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ABSTRACT

Optimal estimation of signal amplitude, background level, and photocentre location is crucial to

the combined extraction of astrometric and photometric information from focal plane images, and
in particular from the one-dimensional measurements performed by Gaia on intermediate to faint

magnitude stars. Our goal is to define a convenient maximum likelihood framework, suited to efficient

iterative implementation and to assessment of noise level, bias, and correlation among variables. The

analytical model is investigated numerically and verified by simulation over a range of magnitude and

background values. The estimates are unbiased, with a well-understood correlation between amplitude
and background, and with a much lower correlation of either of them with location, further alleviated in

case of signal symmetry. Two versions of the algorithm are implemented and tested against each other,

respectively, for independent and combined parameter estimation. Both are effective and provide

consistent results, but the latter is more efficient because it takes into account the flux-background
estimate correlation.

Keywords: astrometry - instrumentation: miscellaneous - methods: analytical - methods: numerical

- techniques: image processing

1. INTRODUCTION

Astrometric measurements are often concerned with

the limiting precision achievable in the estimate of rela-

tive position among celestial sources, imaged by some in-
strument, and with the practical definition of convenient

location algorithms (Lindegren 1978; Gai et al. 1998).

Such mathematical frameworks often identify conve-

nient quantities, in particular an assessment of the lim-
iting achievable precision, e.g. in terms of the Cramér-

Rao lower bound on location error (Mendez et al. 2013),

or of systematic errors associated to the mismatch be-

tween the measurement model and actual data distribu-

tion (Gai et al. 2013a). The connection between maxi-
mum likelihood (ML), related to Cramér-Rao, and least

square approach is also investigated in the literature

(Lobos et al. 2015). The models have been tested in

real observations, even from the ground (Cameron et al.
2009), where the atmospheric turbulence is usually the

limiting factor, and in the lab (Gai et al. 2001), some-

times to very high precision (Zhai et al. 2011).

Often the problem formulation is simplified with the

adoption of a one-dimensional (1D) signal model, which
is more directly applicable, e.g., to the Gaia measure-

ments over its intermediate to faint magnitude sample,

which is briefly reviewed in Sec.1.1, but can nonetheless

be considered sufficiently general, in particular by deal-

ing separately with image location on each coordinate.

Besides, the problem is sometimes more conveniently
formulated in terms of estimating not only the image lo-

cation, but also the photometric level at the same time,

i.e. working in a bidimensional space with respect to the

unknowns (Mendez et al. 2014). The rationale is that,
even in case of known objects, the actual photon count

accumulated in a specific exposure is dependent on the

current measurement conditions (atmospheric transmis-

sion, effective exposure time, and instrument parame-

ters), which may not be stable or known with accuracy
adequate to the precision goals.

In astronomical practice, measurement precision is af-

fected also by background, which is in many cases esti-

mated over image regions close to the object of interest
and considered free from residual target flux or spoil-

ers. Background estimation can be performed in many

different ways, depending on a number of assumptions

related to the actual observing conditions and goals, and

requires careful evaluation. It is therefore a critical part
of several data reduction and analysis packages, e.g. the

public domain AstroImageJ (Collins et al. 2016).

The subject of this paper is an algorithm for the esti-

mation of signal Amplitude, Background, and photo-
Centre location (ABC) on 1D data corresponding to
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intermediate magnitude Gaia observations. We deal,

therefore, with a three-dimensional (3D) problem, in

the sense of Mendez et al. (2014), formulated in Sec. 2

in maximum likelihood terms. The expressions are ex-
panded in a form suited to an iterative solution, assum-

ing the variables are either independent or a combined

set. These two approaches are materialized in different

algorithms, and their noise and correlation properties

are derived, evidencing relevant consequences for sym-
metric signals.

Because the mathematical expressions involved can-

not be easily solved except in the case of extremely sim-

ple signal models, the framework is verified by numer-
ical simulation as described in Sec. 3, also taking into

account some of the aspects more relevant toward imple-

mentation in a data reduction system (Morbidelli et al.

2012).

The two algorithms have comparable performance
with respect to noise and systematic error, but the corre-

lation between flux and background, discussed in Sec. 4,

makes the independent estimate significantly less effi-

cient.

1.1. Gaia Observations

The Gaia mission (Gaia Collaboration et al. 2016;
Perryman 2005; de Bruijne 2012) is aimed at global

astrometry at the level of a few tens of micro-arcsec

(hereafter, µas), producing an all-sky catalogue of po-

sition, proper motion, and parallax, complete to the

limiting magnitude V ≃ 20mag. The Gaia concept
(http://sci.esa.int/gaia/) relies on self-consistency of the

astrometric information of celestial objects throughout

operation, factoring out the instrument parameters and

their evolution by calibration of the overall data set.
The Hipparcos experience suggests that the approach is

viable with respect to the detection and modeling of the

instrumental parameter secular evolution and long term

variations over time scales longer than a few revolution

periods, i.e. above about one day.
The detector of Gaia (Short et al. 2005; Kohley et al.

