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Abstract: Flavescence dorée (FD) is a threat for wine production in the vineyard landscape of
Piemonte, Langhe-Roero and Monferrato, Italy. Spread of the disease is dependent on complex
interactions between insect, plant and phytoplasma. In the Piemonte region, wine production is
based on local cultivars. The role of six local grapevine varieties as a source of inoculum for the vector
Scaphoideus titanus was investigated. FD phytoplasma (FDP) load was compared among red and white
varieties with different susceptibility to FD. Laboratory-reared healthy S. titanus nymphs were caged
for acquisition on infected plants to measure phytoplasma acquisition efficiency following feeding on
different cultivars. FDP load for Arneis was significantly lower than for other varieties. Acquisition
efficiency depended on grapevine variety and on FDP load in the source plants, and there was a
positive interaction for acquisition between variety and phytoplasma load. S. titanus acquired FDP
with high efficiency from the most susceptible varieties, suggesting that disease diffusion correlates
more with vector acquisition efficiency than with FDP load in source grapevines. In conclusion,
although acquisition efficiency depends on grapevine variety and on FDP load in the plant, even
varieties supporting low FDP multiplication can be highly susceptible and good sources for vector
infection, while poorly susceptible varieties may host high phytoplasma loads.
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1. Introduction

Flavescence dorée (FD), a severe grapevine yellows disease and a threat for wine production in
many European viticulture areas [1], was first reported in Piemonte, northwestern Italy, in 1998 [2,3].
The disease is still present and epidemic in the southern part of the Region, between the Po valley
and the Ligurian Appennin, which was recently (2014) included in the World Heritage Site list of
Unesco (vineyard landscape of Piedmont: Langhe-Roero and Monferrato), on the ground of its
“cultural landscape providing living testimony to winegrowing and winemaking traditions that stem
from a long history” and its being an ‘outstanding example of man’s interaction with his natural
environment’ [4]. Wine production in this area traditionally involves several cultivars (cv), and the
possibility that very susceptible grapevine varieties may improve the efficiency of vector transmission,
and therefore influence the disease epidemiology [5,6], is becoming a crucial question to address
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for management of FD in traditional grapevine growing areas of Piemonte. FD is caused by the FD
phytoplasma (FDP), considered as a harmful organism in the EU and a quarantine pest.

Phytoplasmas are mollicutes that infect the phloem of many host plants and several organs of
phloem-feeder insect vectors and actively multiply in both hosts [7]. Leafhoppers, planthoppers and
psyllids transmit these pathogens in a persistent propagative manner, and phytoplasma diseases have
been observed on hundreds of plant species all over the world [8]. In nature, FDP is transmitted
by Scaphoideus titanus Ball [9], a monovoltine nearctic leafhopper, monophagous on grapevine. FDP
is also routinely maintained under laboratory conditions in broad bean by Euscelidius variegatus
Kirschbaum transmission [10]. This latter system is used to investigate details of FDP epidemiological
cycle [11,12]. Dictyophara europea (Linneus), a polyphagous planthopper widespread in Europe [13],
has also been reported to transmit FD from clematis to grapevine [14]. As this species preferentially
feeds on amaranthus and nettle [15], its role as a vector in secondary spreading FD epidemics is
unlikely, although it may represent a potential source of primary infection from outside the vineyard.
In addition, the leafhopper Orientus ishidae (Matsumura) has been found positive for the presence of
FDP [16–18], but, in the absence of successful transmission to healthy plants, it cannot be considered a
vector of the disease.

The leafhopper vector S. titanus feeds on grapevines for its whole life and can acquire FDP as
a nymph and as an adult. However, acquisition of FDP by nymph allows the vector to transmit the
phytoplasma for a long period, whilst acquisition by adults, due to the long incubation period in the
vector, results in a short period of infectivity, if any. The vector has only one generation per year and
nymphs mainly develop from mid-May to mid-July, but it is well known that some eggs hatch later in
the season, so nymphs can be recorded all through the month of August. On the contrary, adults can
be found from the beginning of July until September [19,20]. Therefore, vector nymphs and adults may
feed and eventually acquire FDP for a long period, during which phytoplasma titer varies significantly
in the plant [21,22], thus potentially influencing the acquisition efficiency of the vector.

