
Data-driven Adaptation for Smart Sessions

Viviana Bonoa, Mario Coppoa, Mariangiola Dezani-Ciancaglinia, Betti Vennerib

aDipartimento di Informatica, Università di Torino, Italy
bDipartimento di Statistica, Informatica, Applicazioni, Università di Firenze, Italy

Abstract

This paper presents a formal framework of self-adaptation for multiparty sessions. The
adaptation function contains the dynamic evolution policy, by prescribing how the ses-
sion needs to reconfigure itself, based on critical changes in global data. A global type
prescribes the overall communication choreography; its projections onto participants
generate the monitors, which set-up the communication protocols. The key technical
novelty of the calculus is the parallel operator for building global types and monitors,
which allows the adaptation procedure to be rather flexible. The smart session is able
to minimise its adaptation, by partially reconfiguring some of the communications and
leaving all others unchanged, in case a part of the whole behaviour only needs to be
modified. Furthermore, new participants can be added and/or some of the old partic-
ipants can be removed. As a main result, we prove that this adaptation mechanism is
safe, in order to guarantee that the communications will continue to evolve in a correct
way after reconfiguration.

1. Introduction

Modern, emerging software intensive systems, operating in different scenarios within
highly dynamic environments, brought out the need of novel approaches to master the
extreme complexity of component interactions and their sensitivity to environmental
changes at runtime. In particular, the property of self-adaptation emerged as a key
requirement in a variety of application areas, including the internet of things and the
cyber-physical systems, where a system must be able to autonomously reconfigure its
behaviour dynamically, in response to changing conditions and unexpected circum-
stances in the current environment.

In this paper we propose a model of data-driven self-adaptivity for multiparty ses-
sions [1], by focusing on the formal property of correctness to guarantee that dynamic
adaptations preserve the safety of interactions among the session participants.

Typical scenarios that can be fruitfully represented by our approach are those char-
acterised by the following features:

• a community, established for a common mission, has many distributed partici-
pants which interact with each other according to an overall operational plan,

• a common set of data represent the global environment and are shared by all the
participants,

Preprint submitted to Journal of Logical and Algebraic Methods in Programming March 26, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302089455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• unforeseen events are dynamically revealed by crucial values in the global data,
thus requiring an adaptation,

• the community promptly reacts to those critical events by reconfiguring itself
at minimal cost, so reusing what has to be left unchanged while adding new
behaviours or modifying few interactions only.

Our calculus comprises four active parties: adaptation functions, global types,
monitors, and processes.

The adaptation function represents the overall operational plan to deal with ex-
ceptional events, revealed by critical values in global data. It contains the dynamic
evolution policy, by prescribing how the session needs to reconfigure itself based on
changes of data.

A global type represents the overall communication choreography [2]; its projec-
tions onto participants generate the monitors, which set-up their communication proto-
cols. The association of a monitor with a compliant process, dubbed monitored process,
incarnates a participant, where the process provides an implementation to the monitor-
ing protocol.

Global data, dubbed control data as in [3], represent the dynamic environment, in-
side and through which the system components interact. They are accessed and mod-
ified by the participants. For example, participants update them by progress reports
on their correct functioning and by valuable data for the whole system. Thus crucial
changes in global data identify an internal criticality or an external emergency such as,
for instance, the sudden inability of a participant or a glut of requests for a specific
product by the market in a production context. The adaptation strategy is owned by
the adaptation function and control data. As long as the control data do not yield crit-
ical values, the adaptation function is undefined. Thus participants communicate and
read/write data according to their monitors and codes, without performing any recon-
figuration. Instead, in case of critical data values, the adaptation function generates a
new global type. As a consequence, the session updates itself autonomously, by recon-
figuring its participants according to the new global type. The proactive role of data in
triggering the adaptation is the hallmark of our data-driven approach.

Monitored processes have local data used in evaluating conditionals and exchang-
ing informations. Our model leaves implicit these local data.

The key technical novelty of this calculus with respect to the current literature is
the use of parallel composition for building global types, monitors and processes. It
allows the adaptation procedure to be performed in a rather flexible and smooth way.
Indeed, using monitors in parallel, the session is smart enough to minimise its self-
reconfiguration, by updating only some of the communications while leaving the other
ones as before, in case a part of the whole behaviour needs to be changed. Thus the
adaptation of some participants can be transparent to the other ones, also in presence
of communications between them, while new participants can be added and/or some of
the old participants can be removed.

To exemplify our approach, let us consider a manufacturing Company. The adap-
tation function can be thought as a control software, possibly including data mining
algorithms, which implements the company business strategy when applied to control

2

data. The session includes an Italian factory (IF), an Italian supplier (IS) and a store
(Ro) in Rome. Control data hold information about factories, suppliers and stores.
The supplier interacts in parallel with the factory and the store about marketing data
(number of item requested, delivery date).

We denote by G a global type consisting of the parallel composition of single
threaded global types G. The interactions are described by the following (single threaded)
global types:

G1 = µt.IS→ IF : SF(Item,Amount).IF→ IS : FS(DeliveryDate).t

G2 = µt.Ro→ IS : RS(Item,Amount).IS→ Ro : SR(DeliveryDate).t

where SF, FS, RS, SR are labels and DeliveryDate, Item, Amount are sorts. In this
paper labels are used both for identifying the branches in presence of multiple choices
and to connect monitors and processes as in [4].

The global type of the system is then given by G0 = G1 | G2. We observe that we
allow the parallel composition of global types with the same participants.

The monitors of the participants are obtained as the parallel composition of the
projections of these global types. For instance, the monitor of participant IS is:

µt.IF!SF(Item, Amount).IF?FS(Date).t | µt.Ro?RS(Item, Amount).Ro!SR(Date).t

and a possible process code is1:

µX .!SF(item,amount).?FS(date).X | µX .?RS(item,amount).!SR(date).X

where ! represents output and ? represents input.
Assume that the control data register the opening of a new store (Lo) in London,

which must receive its items from the Italian seller.
A new global type is set up by putting in parallel the current global type G0 with

the global type G, produced by the application of the adaptation function to the control
data:

G= µt.Lo→ IS : LS(Item,Amount).IS→ Lo : SL(DeliveryDate).t

The global type G adds the participant Lo to the conversation and modifies the partici-
pant IS by adding the monitor

µt.Lo?LS(Item, Amount).Lo!SL(Date).t

and the process

µX .?LS(item,amount).!SL(date).X

1Sorts are written with upper case initials, expression variables and values with lower case initials, but
different fonts.

3

in parallel with his previous ones.

Communications are assumed to be synchronous. This design choice deserves
some comments. The main purpose of this paper is the study of an adaptation mech-
anism which turns out to be safe, as well as flexible and minimalist, in order to guar-
antee that communications will continue to evolve in a correct way in case of critical
changes in the dynamic environment. The use of asynchronous communications, as
in [4], would only add technical complications to deal with reconfiguration of channel
queues during adaptation, without providing any significant insight to our issue.

This paper is an improved and extended version of [5]; namely, the formal part is
completely revised and simplified, more examples are presented and proofs of prop-
erties are added. Section 6 is completely new, but for the statements of the last two
theorems.

Outline. The paper has a standard structure. After the running example (Section 2), we
present syntax (Section 3), types (Section 4) and semantics (Section 5) of the calculus.
Properties are proved in Section 6. In Section 7 we draw some conclusions and discuss
related works.

2. Running Example

Let us now enrich the example of the Introduction by assuming that factories in-
teract with the general manager (supported by the technical service) about production
policies and suppliers interact with factories and stores by exchanging marketing data.
Moreover, the stores can communicate with each other for requiring some products.
The session initially consists of:

• a general manager (GM) and a technical service (TS);

• an Italian (IF) and an American factory (AF);

• an Italian (IS) and an American supplier (AS);

• three stores, located in Rome (Ro), New York (NY) and Chicago (Ch).

The global type prescribing the communications isG=G1 | G2 | G3 | G4 | G5 | G6 | G7,
where G1,G2 are as in the Introduction and:

G3 =

{
µt.GM→ IF : GIF(ProductionLines).GM→ AF : GAF(ProductionLines).
IF→ GM : IFG(ProgressReport).AF→ GM : AFG(ProgressReport).t

G4 = µt.AS→ AF : SF(Item,Amount).AF→ AS : FS(DeliveryDate).t

G5 = µt.Ch→ AS : CS(Item,Amount).AS→ Ch : SC(DeliveryDate).t

G6 =

µt.NY→ AS : NS(Item,Amount).