2012) is a large CCD mosaic operated in Time De-

lay Integration (TDI) mode, split in different regions

for operation purposes: the detection of the incom-
ing stars by the initial two strips of CCDs, the Sky

Mapper; wideband imaging on the Astrometric Field;

and low dispersion imaging on the Blue/Red Photome-

ter. Additionally, a fraction of the field feeds the Ra-

dial Velocity Spectrometer, operating over the magni-
tude range G > 17mag, which also provides astro-

physical characterization of the bright stellar sample

(G > 12.5mag). The Basic Angle Monitoring device

provides auxiliary metrology information, i.e. a real-
time estimate of the Basic Angle value(Gielesen et al.

2012; Gai et al. 2013b).

The regions of interest over the astrometric focal plane

are defined by onboard logic on the detection results in

the Sky Mapper: for each detected star, the placement of

ensuing observing windows on each CCD is computed.
The elementary exposure has a fixed duration (∼ 4 s)

and provides for most intermediate magnitude stars

(13 ≤ G ≤ 16mag) a 1D data set of 18 samples, binned

in the low resolution, across scan direction. Fainter stars

are binned and read on 12 samples. Brighter stars, in
the magnitude range 11.8 ≤ G ≤ 13mag, are read and

downloaded as bidimensional elementary images. The

brightest stars, G ≤ 11.8mag are read on shorter expo-

sure times, reducing the effective integration by activa-
tion of on-chip gates.

1.2. Estimate of Flux, Background and Photocentre

The elementary 1D signal depends on the instrument

response (including optics, TDI, attitude, and CCD)
and on the individual source magnitude and spectrum.

The apparent amplitude of a star is thus slightly differ-

ent on each exposure during the transit, due to differ-

ent electro-optical response of subsequent CCDs. Keep-

ing track of the star flux level over the AF is there-
fore a valuable contribution to instrument monitoring,

as many stars are continuously crossing the field at dif-

ferent heights, each sampling a whole CCD strip. The

effective broadband magnitude of each star can be de-
fined, e.g., by its average signal level over the whole

transit. Source variability, if any, is most likely identi-

fied between observations at different epoch.

Moreover, due to field superposition from the two

Gaia telescopes, the background from both sky areas is
superposed to the image of each star, so that every star

is measured over a different background at each epoch.

The estimation of background is therefore required at

the individual exposure level, since it is not known in
advance or easily modeled.

Finally, the most obvious parameter desired for each

elementary exposure on the astrometric field is the star

location, i.e the estimate of its photocentre.

The next section is devoted to setting up the math-
ematical framework describing the maximum likelihood

search for photometric level, background and image lo-

cation, in a formulation convenient for iterative numer-

ical implementation.

2. METHOD: MAXIMUM LIKELIHOOD

The signal is one-dimensional, centred on the “true”

photoCentre position (C) and represented in pixel posi-

tions xk, k = 1, . . . ,K by the model

Uk = U (xk;A;B;C) = A · T (xk − C) +B , (1)

where T is the flux independent Template (normalised

with unit integral), A is the Amplitude of the total pho-
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tometric flux, and B is the Background, assumed to

be uniform. The signal template is derived from suf-

ficiently large, homogeneous data sets (e.g. from the

same CCD and spectral class) in calibration (Gai et al.
2013a; Busonero et al. 2014), to ensure that a good Sig-

nal to Noise Ratio (SNR) is achieved.

The elementary exposure generates the actual data

samples Sk, affected by photon noise from the signal

and background, readout noise, and possibly other con-
tributions. The discrepancy between the detected signal

and its model is then

dk = Sk − Uk = Sk −A · T (xk − C)−B , (2)

assumed unbiased and uncorrelated, i.e., respectively,

〈dn〉 = 0 ; 〈dmdn〉 = δmnσ
2
n , (3)

where σ2
k is the signal variance, assumed to be known.

The estimate of centroid, flux and background can

be implemented in a maximum likelihood framework by
the requirement of minimising an error function (corre-

sponding to the χ2 in other applications) chosen as the

weighted square discrepancy D:

D =

K
∑

k=1

[Sk −A · T (xk − C)−B]
2

σ2
k

. (4)

Hereafter, for simplicity, the index k will be dropped;

the summations cover the whole pixel range.

The solution minimises the sum of squared differences

between samples and corresponding model values. It
may be noted that the signal model formulation in Eq. 1

is such that the solution cannot be strictly derived in

terms of linear least squares, because, e.g., amplitude

and photo-centre are intrinsically coupled. As often
happens, it is possible to envisage an iterative solution,

based on an acceptable initial guess of the parameters,

and successive approximations providing progressively

better estimates at each iteration. Given the simple sig-

nal profile, i.e. a bell-shaped curve affected by moderate
noise for a reasonable SNR, the problem is still expected

to have a single optimum solution. Moreover, the least

square solution often provides a good approximation to

the maximum likelihood solution and to the Cramér-Rao
limit (Lobos et al. 2015).

The stationary point of the error functional satisfies

the system of equations:

∂D

∂A
= 0 ;

∂D

∂B
= 0 ;

∂D

∂C
= 0 ,

i.e.
∑ [Sk −A · T (xk − C)−B] · T (xk − C)

σ2
k

=0

∑ [Sk −A · T (xk − C)−B]

σ2
k

=0 (5)

∑ [Sk −A · T (xk − C)−B] · T ′ (xk − C)

σ2
k

=0

which can be solved with ordinary matrix methods after

explicitation of the variables.
The three variables can be expanded at first order

with respect to the current (input) estimate, at iter-

ation (i), of amplitude, background, and centre loca-

tion AE , BE , CE , to derive the corrections δA, δB, δC

required to achieve the improved (output) estimates
AN , BN , CN , i.e.

