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Abstract

Berardia subacaulis Vill. is a monospecific genus that is endemic to the South-western Alps,

where it grows on alpine screes, which are extreme habitats characterized by soil distur-

bance and limiting growth conditions. Root colonization by arbuscular mycorrhizal fungi

(AMF) is presumably of great importance in these environments, because of its positive effect

on plant nutrition and stress tolerance, as well as on structuring the soil. However, there is cur-

rently a lack of information on this topic. In this paper, we tested which soil characteristics and

biotic factors could contribute to determining the abundance and community composition of

AMF in the roots of B. subacaulis, which had previously been found to be mycorrhizal. For

such a reason, the influence of soil properties and environmental factors on AMF abundance

and community composition in the roots of B. subacaulis, sampled on three different scree

slopes, were analysed through microscopic and molecular analysis. The results have shown

that the AMF community of Berardia roots was dominated by Glomeraceae, and included a

core of AMF taxa, common to all three scree slopes. The vegetation coverage and dark sep-

tate endophytes were not related to the AMF colonization percentage and plant community did

not influence the root AMF composition. The abundance of AMF in the roots was related to

some chemical (available extractable calcium and potassium) and physical (cation exchange

capacity, electrical conductivity and field capacity) properties of the soil, thus suggesting an

effect of AMF on improving the soil quality. The non-metric multidimensional scaling (NMDS)

ordination of the AMF community composition showed that the diversity of AMF in the various

sites was influenced not only by the soil quality, but also by the slope. Therefore, the slope-

induced physical disturbance of alpine screes may contribute to the selection of disturbance-

tolerant AMF taxa, which in turn may lead to different plant-fungus assemblages.
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Introduction

A great deal of literature exists on the global species richness and distribution of mycorrhizal and

non-mycorrhizal endophytic fungi ([1–3]). Arbuscular mycorrhizal fungi (AMF), or Glomeromy-

cota [4], are obligate symbiotic fungi that penetrate plant roots and form the arbuscule, that is, a

specialized hyphal structure that develops inside cortex cells, and represents the main site of nutri-

ent exchange between partners [5]. These fungi have played an important role in the evolution of

land plants for more than four hundred million years [6], and they today colonize the roots of

most plants [5]. In turn, the plants, despite their ability to live independently, may increase nutri-

ent uptake, growth and reproductive success when associated with AMF [5]. Moreover, AMF

ameliorate soil quality [5] and improve the ability of host plants to withstand abiotic stress and

disease [7], thus increasing plant performances [8]. The host plants of AMF are usually co-colo-

nized by non-mycorrhizal endophytic fungi, including dark septate endophytes (DSEs). The latter

are characterized by melanised, septate hyphae that either extracellularly or intracellularly colonize

plant roots ([9],[10]). DSEs have been shown to influence plant growth and physiology [11], even

though the role of these endophytes in plant fitness is less clear than for mycorrhizal fungi [10].

The intensity and diversity of AMF colonization have been shown to be low at high alti-

tudes in different mountain environments ([12–18]), although contrasting results have been

reported (see [12],[17]), particularly for the Alps ([19]-[23]). AMF diversity is generally influ-

enced by the soil chemistry, and especially by the soil pH [24], while the effects of other factors

such as plant community [25] and soil disturbance [26] are less clear.

B. subacaulis Vill. (Asteraceae) is a rare species that is endemic to the South-western Alps,

which grows exclusively on high-altitude, calcareous screes (1,700–2,700 m asl). Preliminary

surveys have shown that this species is colonized by AM and DSE fungi (Mucciarelli and Fus-

coni, unpublished). This plant plays an important role in the conservation of alpine biodiversity,

because it belongs to a monospecific genus, and represents an old Tertiary lineage [27], with no

close extant relatives [28]. The plant is believed to have survived the climate changes of the past,

and to have persisted in extreme habitats with low inter-specific competition and few pollina-

tors because of the lack of floral specialization and the possibility of self-pollination ([29],[30]).

However, a great reduction in habitat suitability has been predicted for Berardia under future

climate change scenarios [30], on the basis of the results of species distribution modelling.

In the last few years, a great effort has been made to understand the factors that shape the

AMF community throughout the world. This paper is an attempt to add information to this

body of knowledge analysing the determinants of the abundance and community composition

of AMF in the roots of B. subacaulis Vill. To achieve this goal, plants from three alpine sites in

the South-West of Piedmont (Italy) and in the nearby part of France were sampled, and their

percentages of root colonization and AMF diversity were determined.

