. The modal degree md of a formula/sequent is defined as follows:

md(P ) = 0
md(A ∗B) = max(md(A),md(B)), for ∗ ∈ {∧,∨,→}
md(¬A) = md(A)
md(A � B) = md(A ⇒ B) = max(md(A),md(B)) + 1
md(Δ) = max{md(A) | A ∈ Δ} for a multi-set Δ
md([Σ � Π ]) = max(md(Σ),md(Γ )) + 1

We can prove the following propositions:

Proposition 3. All rules preserve the modal degree, i.e. the premises of rules
have a modal degree no greater than the one of the respective conclusion.

Proposition 4 (Invertibility). All rules, except (Jump), are height-preserving
invertible: if the conclusion is derivable then the premises must be derivable with
a derivation of no greater height.

Definition 3. A sequent Γ is saturated if it has the form ΓN , Λ, [Σ1 � Π1], . . . ,
[Σn � Πn] where ΓN , Λ are possible empty, n ≥ 0 and:

1. ΓN is a multi-set of negative �-formulas,
2. Λ is a multi-set of literals,
3. for every ¬(A � B) ∈ ΓN and every [Σi � Πi] either B ∈ Σi or A ∈ Πi

4. for every [Σi � Πi] and [Σj � Πj ]: either Σi ⊆ Σj or Σj ⊆ Σi and either
Πi ⊆ Πj or Πj ⊆ Πi.
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We want to prove now that IV terminates, provided we restrict attention to
non-redundant derivations, a notion that we define next. An application of a
rule (R) is redundant if the conclusion can be obtained from one of its premises
by contraction or weakening.

A derivation is non-redundant if (a) it does not contain redundant applications
of the rules, (b) if a sequent is an axiom then it is a leaf of the derivation. As
a consequence of the height-preserving admissibility of contraction (Proposition
2) and of weakening (Proposition 1), if a sequent is derivable then it has a non-
redundant derivation. Thus we can safely restrict proof search to non-redundant
derivations.

In the search of a non-redundant derivation we can assume that the rule:

Γ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2] Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1]
(Com)

Γ, [Σ1 � Π1], [Σ2 � Π2]

is applied provided it satisfies the following restriction, where inclusions are
intended as set inclusions:

(RestCom) (Σ1 
⊆ Σ2 and Σ2 
⊆ Σ1) or (Π1 
⊆ Π2 and Π2 
⊆ Π1).

Fact 1 If an application of (Com) is non-redundant, then it must respect the
restriction (RestCom).

Proof. We must check that the 4 cases of violation of (RestCom):

1. Σ1 ⊆ Σ2 and Π1 ⊆ Π2 2. Σ1 ⊆ Σ2 and Π2 ⊆ Π1

3. Σ2 ⊆ Σ1 and Π1 ⊆ Π2 4. Σ2 ⊆ Σ1 and Π2 ⊆ Π1

produce a redundant application of (Com).
In cases 2 and 3 the conclusion corresponds to one of the premises. Let us

consider case 2 as an example. Assume that Σ1 ⊆ Σ2 and Π2 ⊆ Π1: the leftmost
premise of (Com) is therefore Γ, [Σ1�Π1, Π2], [Σ1, Σ2�Π2] = Γ, [Σ1�Π1], [Σ2�Π2]
and corresponds to the conclusion. The case 3 is similar and left to the reader.

In cases 1 and 4 both the premises are different from the conclusion, however
we observe that the conclusion can be obtained by weakening from one of the
premises of an application of (Com), which is therefore redundant. Let us con-
sider the case 1, i.e. Σ1 ⊆ Σ2 and Π1 ⊆ Π2. Consider also the rightmost premise
of (Com), namely Γ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1] = (∗) Γ, [Σ2 � Π2], [Σ2 � Π1].
Since Π1 ⊆ Π2, from (∗) we obtain that also (∗∗) Γ, [Σ2 �Π2], [Σ2 �Π2] is deriv-
able by weakening (Proposition 1). Since contraction is admissible, from (∗∗)
we obtain a proof of Γ, [Σ2 � Π2], from which the conclusion of (Com), namely
Γ, [Σ1 �Π1], [Σ2 �Π2], can be obtained by weakening. Therefore, an application
of (Com) would be redundant, since its rightmost premise allows to obtain the
conclusion by weakening and contraction and without (Com). Case 4 is similar
and left to the reader. �

The proposition below states that for any sequent Γ (derivable or not in the
calculus), there is a (non-redundant) derivation tree whose leaves (no matter
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whether they are derivable or not in the calculus) are saturated sequents with
no greater modal degree. In order to prove it, we introduce some complexity
measure of sequents. The aim will be to show that each application of a rule
decreases this measure. Let Γ be of the form:

Δ, [Σ1 � Π1], . . . , [Σn � Πn]

– First we define a complexity measure of formulas:

Cp(A) = 0 if A is either a literal or it has the form ¬(C � D),
Cp(A) = 1 if A has one of the forms C � D,C ⇒ D,¬(C ⇒ D)
Cp(¬¬A) = Cp(A) + 1
Cp(A ∗B) = Cp(A) + Cp(B) + 1, where ∗ is a boolean connective.

Next we let
CP (Γ ) = multi-set {Cp(A) | A ∈ Γ}

– To take care of the application of (�−), we define:

CN(Γ ) = Card({(¬(A � B), [Σ � Π ]) | ¬(A � B), [Σ � Π ] ∈ Γ,B 	∈ Σ,A 	∈ Π})

– To take care of the application of (Com), we proceed as follows. First, for a
multi-set Λ, we still denote by Card(Λ) the cardinality of Λ as a set (or, in
other words, of its support). Next, given Γ = Δ, [Σ1 �Π1], . . . , [Σn �Πn], we
let ΣΓ =

⋃
iΣi and ΠΓ =

⋃
i Πi (set-union), we define:

CC(Γ ) = n ∗ (Card(ΣΓ ) + Card(ΠΓ ))−
n∑

i=1

(Card(Σi) + Card(Πi))

– We finally define the rank of a sequent Γ , rank(Γ ) as the triple

rank(Γ ) = 〈CP (Γ ), CN(Γ ), CC(Γ )〉

taken in lexicographic order, where we consider the multi-set ordering for
CP (Γ ).

Observe that a minimal rank has the form 〈0∗, 0,m〉, where m ≥ 0. We are ready
to prove the following proposition.

Proposition 5. Given a sequent Γ , every branch of any derivation-tree starting
with Γ eventually ends with a saturated sequent with no greater modal degree
than that of Γ . Moreover the set of such saturated sequents for a given derivation
tree is finite.

Proof. By Proposition 3, no rule applied backward augments the modal degree
of a sequent. It can be shown that every (non-redundant) application of a rule
(R) with premises Γi and conclusion Γ reduces the rank of Γ in the sense that
rank(Γi) < rank(Γ ). In order to see this, we note:

– the application of classical propositional rule reduces CP (Γ )
– the application of (�+), (⇒+), (⇒−) rules reduces CP (Γ )
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– the application of (�−) reduces CN(Γ ), without increasing CP (Γ )
– the application of (Com) reduces CC(Γ ), without increasing neither CP (Γ ),

nor CN(Γ ). We first show that an application of (Com) rule reduces CC(Γ ).
Let Γ = Δ, [Σ1 � Π1], [Σ2 � Π2], . . . , [Σn � Πn]. To simplify indexing (since
the order does not matter) suppose that the application of (Com) concerns
the blocks [Σ1 � Π1], [Σ2 � Π2], so that the premises of the application of
(Com) leading to Γ will be:

Γ1 = Δ, [Σ1 � Π1, Π2], [Σ1, Σ2 � Π2], [Σ3 � Π3], . . . , [Σn � Πn]
Γ2 = Δ, [Σ2 � Π1, Π2], [Σ1, Σ2 � Π1], [Σ3 � Π3], . . . , [Σn � Πn]

Observe that the overall set of formulas in blocks does not change so that,
referring to the above notation:

ΣΓi = ΣΓ and ΠΓi = ΠΓ , for i = 1, 2

Let us abbreviate a = n∗(Card(ΣΓ )+Card(ΠΓ )) and c =
∑n

i=3(Card(Σi)+
Card(Πi)), so that we have:

CC(Γ ) = a− ((Card(Σ1) + Card(Π1)) + (Card(Σ2) + Card(Π2)) + c)
CC(Γ1) = a− ((Card(Σ1) +Card(Π1 ∪Π2)) + (Card(Σ1 ∪Σ2) +Card(Π2)) + c)
CC(Γ2) = a− ((Card(Σ2) +Card(Π1 ∪Π2)) + (Card(Σ1 ∪Σ2) +Card(Π1)) + c)

Obviously CC(Γ1) ≤ CC(Γ ) and CC(Γ2) ≤ CC(Γ ), since Card(Σ1∪Σ2) ≥
Card(Σi) and Card(Π1 ∪ Π2) ≥ Card(Πi), i = 1, 2. But since the appli-
cation of (Com) is non-redundant, it respects the restriction (RestCom)
and therefore either (a) Σ1 
⊆ Σ2 and Σ2 
⊆ Σ1 or (b) Π1 
⊆ Π2 and
Π2 
⊆ Π1. Thus some of the inequalities are strict. In case (a) we get that
Card(Σ1 ∪Σ2) > Card(Σi), i = 1, 2, thus (Card(Σ1 ∪Σ2) + Card(Π2)) >
(Card(Σ2) + Card(Π2)) whence CC(Γ1) < CC(Γ ) and (Card(Σ1 ∪ Σ2) +
Card(Π1)) > (Card(Σ1) + Card(Π1)), whence CC(Γ2) < CC(Γ ). In case
(b) we get that Card(Π1 ∪ Π2) > Card(Πi), i = 1, 2, thus (Card(Σ1) +
Card(Π1 ∪Π2)) > (Card(Σ1) +Card(Π1)), whence CC(Γ1) < CC(Γ ) and
(Card(Σ2)+Card(Π1 ∪Π2)) > (Card(Σ2)+Card(Π2)), whence CC(Γ2) <
CC(Γ ).

We now show the second claim, that an application of (Com) does not in-
crease CN(Γ ): let Γ1 be the leftmost premise of (Com), and ¬(A � B) ∈ Γ1

and consider for instance [Σ1�Π1, Π2]. If B 
∈ Π1, Π2 and A 
∈ Σ1, obviously
also B 
∈ Π1 and since ¬(A � B) ∈ Γ the pair (¬(A � B), [Σ1 � Π1]) will
contribute to CN(Γ ); a similar reasoning applies to the block [Σ1, Σ2 �Π2].
Hence we get that CN(Γ1) ≤ CN(Γ ). The same argument applies to the
rightmost premise.

Thus each branch of every derivation with root Γ has a finite length and ends
with a saturated sequent. Since the derivation is finitary (each rule has at most
two premises) it is also finite, thus the set of saturated sequents as leaves is finite.
This ends the proof. �
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The following theorem shows that the calculus is terminating, whence it pro-
vides a decision procedure for V, assuming restriction to non-redundant deriva-
tions.

Proposition 6. Given a sequent Γ , any non-redundant derivation-tree of Γ is
finite.

Proof. By induction on the modal degree m of Γ . If m = 0 then we rely on
the corresponding property of classical sequent calculus. If m > 0, by the previ-
ous Proposition 5, Γ has a finite derivation tree ending with a set of saturated
sequents Γi. For each Γi either it is an axiom and Γi will be a leaf of the deriva-
tion, or the only applicable rule (by non-redundancy restriction) is (Jump), but
the premise of (Jump) has a smaller modal degree and we apply the induction
hypothesis to the premise of (Jump). �

The above proposition means that for any sequent Γ (derivable or not in the
calculus), there is a derivation tree whose leaves (no matter whether they are
derivable or not in the calculus) are saturated sequents with no greater modal
degree.

The termination result can be strengthened in order to show that the calculus
IV can be used to describe an optimal decision procedure for V, provided we
adopt a specific strategy on the application of the rules. The strategy is the
following:

1. apply propositional rules and (�+), (⇒+) and (⇒−) as much as possible;
2. apply (�−) as much as possible;
3. apply (Com) as much as possible with the restriction (RestCom).

If the last sequent so obtained is not an instance of standard axioms, then it
is saturated: we can then apply the rule (Jump) and then restart from 1. The
completeness of the strategy is justified by the following proposition:

Proposition 7. The rule (Com) permutes over all the other rules, except (Jump).