AN = AE + δA ; BN = BE + δB ; CN = CE + δC . (6)

The improved estimates, output of iteration (i), become

the current estimates fed as input to iteration (i+ 1):

A
(i+1)
E = A

(i)
N , B

(i+1)
E = B

(i)
N , C

(i+1)
E = C

(i)
N .

In particular, the normalised template T is expanded as

T (xk − CN ) = T (xk − CE)− δC · T ′ (xk − CE) .

The updated version of the full signal model becomes

U (xk; [N ])=U (xk; [E]) + δA · T (xk − CE)

−AEδC · T ′ (xk − CE) + δB

At each iteration, the problem can be tackled either

by computing the next estimate independently for each
parameter, or collectively for the set of three correc-

tions at the same time; hereafter, the two approaches

are labeled Independent Estimate (IE) and Combined

Estimate (CE), respectively. The former approach is ex-

pected to provide a simpler formulation and easier con-
nection with known results; besides, the latter approach

is expected to be more sound, at the cost of more cum-

bersome expressions. Both are evaluated and discussed

below, adopting for the sake of simplicity the notation:

T (xk − C) = Tk , T
′ (xk − C) = T ′

k . (7)

The computational cost is evaluated in simulation.
We take advantage of the maximum likelihood frame-

work also to investigate on the residual errors of the

estimates, in particular with respect to bias, variance,

and correlation. In general, some correlation may be

expected due to derivation of all parameters from the
same data, and it can be justified intuitively by the char-

acteristics of the signal model in Eq. 1: e.g. given an

underestimate of the signal amplitude A, whichever the

centre position C, the overall photon count can be re-
trieved only by an overestimate of the background B,

i.e. the two parameters are anti-correlated.
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2.1. Independent Estimate (IE)

Eqs. 5 are expanded separately, respectively with re-

gard to δA, δB, δC, i.e. to the single variable of interest

involved in the specific derivative of the error function.

Thus, we get the simple expressions

∑ [dk − δA · Tk (CE)] · Tk (CE)

σ2
k

=0

∑ dk − δB

σ2
k

=0 (8)

∑ [dk +AE · δC · T ′

k (CE)] · T
′

k (CE)

σ2
k

=0

where dk = dk (xk;AE ;BE ;CE); the equations are

solved independently for each variable, providing the
corrections

δA =

∑

dkTk/σ2

k

∑

T 2

k/σ2

k

; (9)

δB =

∑

dk/σ2

k

∑

1/σ2

k

; (10)

δC = −
1

A

∑

dkT
′

k/σ2

k

∑

T ′2

k /σ2

k

. (11)

Some properties of the solution can be derived from

the signal properties in Eq. 3. First, we remark that the

Eq. 6 can be used also to describe the discrepancy be-
tween the “true” value of each parameter and its current

estimate at a given iteration, including the last estimate;

formally, the former takes the place of the next estimates

AN , BN , CN . Then, the expressions for the solutions in

Eqs. 10 can be evaluated to assess the underlying statis-
tics.

It is possible to derive expressions for the parameter

variance from Eqs. 9 to 11:

〈

δA2
〉

=

[

∑ T 2
k

σ2
k

]−1

; (12)

〈

δB2
〉

=

[

∑ 1

σ2
k

]

−1

; (13)

〈

δC2
〉

=
1

A2

[

∑ T ′2
k

σ2
k

]−1

. (14)

The solution is unbiased, as can be shown by evaluat-

ing the expectation value of Eqs. 9 to 11. The right-hand

terms vanish, so that the expected discrepancy between

true values and their (final) estimates is also zero:

〈δA〉 = 〈δB〉 = 〈δC〉 = 0 . (15)

The actual discrepancy after a finite number of itera-

tions is investigated by simulation in the next sections.

The correlation between parameters can be evaluated

in terms of Pearson’s (linear) correlation coefficient for-
mula:

ρA,B =
〈δAδB〉

√

〈δA2〉 〈δB2〉
=

∑

Tk/σ2

k

√

∑

T 2

k/σ2

k

∑

1/σ2

k

; (16)

ρA,C =
〈δAδC〉

√

〈δA2〉 〈δC2〉
=

−
∑ TkT

′

k

σ2

k
√

∑ T 2

k

σ2

k

∑ T ′2

k

σ2

k

; (17)

ρB,C =
〈δBδC〉

√

〈δB2〉 〈δC2〉
=

−
∑ T ′

k

σ2

k
√

∑

1
σ2

k

∑ T ′2

k

σ2

k

. (18)

The correlation values shall be investigated in the sim-

ulations below.

A simple qualitative consideration can be derived from

the above Eqs. 16 to 18: in case of a symmetric signal

distribution, with anti-symmetric derivative (i.e. respec-
tively an even and odd function), and in circumstances

leading to a symmetric readout region and signal vari-

ance, the correlation between photo-centre and either

amplitude and background vanishes. This is due to the
summation of odd functions (a combination of the tem-

plate, its derivative, and variance) over a symmetric re-

gion, and can be expected to hold approximately also

in case of moderate deviation from the ideal case. In

practice, exact cancellation would not be achieved be-
cause residual errors on the parameters imply computa-

tion of the above functions in slightly off-centered posi-

tions, thus departing from symmetry.