Moreover, because the B. subacaulis habitat is represented by sloping alpine screes, charac-

terized by a recurring downward movement of rock fragments and soil, the resulting data were

considered in relation to the morphological characteristics of soil, including the slope, and to

some physical-chemical properties of the soil, focusing on those linked to soil structure and sta-

bility. Since biotic factors are known to influence AMF populations, plant species abundance,

vegetation coverage and colonization by DSE in the roots of B. subacaulis were also considered.

Materials and methods

Study sites and sample collection

During the summer of 2014, three sites were chosen to represent the typical habitat of B. suba-
caulis (Table 1). These sites are characterized by unstable calcareous screes, consisting of coarse
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free-draining debris and sparse patches of basic loam. Because the availability of phosphate

and the pH are known to influence the abundance and community of AMF ([5],[24]), three

sites with only slight differences in these parameters were chosen.

From four to five non-neighbouring plots (5m × 5m) were randomly selected (N = 14) at

each site. Because of the rarity of this species, only one plant was dug up from each plot for the

subsequent microscopic and molecular investigations. Specific permission for plant sampling

at Bassa di Colombart (CLM, Argentera, CN, Italy) and Valcavera (VAL, Demonte, CN, Italy)

was not required since the two studied sites are outside protected areas and Berardia subacaulis
is not an endangered nor a protected species in Italy (according to Art. 15 of the Regional Law

82/32 which regulates the number of samples of the plant species for which collection in the

wild is allowed, Piedmont, Italy). A specific permission to collect five plants at the site of Mille-

fonts (Valdeblore, France) was issued by the Conservatoire Botanique National Méditerranéen

de Porquerolles (CBNMED, 34 Avenue Gambetta, 83400 Hyères, France) within a collaborative

research project between the CBNMED and the University of Genova (Italy) aimed at improv-

ing the knowledge of the biology of the species. Selected individuals were at full bloom and simi-

lar in size, with 3–4 fully developed leaves (S1 Fig). The main morphological characteristics of

the soils (slope, bare soil and stone coverage), vegetation coverage and phytosociological relevés

were recorded in each plot. A soil sample was collected from each plot at a depth of 20–40 cm

(in at least three different places in each plot), and stored in a plastic bag, for later determination

of the physical-chemical properties of the soil, that is, the soil properties. The air-dried samples

were sieved through a 0.20 mm mesh before the total nitrogen, total carbonate, active carbonate,

available extractable nutrients (P, K, Mg, Na, Ca), pH, carbon/nitrogen ratio, organic matter,

cation exchange capacity (CEC), electrical conductivity (EC) and field capacity (FC) were mea-

sured. The properties and characteristics of the soil and vegetation coverage are reported in S1

Table. The analyses were performed by the Regione Liguria—Servizi alle Imprese Agricole e

Florovivaismo, Laboratorio Regionale Analisi Terreni e Produzioni Vegetali (Sarzana, Italy).

Lateral roots of B. subacaulis root samples were detached from the tap root at the same depth as

that considered for the soil analysis in order to conduct microscopic and molecular analyses.

Percentage of root colonization

The roots of different thickness of each plant were cut into segments of about 5 mm and ran-

domly pooled into three samples. They were then cleared and stained with trypan blue, accord-

ing to the usual procedures [31]. The percentages of total AM root colonization (AMF),

arbuscules, AM vesicles, dark septate endophytes (DSE), and microsclerotia were estimated

microscopically at a 200x magnification, by means of the line-intercept method [32], as the

percentage of the fungal structure found to the total of interceptions (about 300 interceptions

per sample).

Genomic DNA extraction, PCR amplification, cloning and sequencing

Two independent DNA extractions (0.5 g of fresh weight) were conducted on the 14 B. suba-
caulis root samples using a DNeasy Plant Mini Kit (Qiagen, Crawley, UK). The DNA extracts

Table 1. Details of the sampling sites.

