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Abstract 
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1. Introduction 

In drug discovery and development it is important to understand the pharmacokinetics, investigating 

the absorption, distribution, metabolism, and excretion (ADME) of molecules. Several analytical 

methods, based on high-performance liquid chromatography (HPLC) and Liquid chromatography 

tandem-mass spectrometry (LC-MS/MS), have been developed and employed on plasma and tissue 

homogenates to establish drug concentration profiles of drugs [1]. Classical pharmacokinetic studies 

measure the average drug accumulation in tissues assuming a homogeneous distribution of the 

molecule and ignore organ compartmentalization. However, the manner in which a compound and 

its metabolites localize and distribute inside a tissue is important in order to ascertain whether they 

reach the intended target site. This is particularly true in oncology where the data obtained may 

reveal very little about the drug’s ability to penetrate the tumor, because they neglect the 

information about the structure of the tumor microenvironment resulting in a loss of information 

about spatial distribution [2,3]. In particular, the imaging of drugs inside biological tissues is pivotal 

in oncology to assess whether a drug reaches high enough concentrations in all tumor cells and to 

develop new strategies to improve penetration and the outcome of chemotherapy [4]. 

In recent decades, several imaging techniques have been developed to investigate the distribution of 

compounds inside a tissue, such as magnetic resonance imaging (MRI), positron emission 

tomography (PET), or wall body autoradiography (WBA), and are routinely used in clinical 

diagnosis [5,6,7,8,9,10]. 

Mass spectrometry imaging (MSI) is one of the latest, rapidly growing surface analysis techniques 

for the detection, localization, and identification of molecules in tissues [11,12,13]. MSI permits the 

simultaneous visualization of multiple endogenous or exogenous compounds with high specificity 

and sensitivity, without the need for radiolabeled compounds [14,15]. It was developed in the late 

1970s with the development of laser microprobe mass spectrometry (LMMS) and laser microprobe 

mass analysis (LAMMA) [16]. These techniques use a focused laser beam that generates a light 

pulse to desorb and ionize molecules inside solid samples. Ionized molecules are excited and 

accelerated into a time of flight (TOF) mass analyzer, particularly suitable for the imaging of small 

molecules (MW < 10,000 Da). Laser desorption/ionization based techniques have always been the 

most widely used in mass spectrometry for imaging [17] and they were soon implemented with the 

introduction of organic matrices to improve the detection of higher mass species, leading to the 

development of Matrix Assisted Laser Desorption Ionization (MALDI). 
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MALDI is the prevailing MSI technique used in pre-clinical and clinical research [11,18] to obtain 

information about biomolecules over a wide mass range, in living cells and tissues [19]. Originally 

developed for the imaging of molecules with high molecular weights like proteins and peptides 

[20,21], it is now also used to visualize the distribution of small molecules (MW < 1000 Da) like 

drugs and metabolites as well [14,22,23,24,25]. 

The principle behind MALDI-MSI is to acquire a mass spectrum for each point of a tissue section 

by rastering a laser beam at defined geometrical coordinates. The UV laser energy is absorbed by a 

matrix present in a homogeneous layer on the tissue slice that facilitates analyte extraction in the 

MALDI ion source [26,27]. The choice of the suitable matrix for the molecule of interest is 

primarily driven by empirical results and is critical during the development of a MALDI-MSI 

protocol, since matrix ionization efficiency can change depending on the analyte structure and its 

physicochemical properties. Typically used matrices for MALDI experiments (organic compounds 

such as sinapinic acid, 2,5-dihydroxybenzoic acid, or a-cyano-4-hydroxycinnamic acid) are 

inadequate for small molecule imaging because of their excessive fragmentation and high 

background noise in the low mass region that can mask the analyte ion signal, and also because of 

their co-crystallization with the analyte that can affect the spatial resolution [14]. For these reasons 

the study of MALDI matrices is continuously in progress and recently, besides the advances in 

nanotechnologies, several new compounds have been tested as possible matrices to enhance 

desorption/ionization [28]. 