The obvious correlation between amplitude and back-
ground is retained.

2.2. Combined Estimate (CE)

Eqs. 5 are expanded simultaneously for all parameters,

truncating to the first order under normal conditions of

smoothness.
The overall solution must satisfy the system of equa-

tions

δA
∑ T 2

k

σ2

k

+δB
∑

Tk

σ2

k

−AE δC
∑ T ′

k
Tk

σ2

k

=
∑

dkTk

σ2

k

(19)

δA
∑

Tk

σ2

k

+ δB
∑ 1

σ2
k

−AE δC
∑ T ′

k

σ2

k

=
∑

dk

σ2

k

(20)

δA
∑ TkT

′

k

σ2

k

+ δB
∑ T ′

k

σ2
k

−AE δC
∑ T ′2

k

σ2

k

=
∑ dkT

′

k

σ2

k

(21)

and the explicit solution is defined e.g. by Cramer’s rule

(still acceptably efficient with three equations). We may
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build the system determinant

∆ = −AE

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑ T 2

k

σ2

k

∑

Tk

σ2

k

∑ T ′

k
Tk

σ2

k

∑

Tk

σ2

k

∑

1
σ2

k

∑ T ′

k

σ2

k

∑ TkT
′

k

σ2

k

∑ T ′

k

σ2

k

∑ T ′2

k

σ2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (22)

and, for convenience, the auxiliary determinants

∆A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

dkTk

σ2

k

∑

Tk

σ2

k

∑ T ′

k
Tk

σ2

k

∑

dk

σ2

k

∑

1
σ2

k

∑ T ′

k

σ2

k

∑ dkT
′

k

σ2

k

∑ T ′

k

σ2

k

∑ T ′2

k

σ2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆B =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑ T 2

k

σ2

k

∑

dkTk

σ2

k

∑ T ′

k
Tk

σ2

k

∑

Tk

σ2

k

∑

dk

σ2

k

∑ T ′

k

σ2

k

∑ TkT
′

k

σ2

k

∑ dkT
′

k

σ2

k

∑ T ′2

k

σ2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆C =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑ T 2

k

σ2

k

∑

Tk

σ2

k

∑

dkTk

σ2

k

∑

Tk

σ2

k

∑

1
σ2

k

∑

dk

σ2

k

∑ TkT
′

k

σ2

k

∑ T ′

k

σ2

k

∑ dkT
′

k

σ2

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

so that the variable corrections are

δA=−AE

∆A

∆
,

δB=−AE

∆B

∆
, (23)

δC=
∆C

∆
.

As above, the solution is unbiased:

〈δA〉 = 〈δB〉 = 〈δC〉 = 0 . (24)

The computation of parameter variance and covari-

ance is somewhat more cumbersome (although not ex-
ceedingly difficult) than in the previous IE case, and its

main steps are reported in Appendix 5 for the interested

reader.

The results of combined and independent solutions are
compared in the simulations detailed in Sec. 3.

2.3. Initial Guess and Stopping Criterion

A very simple approach is adopted, not taking into

account information from external sources on the cur-
rently expected value of signal amplitude, sky back-

ground and/or centre location.

The background is estimated to be simply a fraction

of the minimum pixel signal level:

BE = η ·min (Sk) , 0 ≤ η ≤ 1 . (25)

The total signal amplitude is then estimated as the

integral of the signal subtracted by such background:

AE =
∑

(Sk −BE) . (26)

The photo-centre location is finally estimated as the

barycentre, or first moment, of the signal distribution:

CE =
1

AE

∑

xk · (Sk −BE) . (27)

As the iterative method works by reducing the square

discrepancy D between signal and template in Eq. 4, a

convenient stopping criterion appears to be the varia-

tion δD of such quantity between subsequent iterations.
When the amplitude of discrepancy variation becomes

smaller than a suitable acceptance threshold, conver-

gence is assumed to have been reached.

The issue of initial guess of parameters, and of a con-

venient value for the stopping criterion, is evaluated
throughout the simulations.

3. SIMULATION RESULTS

The estimation described above depends on the signal

profile, so that the evaluation of general expressions can
only be done on specific cases. To provide an assessment

of the performance that may be expected in realistic

cases, we investigate the results provided by the above

derivation on a set of data spanning over a significant

range of instrument response variation (represented by
means of optical aberrations) and source spectral types

(blackbody temperatures).

3.1. Simulation Implementation

The data set was used in previous studies (Gai et al.

2013a), and is described therein. We briefly recall that
each effective detected 1D signal, labeled LSF for simi-

larity with the corresponding optical Line Spread Func-

tion, is derived through numeric computation of the

diffraction integral, providing the Point Spread Func-
tion (PSF). The PSF is then composed with simple

source spectra (blackbodies at given temperatures) and

detection effects (nominal pixel size, Modulation Trans-

fer Function [MTF] and TDI operation; across scan bin-

ning). The process is replicated for a set of NI = 10, 000
independent instances.

For simplicity, the data are generated and processed

over 12 pixels over the whole simulation range, even if

this does not match in full detail the actual Gaia oper-
ations recalled in Sec. 1.1. The simulation is run subse-

quently on the magnitude range 11mag ≤ G ≤ 21mag,

in steps of 0.25mag, for the set of background level val-

ues B = 0, 10, 30, 100 photons/pixel/exposure.