We are now ready to prove the following theorem.

Theorem 2. Provability in IV is in PSpace.

Proof. Let n be the length of the string representing a sequent Δ. Given any
derivation tree built starting with Δ, we show that the length of each branch is
polynomial in n, and that the size of each sequent occurring in it is polynomial
in n. We proceed by induction on the modal degree of Δ. For the base case,
md(Δ) = 0, that is to say all formulas in Δ are propositional formulas. In this
case we immediately conclude since the above claims hold for the propositional
calculus. For the inductive step, we apply the rules of the calculus IV to build
any branch B until the last sequent of B is an axiom or a saturated sequent.
According to the above strategy, B is built as follows:

- first, propositional rules and (�+), (⇒+), and (⇒−) are applied as much as
possible: since the number of connectives in F is bounded by n, the number
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of applications of these rules is O(n). Since all the rules are analytic, the size
of each sequent is O(n) (see comments below concerning the application of the
(⇒−) rule);
- then, the rule (�−) is applied as much as possible, by considering all combina-
tions of blocks and formulas ¬(A � B): since all possible blocks are O(n) and
all possible formulas ¬(A � B) are O(n), the number of applications of the rule
(�−) is O(n2) and, again, the size of each sequent is polynomial in n;
- the rule (Com) is applied as much as possible with the restriction (RestCom):
as already shown in the proof of Proposition 5, the number of applications of
(Com) is bounded by the measure CC(Γ ) = n ∗ (Card(ΣΓ ) + Card(ΠΓ )) −∑n

i=1(Card(Σi) + Card(Πi)), and is therefore O(n2).

We conclude that B has length polynomial in n and contains sequents whose
sizes are polynomial in n. The last sequent of B is either (i) an instance of a
standard axiom or (ii) saturated. In case (i), we are done. In case (ii), the rule
(Jump) is the only applicable one: let Γ be the sequent of B to which we apply
(backward) the rule (Jump), and let Γ ′ be its premise. Since md(Γ ′) < md(Γ ),
we can apply the inductive hypothesis, to conclude that any branch B’ built in
the derivation starting with Γ ′ is polynomial in n and that each sequent in it has
a polynomial size in n: this immediately follows from the facts that Γ belongs
to the derivation tree having Δ as a root (therefore, its size is polynomial in
n) and that Γ ′ is a subsequent of Γ , then its size is polynomial in n, too. It
is worth noticing that this also holds when the rule (⇒−) is considered: let
Δ contain ¬(A1 ⇒ B1),¬(A2 ⇒ B2), . . . ,¬(Ak ⇒ Bk), in the worst case a
branch contains a block of the form [A1 ∧ ¬B1, A2 ∧ ¬B2, . . . , Ak ∧ ¬Bk, Σ �
A1, A2, . . . , Ak, Π ], whose size could be higher than the one of Δ. However, an
application of (Jump) would lead to a premise, in the worst case, of the form
A1 ∧ ¬B1, A2 ∧ ¬B2, . . . , Ak ∧ ¬Bk, Σ,¬Ai, and backward applications of (∧−)
to formulas A1 ∧¬B1, A2 ∧¬B2, . . . , Ak ∧¬Bk would obviously lead to sequents
whose size is strictly lower than the one of Δ.

We can conclude that the length of the branch obtained by concatenating B
and B’ is polynomial in n and each sequent in it has a polynomial size in n, and
we are done.

In order to prove that a formula F is valid, we try to build a derivation in
IV having F as a root. Let n be the length of the string representing F . By the
argument shown above, given any derivation tree built starting with F , we have
that the length of each branch is polynomial in n, and the size of each sequent
occurring in it is polynomial in n, and this concludes the proof. �

The following proposition is the last ingredient we need for the completeness
proof.

Proposition 8 (Semantic Invertibility). All rules, except (Jump) are se-
mantically invertible: if the conclusion is valid then the premises are also valid.