A different approach based on the use of inorganic fine particles takes advantage of their 

physicochemical properties such as high photo-adsorption, low heat capacity, and large surface 

area. This ensures rapid heating and highly localized and uniform energy deposition, resulting in 

efficient sample desorption and ionization [29], allowing for the detection of large intact molecules. 

The great advantage of the use of nanoparticles as MALDI matrices is the almost complete absence 

of background signals from matrix degradation that made them suitable for small molecule imaging 

studies. Another positive aspect is that the spatial resolution only depends on the instrumental 

specifications such as laser spot diameter and not on the matrix crystal dimensions [14]. Among 

several nanomaterials, we tested gold and titanium nanoparticles, and halloysites and carbon 

nanotubes as possible inorganic MALDI matrices. 

The use of gold and platinum nanostructures in laser desorption/ionization (LDI) MS of low 

molecular weight compounds was reviewed by Bergman et al. [30]. Gold nanoparticles (AuNPs) 

have received attention for their suitability in surface assisted laser desorption ionization mass 

spectrometry (SALDI-MS), where these inorganic substrates offer large surface areas, simple 

sample preparation techniques, flexibility, and selectivity of sample deposition [31]. 

Titanium dioxide can be considered as a matrix for MALDI, since the laser wavelength falls in the 

range of its absorption band. In particular, the literature reports some examples of the use of this 

material for the determination of carbohydrates [32] and antitumor drugs [22,33]. 

Halloysite (HNT), a naturally occurring aluminosilicate nanotube (Al2Si2O5(OH)4·2H2O), is a two-

layered aluminosilicate, with a predominantly hollow tubular structure. Chemically, the outer 

surface of the HNTs has properties similar to SiO2, while the inner cylinder core is related to Al2O3. 

In a recent paper, halloysite nanoclay showed good potential as a SALDI surface for the rapid 

analysis of low molecular mass polyesters and their degradation products [34]. 

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. They have been 

reported to be an effective MALDI matrix for small molecules [35], eliminating the interfering 

matrix peaks and forming a web morphology to fully disperse the analyte and allow for strong 

ultraviolet absorption for enhanced pulsed laser desorption and ionization. 
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We compared the ability of these five nanostructured matrices to ionize six different anticancer 

drugs: taxans (paclitaxel, PTX and ortataxel, OTX), tyrosine kinase inhibitors (imatinib, IMT and 

lucitanib, LCT), an antineoplastic antibiotic (doxorubicin, DOXO), and a DNA binding protein 

(trabectedin, ET) [36,37]. All nanomaterials were firstly screened to compare their ionization 

efficiency by co-spotting them with equimolar concentrations of the drugs directly on the MALDI 

plate. We therefore evaluated the drug signal intensity, expressed as the signal to-noise ratio (S/N), 

considering both the matrix degradation effects that lead to excessive background chemical noise 

and the instrumental contamination that prevents the effective use of nanomaterials. The best 

performing matrices were tested on control tumor slices spotted with drugs, to assess the influence 

of the biological matrix on the intensity of the analytes’ ion signal. Finally, the best nanomaterials 

were applied in a preliminary drug distribution study inside tumors harvested from treated mice. 

The main objective of this study is the improvement of the MALDI-MSI technique in the field of 

pharmacology, developing specifically designed surfaces for the imaging of different anticancer 

drugs, with high spatial resolution, sensitivity, and reproducibility. 
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2. Results 

All nanostructured materials were deeply characterized by the morphological, structural, and 

surface points of view, by ultraviolet-visible spectroscopy (UV), transmission electron microscope 

(TEM), scanning electron microscope (SEM), and dynamic light scattering (DLS) analyses. 

Relevant features are reported in Table 1. Figure 1 shows TEM images of the nanoparticles. 