For each combination of magnitude and background,
every LSF instance is properly scaled and used as input

to the mathematical framework from Sec. 2, deriving

the expected noise level and correlation on amplitude,

background and location estimate in Sec. 3.2. Then, the
signals are superposed to the appropriate noise level, in-

cluding shot noise from amplitude and background, and
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Figure 1. Noise level, predicted by independent and com-
bined algorithms, on signal amplitude (top panel), back-
ground (middle) and location (bottom panel)

a readout noise set to 5 equivalent photons. The noisy
data are fed to our implementation of the IE and CE

algorithms, providing experimental results discussed in

Sec. 3.3. We also evaluate the computational implica-

tions of our implementation.

3.2. Predicted Performance

As a first step, we evaluate the expected error level

on independent and combined solutions, and we derive

their correlation coefficients. The computation is noise-

less in the sense that each instance is defined by the

current nominal values of parameters, signal template,
and variance.

3.2.1. Predicted Estimate Noise

We first compare the predictions of the two algorithms

in terms of noise and correlation. Intensity values are in

photons; location is in micro-arcsec (µas).

In Fig. 1, the estimated noise on signal amplitude
A (top panel), background level B (middle panel) and

photo-centre C (bottom panel) is shown, from both in-

dependent and combined algorithm, over the magnitude

range, for background level B = 0, 10, 100 photons per
pixel). The overall trends of noise evidence that the

performance of either algorithm is quite similar, with
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Figure 2. Relative degradation of parameter noise due to
background, with respect to the B = 0 case.

slightly lower values from IE. This is not surprising, as
IE assumes implicitly to use all of the signal information

for the least square estimation of the current parame-

ter only, whereas the combined algorithm, more realis-

tically, spreads the available information among all of
them. The “greedy” independent algorithm therefore

provides a slight underestimate of the error.

The amplitude error (top panel) grows for increasing

magnitude, as can be expected from natural limitations;

moreover, the difference between IE and CE noise es-
timates also slightly increases. On the contrary, the

noise on background estimate (middle panel) is smaller

at fainter magnitude, with negligible variation of the

difference between algorithms. This behaviour is under-
standable, as higher signal levels completely “flood” the

background, making it harder to estimate, and inducing

larger residual noise. The location performance from

the two algorithms (bottom panel) is basically undistin-

guishable on this scale.
At the faint end, the error curves evidence larger

spread and an increase with respect to the near straight

line shown at brighter magnitudes, dominated by the

source photon noise. This is not surprising, because
at fainter magnitude the overall SNR drops and is pro-

gressively more affected by higher background levels.
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Figure 3. Predicted correlation between parameters: ampli-
tude and background (top); amplitude and location (middle);
background and location (bottom).

The effect is small on the scale of Fig. 1, therefore the
variation with respect to the zero background case is

shown in Fig. 2, respectively, for relative amplitude noise

[σ (A;B) /σ (A;B = 0)−1] (top panel), differential back-

ground noise [σ (B; B)− σ (B; B = 0)] (middle panel)
and relative location error [σ (C; B) /σ (C; B = 0) − 1]

(bottom panel).

3.2.2. Predicted Correlation Among Parameters

Over the selected range of magnitude and background,
the correlation coefficients of errors between parameter

pairs are computed, from Eqs. 16 to 18 for IE and from

the corresponding system of equations for CE; the re-

sults are shown in Fig. 3, respectively as the correla-
tion coefficient between amplitude and background (top

panel, sign reversed), amplitude and location (middle

panel), and background and location (bottom panel).

The correlation between signal amplitude and back-

ground (top panel) is not negligible (∼ 0.5), and this is
not surprising, as mentioned in Sec. 2. The correlation

between signal amplitude and location (middle panel),

and respectively between location and background (bot-

tom panel), are both very low, and compatible with the
sample dispersion (not shown in the figure). For each

term, the difference between algorithms is marginal.
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Figure 4. IE simulation noise on amplitude (top), back-
ground (middle) and location (bottom) with respect to model
prediction

The spread among the correlation curves increases at

faint magnitudes. As for the predicted noise, this can be

related to the increasing relevance of background level,
which acts as a uniform pedestal on the signal variance.

The relative weight of signal and background changes

over the simulation range, and this affects the results on

both noise and correlation.

The performance degradation with increasing back-
ground is larger at fainter magnitudes (due to decreasing

SNR). The effects appear to be acceptable on the esti-

mation of amplitude (top panel; 1% to 10% increase),

negligible on background itself (middle panel; ∼ 2 pho-
tons/pixel at the faint end), and marginal on location

noise (bottom panel) down to the faint magnitude range,

where the error grows by up to a factor two for the worst

combination of magnitude and background.

3.3. Performance on Noisy Data

The initial guess on parameters is generated from the
noisy data according to the initial guess criterion from

Sec. 2.3. The noisy data are then processed by both

independent and combined algorithms, using the cur-

rent noiseless LSF as template. The stopping criterion
corresponds to a limit on square discrepancy variation

δD ≤ 1e − 3; the convenience of such choice, based on
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Figure 5. RMS discrepancy between IE and CE results on
amplitude (top), background (middle) and location (bottom)

initial experimentation on the algorithm performance,

is discussed on the basis of the results presented in

Sec. 3.3.5.