AS→ NY : {Y ES(DeliveryDate).NY→ Ch : NCY (NoItem).t,
NO(NoItem) : NY→ Ch : NCN(Item,Amount).

Ch→ NY : CN(DeliveryDate).t}

4

G7 = µt.GM→ TS : GT (PlantCheck).TS→ GM : T G(PlantReport).t

Note that according to G6 the New York store can ask for items both to the America
supplier and, if he cannot provide the requested items, to the Chicago store. Moreover,
G1 and G4 differ for the participants, but not for the labels, and this allows the process

µX .?SF(item,amount).!FS(deliveryDate).X

to incarnate both IF for G1 and AF for G4. This process in parallel with

µX .?GIF(productionLines).!IFG(progressReport).X,

is the code of IF for the whole G.
Assume now that the catastrophic event of a fire, incapacitating the American fac-

tory, requires the session to update itself. The American factory modifies the control
data by putting the information about its unavailability. The adaptation function F ,
applied to the modified control data, kills AF and produces the global type

G′ =

 FF→ GM : FG(DamagesReport).
µt.GM→ TS : GR(RecPlan).TS→ GM : RG(TechRevisions).t |
µt.AS→ IS : ASI(Item,Amount).IS→ AS : ISA(DeliveryDate).t

which adds the firefighter FF and prescribes how the participants GM, TS, IS, AS must
be reconfigured. According to G′, the FF sends to the general manager a report on the
damages and then the general manager opens with the technical service a conversation
about the reconstruction plan. The American seller now asks for products to the Italian
seller. Notice that the labels of the communications between them must be different
from those in G1 and in G2 which are not modified, since the Italian seller continues
to ask products to the Italian factory and to serve the store in Rome as before. Then
the new global type for the reconfigured session is the parallel of G′ with the global
type that is obtained from G by pruning all communications involving AF from G3,
by erasing G4, since all communications involve AF, and by deleting G7, since all
communications are between GM and TS. The rational is to erase the communications
in which

• either at least one of the two participants is killed,

• or both participants are reconfigured.

The new process incarnating IS is obtained by putting

µX .?ASI(item,amount).!ISA(deliveryDate).X

in parallel with the previous process incarnating IS. Then the code of the IS participant
becomes:

µX .?ASI(item,amount).!ISA(deliveryDate).X |
µX .!SF(item,amount).?FS(date).X | µX .?RS(item,amount).!SR(date).X

5

For readability in this example (and in that of the Introduction) we described adap-
tation as modification of global types. In the semantics (Section 5) global types are left
implicit and the adaptation rule modifies monitors and processes.

The above example will be used as the running example in the rest of the paper. The
following examples will refer to global types, monitors, processes etc. here defined, by
developing further details in order to illustrate features and technical definitions of our
calculus.

3. Syntax

We use the following base sets: values, ranged over by v,v′, . . .; expressions, ranged
over by e,e′, . . .; expression variables, ranged over by x,y,z . . . ; labels, ranged over by
`,`′, . . . ; session participants, ranged over by p,q, . . .; process variables, ranged over
by X ,Y,

3.1. Global Types
Following a widely common approach [2], the set-up of protocols starts from global

types. Global types establish overall communication schemes. In our setting they also
control the reconfiguration phase, in which a session adapts itself to new environmental
conditions. Exchanged values are marked by labels, as in [6].

We assume some basic sorts, ranged over by S, i.e. S ::= Bool || Int ||

Single threaded global types give sequential communications with alternatives and
a default choice. In p→ q : {`i(Si).Gi}i∈I participant p sends to participant q a label
li together with a value of sort Si for some i ∈ I. The set I contains a distinguished
element d(I) used as default when the communication between p and q is erased, see
Definition 5.2. We implicitly assume that `i 6= ` j for all i 6= j.

Global types are parallel compositions of single threaded global types with distinct
labels for common participants.

Definition 3.1. 1. Single threaded global types are defined by:

G ::= p→ q : {`i(Si).Gi}i∈I || µt.G || t || end

2. Global types are defined by:

G ::= G || G | G

where global types have distinct labels for common participants.

In writing examples we omit brackets when there is only one branch.

Example 3.2. FF→GM : µt.FG(DamagesReport).t and µt.GM→TS : FG(RecPlan).t
are single threaded global types, but their parallel composition

µt.FF→ GM : FG(DamagesReport).t | µt.GM→ TS : FG(RecPlan).t

is not a global type, since participant GM has parallel communications with the same
label FG.

We allow parallels of global types with shared participants, a possibility usually
forbidden [1, 2, 7].

6

(p→ q : {`i(Si).Gi}i∈I)� r =

p?{`i(Si).Gi �q}i∈I if r = q

q!{`i(Si).Gi �p}i∈I if r = p

Gi0 � r if r 6= p and r 6= q where i0 ∈ I
and Gi � r = G j � r for all i, j ∈ I

u?
⋃

k∈K{`k(Sk).Gk � r} if r 6= p, r 6= q where Gi � r = u?{` j(S j).G j} j∈Ji for all i ∈ I and
K =

⋃
i∈I Ji and Ji∩ Jh = /0 for all i,h ∈ I such that i 6= h

and `m 6= `nfor all m,n ∈ K such that m 6= n

(µt.G)�p =

{
µt.G�p if p ∈ G,

end otherwise.
t�p = t end�p = end

(G | G′)�p = (G�p) | (G′ �p)

Table 1: Projection of a global type onto a participant.

3.2. Monitors
Single threaded monitors can be viewed as projections of single threaded global

types onto individual participants, as in the standard approach of [1] and [8]. In our
calculus, however, monitors are more than types, as in [4]: they have an active role
in session dynamics, since they guide communications and adaptations. As expected,
monitors are parallel compositions of single threaded monitors with distinct labels.

Definition 3.3. 1. Single threaded monitors are defined by:

M ::= p?{`i(Si).Mi}i∈I || q!{`i(Si).Mi}i∈I || µt.M || t || end

2. Monitors are defined by:

M ::= M || M |M

where monitors in parallel have distinct labels.

An input monitor p?{`i(Si).Mi}i∈I is able to drive a process that can receive, for
each i ∈ I, a value of sort Si, labeled by `i, having as continuation a process which is
adequate for Mi. This corresponds to an external choice. Dually an output monitor
q!{`i(Si).Mi}i∈I is able to drive a process which can send (by an internal choice) a
value of sort Si, labeled by `i, and then continues as prescribed by Mi for each i ∈ I. As
for global types, the set I contains a distinguished element d(I) used as default.

We point out that a main concern of our approach is that adaptation points must be
unpredictable in the overall choreography. Thus monitors and global types only pre-
scribe communication patterns to participants, being totally unaware of the operations

7

that update data. These operations are distinctive characteristics of the implementing
processes.

In writing global types and monitors, we assume that the parallel composition is
associative and commutative and has end as the neutral element.

The projection of global types onto participants is given in Table 1. A projection
onto a participant r not involved, as sender or receiver, in a choice is defined if either
the projection onto r of all continuations are the same (condition Gi �q = G j �q for all
i, j ∈ I) or all these projections can be merged in an input monitor (last case), as in [6].

Example 3.4. The projection of the global type G6 onto participant Ch is

µt.NY?{NCY (NoItem).t,NCN(Item,Amount).NY!CN(DeliveryDate).t}

A global type G is well formed if its projections are defined for all participants. We
always consider well-formed global types.

3.3. Processes
Processes represent code that is associated to monitors in order to implement par-

ticipants. As in [4] and differently from standard session calculi (see [9] and the refer-
ences there), processes do not specify the participants involved in sending and receiv-
ing actions. The associated monitors determine senders and receivers. Processes do
not have explicit channels, since we consider only one session.

Definition 3.5. 1. Single threaded processes are defined by:

P ::= ?`(x).P || !`(e).P || P+P || if e then P else P ||
µX .P || X || op.P || 0

2. Processes are defined by:

P ::= P || P | P.

The syntax of processes is rather standard, in particular the operator + represents
external choice. The op operator represents an action on control data, for instance a
“read” or “write” operation. We leave unspecified the kind of actions, since we are only
interested in the dynamic changes of this data, which determine the self-reconfiguration
of the whole session.

The parallel composition and the external choice are associative and commutative.
Moreover, 0 is the neutral element of the parallel composition.