 
Figure 1 

Transmission electron microscope (TEM) images of (a) Au nanoparticles (AuNPs); (b) Halloysite 

nanotubes (HNTs); (c) TiO2 P25 nanoparticles; (d) TiO2 Hombikat nanoparticles UV100 and (e) 

Carbon nanotubes (CNTs) at different magnifications (scale bars correspond ... 

 
Table 1 

Physico-chemical characteristics of all tested nanomaterials. 

All nanostructured matrices were firstly screened by co-spotting them with equimolar 

concentrations of six anticancer drugs on the MALDI plate and evaluating both the signal intensity 

and the S/N for each combination of drug and matrix. The detected MS fragments for each drug are 

reported in Figure A1, Figure A2, Figure A3, Figure A4, Figure A5 and Figure A6. 
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Almost all drugs were successfully ionized both in negative and positive ion modes using gold, 

halloysite, and titanium, while trabectedin (ET) was detectable only in positive ion mode at m/z 743 

after losing a water molecule (Figure 2). P25 and Hombikat TiO2 nanoparticles were particularly 

suitable to visualize the two taxans, PTX (m/z 284) and OTX (m/z 271) in negative ion mode, but 

they also allowed the ionization of smaller molecules like IMT (m/z 492) and LCT (m/z 373). 

AuNPs gave more intense signals, especially in positive ion mode for the tyrosine-kinase inhibitor 

IMT as a sodium adduct at m/z 515. Compared to TiO2nanoparticles, AuNPs were more efficient for 

ionizing and visualizing smaller molecules such as IMT and LCT, giving a more intense signal in 

general. HNTs gave good visualization only for three of the six drugs: PTX, IMT, and LCT. CNTs 

efficiently ionized all drugs both in negative and positive ion modes, but could not be used for 

imaging. 

 
Figure 2 

Drug standards (100 pmol/µL) spotted on the matrix-sssisted laser desorption/ionization MALDI 

plate with different nanostructured materials. For each drug, the acquisition in negative ion mode is 

shown on the left and the acquisition in positive ... 

Figure 3 shows, as an example, the mass spectrum of 50 pmol of PTX which in negative ion mode 

with CNTs fragments to produce ions at m/z 284 as a base peak. In this mass region the spectrum 

has a very high S/N, suggesting a good effectiveness of the technique with this kind of matrix. 

Unfortunately, CNTs tended to fly off from the target plate when subjected to the laser pulse, 

contaminating the ion source and interfering with the instrument functionality. 

 
Figure 3 

MALDI mass spectrum of paclitaxel (PTX, 50 pmol) in negative ion mode using CNTs. The 

fragment ion m/z 284 is clearly observable in the spectrum with a high S/N ratio. 

The different performances of the nanomaterials towards the ionization of the drug molecules may 

be ascribed to many factors, starting with the physico-chemical properties (Table 1), their ability of 

energy sorption from the laser source, and transfer to the analytes. Figure 4a shows the diffuse 

reflectance spectra (DRS) of the tested solid nanomaterials and Figure 4b shows the absorption 

spectra of the AuNP slurry. Non-conducting HNTs presented no absorption peak in the explored 

UV-Vis range, particularly in the laser emission wavelengths (grey shadow in Figure 4). This 

resulted in a poor performance of these materials in visualizing the drug fragments. 

 
Figure 4 

UV-Vis absorption behavior of the adopted nanostructured materials. The grey shadow represents 

the laser emission wavelengths. (a) Diffuse reflectance spectra (DRS) of halloysite and titanium 

nanomaterials; (b) Absorption spectra of AuNP slurry. 
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Both titanium samples, instead, showed a strong absorption (inflection point of the curves) 

particularly in the laser emission range. However, not all the absorbed energy could be transferred 

to the target molecules, as these materials are semiconductors. This yields a good compromise 

between the absorbed and released energy, with promising results in ionizing almost all the bigger 

drug molecules. Unfortunately, the released energy is still so high that the small fragments are not 

detected because of their complete mineralization (no signals are detectable in the low MS 

region, m/z < 100). 