The first symptoms of FD infection are stunting and lack of bud break in May–June on most
susceptible varieties [23]. During summer, infected grapevines show leaf yellowing or reddening,
depending on the variety, downward leaf curling, drying of inflorescence and bunches, lack of cane
lignification, presence of black spots on the new canes and premature leaf fall [24]. Symptoms may
involve the entire plant or only selected branches. Besides the direct loss of grape production due to
premature drying of the berries, the infected plant shows alterations in metabolism, energy processes,
protein synthesis, protein fate, cellular and transport routes as well as cell defense and virulence [25],
and the residual production, if any, has a poor quality. Infected plants may either die or recover, but they
remain less productive for several years after the infection [26], although no information is available
on the quality of wine produced from recovered vines. Grapevine is a plant species characterized
by a very high intra-specific variability, largely exploited in viticulture to grow grapevines under
very different climatic and soil conditions, with very different berry characteristics that allow the
production of very diverse wines [27]. Although there are differences in the susceptibility of grapevine
cultivars to FDP [26,28–31], most of the varieties used for wine production in Piemonte are highly
susceptible ones, such as Arneis among the white cultivars and Barbera and Dolcetto among the red
ones [22,23]. In particular, the local red cv Nebbiolo is more tolerant to FD, showing both milder
symptoms and lower phytoplasma load compared to Barbera [22]. A recent study showed that FDP
acquisition efficiency by S. titanus from Barbera and Nebbiolo grapevine varieties as well as the
laboratory phytoplasma host (broad bean) is positively correlated to phytoplasma load in the source
plant [6]. No grapevine varieties are known to be immune to the disease [32]. If the crop is the main
source of infection, cvs that are poor hosts for vector acquisition should decrease the infection rate
with important consequences on the disease epidemiology [33]. The knowledge of the suitability of
the different cvs for vector acquisition may eventually suggest cv-specific control measures of FD.
The objective of this work was to investigate the role of different grapevine varieties grown in the
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Piemonte Region as a source of inoculum for the vector S. titanus. This information is crucial to design
a rational and effective control strategy for the containment of FDP epidemics.

2. Results

FDP load in infected source grapevines was measured by qPCR for 47 plants of the different
varieties and expressed as the number of FDP cells per ng of plant DNA (Table 1).

Table 1. Mean Flavescence dorée phytoplasma (FDP) load measured for different cultivars, expressed
as FDP cells/ng plant DNA ± Standard Error, and acquisition from different grapevine varieties
expressed as FDP-PCR-positive Scaphoideus titanus out of total tested insects.

Variety Number of Plants Used
for FDP Quantification FDP Load * Number of Plants Used

for Acquisition
PCR Positive/Total

Tested Insects

Arneis 12 230.50 ± 55.88 a 3 45/132
Brachetto 9 1136.19 ± 177.37 b 2 16/41
Dolcetto 7 677.17 ± 171.54 b 2 30/62

Freisa 3 1090.00 ± 346.58 b 3 37/89
Moscato 12 1216.81 ± 386.59 b 5 16/178

Timorasso 4 1294.70 ± 378.72 b 4 22/101

* Different letters refer to different mean values separated through the Holm–Sidak multiple comparison test.