Example 3.6. The control data of the session also contain information about the status
of the factories. Indeed, processes implementing factories have in parallel a condi-
tional process

µX .if check then SET_ALARM else X

where check is a predicate whose value depends on the local data of the factories (omit-
ted in our model) and the operation SET_ALARM updates control data to signal that
a factory is dramatically damaged. This process does not perform any communication
action, it only has the effect of modifying data. Then it is transparent for the global
types.

8

3.4. Networks

A process is always controlled by a monitor, which ensures that all performed ac-
tions fit the protocol prescribed by the global type. Each monitor controls a single
process. We write M[P] to represent a process P controlled by a monitor M, dubbed
monitored process. Participants correspond to pairs of participant identifiers and mon-
itored processes, denoted by pnM[P]. A well-typed monitored process cannot com-
municate with itself, since rule [MP] in Table 6 forbids pnM[P] if p occurs inM.

The parallel composition (denoted by ||) of participant identifiers with monitored
processes forms a network.

Definition 3.7. Networks are defined by:

N ::= pnM[P] || N || N

The parallel composition || is associative and commutative and it has pn end[0],
for any p, as neutral elements.

3.5. Sessions

A session is represented as the composition (via “G”) of a network, a set of control
data σ , a collection of processes P and an adaptation function F . The collection
of processes is used to find processes adequate to monitors, see Definition 4.3. Thus
processes provide implementation codes, that are related to the specific application
context. The adaptation function says how to run adaptations according to critical data
variations.

Definition 3.8. Sessions are defined by:

S ::= N G σ GP G F

Example 3.9. In our example, the collection of processes must contain

• processes implementing the participants FF, TS, AS and IS which are adequate
for the monitors obtained by projecting G′ and

• a process implementing the participant GM which is adequate for the parallel
composition of the monitor obtained by projecting G′ with the monitor obtained
by projecting G3 after erasing the communications with AF (dubbed G′3 in Ex-
ample 6.15).

The adaptation function, applied to control data where the status of AF is ALARM,
returns the global type G′, puts the status of AF to KO and prescribes to remove the
participant AF.

Notice that AF is killed and IF, Ro, NY, Ch are not changed by the adaptation. For
this reason processes implementing these participants are not needed in the collection
of processes.

9

4. Typing Processes

Process types describe process communication behaviours [10]. They have prefixes
corresponding to sending and receiving of labels and values.

Definition 4.1. 1. Single threaded types are inductively defined by:

T ::=
∧

i∈I?`i(Si).Ti ||
∨

i∈I!`i(Si).Ti || µt.T || t || end

where all labels in intersections and unions are distinct.

2. Types are inductively defined by:

T ::= T || T | T

where types in parallel have distinct labels.

Types are built from input and output prefixes (?l(S) and !l(S)) by means of con-
structs for intersection types (used to type external choices) and union types (used to
type conditionals).

We assume that intersection, union and parallel composition are associative and
commutative. Moreover, end is the neutral element of parallel composition. In writing
examples we omit intersections/unions when there is only one branch.

Recursive global types, monitors, processes and process types with the same regular
trees are considered equal [11, 20.2]. We assume that all recursions are guarded.

An environment Γ is a finite mapping from expression variables to sorts and from
process variables to single threaded types:

Γ ::= /0 || Γ,x : S || Γ,X : T

where the notation Γ,x : S (Γ,X : T) means that x (X) does not occur in Γ.
We assume that expressions are typed by sorts, as usual. The typing judgments for

expressions are of the shape

Γ ` e : S

and the typing rules for expressions are standard.
The typing judgments for processes have the form

Γ ` P : T

Typing rules for processes are given in Table 2. The external choice is typed by an
intersection type, since an external choice offers both behaviours of the composing
processes. Dually, a conditional is an internal choice and so it is typed by a union
type. As in [4], a single threaded process is equipped with a single threaded type,
ranged over by T, describing its communication actions. Parallel processes are typed
by parallel types.

A process which does not perform communications, like the one defined in Exam-
ple 3.6, has type end.

10

Γ,x : S ` P : T
RCV

Γ `?`(x).P :?`(S).T

Γ ` e : S Γ ` P : T
SEND

Γ `!`(e).P :!`(S).T

Γ ` P1 : T1 Γ ` P2 : T2
CHOICE

Γ ` P1 +P2 : T1∧T2

Γ ` e : Bool Γ ` P1 : T1 Γ ` P2 : T2
IF

Γ ` if e then P1 else P2 : T1∨T2

Γ,X : T ` P : T
REC

Γ ` µX .P : T
Γ,X : T ` X : T AX

Γ ` P : T
OPT

Γ ` op.P : T
Γ ` 0 : end END

Γ ` P1 : T1 Γ ` P2 : T2
PAR

Γ ` P1 | P2 : T1 | T2

Table 2: Typing rules for processes.

[SUB-END]
end≤ end

[SUB-IN]
∀i ∈ I : Ti ≤ T′i∧

i∈I∪J

?`i(Si).Ti ≤
∧
i∈I

?`i(Si).T
′
i

==========================

[SUB-OUT]
∀i ∈ I : Ti ≤ T′i∨

i∈I

!`i(Si).Ti ≤
∨

i∈I∪J

!`i(Si).T
′
i

=========================

Table 3: Subtyping.

Example 4.2. For the process incarnating IF we can derive the type:

µt.?SF(Item,Amount).!FS(DeliverDate).t |
µt.?GIF(ProductionLines).!IFG(ProgressReport).t

We end this section by defining the notion of adequacy between a process P and
a monitor M, denoted P ∝ M, which is based on the matching between types and
monitors. This matching is made rather flexible by using the subtype relation on types
defined in Table 3. The double line in rules indicates that the rules are interpreted
coinductively [11, 21.1]. Subtyping is monotone, for input/output prefixes, with respect
to continuations and it follows the usual set theoretic inclusion of intersection and
union.

Definition 4.3. 1. A single threaded process P is adequate to a single threaded
monitor M (notation P ∝ M) if ` P : T and T ≤ |M|, where the mapping | | is
defined by:

11

|p?{`i(Si).Mi}i∈I |=
∧

i∈I?`i(Si).|Mi| |q!{`i(Si).Mi}i∈I |=
∨

i∈I!`i(Si).|Mi|

|µt.M|= µt.|M| |t|= t |end|= end

2. The adequacy of a process P to a monitor M (notation P ∝M) is the smallest
relation such that:

• P ∝ M since they satisfy the condition of (1);

• P1 ∝M1 and P2 ∝M2 imply P1 | P2 ∝M1 |M2.

Example 4.4. The type of Example 4.2 can be obtained by applying the mapping | | to
the monitor:

µt.IS?SF(Item,Amount).IS!FS(DeliverDate).t |
µt.GM?GIF(ProductionLines).GM!IFG(ProgressReport).t

Observe that adequacy is preserved by the parallel composition with processes
without communications. Formally, if P ∝M and ` P : end, then P | P ∝M. Rule
[MP] in Table 6 assures the adequacy of processes to monitors in well-typed monitored
processes.

Adequacy is decidable, since processes have unique types and subtyping is decid-
able [12].

5. Semantics

Processes can communicate labels and values, or can read/modify the control data
trough op operations. The semantics of processes is described via the LTS defined in
Table 4, where the treatment of inputs, outputs, conditionals and recursions is standard.
By e ↓ v we denote that the evaluation of the expression e produces the value v.

?`(x).P
?`(v)−−−→ P{v/x} !`(e).P

!`(v)−−→ P e ↓ v op.P
op−→ P

if e then P else Q τ−→ P e ↓ true if e then P else Q τ−→ Q e ↓ false

P
β−→ P′

P+Q
β−→ P′

P
γ−→ P′

P+Q
γ−→ P′+Q

P
δ−→ P′

P | P′′ δ−→ P′ | P′′

Table 4: LTS of processes.

In the rules for external choice, β ranges over ?`(v), !`(v) and γ ranges over τ, op.
In the rule for parallel composition δ ranges over β and γ . The external choices are
done by the communication actions, while the operations on the global state are trans-
parent. This is needed since the operations on the control data are recorded neither
in the process types nor in the monitors. An operation on data in an external choice
can be performed also if a branch, different from that containing the operation, is then
executed.