The best performing material seems to be the AuNPs. The UV-Vis relative absorption lies far from 

the laser absorption and there is only a small shoulder in the desired range (Figure 4b). The partial 

energy absorption is enough to ionize both the large and the small molecules (as it is a conductive 

material), but not sufficient to completely destroy them. However, by considering the same 

nanomaterial matrix, different ionization results are obtained by varying the chemical nature of the 

analyte, and thus their interaction/adsorption onto the solid support. Further studies are required to 

show which material is the best one for the target molecule. 

Based on the present findings, the most promising nanomaterials (P25 TiO2, Hombikat TiO2, and 

particularly AuNPs) were tested to assess how the biological matrix influenced the intensity of the 

analyte ion signal and for interfering signals by spotting drug standards on control tumor tissue 

slices that were then sprayed with each matrix for imaging experiments (Figure 5). The results on 

the tissues confirm the previous screening on the plates: TiO2 P25 nanoparticles allowed desorption 

and ionization mainly for PTX (m/z 284) and OTX (m/z 260) in negative ion mode; TiO2 Hombikat 

efficiently ionized the two taxans PTX and OTX in negative ion mode but also IMT and OTX in 

positive ion mode. AuNPs efficiently visualized almost all drugs (especially PTX and IMT) spotted 

on tissue (Figure 5c), but gave a low S/N ratio in positive ion mode. Finally, the HNTs matrix 

caused strong signal suppression when sprayed on tissues with the airbrush and was therefore 

excluded from further experiments. 

 
Figure 5 

Control tumor tissues treated with a vehicle, spotted with 100 pmol/µL drug standards, then sprayed 

with different matrices. Acquisitions were performed with a spatial resolution of 100 µm both in 

negative ion mode (left) and positive ... 

Based on the results obtained from the control tissues spotted with the drug standards, TiO2 and 

AuNPs were selected to study the drug distribution inside tumors harvested from mice bearing 

xenografts treated with a single dose of drugs (60 mg/kg intravenously (i.v.) for PTX, 400 mg/kg 

per os (p.o.) for IMT, 20 mg/kg p.o. for LCT). Figure 6 shows that TiO2 based matrices appear to be 

suitable for visualizing the PTX distribution inside treated tissues in negative ion mode with high 

sensitivity, but did not give good visualization of IMT in negative or positive ion mode. In contrast, 

the nanogold-based matrix allowed a better visualization of the IMT distribution, highlighting its 

peripheral localization inside treated mesothelioma (even though there is high background noise). 

Both TiO2 and gold nanoparticles were not suitable for LCT distribution studies inside treated 

tumors. 
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Figure 6 

(a) MS ion images of PTX (m/z 284) in negative ion mode inside the same tumor tissue treated with 

60 mg/kg intravenously (i.v.) of the drug with different matrices; (b) Imatinib (m/z 516) in positive 

ion mode inside the same tumor tissue treated at the ... 
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3. Discussion 

The imaging of drugs inside biological tissues is pivotal in oncology to understand how a 

compound and its metabolites are localized and distributed inside a tissue, in order to check that 

they reach the intended target site. Therefore, there is a growing need for methods to assess whether 

a drug reaches all tumor cells in adequate concentrations and to develop new strategies to improve 

penetration and the outcome of chemotherapy [38]. In this field, MSI is acquiring an important role 

thanks to its superior specificity and sensitivity [39]. However, a major shortcoming in setting up a 

MALDI-MSI method is the choice of a suitable matrix to guarantee efficient and reproducible 

ionization with low background noise. To address this problem, we screened different 

nanomaterials for the imaging of small molecules in biological tissues. Nanoparticles were suitable 

as MALDI matrices for small molecule imaging because of their uniform deposition over tissues 

(increasing lateral resolution) and the lack of background signals from matrix degradation. 