Site Code Longitude Latitude Altitude (m asl)

Bassa di Colombart (IT) CLM 6.91673 44.36068 2345

Millefonts (FR) MIL 7.18642 44.09843 2039

Valcavera (IT) VAL 7.09784 44.38426 2408

doi:10.1371/journal.pone.0171866.t001
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were stored at −20˚C. Partial small subunit (SSU) ribosomal RNA gene fragments were ampli-

fied using nested PCR [33], with the universal eukaryotic primers NS1 and NS4 [34], and a

subsequent amplification round with the Glomeromycota-specific primers AML1 and AML2

[35]. Although longer and higher discriminating regions are available [36], the AML1/AML2

SSU region was targeted because most Glomeromycota diversity data are obtained using this

region, which provides a larger comparative DNA sequence data-set. PCR was carried out

using 0.2 mM dNTPs, 3.5 mM MgCl2, 0.5 μM of each primer, 2 units of GoTaq1 (Promega,

Milan, Italy), and the supplied reaction buffer, to obtain a final volume of 20 μl. Amplifications

were carried out in 0.2 ml PCR tubes using a Biometra T Gradient thermocycler, according to

the following steps: 5 min initial denaturation at 94˚C, 35 cycles of 1 min at 94˚C, 1 min at

55˚C and 58˚C for the two nested PCR rounds, respectively; 1 min at 72˚C; and a final elonga-

tion of 10 min at 72˚C. All the PCR products were checked using 1.5% agarose gel stained with

ethidium bromide (Sigma-Aldrich, Milan, Italy). The four nested PCR product replicates were

pooled and purified using Wizard1 SV Gel and a PCR Clean-Up System kit (Promega).

Before ligation, the quantity and quality of the PCR amplicons were checked using a spectro-

photometer (NanoDrop Technology, Wilmington, DE). Cloning was done using the pGEM-T

vector system (Promega), and transformed into Escherichia coli (Xl1 blue). At least 40 recombi-

nant clones per amplicon library (No. = 14) were screened for the AML1/AML2 fragment (ca.

800 bp) on agarose gels. The clones were sequenced, using either the universal primer SP6 or

T7, by LMU sequencing services (Munich, Germany).

Sequence analyses and phylogenetic inference

Sequence editing was done using Sequencher V4.2.2 (Gene Codes Corporation, Ann Arbor,

MI, USA). Potential chimera sequences were identified using the Chimera UCHIME algo-

rithm implemented in Mothur v1.33.3 for Mac [37]. All the sequences were aligned using

the multiple sequence comparison alignment tool in MAFFT v6 [38]. Distance matrices were

constructed using the dist.seqs function implemented in Mothur. These pairwise distances

were used as input to cluster the sequences into Operational Taxonomic Units (OTUs) of

a defined sequence identity. A threshold of 97% identity was used to define the OTUs.

Although this distance cut-off is arbitrary, and can be considered controversial, it was cho-

sen on the basis of previous studies on AMF biodiversity ([33],[39]). A search for similar

sequences was conducted with Blast v2.2.29 [40] using the latest release of the MaarjAM

AMF Virtual Taxa database (classified as VTxy, where “xy” is a numerical code) [41], inte-

grated with the SSU Silva database [42], cleared of Glomeromycota sequences. The results

of two major reorganizations of the Glomeromycota classification have recently been pub-

lished ([4],[21]). In this study, for ease of data handling, the phylogenesis derived from the

work of Schüßler and Walker ([43],[44]) was adopted to affiliate the OTUs to the corre-

sponding taxonomy. Since the ribosomal DNA fragment under study can make it difficult

to phylogenetically separate some of the genera described in [43], clades were sometimes

used (i.e. Rhizophagus/Sclerocystis, Funneliformis/Septoglomus, and Glomus sensu lato) in

order to group sequences with a conservative approach. Any Non-Glomeromycota OTUs

were removed from the dataset.

Phylogenetic analysis was performed on the sequences obtained in the present study, and

on representative sequences retrieved from the MaarjAM AMF Virtual Taxa database [41].

Phylogenetic analyses were performed using MEGA6 [45]. MUSCLE implemented in MEGA6

was used as an alignment algorithm (default parameters). Neighbour-joining (NJ), with 1000

bootstrap replicates, and a Kimura 2-parameter model were used as the tree-building method.

Corallochytrium limacisporum (L42528) was used as the outgroup taxon.

Arbuscular mycorrhizal fungi of Berardia subacaulis
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Statistical analyses

Four different matrices were generated to perform the statistical analyses. Firstly, an abun-

dance matrix was compiled in which the number of different OTU sequences in a given plot

was reported. In order to ensure that the abundance of dominant and rare phylotypes con-

tributed equally to the resultant matrix, the data were Hellinger-transformed [46]. A second

matrix was compiled in which the percentage of root colonization was reported. A third

environmental matrix was compiled in which the soil properties, the soil morphological fea-

tures (slope, stone coverage and bare soil) and the vegetation coverage were reported. Per-

centage of plant coverage was estimated using the phytosociological relevés matrix. Finally,

a fourth plant species abundance matrix was compiled transforming the Braun Blanquet

scale used in phytosociological relevés to cover percentage using ‘simba’ R package [47] and

data was Hellinger-transformed [46].