The predicted performance is verified on noisy data
using a single noise instance for each LSF; the result

statistics is therefore a combination of noise propagation

and sample variability. The algorithm performance is

discussed in statistical terms on estimated parameter
noise and discrepancy over the LSF dataset.

3.3.1. Estimate Noise from Simulation

The mean noise on amplitude (top panel), background

(middle panel) and location (bottom panel), evaluated

as RMS discrepancy with respect to the input (“true”)

values, is shown for IE in Fig. 4, with the corresponding
predictions (crosses) for the B = 100 case (Sec. 2.1,

Eqs. 12 to 14).

The discrepancy between predicted and simulated

noise increases with increasing background and fainter
magnitudes, both factors associated to decreasing SNR.

It may be noted that in such conditions the first order

expansion used in Sec. 2 is a progressively less accurate

approximation.

3.3.2. Mutual Consistency and Bias
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Figure 6. Mean discrepancy of IE estimates with respect to
input values on amplitude (top), background (middle) and
location (bottom)

The numerical results of the two algorithms are com-
pared with each other; in particular, we focus on the

RMS discrepancy between IE and CE outputs, shown

in Fig. 5, respectively, for amplitude (top panel), back-

ground (middle panel) and location (bottom panel). It
appears that the estimates from both algorithms coin-

cide over most of the range, within a very small fraction

of the noise level of each parameter. Therefore, CE re-

sults were not shown in Fig. 4, as they would have been

mostly indistinguishable from IE values on the plots.
The mean discrepancy between IE results and the in-

put values, considered as an indication of systematic es-

timation error, i.e. bias, is shown in Fig. 6, respectively,

for amplitude (top panel), background (middle panel)
and centre (bottom panel). The bias appears to be con-

sistent with zero, taking into account the noise on each

parameter (Fig. 4). Given the consistency between IE

and CE (Fig. 5), we can conclude that the latter algo-

rithm provides unbiased estimates as well.

3.3.3. Correlation Among Parameters from Simulation

An experimental assessment of the correlation be-

tween estimated parameters is also implemented by (a)
taking the discrepancy between algorithm results and in-

put values for each parameter; (b) evaluating the mean
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Figure 7. Experimental correlation among simulation resid-
uals of amplitude vs. background (top), amplitude vs. loca-
tion (middle), and background vs. location (bottom).

over the simulation sample of the product of residuals
for each parameter pair; and (c) normalising by the cor-

responding standard deviations.

The residual correlation is shown in Fig. 7, retrieving the

predicted values, i.e. about 0.5 between flux and back-
ground, and close to zero for the other combinations.

Due to the simulation size, the experimental noise on

the correlation coefficients can be expected to be of or-

der of 1%, consistent with the fluctuation in the results.

3.3.4. Processing Time

The average number of iterations required for conver-

gence is shown in Fig. 8, respectively, for IE (top) and

CE (bottom). The IE algorithm requires a larger num-
ber of iterations than CE, with larger variation over the

range of magnitude and background. A minimum in the

average number of iterations is found for some combina-

tions of magnitude and background level.

It may be noted that, with increasing magnitude and
decreasing SNR, the error on initial guess of the pa-

rameters has a natural degradation. Besides, at fainter

magnitude we expect larger errors on at least some

parameters (relative amplitude and location), as from
Fig. 1. This means that larger residual errors (in ab-

solute terms) are acceptable because they induce suffi-
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Figure 8. Mean number of iterations required for conver-
gence by IE (top) and CE (bottom)

ciently small variations on the square discrepancy, thus

fitting the stopping criterion. The shape of the con-

vergence curves appear to reflect the interplay between

initial guess and stopping criterion.

The average processing time per LSF instance is larger
for IE than for CE, respectively 2.64ms against 1.46ms,

consistently with the lower number of iterations required

for convergence. A histogram of IE and CE processing

time per instance, for G = 15mag and B = 10 pho-
tons/pixel, is shown in Fig. 9. Given the number of

iterations associated to this case (Fig. 8), roughly twice

as large for IE than for CE, it appears that in our case

the time per iteration is comparable.

The simulation is implemented in the Matlab envi-
ronment on a desktop computer with 3.3 GHz CPU and

8 GB RAM, under 64 bit Windows operating system.

3.3.5. Square Discrepancy and Convergence

The value of square discrepancy at convergence, av-

eraged over the LSF sample, is shown in Fig. 10 for IE
(top) and CE (bottom). It may be noted that the value

is consistent with the expectations on χ2, taking into ac-

count that the input signal is composed of 12 samples,

and three parameters are estimated.
The parameter adjustment trend and the square dis-

crepancy evolution throughout subsequent iterations of

IE and CE algorithms have been recorded for a small

sample of LSF instances, at a signal amplitude corre-

sponding to G ≃ 15mag and background B = 100 pho-
tons per pixel, with centre location close to zero. The

curves related to the first four LSF instances are shown

in Fig. 11, respectively, for amplitude, background,

photo-centre, and square discrepancy (top to bottom).
The convergence is much faster for CE than IE; more-

over, the CE trend is quite monotonic for all param-
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Figure 10. Average square discrepancy over simulation sam-
ple as a function of magnitude for IE (top) and CE (bottom)

eters. Conversely, the IE estimates of A and B cor-

rections evidence significant oscillations around a slow
decreasing trend, in phase opposition. We remark that

anti-correlation between amplitude and background es-

timates was expected from prime principles, as men-

tioned in Sec. 2.
The trend of square discrepancy is monotonically de-

creasing and retains an appreciable slope throughout

several iterations. All curves are in logarithmic units,

evidencing a rapid evolution of the algorithm.