12

The evolution of a session depends on the evolution of its network. Monitors guide
the communications of processes by choosing the senders/receivers and by allowing
only some actions among those offered by the processes. This is formalised by the
following LTS for monitors:

p?{`i(Si).Mi}i∈I
p?` j−−→M j j ∈ I q!{`i(Si).Mi}i∈I

q!` j−−→M j j ∈ I

M
α−→M′

M |M′′ α−→M′ |M′′

where α ranges over p?l and q!l.
Rule [COM] allows monitored processes to exchange messages:

M1
q?`−−→M′1 P1

?`(v)−−−→ P′1 M2
p!`−→M′2 P2

!`(v)−−→ P′2
COM

pnM1[P1] || qnM2[P2]−→ pnM′1[P′1] || qnM′2[P′2]
Example 5.1. Let

M1 = µt.IS?SF(Item,Amount).IS!FS(DeliveryDate).t
M2 = µt.IF!SF(Item,Amount).IF?FS(DeliveryDate).t
P1 = µX .?SF(item,amount).!FS(deliveryDate).X
P2 = µX .!SF(item,amount).?FS(deliveryDate).X

Then
IFnM1[P1] || ISnM2[P2]−→ IFnM′1[P

′
1] || ISnM′2[P

′
2]

where
M′1 = IS!FS(DeliveryDate).M1
M′2 = IF?FS(DeliveryDate).M2
P′1 = !FS(deliveryDate).P1
P′2 = ?FS(deliveryDate).P2

Monitored processes can modify control data thanks to rule [OP]:

P
op−→ P′

OP
pnM[P] || N G σ GP G F −→ pnM[P′] || N G op(σ) GP G F

We define the set pa(G) of participants of a global type G as follows:

pa(p→ q : {`i(Si).Gi}i∈I) = {p,q}∪pa(Gi) (i ∈ I)2

pa(µt.G) = pa(G) pa(t) = pa(end) = /0 pa(G1 | G2) = pa(G1)∪pa(G2)

Adaptation is triggered by a function: this function applied to control data σ returns
a global type G, which is the staging of new interactions for the adapted session, a set
K of participants that are removed and a new control data σ ′. The outcome of the
adaptation function determines a reconfiguration of the system as summarised below.
Let A denote the set of the session participants before adaptation. The session running
before the adaptation step is modified in the following way:

2The projectability of G assures {p,q}∪pa(Gi) = {p,q}∪pa(G j) for all i, j ∈ I.

13

1. the participants in K are removed;

2. all communications between participants in A \K and participants in K are
erased from all monitors of participants in A \K ;

3. all communications between two participants in A ∩pa(G) are erased from all
monitors of participants in A ∩pa(G);

4. the monitors resulting as projections ofG are added in parallel with the monitors
of participants in A ∩pa(G) obtained as described in (3);

5. the processes with adapted monitors are modified in order to be adequate to these
new monitors;

6. the monitored processes of new participants in pa(G) \A are added to the net-
work.

In order to write the formal rule [ADAPT], which performs the adaptation step, we
need some preliminary definitions and notations. By M A we denote the monitor
obtained fromM by erasing all communications with participants belonging to A and
continuing with the monitors having the default indexes (we recall that they are denoted
by d(I), where I is the set of indexes).

Definition 5.2. We defineMA by induction onM.

p?{`i(Si).Mi}i∈I A =

{
p?{`i(Si).Mi A }i∈I if p 6∈A ,

Md(I) otherwise.

p!{`i(Si).Mi}i∈I A =

{
p!{`i(Si).Mi A }i∈I if p 6∈A ,

Md(I) otherwise.

(µt.M)A = µt.MA tA = t

endA = end (M |M′)A =MA |M′A

We discuss now the mappings mon and proc.

mon(p,M,G,K) =

{
MK if p 6∈ pa(G),

(G�p) | (M (pa(G)∪K)) otherwise.

The mapping mon applied to a participant p, his current monitorM, a global typeG and
a set of killed participants K gives the new monitor for p. If p is not a participant ofG,
then the new monitor is simply M where all communications with killed participants
are erased. Note that adaptation is transparent to p whenever p does not communicate
with killed participants. Otherwise, the new monitor is the parallel composition of the
projection ofG onto p with the monitorM, where all communications with participants
of G and killed participants are erased. Clearly mon is a partial mapping, since it is

14

undefined when some labels occur both in G �p and in M (pa(G)∪K). We could
make mon total simply by always performing a fresh renaming of the labels in G.
This dramatic solution however would never allow us to use the current process for
a participant in pa(G), even if the process is adequate to the new monitor. For this
reason, in rule [ADAPT] (see page 16) by Ĝ we denoteG if mon(p,M,G,K) is defined
for all pa(G) and a fresh relabelling of G otherwise.

Example 5.3. The monitor obtained by projecting the global type G3 onto GM is:

M3 =

{
µt.IF!GIF(ProductionLines).AF!GAF(ProductionLines).

IF?IFG(ProgressReport).AF?AFG(ProgressReport).t

We get

mon(GM,M3,G
′,{AF})=

 FF?FG(DamagesReport).
µt.TS!GR(RecPlan).TS?RG(TechRevisions).t |
µt.IF!GIF(ProductionLines).IF?IFG(ProgressReport).t

Notice that mon(GM,M3,G
′,{AF}) = (G′ �GM) | (M3 {AF,GM,TS,AS, IS}).

The mapping proc applied to a participant p, his current processP, his current mon-
itorM, a global type G, a set of killed participants K and a collection of processes P
gives the new process for p. This process must be adequate forM′ =mon(p,M,G,K)
and we want to preserve all the single threaded processes of P that are not affected by
the adaptation. If P is adequate forM′, then the new process is P. Otherwise we con-
sider P as the parallel of P1 and P2 and M′ as the parallel of M1 and M2, where P1
andM1 are the parallels of all the processes in P and all the monitors inM′ such that
P1 ∝M1. The resulting process is then the parallel of P1 with a process P′ ∈P such
that P′ ∝M2. We can define:

proc(p,P,M,G,K ,P) =

{
P if P ∝M′

gap(P,M′) | P′ if P′ ∈P and P′ ∝ sam(P,M′)

whereM′ =mon(p,M,G,K) and

gap(Πi∈IPi,Π j∈JM j) = Πi∈I′Pi
sam(Πi∈IPi,Π j∈JM j) = Π j∈J\J′M j

taking I′ as the maximum subset of I such that there is J′ ⊆ J and Πi∈I′Pi ∝ Π j∈J′M j.
If P has parallel components performing no communication, then these processes are
preserved in gap(P,M′), by definition of adequacy.

Notice that by construction proc(p,P,M,G,K ,P) ∝ mon(p,M,G,K).

Example 5.4. 1. IfM= q?`1(Int) | r?`2(Int) | q′!`3(Bool) andG= p→ q′ : `4(Int)
and P=?`1(x) | ?`2(y) | !`3(true), and P contains !`4(7), then

proc(p,P,M,G,{r},P) =?`1(x) | !`4(7)

15

2. If M3 is as in Example 5.3,

P3 =

{
µX .!GIF(productionLines).!GAF(productionLines).
?IFG(progressReport).?AFG(progressReport).X

and P contains the process:

P′3 =

{
?FG(damagesReport).µX.!GR(recPlan).?RG(techRevisions).X |
µX .!GIF(productionLines).?IFG(progressReport).X

then
proc(GM,P3,M3,G

′,{AF},P) = P′3

We can now define the adaptation rule:

F(σ) = (G,K ,σ ′) A ′ = A \K B = pa(G)\A
M′p =mon(p,Mp,Ĝ,K) P′p = proc(p,Pp,Mp,Ĝ,K ,P)

∀p ∈B.Qp ∈P & Qp ∝ Ĝ�p
ADAPT

∏p∈A pnMp[Pp] G σ GP G F −→
∏p∈A ′ pnM′p[P′p] || ∏p∈B pn Ĝ�p [Qp] G σ ′ GP G F

Rule [ADAPT] must be used when the adaptation function F applied to the control data
σ is defined. In this case F returns a global type G, a set of participants K which
must be killed and a new control data σ ′. The global type Ĝ is G with possibly some
relabelling, as defined in the explanation of function mon. The set of participants be-
fore the adaptation is A . Then, after the adaptation, the new set of participants is
(A \K)∪ (pa(G) \A), i.e. the previous set of participants without the killed ones,
plus the participants of G who do not occur in A . For these new participants the pro-
cesses are taken from the collection P . Instead, for the participants in A \K we
compute the new monitors and processes using the mappings mon and proc, respec-
tively.

Table 5 lists the reduction rules of networks and sessions, which are not discussed
above. Evaluation contexts are defined by

E ::= [] || E || N

We observe that no strategy evaluation is formalised in the operational rules. In-
deed, the proof of safety, given in next section, does not depend on the order in which
rules are applied. However, in a realistic application of our framework, we assume that
rule [ADAPT] has the precedence over all other rules, to ensure a prompt adaptation to
critical events in the environment. Accordingly, rule [OP], that registers in the control
data those critical events, has precedence over the remaining rules.