A high variability of FDP load among plants of the same variety was observed, and the average
phytoplasma population ranged from 677 to 1295 cells per ng of plant DNA in the different varieties
except Arneis. The mean amount of FDP measured for Arneis (Figure 1) was significantly lower
than those detected for all the other varieties (ANOVA, F = 10.752, total number of samples 47,
with five degrees of freedom, p < 0.001, details of Holm–Sidak method, Table 1).
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Following one week of feeding on FDP-infected grapevines and three-week latency on broad
beans, S. titanus acquired FDP under field conditions from all the tested grapevine varieties, although
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with different efficiencies (Table 1). High proportions (34%–48%) of insects acquired FDP when caged
on Arneis, Brachetto, Dolcetto and Freisa, while lower proportions were recorded for leafhoppers
caged on FD-infected Timorasso and Moscato (22% and 9%, respectively). Leafhopper survival under
the experimental conditions (from the beginning of the field acquisition until the end of the experiment
four weeks later) varied from 40% to 70%, although the experimental setting was not designed to
evaluate insect survival on the different grapevine varieties. Indeed, experimental vineyards were
located in a restricted area of Piemonte, and they were all sloped, with an elevation ranging from
about 200 to 400 m a.s.l., although with different aspects. We cannot exclude the possibility that minor
differences in the vineyard location might have influenced leafhopper survival.

The generalized linear model showed a significant effect of the variety, a significant covariate
effect of FDP load and a significant interaction (Table 2).

Table 2. Output of the generalized linear model (GLM) analysis. df: degree of freedom, Sign.:
significance, FDP: Flavescence dorée phytoplasma.

Source
Type III

Wald Chi-Square df Sign.

(Intercept) 27.892 1 0.000
Variety 26.796 5 0.000

FDP 13.788 1 0.000
Variety× FDP 19.628 5 0.001

The parameter estimation of the GLM analysis is provided in Table 3.

Table 3. Parameter estimation of the Generalized Linear Model Analysis. Model: (intercept), Variety,
FDP, Variety × FDP. FDP: Flavescence dorée phytoplasma loads measured as phytoplasma cells/ng
plant DNA; Events: acquisition efficiency.

Parameter Parameter Estimation
95% Wald Confidence Interval

Significance
Upper Lower

Intercept 0.432 −0.544 1.408 0.385
Arneis −3.590 −5.377 −1.802 0.000

Brachetto −2.801 −6.339 0.738 0.121
Freisa −2.023 −3.565 −0.482 0.010

Moscato −2.457 −3.992 −0.923 0.002
Timorasso −3.538 −5.148 −1.929 0.000
Dolcetto 0 a – – –

FDP −0.001 −0.003 0.001 0.248
ARNEIS × FDP 0.023 0.010 0.035 0.000

BRACHETTO × FDP 0.003 −0.001 0.007 0.109
FREISA × FDP 0.002 6.342 × 10−5 0.005 0.044

MOSCATO × FDP 0.001 −0.002 0.003 0.554
TIMORASSO × FDP 0.002 0.000 0.005 0.024
DOLCETTO × FDP 0 a – – –

a Considered as reference and included in the intercept estimation.

Therefore, acquisition by the vector was significantly dependent on both the grapevine variety and
the FDP load, as well as on their interaction. In particular, a significant interaction between variety and
FDP load was observed for Arneis, Freisa and Timorasso varieties with respect to Dolcetto (Table 3).
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3. Discussion

The experiments confirmed that S. titanus successfully acquired FDP from infected grapevines
of six local varieties from the Piemonte Region, and demonstrated that efficiency depends on the
grapevine variety, FDP load, and their interaction.

When considering the phytoplasma population in the different grapevine varieties, FDP mean
loads varied from a few hundred to a few thousand cells per ng of grapevine DNA, according to
the plant and the different varieties. However, since phytoplasma loads for the different varieties
was estimated at different locations, the influence of different environmental conditions on FDP
multiplication cannot be excluded. Different varieties are cultivated at different locations according to
the product specifications for Denominazione di Origine Controllata and Denominazione di Origine
Controllata e Garantita (DOC and DOCG) wines, and this hampered the possibility of testing the
different cvs at the same location under productive field conditions.