TiO2 nanoparticles have been previously reported to be suitable for MALDI mass spectrometry 

analysis of low molecular weight compounds, with almost complete absence of background noise 

[40], and recently gold based nanoparticles have been reported to assist laser desorption/ionization, 

avoiding co-crystallization of the analyte and the matrix [41,42]. For the synthesis of AuNPs, we 

used a classical chemical reduction method that has been extensively used in the preparation of 

nanoparticles because this method is simple, cheap, and can be used to prepare large quantities of 

nanoparticles with an accurate shape and dimensions. Among the conventional methods of 

synthesis of AuNPs by reduction of gold (III) derivatives, the most popular is that using citrate 

reduction of HAuCl4 in water, which was introduced by Turkevitch and revisited by Kimling 

[43,44]. 

We tested common nanoparticles with different features with six types of drugs, currently used as 

anticancer drugs in clinical settings. While the carbon nanotubes based matrix has been reported to 

provide higher detection sensitivity than classical organic matrices [35], and it enhanced the 

ionization of certain analytes of our interest, it was excluded from MSI applicability because of the 

marked instrumental contamination. 

PTX efficiently ionizes with titanium based matrices which were however less suitable for the 

ionization of a smaller molecule such as IMT. AuNPs were convenient for the ionization and for the 

imaging of IMT, enlarging our ability to visualize different kind of molecules. 

These results confirm that there is not a single type of matrix that suits all drugs. Further studies are 

needed to clarify the interactions between matrix and analyte to define case-by-case how to choose 

the best matrix and the best fitting combination that gives high sensitivity and therefore a good 

detection of drug distribution in the imaging of molecules inside biological tissues. 

Further studies are also needed to accurately understand the mechanism of interaction between the 

matrix and analyte. Determining out why a particular matrix is more appropriate for the imaging of 

a certain drug could give clues for developing of new nanomaterials with designed texture for the 
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imaging of a larger group of small molecules, to investigate drug distribution in primary tumors or 

metastases, while also offering new opportunities for the visualization of endogenous molecules. 
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4. Experimental Section 

4.1. Drugs and Reagents 

Paclitaxel (PTX, Indena S.p.A, Milan, Italy), ortataxel (OTX, Indena S.p.A, Milan, Italy), and 

imatinib (IMT, Norvartis, Basel, Switzerland) were dissolved in 50% ethanol, trabectedin (ET, 

PharmaMar Colmenar Viejo, Madrid, Spain) and lucitanib (LCT, Servier, Neully-sur-Seine, France) 

were dissolved in 50% methanol, and doxorubicin (DOXO, Nerviano Medical Science, Milan, 

Italy) was dissolved in H2O, all at a concentration of 100 pmol/µL. 

For mouse treatments, PTX was dissolved in 50% Cremophor EL (Sigma Aldrich, Saint Louis, 

MO, USA) and 50% ethanol and further diluted in saline immediately before use. IMT and LCT 

were suspended in 0.5% Methocel. 

4.2. Adopted Nanomaterials 

Gold nanoparticles (AuNPs) of 20 nm diameter were synthesized as follows: an aqueous solution of 

HAuCl4(1% w/v, 50 mL) was heated to a boil while stirring. Then trisodium citrate (0.75 mL, 

1% w/v) was added quickly to the boiling mixture. The solution was refluxed for 15 min, and then 

allowed to cool to room temperature. Subsequently, the gold colloid was centrifuged at 13.2 krpm 

for 20 min and resuspended in phosphate buffered saline (PBS), pH 7.4. The average diameter of 

the AuNPs was determined by UV, TEM, SEM, and DLS. 

Two different titanium nanoparticles, TiO2 P25 and TiO2 Hombikat UV100, were purchased from 

Evonik (Essen, Germany) and Sachtleben Chemie GmbH (Duisburg, Germany), respectively. 