A species accumulation curve was generated, using the Ugland et al. method [48], to

examine whether the number of OTUs increases as the sample size increases. The following

were calculated for each plot in order to assess the differences in AMF community struc-

ture: taxon richness, Shannon diversity [49], Simpson’s dominance [50] and Fisher’s alpha,

which is robust for comparisons among samples of different sizes [51]. A Kruskal-Wallis

test was run to test for the overall differences in the diversity indices and percentage of col-

onization between the sampling sites, and a non-parametric Nemenyi–Damico–Wolfe–

Dunn post hoc test was used to detect the pairwise differences between sites. An indicator

species analysis was carried out using the ‘multipatt’ function in the ‘indicspecies’ R pack-

age, with 999 permutations [52], in order to assess whether the fungi were significantly

associated with a particular locality. This is a classification-based method that is used to

measure associations between species and groups of sampling sites [53]. Significance was

calculated using 10,000 random interactions, and the significance level was set at P < 0.05.

The distinctiveness of vegetation relevés on each locality was tested with an analysis of sim-

ilarities (ANOSIM) in R using 10,000 permutations. Furthermore, the difference in plant

species abundance between the plots of the different sites was assessed using the non-

parametric Nemenyi–Damico–Wolfe–Dunn post hoc test. Indicator species analysis was

carried out in order to assess whether the plant species were significantly associated with

each locality.

In order to elucidate whether the environmental variables influenced the endophyte fungal

communities, a non-metric multidimensional scaling (NMDS) was run with the ‘metaMDS’

function, and Bray–Curtis dissimilarities among plots calculated with multiple restarts (no. =

1,000) using ‘vegan’ R package [54]. The ‘envfit’ function in ‘vegan’ was used to determine the

relationships between the AMF composition and the soil properties and characteristics. A

Kendall tau correlation coefficient was employed to determine the relationships between the

percentage of AMF colonization and the soil properties, the soil morphology, the vegetation

coverage and the DSE colonization.

Results

AM root colonization and fungal diversity of B. subacaulis

The AM colonization of the B. subacaulis roots ranged between about 37 and 60% of the root

length, with no significant differences in percentage of colonization between the three loca-

tions. Arbuscules occurred along 61 to 85% of the colonized root lengths, while the occurrence

of vesicles was lower. The total colonization of DSE was significantly higher in Bassa di

Arbuscular mycorrhizal fungi of Berardia subacaulis
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Colombart (CLM) than in Millefonts (MIL), while the microsclerotia percentage was higher in

CLM with respect to Millefonts (MIL) and to Valcavera (VAL) (Table 2 and Fig 1).

Template DNA from 14 root samples of B. subacaulis was successfully amplified with the

AML1/AML2 primer combination, and PCR products of the expected size (ca. 800 bp), which

were then used to create clone libraries, were obtained. Overall, 560 clones were screened by

means of PCR; out of these, 510 contained the SSU rRNA gene fragment. After preliminary

BLASTn searches, a total of 380 clones were found to correspond to the AMF sequences, while

the remaining clones were mainly identified as plant sequences (22.4%, data not shown). The

AMF sequences were grouped into 31 OTUs, and the correspondence between the OTUs and

the closest VT, after a blast search in the MaarjAM database, is shown in S2 Table. The 31 rep-

resentative OTU sequences were registered in GenBank, under the following accession num-

ber: KY416573-KY416603, and are shown in bold in the phylogenetic tree in Fig 2.

Three out of four orders of the phylum Glomeromycota [4] were retrieved, thus indicating a

good coverage of the biodiversity by the used primers [55]. The sequences were distributed over

six families (Glomeraceae, Claroideoglomeraceae, Paraglomeraceae, Diversisporaceae, Gigaspor-

aceae, and Acaulosporaceae) (Fig 2) or eight clades/genera (see S2 Table). The most abundant

and diverse group in the roots of the B. subacaulis samples was, by large, the Glomeraceae, which

represented 52% of the total sequences grouped in 16 OTUs, and this was followed by the Claroi-

deoglomeraceae (22%), represented by 7 OTUs, and by both the Diversisporaceae and Paraglo-

meraceae, which were represented by 3 OTUs each. The Acaulosporaceae and Gigasporaceae

were both represented by one OTU each (S2 Table). Considering their position in the phyloge-

netic tree (Fig 2), the most abundant and diverse genus grouping were those ascribed to Glomus
sensu lato (32%, 12 OTUs), followed by Rhizophagus/Sclerocystis (21%, 3 OTUs), Claroideoglo-
mus (17%, 7 OTUs), Diversispora (10%, 3 OTUs), Funneliformis/Septoglomus (4%, 1 OTU), and