Three red and three white varieties were used in FDP acquisition experiments. Among them, some
are highly susceptible to FDP, e.g., Dolcetto and Arneis, while others, such as Timorasso and Moscato,
are more tolerant. Statistical analysis of experimental data demonstrated that acquisition efficiency
was dependent on the grapevine variety and on FDP load in the source plants. Moreover, there was a
positive interaction for acquisition between variety and phytoplasma load and this interaction was
significant for most of the varieties. A similar work was done on the two most important cultivars of
the Piemonte Region, Barbera and Nebbiolo, and a clear relationship between phytoplasma load and
vector acquisition efficiency was found [6].

A different feeding behavior/preference of the vector on/for different grapevine varieties might
explain different acquisition efficiencies among the cultivars. However, no data are available to
support this hypothesis for the six local cultivars from Piemonte, and a detailed analysis of S. titanus
feeding behavior is so far available only for Cabernet Sauvignon [34]. Taken together, the data on
FDP acquisition by S. titanus suggest that the vector can acquire FDP with high efficiency and thus
spread the disease very fast in most of the varieties. In some grapevine cvs, e.g., Moscato and
Timorasso, phytoplasma acquisition appears relatively inefficient, but more data, obtained under
similar environmental conditions, are needed to confirm this finding.

In the Piemonte Region, high incidence of the disease is observed in areas where Barbera, Dolcetto,
and Arneis are the prevalent varieties. These are among the most suitable cvs for vector acquisition
(with acquisition efficiencies of 36%–59%; this work and [6]). On the other hand, infected plants are
less frequent in Moscato, Timorasso and Nebbiolo cvs, which are the less suitable ones for vector
acquisition (acquisition efficiencies of 9%–22%; this work and [6]). These results suggest that disease
spread correlates more with vector acquisition efficiency than with the FDP load in the source grapevine.
Indeed, infected plants of some varieties, like Timorasso and Moscato, host a relatively high number of
phytoplasma cells, but very few plants are infected under field conditions. Accordingly, acquisition
by the vector of these varieties was poor. On the contrary, plants of cv Arneis host low phytoplasma
populations, and the disease incidence is generally high, consistent with high acquisition efficiency by
the vector.

However, correlation between acquisition efficiency and disease spread can only explain
secondary (vine to vine) spread of the disease within the vineyard. It is known that, in these last years
in Piemonte, FD spread is also due to primary infections, sustained by incoming S. titanus adults that
fed on source plants outside the vineyards, e.g., gone-wild rootstock vines infected by FDP (Vitis riparia,
V. berlandieri, V. rupestris and their hybrids). Actually, many S. titanus occur in uncultivated areas
surrounding vineyards, and several of these are infected by FDP [35]. Preliminary results from our
laboratory confirm the role of infected leafhoppers from the wild compartment in the spread of the
disease in Piemonte [36].

The grapevine genotype is likely to influence several aspects of FD epidemiology, among these
are: (i) vector acquisition efficiency; (ii) phytoplasma multiplication; and (iii) symptom expression.
It is well-known that there are no resistant grapevine genotypes, although some cultivars are less
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susceptible to the disease [22,32]. According to the cited literature, low susceptibility is associated
with a low number of phytoplasma cells in the plant; however, this work provides evidence that even
highly susceptible varieties, like Arneis, may support low FDP multiplication. Nevertheless, they are
still good sources of infection for the vector. Therefore, even when cvs support low phytoplasma loads,
their attitude as FD source plants must be evaluated and taken into consideration for the epidemiology
of the disease. This also supports the phytosanitary measure of uprooting the infected plant at the
first appearance of symptomatic vegetation On the other hand, poorly susceptible cvs like Timorasso
and Moscato can host a relatively high phytoplasma load. These apparent contradictions highlight
the complexity of the FDP–grapevine–S. titanus interactions that are regulated by a number of factors
regarding the pathogen, the vector and the host plant. FD is caused by phytoplasmas of distinct 16S
ribosomal subgroups (V-C and V-D, [37,38]), but no differences have been found so far in their behavior
during infection of broad bean [12,39], the laboratory host of FD [10], or in their relationships with the
vector [40]. However, a differential behavior of distinct FD genotypes during grapevine colonization
has not been addressed. On the other hand, all European populations of S. titanus are genetically very
homogeneous, consistent with a single or a few introductions of this insect from North America [41–43]
and should have similar relationships with the phytoplasma. As for grapevine genetics, transcriptomic
analyses of FDP-infected plants revealed differences in different varieties [25,44,45], a reflection of
the diverse response strategies to microbial infections of different grapevine varieties [46]. Moreover,
recent data indicate that, among environmental parameters, at least temperature clearly influences
FDP multiplication in plants and vectors [12,39]. Plant genetics and environmental conditions are
probably the most important factors determining the success of host colonization by FDP.