16

P
τ−→ P′

TAU
pnM[P]−→ pnM[P′]

N −→ N′
SN

E [N] G σ GP G F −→ E [N′] G σ GP G F

N G σ GP G F −→ N′ G σ
′ GP G F

CTX
E [N] G σ GP G F −→ E [N′] G σ

′ GP G F

Table 5: Further network and session reductions.

6. Safety

In this section we show the main properties of our calculus, i.e. adequacy of pro-
cesses to the enclosing monitors, subject reduction and progress. The proofs rely on
the assurance that monitors are projections of a unique global type. The main novelties
of our calculus are the parallel monitors and the adaptation rule.

The parallel monitors require some care in the proof that the reduction rule [COM]
preserves the types. After rule [ADAPT] some participants communicate in parallel
following both the (modified) global type of the session before the application of the
rule and the global type resulting from the application of the adaptation function to
control data. The resulting overall global type is implicitly represented by its projec-
tions.

This section is organised as follows. First, we tell how the LTSs give the shapes of
monitors and processes. Second, we present the typing rules for networks and sessions
together with an inversion lemma and a lemma on the existence of global types rep-
resenting communications of typeable networks (Subsection 6.1). The following two
subsections deal with properties useful for showing subject reduction when the rules
[COM] and [ADAPT] are applied, respectively. Then Subsection 6.4 gives the proof of
subject reduction and Subsection 6.5 concludes with key features of the calculus.

6.1. Type System
Monitor LTS transitions reveal the monitor shapes, as detailed in the next lemma,

which can be proved by straightforward case analysis.

Lemma 6.1. 1. If M
p?`−−→ M′, then M = p?{`i(Si).Mi}i∈I | M′′ and ` = ` j and

M′ =M j |M′′ for some j ∈ I.

2. IfM
q!`−→M′, thenM= q!{`i(Si).Mi}i∈I |M′′ and `= ` j andM′ =M j |M′′ for

some j ∈ I.

Similarly process LTS transitions reveal the process shapes.

Lemma 6.2. 1. If P
?`(v)−−−→ P′, then P= P | P′′ and P′ = P′ | P′′, where:

17

(a) either P =?`(x).Q and P′ = Q{v/x};

(b) or P = Q+R and Q
?`(v)−−−→ Q′ and P′ = Q′.

2. If P
!`(v)−−→ P′, then P= P | P′′ and P′ = P′ | P′′, where:

(a) either P =!`(e).Q and e ↓ v and P′ = Q;

(b) or P = Q+R and Q
!`(v)−−→ Q′ and P′ = Q′.

3. If P τ−→ P′, then P= P | P′′ and P′ = P′ | P′′, where one of the following condi-
tions holds:

(a) P = if e then Q else R and e ↓ true and P′ = Q;

(b) P = if e then Q else R and e ↓ false and P′ = R;

(c) P = Q+R and Q τ−→ Q′ and P′ = Q′+R.

4. If P
op−→ P′, then P= P | P′′ and P′ = P′ | P′′, where:

(a) either P = op.Q and P′ = Q;

(b) or P = Q+R and Q
op−→ Q′ and P′ = Q′+R.

Notice that processes of the shape (2b) cannot be typed, since an intersection of output
types is not a type.

The typing judgements for networks and sessions are of the shape

` N �∆ `S �∆

where ∆ is a session typing. Session typings associate participants to monitors:

∆ ::= /0 || ∆,p :M

Table 6 gives the typing rules for networks and sessions. We define the set pa(M)
of participants of a monitorM as follows:

pa(p?{`i(Si).Mi}i∈I) = pa(p!{`i(Si).Mi}i∈I) = {p}
⋃

i∈I pa(Mi)

pa(µt.M) = pa(M) pa(t) = pa(end) = /0 pa(M1 |M2) = pa(M1)∪pa(M2)

To type a monitored process, rule [MP] requires that the participant p, which is asso-
ciated to the monitored processM[P], does not belong to pa(M) (condition p 6∈ pa(M))
and that P is adequate toM (condition P∝M). For typing the parallel composition of
networks, rule [NPAR] requires the consistency of the session typing in the conclusion
(condition cons(∆1,∆2)), where consistency is defined as follows.

Definition 6.3. A session typing ∆ is consistent, notation cons(∆), if there is a global
type G such that p :M ∈ ∆ impliesM=G�p .

18

end
` pn end[0]� /0

P 6= 0 P ∝M p 6∈ pa(M)
MP

` pnM[P]�{p :M}

` N1 �∆1 ` N2 �∆2 cons(∆1,∆2)
NPAR

` N1 || N2 �∆1,∆2

` N �∆ comp(∆)
SES

` N G σ GP G F �∆

Table 6: Typing rules for networks and sessions.

However, consistency is not enough to get progress, we have to assure that all
participants are present. This requirement is guaranteed by the completeness of the
session typing, given by Definition 6.4.

Definition 6.4. A session typing ∆ is complete, notation comp(∆), if there is a global
typeG such that pa(G) = {p | p :M∈ ∆ &M 6= end} and p :M∈ ∆ impliesM=G�p .

Clearly completeness of session typings implies their consistency. Rule [SES] re-
quires the completeness of session typing (condition comp(∆)). The control data, the
collection of processes and the adaptation function are transparent for the typing.

Example 6.5. Let M1,M2,P1,P2 be defined as in Example 5.1. We can derive:

` IFnM1[P1] || ISnM2[P2]�{IF : M1, IS : M2}

The inversion lemma takes into account both the typing rules for processes (Table 2)
and those for networks and sessions (Table 6).

Lemma 6.6 (Inversion lemma). 1. Let Γ ` P : T.

(a) If P =?`(x).Q, then T=?`(S).T′ and Γ,x : S ` Q : T′.

(b) If P =!`(e).Q, then T=!`(S).T′ and Γ ` e : S and Γ ` Q : T′.

(c) If P = P1 +P2, then T= T1∧T2 and Γ ` P1 : T1 and Γ ` P2 : T2.

(d) If P= if e then P1 else P2, then T=T1∨T2 and Γ` e : Bool and Γ `P1 :T1
and Γ ` P2 : T2.

(e) If P = op.Q, then Γ ` Q : T.

(f) If P = µX .Q, then Γ,X : T ` Q : T.

(g) If P = X, then Γ = Γ′,X : T.

(h) If P = 0, then T= end.

2. If ` P1 | P2 : T, then T= T1 | T2 and Γ ` P1 : T1 and Γ ` P2 : T2.

3. If ` pnM[P]�∆, then:

19

G (q?{`i(Si).Mi}i∈I ,p) = q→ p : {`i(Si).G (Mi,p)}i∈I
G (q!{`i(Si).Mi}i∈I ,p) = p→ q : {`i(Si).G (Mi,p)}i∈I

G (µt.M,p) = µt.G (M,p) G (t,p) = t
G (end,p) = end G (M |M′,p) = G (M,p) | G (M′,p)

Table 7: The function G (M,p).

(a) either ∆ = /0 andM= end and P= 0;

(b) or ∆ = {p :M} and P 6= 0 and P ∝M and p 6∈ pa(M).

4. If ` N1 || N2 �∆, then cons(∆) and ∆ = ∆1,∆2 and ` N1 �∆1 and ` N2 �∆2.

5. If ` N G σ GP G F �∆, then ` N �∆ and comp(∆).

Proof. Easy from the definition of the typing relation.

It is important to notice that each typeable network/session has a consistent ses-
sion typing, as shown in Lemma 6.8(2). The crucial case is rule [MP]. For this rule
we define the characteristic global type G (M,p) of the monitor M for a participant
p 6∈ pa(M), see Table 7. This global type describes the communications between p and
all participants in pa(M), as prescribed byM. More precisely,M is the projection onto
p of the global type G (M,p), see (1) of the following lemma.

Example 6.7. If G1 is defined as in the Introduction and M1 is defined as in Exam-
ple 5.1, then

G (M1, IF) = G1

Lemma 6.8. 1. M= G (M,p)�p .

2. If ` N �∆, then cons(∆).

Proof. (1) By induction on the definition of characteristic global type.
(2) By induction on the derivation of ` N �∆, using (1) for rule [MP].

6.2. Properties for Rule [COM]

A substitution lemma is handy as usual for a communication rule. In our calculus
we need also to take into account that the substitution can be in one branch of an
external choice. This is done in the following lemma.