Multiwalled Carbon Nanotubes (CNTs) were purchased from NANOCYL® (NC7000™ series) and 

were produced by a Catalytic Chemical Vapor Deposition (CCVD) process. Halloysite nanoclay 

was purchased from Sigma Aldrich (Saint Louis, MO, USA). P25 or Hombikat TiO2, AuNPs, and 

HNTs or CNTs matrices suspensions were prepared respectively at 1 mg/mL, 0.4 mM, and 0.15 

mg/mL in 50% ethanol, and were vortexed and sonicated before use. 

4.3. Sample Characterization 

UV-Visible measurements were recorded using a Hitachi UH 5300 Spectrophotometer (Hitachi 

High-Technologies Corporation Europe, Maidenhead, UK), equipped with 1.0 cm path length 

quartz cells and recorded in a range of 400-700 nm. The morphology and shape of the samples have 

been evaluated by means of a Zeiss Evo50 Scanning Electron Microscope (SEM, Zeiss, Germany) 

with an accelerating voltage of 20 kV and a magnification of 24000 × TEM analyses were 

performed on a Jeol Jem 3010 UHR instrument (JEOL, München, Germany). 

Diffuse reflectance spectra (DRS) of the powders were measured on a UV-Vis scanning 

spectrophotometer (Perkin-Elmer, Waltham, MA, USA) equipped with a diffuse reflectance 

accessory. A ‘‘total white’’ Perkin Elmer reference material was used as a reference. 

4.4. Cell Lines and Animal Models 

Procedures involving animals and their care were conducted in conformity with the following laws, 

regulations, and policies governing the care and use of laboratory animals: Italian Governing Law 
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(D.lgs 26/2014; Authorization n.19/2008-A issued 6 March 2008 by Ministry of Health); Mario 

Negri Institutional Regulations and Policies providing internal authorization for persons conducting 

animal experiments (Quality Management System Certificate—UNI EN ISO 9001:2008—Reg. N. 

8576-A); the NIH Guide for the Care and Use of Laboratory Animals (2011 edition) and EU 

directives and guidelines (EEC Council Directive 2010/63/UE) and in line with Guidelines for the 

welfare and use of animals in cancer research [45]. The statement of Compliance (Assurance) with 

the Public Health Service (PHS) Policy on Human Care and Use of Laboratory Animals has been 

recently reviewed (9/9/2014) and will expire on 30 September 2019 (Animal Welfare Assurance 

#A5023-01). 

Animal experiments have been reviewed and approved by the IRFMN Animal Care and Use 

Committee (IACUC) that includes members ad hoc for ethical issues. Animals were housed in the 

Institute’s Animal Care facilities which meet international standards. They were regularly checked 

by a certified veterinarian who is responsible for health monitoring, animal welfare supervision, 

experimental protocols, and procedures revision. 

Six to seven-week-old female NCr-nu/nu mice (from the Harlan Lab) were inoculated 

subcutaneously with 107 A2780 cells or fragments of the rare MPM487 human malignant pleural 

mesothelioma (obtained from the Mesothelioma Biobank-Pathology Dept, SS Antonio e Biagio 

General Hospital, Alessandria, Italy). Tumor growth was measured with a digital caliper two/three 

times a week and the tumor volume (mm3) was calculated as (length (mm) × width2 (mm2))/2. 

When tumors reached approximately 500 mg, the animals were treated with different drugs or with 

the vehicle as a negative control. Mice bearing xenografts were treated with vehicle (CTRL) or a 

single dose of drug (60 mg/kg i.v. for PTX, 400 mg/kg for IMT p.o., 20 mg/kg for LCT p.o.). 

Animals were sacrificed 1 hour after treatment (4 h for PTX) under CO2 and all efforts were made 

to minimize suffering. 

Tumors and organs were explanted, then immediately snap-frozen in liquid nitrogen and stored at 

−80 °C until analysis. 