The stopping criterion for our main simulation, i.e.
δD ≤ 1e − 3, has been selected according to the obser-

vation that, at this level, the corrections on all parame-

ters are much smaller that the corresponding predicted

noise level (e.g. shown in Fig. 1). Therefore, the numer-
ical noise is well within the intrinsic uncertainty on the

measurements.

An alternative threshold value, as well as different ini-

tial guesses, are in principle negotiable, depending on

implementation trade-offs.

4. DISCUSSION: ALGORITHM PERFORMANCE
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Figure 11. Parameter adjustment vs. iterations on four LSF
instances by IE and CE algorithms. From top to bottom:
amplitude, background, photo-centre, and square discrep-
ancy.

The IE and CE algorithms have been developed under

the concept of an underlying signal model to which mea-

surements are to be matched in a maximum likelihood
approach, thanks to a suitable choice of parameters:

in our case amplitude, background, and location. The

match between model and observations is noise limited,

provided they are mutually consistent, as ensured by
calibration and monitoring of the instrument response.

Hereafter, we discuss some peculiarities of the two al-

gorithms evaluated.

Both IE and CE appear to provide the same results,

with differences (Fig. 5) much smaller than the typical
error (Fig. 4) in our simulation. Therefore, the choice

between algorithms is not suggested by considerations

on the correctness of their results. Our coding was

rather straightforward, i.e. not necessarily optimised for
either IE or CE, and practical performance depends on a

number of additional implementation aspects: operating
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Figure 12. A vs. B adjustments throughout IE and CE
processing for the first four LSF instances (log units)

system, programming language, overall SW infrastruc-

ture, availability of efficient libraries, and so on.

In our framework, the CE algorithm (Eqs. 19 to 21)

is more efficient than IE (Eqs. 9 to 11), in spite of the

larger amount of computation required, since it takes
less iterations, each with comparable processing time,

as shown in Sec. 3.3.4. In a different implementation,

the relationship between CE and IE iteration time may

be somewhat different or even reversed, but the number
of iterations (by deterministic processing of the same

data through the equations) will be preserved.

The IE noise prediction (Fig. 1) is confirmed to be

somewhat optimistic with respect to the simulation re-

sults (Fig. 4), which are more consistent with the CE
noise prediction. However, the discrepancy is small, so

that the IE predictions (Eqs. 12 to 14) can be retained

as acceptable “easy” estimates.

The rationale of the difference between IE and CE be-
haviour evidenced in Fig. 11 can be better understood

by a direct comparison of A and B adjustments, plot-

ted against each other in Fig. 12 in logarithmic units.

The IE parameter adjustments are zigzagging back and

forth, whereas the corresponding CE values follow a di-
rect route toward convergence.

It is our understanding that such behavior is related

to the correlation between flux and background, taken

into account by CE and totally ignored by IE. The cor-
relation effect can be seen more clearly by superposing

the contour plot of square discrepancy to the δA, δB

plot, in Fig. 13.

The flux-background relationship generates a square

discrepancy surface rotated with respect to the A, B
axes. The CE algorithm operates in a way similar to

the gradient descent method (Press et al. 2002), because

the shape of the discrepancy function is embedded in the

underlying mathematical framework. Conversely, the IE
algorithm acts as a descent method on a single coordi-

nate at a time, and cannot therefore aim directly to the
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Figure 13. A vs. B adjustments superposed to square dis-
crepancy contours

overall minimum of the error functional.

The application of the proposed mathematical frame-

work to monitoring and diagnostic of relevant signal

description parameters related to either the astrophys-
ical source or the instrument (Busonero & Gai 2010;

Busonero et al. 2012, 2014) will be addressed in our fu-

ture work.

5. CONCLUSION

We analyse an algorithm for estimation of signal am-

plitude, background, and photo-centre location, on 1D

data corresponding to intermediate magnitude Gaia ob-

servations, in the maximum likelihood framework. The
analytical models assess the expected noise level, bias

and estimate correlation as a function of signal profile,

magnitude, and background.

The performance predicted by analytical models has

been verified by simulation over a range of magnitude
and background values, on a sample of 10, 000 instances

of instrument response and source temperature. The

estimates are unbiased, with low correlation between lo-

cation and either amplitude or background, and well-
understood correlation between amplitude and back-

ground. Symmetry properties of the signal further alle-

viate the correlation among results, in particular mak-

ing the location estimate independent of both flux and

background.
The algorithm iterative implementation proves to be

effective; the suggested choice of parameter initial guess

and stopping criterion appears to work satisfactorily.

The two algorithm versions tested against each other,
respectively, for independent and combined estimate of

the parameters, are mutually consistent. However, CE

is significantly more efficient than IE, as convergence in

the latter case appears to be slowed down by the natural

correlation between flux and background estimate.
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APPENDIX - COVARIANCE MATRIX OF THE

COMBINED ESTIMATE

The elements of the covariance matrix can be derived

from Eqs. 19 to 21, with some manipulations, e.g.

squaring each of them and multiplying them by each

other, then taking the expectation values and using the
basic statistics from Eq. 3 and Eq. 24. We get thus a

linear system (Eqs. 28 to 33) in the unknowns
〈

δA2
〉

,
〈

δB2
〉

,
〈

δC2
〉

, 〈δAδB〉, 〈δAδC〉 and 〈δBδC〉.