Paraglomus (5%, 3 OTUs). The latter genus included OTU019, and probably represents a new

clade, as was reported in Öpik et al. [44]. Acaulospora and Scutellospora were both represented

less (3%, 1 OTU each) (Figs 2 and 3A). The sampling effort curve indicated that the number of

analysed root samples was sufficient to provide coverage of the AMF diversity in B. subacaulis,
since the curve almost reached the plateau (S2 Fig).

AMF variations between the sampling sites

As shown in the Venn diagram (Fig 3B), the three sites shared 10 OTUs, out of which 3 (OTU

004, OTU005 and OTU008) belonged to Glomeraceae (the first one to Rhizophagus/Sclerocystis,
VTX00113, and the remaining two to Glomus sensu lato, VTX00342 and VTX00222), 3 (OTU

002, OTU003, OTU017) to Claroideoglomeraceae (Claroideoglomus, VTX00056, VTX00194

and VTX00055), 2 (OTU001 and OTU006) to Diversisporaceae (Diversispora VTX00062,

Table 2. Percentage of Fungal Colonization of the B. subacaulis Roots. The mean values ± SE of five root apparatus replicates are given as percent-

ages of the root length.

Sampling sites AMF DSE

Total AC VC Total MS

CLM 44.23 ± 5.98a 37.53 ± 5.67a 20.37 ± 4.83a 33.38 ± 2.80a 12.87 ± 2.85a

MIL 37.30 ± 9.11a 24.39 ± 6.46a 15.93 ± 4.70a 15.73 ± 3.29b 1.86 ± 0.56b

VAL 59.91 ± 4.45a 36.91 ± 2.27a 20.53 ± 4.47a 17.51 ± 5.02ab 2.94 ± 1.82b

AMF, Arbuscular mycorrhizal fungi; AC, arbuscular colonization; VC, vesicular colonization; DSE, dark septate endophytes; MS, microsclerotia. CLM,

Bassa di Colombart; MIL, Millefonts and VAL, Valcavera.

Values with the same letters do not differ significantly at P < 0.05 (Kruskal–Wallis test; post-hoc non-parametric Nemenyi–Damico–Wolfe–Dunn test).

doi:10.1371/journal.pone.0171866.t002

Arbuscular mycorrhizal fungi of Berardia subacaulis

PLOS ONE | DOI:10.1371/journal.pone.0171866 February 13, 2017 6 / 18



VTX00354) and 2 (OTU012 and OTU019) to Paraglomeraceae (Paraglomus VTX00335, VTX

00351). Although about only one third of the 31 OTUs were common to the three sites, this

third included 69.5% of the retrieved OTU units, and five genus/clades out of 8, with only Fun-
nelliformis/Septoglomus, Acaulospora and Scutellospora being excluded (Fig 3 and S2 Table).

Two (OTU018, OTU031), three (OTU014, OTU024, OTU028) and six AM fungal OTUs

(OTU016, OTU021, OTU022, OTU023, OTU026, OTU030) were retrieved exclusively from

the VAL, CLM and MIL sites, respectively. OTU010 belonging to the Acaulospora genus (VTX

Fig 1. Representative images of B. subacaulis roots colonized by arbuscular mycorrhizal fungi (AMF,

a-c) and dark septate endophytes (DSE, d-e). (a) Extensive AMF colonization; (b) arbuscules (A) and

intracellular hyphal coils (C); (c) intercellular vesicle (V); (d) DSE hyphae growing on the root epidermis and

inside the cortex; (e) microsclerotium (MS); a, bar = 500 μm; b-d, bar = 100 μm; e, bar = 20 μm.

doi:10.1371/journal.pone.0171866.g001
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00023) was found in MIL and CLM. In the same two sites, were found also OTU007, which is

affiliated to Glomus sensu lato (VTX00143) and OTU020, which belongs to Rhizophagus/Scler-
ocystis, VTX00204. On the other hand, OTU025, which belongs to Claroideoglomus, (VTX00