4. Materials and Methods

4.1. Vector and Flavescence Dorée Phytoplasma Source Plants

For all the experiments, S. titanus, a vector of FDP under natural conditions, was used.
Vector colonies were established according to [24]. Two-year-old branches bearing leafhopper eggs
were collected in vineyards during winter, cut into 20–30 cm long pieces and kept in plastic bags in a
cold room at 4 ◦C. To allow egg hatching, 8–10 kg of wood pieces were put inside cubical, insect-proof,
screen houses (100 cm × 100 cm × 100 cm) in a glasshouse with natural light and temperature
ranging from 20 to 30 ◦C. The wood pieces were placed over a thin layer of a plastic carpet, and were
periodically humidified in order to avoid egg dehydration. Potted grapevine cuttings together with
potted broad beans (Vicia faba L.) were introduced in the screen house and replaced every 3 weeks.
Egg hatching started about 30–40 days after the introduction of the branches in the cage. Insect nymphs
were periodically collected and used for the experiments.

Vineyards of different viticultural areas of Piemonte Region, Italy, were monitored for the presence
of FD and the following were selected for the FDP acquisition experiments: Carezzano (cv Timorasso;
44.817081, 8.904196, slightly sloped, row orientation: North-West–South-East (NW–SE), elevation:
300 m above sea level (a.s.l.), aspect: East (E)) and Paderna (cv Freisa; 44.826099, 8.894926, slightly
sloped, row orientation: North–South (N–S), elevation: 300 m a.s.l.; aspect: North (N)) in Alessandria
province, Castel Rocchero (cv Dolcetto; 44.729536, 8.421548, sloped, row orientation: N–S, elevation:
400 m a.s.l., aspect: West (W)), San Marzano Oliveto (cv Moscato; 44◦45′26.4” N 8◦18′47.0” E, sloped,
row orientation: NW–SE, elevation: 300 m a.s.l., aspect: North–East (NE)) and Vesime (cv Brachetto;
44.619363, 8.211306, sloped, row orientation: NE–South West (SW), elevation: 225 m a.s.l., aspect: SW)
in Asti province and Vezza d’Alba (cv Arneis; 44.777526, 7.971033, sloped, row orientation: NW–SE,
elevation: 400 m a.s.l., aspect: NE) in Cuneo province (Figure 2).

Arneis, Moscato and Timorasso are white varieties, and the others are red ones. Basal, median
and apical leaves of symptomatic grapevine shoots were sampled according to [22], and analyzed for
the presence of FDP by nested PCR and PCR followed by restriction fragment length polymorphism
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analyses, as detailed below. Following FDP diagnosis, infected plants were labelled for successive
acquisition experiments.Int. J. Mol. Sci. 2016, 17, 1563 7 of 11 
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4.2. Flavescence Dorée Phytoplasma Acquisition Experiments

Acquisition experiments were performed during the vegetative seasons of 2013–2015. All the
acquisition experiments were carried out between mid-July and mid-August as, in this period, FDP
load in the plant is higher [22] and acquisition by the vector is more efficient [6].