Lemma 6.9. 1. If Γ ` e : S and e ↓ v and Γ,x : S ` P : T, then Γ ` P{v/x} : T.

2. If Γ ` e : S and e ↓ v and Γ ` P : T with T ≤?`(S).T′ and P
?`(v)−−−→ P′, then

Γ ` P′ : T′.

20

Proof. (1) By induction on the derivation of Γ,x : S ` P : T.

(2) By induction on the derivation of P
?`(v)−−−→ P′. In the first step P =?`(x).Q and

P′ = Q{v/x}, so we conclude by (1) and Lemma 6.6(1a). In the induction step P =

Q+R and Q
?`(v)−−−→ Q′ and P′ = Q′, so induction applies.

Applying rule [COM] both monitors consume one communication, respectively one
input and one output. This can be formalised by means of the following notion of
reduction between session typings.

Definition 6.10. The reduction of session typings is the minimal reduction relation
such that:

{p : q?{`i(Si).Mi}i∈I |M,q : p!{`i(Si).M
′
i}i∈I |M′} =⇒ {M j |M,M′j |M′} j ∈ I

∆ =⇒ ∆′ implies ∆,∆′′ =⇒ ∆′,∆′′

The reduction of session typings is required to preserve their consistency, i.e. to
map monitors which are projections of a global type into monitors which are projec-
tions of a global type too, see Lemma 6.14. To show this property it is useful to consider
how a communication modifies a global type, that is the aim of the following definition.

Definition 6.11. The consumption of the communication p
`−→ q for the global type G

(notation G\p `−→ q) is the global type inductively defined by:

(r→ s : {`i(Si).Gi}i∈I)\p
`−→ q=

G j if r = p,

s= q, ` j = `

r→ s : {`i(Si).Gi \p
`−→ q}i∈I if {p,q}∩{r,s}= /0

(µt.G)\p `−→ q= µt.G\p `−→ q

(G | G′)\p `−→ q=

{
(G\p `−→ q) | G′ if G\p `−→ q is defined,

G | (G′ \p `−→ q) otherwise

Example 6.12. In the running example, we getG\NY NS−→AS=G1 |G2 |G3 |G4 |G5 |G′6 |G7,
where

G′6 =

 AS→ NY : {Y ES(DeliveryDate).NY→ Ch : NCY (NoItem).G6,
NO(NoItem) : NY→ Ch : NCN(Item,Amount).

Ch→ NY : CN(DeliveryDate).G6}

Instead G\NY NCY−−→ Ch is undefined.

Notice that G\p `−→ q is defined only if G allows as first communication for both p

and q a message with label ` from p to q. More precisely when G \p `−→ q is defined,

21

then G �p = q!{`i(Si).Mi}i∈I |M, G �q = p?{`i(Si).M
′
i}i∈I |M′ and ` = ` j for some

j ∈ I. In this case (G\p `−→ q)�p =M j |M and (G\p `−→ q)�q =M′j |M′. Moreover

G � r = (G\p `−→ q)� r for r 6= p, r 6= q. The vice versa is the content of the following
lemma. The proof follows from the definitions of projection and consumption.

Lemma 6.13. If G �p = q?{`i(Si).Mi}i∈I |M and G �q = p!{`i(Si).M
′
i}i∈I |M′ and

` = ` j for some j ∈ I, then G \ p `−→ q is defined and (G \ p `−→ q) �p = M j | M and

(G\p `−→ q)�q =M′j |M′ and G� r = (G\p `−→ q)� r for r 6= p, r 6= q.

We can now show that the reduction of session typings preserves consistency.

Lemma 6.14. If cons(∆) and ∆ =⇒ ∆′, then cons(∆′).

Proof. Let ∆= {p : q?{`i(Si).Mi}i∈I |M,q : p!{`i(Si).M
′
i}i∈I |M′}. Then by definition

∆=⇒{M j |M,M′j |M′}with j ∈ I. From cons(∆) we get q?{`i(Si).Mi}i∈I |M=G�p

and p!{`i(Si).M
′
i}i∈I | M′ = G �q for some G. By Lemma 6.13 G \ p `−→ q is defined

and (G\p `−→ q)�p =M j |M and (G\p `−→ q)�q =M′j |M′ andG�r = (G\p `−→ q)�r
for r 6= p, r 6= q.

6.3. Properties for Rule [ADAPT]

The main goal of this subsection is to show a global type such that, under suitable
conditions, the monitor obtained as result of the mapping mon is a projection of this
global type. This is the content of Lemma 6.16(4). The mapping mon behaves in a
different way for participants which do have or not communications in the new global
type. For this reason it is handy to define two kinds of erasure of communications from
global types, according to their participants. A communication is erased if either one
or both the participants belong to a fixed set. More formally:

The complete erasure of participants in A from the global typeG (notationGA)
is inductively defined by:

p→ q : {`i(Si).Gi}i∈I A =

{
p→ q : {`i(Si).Gi A }i∈I if p 6∈A and q 6∈A ,

Gd(I) otherwise.

(µt.G)A = µt.GA tA = t

endA = end (G | G′)A =GA | G′A

The partial erasure of participants in A from the global type G (notation G \A)
is inductively defined by:

p→ q : {`i(Si).Gi}i∈I \A =

{
p→ q : {`i(Si).Gi \A }i∈I if p 6∈A or q 6∈A ,

Gd(I) otherwise.

(µt.G)\A = µt.G\A t\A = t

end\A = end (G | G′)\A =G\A | G′ \A

22

Example 6.15. In our example we have

G{IF, IS} = G′3 | G4 | G5 | G6 | G7
G\{IF, IS} = G2 | G3 | G4 | G5 | G6 | G7

where G′3 = µt.GM→AF : GAF(ProductionLines).AF→GM : AFG(ProgressReport).t.

The main result of this subsection is that, if the monitor M is the projection of the
global type G onto participant p, then the function mon applied to p,M,G′,K gives a
monitor which is the projection of the global type G′ | (G\pa(G′))K onto p.

Lemma 6.16. 1. If p 6∈A , then (G�p)A = (GA)�p .

2. If p ∈A , then (G�p)A = (G\A)�p .

3. If p 6∈A , then (G\A)�p =G�p .

4. IfM=G�p , then mon(p,M,G′,K) = (G′ | (G\pa(G′))K)�p .

Proof. (1), (2) and (3) follow easily by definition.
(4). If p 6∈ pa(G′), then mon(p,M,G′,K) =MK . We get

(G′ | (G\pa(G′))K)�p = (GK)�p

by (3) and p 6∈ pa(G′). We conclude by (1).
If p ∈ pa(G′) then

mon(p,M,G′,K) = (G′ �p) | (M (pa(G′)∪K))
= (G′ �p) | ((M (pa(G′))K))
= (G′ �p) | ((G\pa(G′))�p)K) by (2)
= (G′ �p) | ((G\pa(G′))K)�p by (1)
= (G′ | (G\pa(G′))K)�p

Example 6.17. Lemma 6.16(4) implies that after the adaptation the monitors of the
Company are projections of the global type

G′ | (G\{FF,GM,TS,AS, IS}){AF}

6.4. Subject Reduction

A last lemma is handy to deal with the reduction rules [TAU] and [OP].

Lemma 6.18. If ` P : T and P
γ−→ P′ with γ = τ or γ = op, then ` P : T′ with T′ ≤ T.

Proof. By induction on the derivation of P
γ−→P′. Lemma 6.2(3) and (4) give the shapes

of P and P′.
For the first step with γ = τ , let P= if e then Q else R and P′=Q. By Lemma 6.6(1d)

T= T1∨T2 and `Q : T1. For the first step with γ = op, we get P = op.Q and P′ = Q.
By Lemma 6.6(1e) ` Q : T. The proof in the other case with γ = τ is similar.

23

For the induction step, let P=Q+R and Q
γ−→Q′ and P′=Q′+R. By Lemma 6.6(1c)

T= T1∧T2 and ` Q : T1 and ` R : T2. By induction ` Q′ : T′1 with T′1 ≤ T1. By rule
[CHOICE] we derive ` Q′+R : T′1∧T2.

Theorem 6.19. (Subject Reduction)

1. If ` N �∆ and N −→∗ N′, then ` N′�∆′ and ∆ =⇒∗ ∆′.

2. If `S �∆ and S −→∗ S ′, then `S ′�∆′ and ∆ =⇒∗ ∆′.

Proof. By induction on −→∗.