193) was the only OTU that was shared by VAL and CLM. Finally, another 4 OTUs (OTU011,

OTU015, OTU027 and OTU029), which were assigned to Glomus sensu lato (VTX00153,

VTX00149, VTX00418 and VTX00342) were retrieved from both VAL and MIL, which also

shared both of the unique OTUs affiliated to Funneliformis/Septoglomus (VTX00064) and Scu-
tellospora sp. (VTX00049), respectively, that is, OTU013 and OTU009 (Fig 3A and 3B). Never-

theless, the indicator species analysis only identified OTU010 (Acaulospora sp. VTX00023),

which was mainly found in the MIL site (IndVal, 0.8 [P, 0.03]).

MIL showed a significantly higher diversity than CLM in all the diversity indices (α, H and

I), while VAL was never significantly different from the other sites (Fig 4). Unlike the AMF

diversity, the AMF richness was not significantly different in the three sites, although MIL har-

boured the higher species richness (Fig 4).

Factors that shape the root colonization and AMF community

composition

The percentage of total AMF colonization in the plots was positively correlated to the available

extractable calcium and potassium (Ca and K), CEC, EC and FC, as shown in Table 3. The per-

centages of AMF arbuscules and vesicles were positively correlated to FC. Moreover, a positive

correlation was found between the percentages of vesicles and DSE colonization (Table 3).

Vegetation coverage was unrelated to AMF root colonization in B. subacaulis (Table 3).

Fig 2. Phylogenetic tree showing the placement of the AM fungal OTUs associated with B.

subacaulis. Reference sequences were retrieved from the MaarjAM AMF Virtual Taxa database [41].

Corallochytrium limacisporum (L42528) was used as the outgroup taxon.

doi:10.1371/journal.pone.0171866.g002
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The ANOSIM analysis indicated a significant difference in the similarity of the vegetation

relevés (R = 0.9692 p<0.001) between localities. In particular, VAL showed a significantly

higher plant species richness than MIL, while CLM was never significantly different from the

other sites (S3 Fig). Indicator species analysis identified from three to four species which were

significantly associated to each site (S3 Table). No significant correlations were found between

plant and fungal diversity indices.

The NMDS ordination of the AMF community composition showed an acceptable stress

level (0.19), thus indicating a good representation of the AMF taxa composition. The NMDS

ordination did not show a clear separation of plots according to the sampling sites (Fig 5).

Four out of seventeen variables of the soils (Na, Mg, EC and slope) fitted onto the NMDS as

vectors, and showed a significant correlation (p< 0.1) with the AMF community composition

(Fig 5). Among these variables, the available extractable magnesium (Mg), EC and slope were

the variables most closely related to the AMF community composition in the plots (p< 0.05).

Fig 3. (a) The ordinated heat-map based on occurrence classes (<1% absent, white, >30% dominant,

black; light to dark grey, intermediate percentages) of the fungal operational taxonomic units (OTU’s,

rows). The genera, or clade, and the virtual taxa assignments are also indicated for the 31 OTUs. (b) Venn

diagram showing the number of shared and site-specific AMF OTUs. (Bassa di Colombart, CLM;

Millefonts, MIL; Valcavera, VAL).

doi:10.1371/journal.pone.0171866.g003
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Fig 4. Box plot showing AMF diversity plots and the richness values of each site. The taxon richness

(S), Shannon diversity (H), Simpson’s dominance (I), and Fisher’s alpha (alpha) values are reported. Boxplots

with the same letter are not significantly different (p > 0.05), according to the non-parametric Nemenyi–

Damico–Wolfe–Dunn post hoc test. CLM, Bassa di Colombart; MIL, Millefonts; VAL, Valcavera.

doi:10.1371/journal.pone.0171866.g004

Table 3. Correlation between the Percentage of AMF Root Colonization, Soil Properties, Soil Morphol-

ogy, Vegetation Coverage and DSE Colonization Calculated Using the Kendal Tau.