4.5. Mass Spectrometry 

The different nanomaterials tested as matrices were firstly screened by spotting 0.5 µL of 100 

pmol/µL drug standard solutions on the MALDI steel plate. After complete drying in air of the drug 

standard spots, 0.5 µL of matrix suspensions described above were spotted on top of the different 

drugs samples. Matrices were also tested on tissues to evaluate the influence of the biological 

matrix on the ion signal intensity, following the MSI protocol we recently published [22]. Briefly, 

frozen tissues were cut into 10 µm thick sections using a cryo-microtome (Leica Microsystems, 

Wetzler, Germany) at 20 °C and mounted on pre-cooled MALDI plates (Opti-TOF 384 Well insert) 

by standard thaw-mounting techniques. One section every 300 µm was cut from the central part of 

the control and the treated tumors. The plates were then dried overnight in a vacuum drier at room 

temperature. Different drug standards were spotted on control tumor sections, then each plate was 

sprayed with different matrix suspensions using a BD 180 precision double-action trigger airbrush 

(Fenga, Mexico) with a 0.20 mm nozzle diameter, using nitrogen at 0.2 atm. Care was taken to 

avoid over-spraying the matrix suspension on a single point so as to avoid the formation of droplets 

that would wet the surface with possible damage of the tissue structure, analyte diffusion, or partial 

detachment of the slice from the plate. 

A MALDI 4800 TOF-TOF (AB SCIEX Old Connecticut Path, Framingham, MA, USA) was used, 

equipped with a 355 nm Nd:YAG laser with a 200 Hz repetition rate, controlled by the 4000 Series 

Explorer TM software (AB SCIEX Old Connecticut Path, Framingham, MA, USA). MS spectra 

were acquired with 20 laser shots with an intensity of 6000 arbitrary units, with a bin size of 1.0 ns, 
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acquiring spectra in reflectron, both in negative and positive-ion mode. Images of tissue sections 

were acquired using the 4800 Imaging Tool Software (www.maldi-msi.org, M. Stoeckli, Novartis 

Pharma, Basel, Switzerland) with an imaging raster of 100 µm. Tissue View software 1.1 (AB 

SCIEX Old Connecticut Path, Framingham, MA, USA) was used to process and display the ion 

distributions inside the tumor sections. The ions plotted for each drug are reported in Appendix 

A (Figure A1, Figure A2, Figure A3, Figure A4, Figure A5 and Figure A6). 
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5. Conclusions 

Testing different types of materials has made it possible to ionize molecules with different 

molecular weights and chemical properties, overcoming the problem of high background noise in 

the low mass range that is typical in classic MALDI experiments. Moreover, with these 

nanomaterials we could visualize the mitotic inhibitor PTX and the tyrosine kinase inhibitor IMT 

inside tumors harvested from treated mice. 
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PTX mass spectra examples in (a) reflectron negative ion mode with the relative molecular structure and fragment 

detected using TiO2 P25 nanoparticles and (b) reflectron positive ion mode using TiO2 Hombikat nanoparticles. 

Figure A2 
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OTX mass spectra examples in (a) reflectron negative ion mode with the relative molecular structure and 

fragment detected using TiO2 P25 nanoparticles and (b) reflectron positive ion mode using TiO2 P25 

nanoparticles. 

Figure A3 
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IMT mass spectra examples in (a) reflectron negative ion mode with the relative molecular structure and fragment 

detected using Halloysite matrix and (b) reflectron positive ion mode using gold nanoparticles. 

Figure A4 
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LCT mass spectra examples in (a) reflectron negative ion mode with the relative molecular structure and fragment 

detected using halloysite matrix and (b) reflectron positive ion mode using halloysite matrix. 

Figure A5 
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DOXO mass spectra examples in (a) reflectron negative ion mode with the relative molecular structure and 

fragment detected using TiO2 Hombikat nanoparticles and (b) reflectron positive ion mode using TiO2 Hombikat 

nanoparticles. 

Figure A6 

 

 

ET mass spectra example in reflectron positive ion mode using TiO2 Hombikat nanoparticles. 
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