(1) Let the last applied rule be

M1
q?`−−→M′1 P1

?`(v)−−−→ P′1 M2
p!`−→M′2 P2

!`(v)−−→ P′2
COM

pnM1[P1] || qnM2[P2]−→ pnM′1[P′1] || qnM′2[P′2]

Then N = pnM1[P1] || qnM2[P2] and N′= pnM′1[P′1] || qnM′2[P′2]. By Lemma 6.6(4)
∆ is consistent and ∆ = ∆1,∆2 and ` pnM1[P1]�∆1 and ` qnM2[P2]�∆2. By
Lemma 6.6(3b) ∆ = {p :M1,q :M2} and

` P1 : T1 and P1 ∝M1 and ` P2 : T2 and P2 ∝M2 (1)

The consistency of ∆ impliesM1 =G�p andM2 =G�q for some global type G. This
together with Lemma 6.1 gives

M1 = p?{`i(Si).Mi}i∈I |M′′1 andM′1 =M′j |M′′1 and (2)

M2 = q!{`i(Si).Mi}i∈I |M′′2 andM′2 =M′j |M′′2 and `= ` j for some j ∈ I (3)

By Definition 6.10 ∆ =⇒ ∆′, where ∆′ = {p : M′1,q : M′2}. This implies that ∆′ is
consistent by Lemma 6.14.

Lemma 6.2(1) implies P1 = P1 | P′′1 and P′1 = P′1 | P′′1 where:

1. either P1 =?`(x).Q1 and P′1 = Q1{v/x};

2. or P1 = Q+R and Q
?`(v)−−−→ Q′ and P′1 = Q′.

By (1) and Lemma 6.6(1a) and (1c) T1 = T | T′′1 with T≤?`(S).T1 and ` P1 : T.
Lemma 6.2(2) and typability of P imply P2 = P2 | P′′2 and P′2 = P′2 | P′′2 where:

P2 =!`(e).Q2 and e ↓ v and P′2 =Q2. Then by (1) and Lemma 6.6(1b) T2 =!`(S′).T2 |T′′2
and ` e : S′ and

` P′2 : T2 (4)

By (1), (2), (3) and Definition 4.3 either ?`(S).T1 ≤ |p?{`i(Si).Mi}i∈I | or
?`(S).T1 ∧T′ ≤ |p?{`i(Si).Mi}i∈I | and !`(S′).T2 ≤ |q!{`i(Si).Mi}i∈I |. In both cases
S = S′ = S j and

T1 ≤ |M j| and T2 ≤ |M′j| (5)

24

Then Lemma 6.9 applied to ` e : S and e ↓ v and ` P1 : T gives

` P′1 : T1 (6)

From (4), (5) and (6) we get P′1 ∝M′1 and P′2 ∝M′2, then using rules [MP] and [NPAR]
we derive ` pnM′1[P′1] || qnM′2[P′2]�∆′.

If pnM[P] −→ pnM[P′] by rule [TAU], then P = P | P′′ and P τ−→ P′ and P′ =
P′ | P′′. Lemma 6.6(3b) implies ∆ = {p :M} and P ` p : T and P∝M and p 6∈ pa(M).
Lemma 6.6(2) gives T = T | T′ and P ` p : T and P′′ ` p : T′. By Lemma 6.18
` P′ : T′ and T′ ≤ T. Using rule [PAR] we derive P′ ` p : T′ | T′. By Definition 4.3(2)
M = M | M′ and P ∝ M and P′′ ∝ M′. Definition 4.3(1) gives T ≤ |M|. Then
by Definition 4.3(1) P′ ∝ M and by Definition 4.3(2) P′ ∝ M. We can then derive
` pnM[P′]�∆ by rule [MP].

(2) If the last applied rule is [OP] the proof is similar to that of rule [TAU].

Let the last applied rule be

F(σ) = (G,K ,σ ′) A ′ = A \K B = pa(G)\A
M′p =mon(p,Mp,Ĝ,K) P′p = proc(p,Pp,Mp,Ĝ,K ,P)

∀p ∈B.Qp ∈P & Qp ∝ Ĝ�p
ADAPT

∏p∈A pnMp[Pp] G σ GP G F −→
∏p∈A ′ pnM′p[P′p] || ∏p∈B pn Ĝ�p [Qp] G σ ′ GP G F

By Lemma 6.6(5) ` ∏p∈A pnMp[Pp]�∆ and comp(∆). Let G′ be the global type
that shows comp(∆), i.e. such that G′ �p =Mp for all p ∈A . By definition of proc we
get P′p ∝M′p for all p ∈A ′. Using rule [MP] we can then derive

` pnM′p[P′p]�{p :M′p} for all p ∈A ′ (7)

By construction Qp ∝ Ĝ�p for all p ∈B, so we can also derive

` pn Ĝ�p [Qp]�{p : Ĝ�p} for all p ∈B (8)

Using the global type Ĝ | (G′ \ pa(G)) K to show the consistency of the session
typing ∆′ = {p : M′p | p ∈ A ′} ∪ {p : Ĝ � p | p ∈ B} we can apply rule [NPAR] to
(7) and (8). In fact Mp = G′ � p for all p ∈ A and then by Lemma 6.16(4) M′p =

(Ĝ | (G′ \pa(G))K)�p for all p∈A ′. Moreover Ĝ�p = (Ĝ | (G′ \pa(G))K)�p
for all p ∈B. The same global type shows comp(∆′), so we can conclude applying
rule [SES].

If the last applied rule is [SN] the proof follows from (1). If the last applied rule is
[CTX] the proof is standard.

25

6.5. Main Results

Starting from a well-typed session the reduction rules produce only monitored pro-
cessesM[P] which satisfyP∝M. The crucial case is rule [ADAPT], where the mapping
proc builds the processes so that the adequacy between processes and monitors is guar-
anteed.

Theorem 6.20. If S is a well typed session and S −→S ′, then all monitored pro-
cesses in S ′ satisfy the adequacy condition.

Proof. If S is a well typed session, then we can derive `S �∆. By Theorem 6.19(2)
we get `S ′�∆′. The Inversion Lemma implies that if M[P] occurs in S ′, then we
can type it using rule [MP]. So we conclude P ∝M.

A set of monitors M is closed if:

• M ∈M implies MK ∈M for an arbitrary K ;

• M ∈M andM′ ∈M implyM |M′ ∈M .

We can also guarantee progress of sessions under a natural condition on the col-
lection P . A collection P is complete for a closed set of monitors M if there are
adequate processes in P for everyM ∈M .

Theorem 6.21. If P is complete for M and S is a well typed session with monitors in
M and the adaptation function F only produces global types whose projections are in
M , then S has progress, i.e. every input or output monitored process will eventually
communicate.

Proof. As proved in [13], a single multiparty session in a standard calculus with global
and session types, like the calculus in [1], always enjoys progress whenever it is well
typed. In fact, by the Subject Reduction Theorem (Theorem 6.19), reduction preserves
well-typedness of sessions and the consistency of session typings. Moreover, all re-
quired session participants are present. Thus, all communications among participants
will take place, in the order prescribed by the global type.

It is easy to see that our calculus could be mapped to the calculus of [1] while
maintaining typability, the main difference being in the reduction rules. Hence, the
only rule that could jeopardise progress is [ADAPT]. This does not happen, since the
required process are in P by completeness, and the typability of the obtained session
assures that all communications obey a single global type. Therefore, our calculus has
progress under the required conditions.

7. Related Work and Conclusion

Our approach builds on [4], where a calculus based on global types, monitors and
processes similar to the present one was introduced. There are two main points of de-
parture from that work. First, in the calculus of [4], there is a periodic check of the
global status, written in the global type, which decides when the adaptation can take
place. Second, in [4] any adaptation involves all the participants, by requiring a global

26

new reconfiguration of the whole system. In contrast, in the present calculus adaptation
is only triggered by dynamic changes in control data, so giving rise to unpredictable
reconfiguration steps. Furthermore, reconfiguration can involve a partial set of commu-
nications only, when only a part of the behaviour must be changed. The main technical
novelty allowing these features is the parallel composition of monitors. Moreover, as
remarked in the introduction, communication is synchronous here and asynchronous
in [4].