Theorem 3 (Completeness of the Calculus IV). If Γ is valid then it is
derivable.
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Proof. By induction on the modal degree of Γ . If md(Γ ) = 0 then Γ is just a
multi-set of propositional formulas, and we rely on the completeness of sequent
calculus for classical logic. Suppose now that md(Γ ) > 0, by Proposition 5, Γ
can be derived from a set of saturated sequents Γi of no greater modal degree.
But by Proposition 8 (semantic invertibility) since Γ is valid then also each Γi is
valid. We are left to prove that any saturated and valid sequent Γi is derivable.
To this purpose we prove that if Γi is valid then either (i) it is an axiom or (ii)
there must exist a valid sequent Δ such that Γi is obtained by (Jump) from Δ.
In the first case (i) the result is obvious. In case (ii) we reason as follows: since
md(Δ) < md(Γi) by inductive hypothesis, Δ is derivable in IV, and so is Γi

indeed by the (Jump) rule.
Let us prove that if Γi is valid and saturated and it is not an axiom, then there

exists a valid sequent Δ such that Γi is obtained by (Jump) from Δ. Suppose
that Γi is valid and it is not an axiom. We let Γi = ΓN , Λ, [Σ1�Π1], . . . , [Σn�Πn]
as in Definition 3. Observe that Λ does not contain axioms. By saturation (and
weakening and contraction) we can assume that the blocks in the sequence are
ordered as follows:

– Σ1 ⊇ Σ2 ⊇ . . . Σn

– Π1 ⊆ Π2 ⊆ . . . ⊆ Πn

A quick argument: by saturation blocks are ordered with respect to set-inclusion
for both components Σ and Π , consider them ordered first by decreasing Σ: let
two blocks in the sequence: [Σ �Π ], [Σ′ � Π ′] with Σ′ ⊆ Σ, we can assume that
Π ⊆ Π ′ otherwise it would be Π ′ ⊂ Π , but then any sequent containing both
[Σ � Π ] and [Σ′ � Π ′] is semantically equivalent to a sequent containing only
[Σ � Π ] (syntactically we get rid of [Σ′ � Π ′] by weakening and contraction)4.
Thus we let:

Π1 = B1,1, . . . , B1,k1

Π2 = B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2

. . .
Πn = B1,1, . . . , B1,k1 , . . . , B2,k2 , . . . , Bn,kn

Suppose now for a contradiction that no application of (Jump) leads to a valid
sequent. Thus for each l = 1, . . . , n, and t = 1, . . . , kl, the sequent ¬Bl,t, Σl is
not valid. Starting from l = 1 up to n, there are increasing sequences of models:

M1,1, . . . ,M1,k1 ,
M1,1, . . . ,M1,k1 ,M2,1, . . . ,M2,k2

M1,1, . . . ,M1,k1 , . . . ,M2,k2 , . . . ,Mn,kn

where Ml,t = (Wl,t, $
l,t, [ ]l,t) for l = 1, . . . , n, and t = 1, . . . , kl and some

elements xl,t ∈ Wl,t such that Ml,t, xl,t |= Bl,t and Ml,t, xl,t 
|= C for all C ∈ Σl.
Observe that if Ml,t, xl,t 
|= C for all C ∈ Σs and s < t then Ml,t, xl,t 
|=
4 An alternative argument: Γi must contain a valid subsequent Γ ′

i where the blocks
satisfy the above ordering conditions. Then the proof carry on considering Γ ′

i .
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C for all C ∈ Σt, as Σt ⊆ Σs. We suppose that all models are disjoint and we
define a new model M = 〈W , $, [ ]〉 as follows:

W = (
⋃

l

⋃
t(Wl,t)) ∪ {x} for a new element x [P ] =

⋃
l

⋃
t[P ]l,t if ¬P 	∈ Λ

$z = $l,tz if z ∈ Wl,t for some l, t [P ] =
⋃

l

⋃
t[P ]l,t ∪ {x} if ¬P ∈ Λ

In order to define the evaluation function [ ] we let:

α1 = {x1,1, . . . , x1,k1}
α2 = {x1,1, . . . , x1,k1 , x2,1, . . . , x2,k2}
. . .
αn = {x1, . . . , x1,k1 , x2,1, . . . , x2,k2 , . . . , xn,kn}

We finally let $x = {α1, . . . , αn}. Observe that the “spheres” αl are nested. To
complete the proof we must show that x falsifies Γi in M. In particular we have
to show that:

(1) M, x 
|= L for every L ∈ Λ
(2) M, x 
|= [Σl � Πl] for l = 1, . . . , n
(3) M, x 
|= ¬(A � B) for every ¬(A � B) ∈ ΓN

(1) is obvious by definition: if P ∈ Λ, then ¬P 
∈ Λ (otherwise Γi would be an
axiom) and x 
∈ [P ], if ¬P ∈ Λ, then x ∈ [P ].