Variables Total A V

TN 0.278 0.144 -0.022

AC -0.233 0.167 -0.112

TC -0.376 -0.155 -0.211

Ca 0.508 0.243 0.211

K 0.461 0.281 0.362

Mg 0.124 -0.169 0.090

Na 0.196 0.012 0.139

C/N -0.100 -0.233 -0.223

OM 0.258 0.101 -0.023

pH -0.402 -0.324 -0.104

CEC 0.442 0.221 0.233

EC 0.515 0.328 0.153

FC 0.530 0.442 0.544

SL -0.139 0.023 -0.105

BS 0.290 0.087 0.015

SC -0.208 0.061 -0.234

VC 0.077 -0.026 0.193

DSE 0.244 0.333 0.503

MS -0.011 0.149 0.207

A, arbuscular colonization; V, vesicular colonization; TN, total nitrogen; AC, active carbonate; TC, total

carbonate; Ca, K, Mg, Na (available extractable nutrients); C/N, carbon/nitrogen ratio; OM; organic matter;

CEC, cation exchange capacity; EC, electrical conductivity; FC, field capacity; SL, recorded slope; BS, bare

soil; SC, stone coverage; VC, vegetation coverage; DSE, dark septate endophyte colonization; MS,

microsclerotia colonization. Significant correlations are marked in bold (P < 0.05)

doi:10.1371/journal.pone.0171866.t003
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Discussion

Root colonization and AMF diversity in B. subacaulis

The AMF in the B. subacaulis roots showed a comparable degree of colonization (37–60%)

with those recorded in other sites with disturbed soils [56]. The root colonization percentages

largely exceeded those found by Binet et al. [20] in Artemisia umbelliformis, a plant that grows

on alpine calcareous bedrocks in Switzerland, which are very poor in phosphorous nutrients,

and confirmed that AMF root colonization is not depressed at altitudes of between approxi-

mately 2000 and 3000 m asl ([19]-[23]) in the Alps.

The AMF communities of the B. subacaulis roots were identified in this work for the first

time on the basis of 18S amplicons. Amplification with the nested PCR approach gave a wide

coverage of the Glomeromycota phylum, including three out of four orders and six out of the

ten Glomeromycota families ([36],[43]). All the detected OTUs corresponded to already

known virtual taxa, thus suggesting that, although the diversity of the Glomeromycota phylum

had been overlooked in many ecosystems [57], the recent studies that have investigated AMF

in continents, geographical regions and biomes ([58],[59]) have covered most of the AMF

diversity.

Most of the 31 OTUs belonged to Glomerales (Glomeraceae 52% and Claroideoglomera-

ceae 22%), which are known to dominate AMF communities in many ecologically different

environments ([39],[41],[60–63]). The remaining 26% of the OTUs was composed of Diversis-

porales (Diversisporaceae 10%, Acaulosporaceae 3% and Gigasporaceae 3%) and Paraglomer-

ales (Paraglomeraceae 10%). The most represented family among the Glomerales was that of

Glomeraceae, with Glomus sensu lato and Rhizophagus/Sclerocystis being very abundant in the

Fig 5. Joint plot of the NMDS ordination of the AMF communities colonizing the B. subacaulis roots in

the different plots and the significance vectors (p < 0.1) of the environmental variables across the

sites. The vectors graphically represent the correlations of the NMDS axes to each of the measured variables

of the soil. The length of the arrow is proportional to the strength of the correlation between the environmental

variables and community dissimilarities. Mg, available magnesium; Na, available sodium; EC, electrical

conductivity; SL, slope. Polygons have been used to group the plots in the same site. Symbols: red, filled

squares = MIL, Millefonts; blue,filled circles = CLM, Bassa di Colombart, and yellow, filled diamonds = VAL,

Valcavera.

doi:10.1371/journal.pone.0171866.g005
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root samples. The scree substrates in which B. subacaulis lives consist of mobile rocky debris of

different sizes that can cause repeated fragmentations of the mycelial network, and they likely

induce a selection of disturbance-tolerant AMF phylotypes, as already shown for other types of

habitat [26]. Therefore, the abundance of Glomus sensu lato is not surprising. In fact, Glomus
species have frequently been found in physically disturbed habitats, such as in agricultural

landscapes ([56],[64],[65]), restored semi-natural grasslands [26] and coastal sand dunes [66].

The abundance of Glomus in disturbed habitats has been related to its high capacity to sporu-

late [64], to colonize roots from AM root fragments [67] and to readily form anastomoses [68].

All these characteristics may increase the competitive ability of these fungi and the rapidity

and extent at which the external mycelia develop in soil.