Works addressing adaptation for multiparty communications include [14], [15], [16], [17]
and [18]. In the paper [14] global and session types are used to guarantee deadlock-
freedom in a calculus of multiparty sessions with asynchronous communications. Only
part of the running code is updated. Two different conditions are given for ensuring
liveness. The first condition requires that all channel queues are empty before updat-
ing. The second condition requires a partial order between the session participants
with a unique minimal element. The participants are then updated following this order.
We do not need such conditions for progress, since communication is synchronous and
adaptation is done in one single big step. The work [15] enhances a choreographic lan-
guage with constructs defining adaptation scopes and dynamic code update; an associ-
ated endpoint language for local descriptions, and a projection mechanism for obtain-
ing (low-level) endpoint specifications from (high-level) choreographies are also de-
scribed. A typing discipline for these languages is left for future work. The paper [16]
proposes a choreographic language for distributed applications. Adaptation follows a
rule-based approach, in which all interactions, under all possible changes produced by
the adaptation rules, proceed as prescribed by an abstract model. In particular, the sys-
tem is deadlock-free by construction. The adaptive system is composed by interacting
participants deployed on different locations, each executing its own code. The calcu-
lus of [17] is inspired by [4], the main difference being that security violations trigger
adaptation mechanisms that prevent violations to occur and/or to propagate their effect
in the systems. An event based approach is proposed in [18]. Eventful constructors
handle adaptation routines checking sessions by means of channel types. Adaptation
in [18] cannot explicitly kill session participants as we do.

There is substantial difference between our monitors and the run-time enforcement
monitors of [19], where monitors terminate the execution if it is about to violate the
security policy being enforced.

In the present paper we address the adaptation by considering one single session,
in order to simplify notations in the formal proofs. Indeed, our framework is expres-
sive enough to be smoothly extended to the case of many sessions running in parallel,
by simply annotating communications of each participant with the session name as
in [4]. Future work includes the extension of our calculus to many self-adapting ses-
sions running in parallel, with session interleaving. We plan to consider application-
driven instances of our adaptation mechanism, in which concrete adaptation functions
are exploited. This can require the explicit addition of local data to each participant.
In this way we will be able to model internal interactions, based on local data, among
participants. Using both internal interactions and communications among participants
would enable the application of our framework to more realistic cases of study. It
would be interesting to consider adaptation on the fly [20] in the context of commu-
nication centred programming. Finally, we intend to investigate whether our approach

27

can be useful in providing a formal model to mechanisms of code hot-swapping in
programming languages (such as Erlang).

Acknowledgments. We thank Cinzia Di Giusto for interesting discussions related to
this paper. We are grateful to the anonymous reviewers for their helpful comments and
suggestions.

References

[1] K. Honda, N. Yoshida, M. Carbone, Multiparty Asynchronous Session Types,
in: POPL’08, ACM Press, 2008, pp. 273–284. doi:10.1145/1328438.
1328472.

[2] M. Carbone, K. Honda, N. Yoshida, Structured Communication-Centered Pro-
gramming for Web Services, ACM Transactions on Programming Languages and
Systems 34 (2) (2012) 8:1–8:78. doi:10.1145/2220365.2220367.

[3] R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, A. Vandin, A Conceptual
Framework for Adaptation, in: FASE’12, Vol. 7212 of LNCS, Springer, 2012, pp.
240–254. doi:10.1007/978-3-642-28872-2_17.

[4] M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Self-Adaptive Multiparty Ses-
sions, Service Oriented Computing and Applications 9 (3-4) (2015) 249–268.
doi:10.1007/s11761-014-0171-9.

[5] M. Coppo, M. Dezani-Ciancaglini, B. Venneri, Parallel Monitors for Self-
adaptive Sessions, in: PLACES’16, Vol. 211 of EPTCS, 2016, pp. 25–36.
doi:10.4204/EPTCS.211.3.

[6] P.-M. Deniélou, N. Yoshida, Dynamic Multirole Session Types, in: POPL’11,
ACM Press, 2011, pp. 435–446. doi:10.1145/1926385.1926435.

[7] L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, N. Yoshida, Monitoring Net-
works through Multiparty Session Types, in: FMOODS/FORTE’13, Vol. 7892 of
LNCS, Springer, 2013, pp. 50–65. doi:10.1007/978-3-642-38592-6\
_5.

[8] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini,
N. Yoshida, Global Progress in Dynamically Interleaved Multiparty Sessions,
in: CONCUR’08, Vol. 5201 of LNCS, Springer, 2008, pp. 418–433. doi:
10.1007/978-3-540-85361-9_33.

[9] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P.-M. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, G. Zavattaro, Foun-
dations of Session Types and Behavioural Contracts, ACM Computing Surveys
49 (1) (2016) 3:1–3:36. doi:10.1145/2873052.

[10] K. Honda, V. T. Vasconcelos, M. Kubo, Language Primitives and Type Disci-
plines for Structured Communication-based Programming, in: ESOP’98, Vol.
1381 of LNCS, Springer, 1998, pp. 22–138. doi:10.1007/BFb0053567.

28

http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2220365.2220367
http://dx.doi.org/10.1007/978-3-642-28872-2_17
http://dx.doi.org/10.1007/s11761-014-0171-9
http://dx.doi.org/10.4204/EPTCS.211.3
http://dx.doi.org/10.1145/1926385.1926435
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1007/BFb0053567

[11] B. C. Pierce, Types and Programming Languages, MIT Press, 2002.

[12] S. Gay, M. Hole, Subtyping for Session Types in the Pi Calculus, Acta Informatica
42 (2/3) (2005) 191–225. doi:10.1007/s00236-005-0177-z.

[13] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, L. Padovani, Global
Progress for Dynamically Interleaved Multiparty Sessions, Mathematical Struc-
tures in Computer Science 26 (2) (2016) 238–302. doi:10.1017/
S0960129514000188.

[14] G. Anderson, J. Rathke, Dynamic Software Update for Message Passing Pro-
grams, in: APLAS’12, Vol. 7705 of LNCS, Springer, 2012, pp. 207–222. doi:
10.1007/978-3-642-35182-2_15.

[15] M. Bravetti, M. Carbone, T. T. Hildebrandt, I. Lanese, J. Mauro, J. A.
Pérez, G. Zavattaro, Towards Global and Local Types for Adaptation, in:
SEFM’13, Vol. 8368 of LNCS, Springer, 2014, pp. 3–14. doi:10.1007/
978-3-319-05032-4_1.

[16] M. Dalla Preda, S. Giallorenzo, I. Lanese, J. Mauro, M. Gabbrielli, AIOCJ:
A Choreographic Framework for Safe Adaptive Distributed Applications, in:
SLE’14, Vol. 8706 of LNCS, Springer, 2014, pp. 161–170. doi:10.1007/
978-3-319-11245-9_9.

[17] I. Castellani, M. Dezani-Ciancaglini, J. A. Pérez, Self-adaptation and Secure In-
formation Flow in Multiparty Communications, Formal Aspects of Computing
28 (4) (2016) 669–696. doi:10.1007/s00165-016-0381-3.

[18] C. Di Giusto, J. A. Pérez, Event-based Run-time Adaptation in Communication-
centric Systems, Formal Aspects of Computing 28 (4) (2016) 531–566. doi:
10.1007/s00165-016-0377-z.

[19] F. B. Schneider, Enforceable Security Policies, ACM Transactions on Information
and System Security 3 (1) (2000) 30–50. doi:10.1145/353323.353382.

[20] A. Bucchiarone, A. Marconi, C. A. Mezzina, M. Pistore, H. Raik, On-the-Fly
Adaptation of Dynamic Service-Based Systems: Incrementality, Reduction and
Reuse, in: ICSOC’13, Vol. 8274 of LNCS, Springer, 2013, pp. 146–161. doi:
10.1007/978-3-642-45005-1_11.

29

http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1007/978-3-642-35182-2_15
http://dx.doi.org/10.1007/978-3-642-35182-2_15
http://dx.doi.org/10.1007/978-3-319-05032-4_1
http://dx.doi.org/10.1007/978-3-319-05032-4_1
http://dx.doi.org/10.1007/978-3-319-11245-9_9
http://dx.doi.org/10.1007/978-3-319-11245-9_9
http://dx.doi.org/10.1007/s00165-016-0381-3
http://dx.doi.org/10.1007/s00165-016-0377-z
http://dx.doi.org/10.1007/s00165-016-0377-z
http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1007/978-3-642-45005-1_11
http://dx.doi.org/10.1007/978-3-642-45005-1_11

	Introduction
	Running Example
	Syntax
	Global Types
	Monitors
	Processes
	Networks
	Sessions

	Typing Processes
	Semantics
	Safety
	Type System
	Properties for Rule [Com]
	Properties for Rule [Adapt]
	Subject Reduction
	Main Results

	Related Work and Conclusion