Eq. 19 squared:

〈

δA2
〉

[

∑ T 2
k

σ2
k

]2

+
〈

δB2
〉

[

∑ Tk

σ2
k

]2

+

A2
E

〈

δC2
〉

[

∑ T ′

kTk

σ2
k

]2

+ 2 〈δAδB〉
∑ T 2

k

σ2
k

∑ Tk

σ2
k

+

− 2AE 〈δAδC〉
∑ T 2

k

σ2
k

∑ T ′

kTk

σ2
k

+

− 2AE 〈δBδC〉
∑ Tk

σ2
k

∑ T ′

kTk

σ2
k

=
∑ T 2

k

σ2
k

; (28)

Eq. 20 squared:
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σ2
k

]2

+ 2 〈δAδB〉
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k

∑ T ′

k

σ2
k

+

− 2AE 〈δBδC〉
∑ 1

σ2
k

∑ T ′

k

σ2
k

=
∑ 1

σ2
k

; (29)

Eq. 21 squared:

〈

δA2
〉

[

∑ TkT
′

k

σ2
k

]2

+
〈

δB2
〉

[

∑ T ′

k

σ2
k

]2

+

A2
E

〈

δC2
〉

[

∑ T ′2
k

σ2
k

]2

+ 2 〈δAδB〉
∑ TkT

′

k

σ2
k

∑ T ′

k

σ2
k

+

− 2AE 〈δAδC〉
∑ TkT

′

k

σ2
k

∑ T ′2
k

σ2
k

+

− 2AE 〈δBδC〉
∑ T ′

k

σ2
k

∑ T ′2
k

σ2
k

=
∑ T ′2

k

σ2
k

; (30)

Eq. 19 × Eq. 20 :

〈

δA2
〉

∑ T 2
k

σ2
k

∑ Tk

σ2
k

+
〈

δB2
〉

∑ Tk

σ2
k

∑ 1

σ2
k

+

A2
E

〈

δC2
〉

∑ T ′

kTk

σ2
k

∑ T ′

k

σ2
k

+

〈δAδB〉

[

∑

1
σ2

k

∑ T 2

k

σ2

k

+
(

∑

Tk

σ2

k

)2
]

+

−AE 〈δAδC〉
[

∑ T 2

k

σ2

k

∑ T ′

k

σ2

k

+
∑

Tk

σ2

k

∑ T ′

k
Tk

σ2

k

]

+

−AE 〈δBδC〉
[

∑

Tk

σ2

k

∑ T ′

k

σ2

k

+
∑ 1

σ2

k

∑ T ′

k
Tk

σ2

k

]

=

∑ Tk

σ2
k

; (31)

Eq. 19 × Eq. 21 :

〈

δA2
〉

∑ T 2
k

σ2
k

∑ TkT
′

k

σ2
k

+
〈

δB2
〉

∑ Tk

σ2
k

∑ T ′

k

σ2
k

+

A2
E

〈

δC2
〉

∑ T ′

kTk

σ2
k

∑ T ′2
k

σ2
k

+

〈δAδB〉
[

∑ T ′

k

σ2

k

∑ T 2

k

σ2

k

+
∑ TkT

′

k

σ2

k

∑

Tk

σ2

k

]

+

− AE 〈δAδC〉

[

(

∑ TkT
′

k

σ2

k

)2

+
∑ T 2

k

σ2

k

∑ T ′2

k

σ2

k

]

+

−AE 〈δBδC〉
[

∑

Tk

σ2

k

∑ T ′2

k

σ2

k

+
∑ T ′

k

σ2

k

∑ T ′

k
Tk

σ2

k

]

=

∑ T ′

kTk

σ2
k

; (32)

Eq. 20 × Eq. 21 :

〈

δA2
〉

∑ Tk

σ2
k

∑ TkT
′

k

σ2
k

+
〈

δB2
〉

∑ 1

σ2
k

∑ T ′

k

σ2
k

+

A2
E

〈

δC2
〉

∑ T ′

k

σ2
k

∑ T ′2
k

σ2
k

+

〈δAδB〉
[

∑ T ′

k

σ2

k

∑

Tk

σ2

k

+
∑ TkT

′

k

σ2

k

∑

1
σ2

k

]

+

−AE 〈δAδC〉
[

∑

Tk

σ2

k

∑ T ′2

k

σ2

k

+
∑ TkT

′

k

σ2

k

∑ T ′

k

σ2

k

]

+

−AE 〈δBδC〉

[

∑

1
σ2

k

∑ T ′2

k

σ2

k

+
(

∑ T ′

k

σ2

k

)2
]

=

∑ T ′

k

σ2
k

. (33)

The system is based on known information (signal
template T and variance σ2, nominal flux estimate AE),

and it can be solved with standard techniques to pro-

vide the terms of the covariance matrix. As the solu-

tions are unbiased (Eq. 24), the former three unknowns

are the variances of the flux, background, and photo-
centre estimates. The latter three unknowns are related

to the Pearson’s correlation coefficients according to ex-

pressions similar to those in Eqs. 16 to 18.
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