For acquisition from FD-infected grapevines of the different varieties, vector nymphs were fed
on four plants of Timorasso, three of Arneis, three of Freisa, two of Brachetto, two of Dolcetto and
five of Moscato. All plants were previously identified as infected based on symptom observation
and PCR analyses (as described below). About 50 third-fifth instar nymphs of S. titanus were caged
inside a net cage on a symptomatic grapevine branch of an infected plant. After seven day-acquisition
access period (AAP) under field conditions, caged branches were cut from the plant and brought to
the laboratory where the insects were collected and transferred to broad bean plants, as these are
suitable herbaceous hosts for long-term maintenance of S. titanus and are routinely used for both FD
acquisition and completion of latency period (LP, [47]). LP lasted for 3 weeks and was carried out in a
climatic chamber at 24 ◦C, light:dark 16:8 h. All insects collected from the same branch were caged
together on the same broad bean plant and, at the end of the latency, all insects were singularly tested
by PCR for the presence of FDP, as described later.

4.3. DNA Extraction and Phytoplasma Detection by PCR

Total DNA was extracted from grapevine leaf midribs (1.5 g), and single insects according to [48].
For FDP diagnosis, 2 µL of DNA was used in direct PCR with universal primers P1/P7 [49]. Reaction
products were used as templates in nested PCRs driven by primers R16(V)F1/R1 [50]. Reaction and
cycling conditions were as detailed in the original papers. PCR products were separated in a 1%
agarose gel, buffered in TBE (90 mM Tris borate and 2 mM EDTA, pH 8.3), stained with ethidium
bromide and visualized under UV light.
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4.4. Flavescence Dorée Phytoplasma Quantification by qPCR

FDP load in infected source grapevines was measured as number of FDP cells per ng of plant
DNA, as previously detailed [22,51]. To quantify FDP and grapevine DNAs, FdSecyFw/Rv and
Vitis18SF1/R1 [22] were used, respectively. Standard curves for the absolute quantification of FDP
and host DNA were obtained by dilution of (i) plasmid p26SecYFD, containing the appropriate
secY gene target sequence from a local isolate of FDP; and (ii) total DNA extracted from healthy
plants, as described in [22]. Plant sample DNAs were diluted in ddH20 to a final concentration of
1 ng/µL and used (5 µL) as template in real-time assays together with iQTM SYBR Green Supermix
(Bio-Rad Laboratories, Hercules, CA, USA) and specific primer pairs at a final concentration of 300 nM,
in a volume of 25 µL. The PCR was performed in 96-well plates in a CFX Connect Real-Time PCR
(Bio-Rad Laboratories, Hercules, CA, USA) thermal cycler, following cycling conditions described
by [22]. Each sample was run in triplicate in the same plate. For each PCR, water instead of DNA was
used as negative control. Threshold levels, threshold cycles, and standard curves were automatically
calculated by the Bio-Rad CFX Manager software, version 3.0. Specificity of the reaction was tested by
running melting curves of the amplicons, following each quantification reaction.

FDP was quantified in 4 plants of cv Timorasso, 12 plants of cv Arneis, 3 plants of cv Freisa,
nine plants of cv Brachetto, 7 plants of cv Dolcetto and 12 plants of cv Moscato, including those
used for acquisition experiments (source plants). Plants of different cultivars were all from the same
vineyards, as detailed above.

4.5. Data Analyses

FDP loads measured in source grapevines of all cultivars were analyzed. Since raw data of
phytoplasma loads were not normally distributed and variances were not homogeneous, they were
log-transformed before analysis. To compare the phytoplasma loads measured in all plants of different
varieties, one-way ANOVA was performed. When significant, mean values were separated through a
Holm–Sidak multiple comparison test.

The effects of plant variety and FDP titer on the FDP acquisition efficiency by the vector (expressed
as the number of PCR-positive insects following feeding on different cultivars) were analyzed with a
generalized linear model based on a binomial distribution and a logit function as link. The variables
were grapevine cultivar as a factor, FDP load as covariate, and their interaction. All statistical tests
were performed using SPSS ver. 20.0.0 (2011) (IBM Corp. Armonk, New York, NY, USA).
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