To prove (2), first observe that for z ∈ Wl,t and every formula F , we have
z ∈ [F ] if and only if z ∈ [F ]l,t. This is proved by a straightforward induction on
F . Then we prove (2) by induction on l. For l = 1, we have that, for x1,l ∈ α1, it
holds M, x1,l |= B1,l, whence α1 
|=∀ ¬B1,t for t = 1, . . . , k1. On the other hand,
putting Σ1 = C1,1, . . . , C1,r1 , we have, for every u = 1, . . . , r1 and x1,t, t =
1, . . . , k1, that M, x1,t 
|= C1,u, but this means that α1 
|=∃ C1,u for u = 1, . . . , r1.
Thus we get M, x 
|= [Σ1 � Π1]. For l > 1, since Σl ⊇ Σl−1 and Πl−1 ⊆ Πl, the
argument is the same (using possibly the induction hypothesis).

We consider now (3): let ¬(A � B) ∈ ΓN and let αl ∈ $x. Let us consider
[Σl � Πl], by saturation either A ∈ Πl or B ∈ Σl. For what we have just shown,
in the former case we have αl |=∃ A and in the latter case we have αl |=∀ ¬B.
Thus, for any αl ∈ $x, either αl |=∃ A or αl |=∀ ¬B, whence M, x |= A � B. �

5 Further Research

In future research, we aim at extending our approach to all the other conditional
logics of the Lewis’ family, in particular we aim at focusing on the logics VN,
VT, VW and VC. Actually, for VN, whose sphere models are known as normal
($x 
= ∅), the extension is straightforward: it is sufficient to add to the calculus
IV the following rule:

Γ, [⊥ ��]
(N)

Γ

Observe that the flat version (i.e. without nested conditionals) of VN is exactly
rational logic R presented in [13]. Thus, as far as we know, our calculus provides
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the first internal calculus for R. The other cases are currently under investiga-
tion.

In [14], ingenious and optimal sequent calculi for the whole family of Lewis’
logics are proposed. The calculus for V contains an infinite set of rules Rn,m

(with n ≥ 1,m ≥ 0) with a variable number of premises:

{¬Bk , A1, . . . , An,D1, . . . , Dm | k ≤ n} ∪ {¬Ck , A1, . . . , An,D1, . . . , Dk−1 | k ≤ m}
Rn,m

Γ,¬(C1 � D1), . . . ,¬(Cm � Dm), A1 � B1, . . . , An � Bn

We wish to study the precise relation between our calculus IV and the one
introduced in [14]. As an example, we show that, in the case n = 1 and m = 1,
the rule

¬B1, A1, D1 ¬C1, A1

R1,1

Γ,¬(C1 � D1), A1 � B1

is derivable in IV as follows:

¬B1, A1, D1

(Jump)
Γ,¬(C1 � D1), [A1, D1 � B1]

¬C1, A1

(Jump)
Γ,¬(C1 � D1), [A1 � B1, C1]

(�−)
Γ,¬(C1 � D1), [A1 � B1]

(�+)
Γ,¬(C1 � D1), A1 � B1

We conjecture that all instances Rn,m, (n ≥ 1,m ≥ 0), are derivable in IV: this
will be subject of further investigation.

Last, in future research we shall provide an efficient implementation of IV.

6 Conclusions

In this paper we begin a proof-theoretical investigation of Lewis’ logics of coun-
terfactuals characterized by the sphere-model semantics. We have presented a
simple, analytic calculus IV for logic V, the most general logic characterized by
the sphere-model semantics. The calculus IV is standard, namely it contains a
finite a number of rules with a fixed number of premises, and internal, in the
sense that each sequent denotes a formula of V. The novel ingredient of IV is that
sequents are structured objects containing blocks, where a block is a structure or
a sort of n-ary modality encoding a finite combination of formulas with the con-
nective �. IV ensures termination, in particular we have shown that provability
is in PSpace, therefore it provides an optimal decision procedure for V.
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