AMF community variations between the sampling sites

Roughly one third of the 31 OTUs retrieved from the roots of Berardia were found in the three

sites. These OTUs were phylogenetically related to 5 genus/clades out of 8, and most of them

were characterized by a high number of OTU units, retrieved from the roots (S2 Table). Thus,

a core of AMF taxa presumably colonizes a large part of the Berardia roots. A similar situation,

even though at a much larger scale, was found in potato roots in the Andes [69], where certain

Acaulospora, Cetraspora, Claroideoglomus and Rhizophagus formed an AMF core-species com-

munity that had remained conserved over a wide range of environmental conditions. These

results could indicate an important role of the plant species in structuring the host fungal com-

munity [24]. However, because some of the core-AMF of B. subacaulis were phylogenetically

related to VTX00222, VTX00113, and VTX00193, which are abundant in other continents and

climatic zones [59], our findings are also in agreement with the idea that some AMF taxa are

distributed throughout the world. A shared pool of geographically widespread non-host-spe-

cific taxa, in fact, might be present in many different ecosystems, probably as a result of their

efficient spore dispersal ([5],[70]). It was not the scope of this work to establish which of the

two mechanisms could determine the Berardia AMF core-community.

One third of the OTUs were only retrieved from one site (2 in VAL, 3 in CLM and 6 in

MIL). The other OTUs were found in two sites, with MIL and VAL sharing the highest num-

ber of OTUs. Nevertheless, an indicator species analysis, which accounts for both the abun-

dance and frequency of species in sampling sites, identified only OTU010 (Acaulospora sp.

VTX00023) as an indicator of a specific site (MIL). These results are in agreement with the sig-

nificantly higher diversity recorded in MIL than in CLM (Fig 4). The significant association

between MIL and Acaulospora deserves further investigation to establish the potential ecologi-

cal functions of this AM genus. In fact, Acaulosporaceae sequences have frequently been

detected in plant roots from very different highlands in Europe and in other continents [71],

and species of the Acaulospora genus have been found associated with several pioneer plants of

subnival and nival scree communities ([22],[69]).

The diversity and composition of AMF communities varied between the sites, as shown by

the significantly higher values of α, H and I at the MIL site than at CLM (Fig 4). The level of

richness of the AMF communities detected in the Berardia roots was in the same range as

those previously detected in some plants at high altitudes in the Alps [72], and was generally

lower than those found at lower altitudes [62]. Nevertheless, the diversity indices of coloniza-

tion recorded at the site with the lowest altitude (MIL) were not significantly higher than those

of the highest altitude’s site (VAL) while they were higher than those found at the intermediate

altitude (CLM). This lack of an altitudinal trend suggests that altitude is not a determinant of

the AMF community in B. subacaulis.

Arbuscular mycorrhizal fungi of Berardia subacaulis

PLOS ONE | DOI:10.1371/journal.pone.0171866 February 13, 2017 12 / 18



Factors that affect root colonization and AMF communities

Both biotic and abiotic factors have been shown to influence the intensity of AM root coloniza-

tion [5]. However, the AMF colonization in this study was not related to vegetation coverage

or to DSE colonization, with only the vesicles being directly related to DSEs (Table 3). High

DSE levels have typically been documented in alpine plants since the first studies that were

conducted in mountain habitats [73], and they occur up to very high elevations [23]. Intraradi-

cal AM vesicles are lipid storage nutrient structures whose development is stimulated by less

favourable conditions for root growth [74], which could instead favour root colonization by

DSE. However, this possibility still needs to be confirmed, because the few studies reported so

far on the interactions between these two common root symbionts have given conflicting

results. Both competition and facilitation between AMF and DSEs have been documented

([75],[76] and references therein), thus pointing to a heterogeneous response that may depend

on environment-plant species interactions.

When abiotic soil parameters are considered, it can be seen that the AMF colonization of

Berardia roots is positively correlated to the available calcium and potassium (Ca and K), CEC,

EC and FC (Table 3). Soil CEC is indicative of the capacity of soil to retain positively-charged

ions, and it influences the soil structure and stability [77]. The latter is also influenced, at least in

part, by the abundance of AMF. It is in fact known that: (1) the bulk of the AMF organisms are

formed by the extraradical mycelium [74], and a relation exists between the length of the colo-

nized roots and that of the extraradical hyphae [78]; (2) the structure of the soil is improved

directly by the extraradical AM hyphae that extend from the host roots into the substrate, and

enmesh soil particles and, indirectly, by their production of glomalin, a glycoprotein involved in

the formation of water-stable soil aggregates ([79],[80]). The cation exchange capacity influences

EC [81], and may be related to FC, because water retention and availability has been shown to be

higher in well-structured and colonized soils [5].

The plant communities associated to B. subacaulis significantly differed between sites with

regards to diversity, species richness and site-specific species. The latter are mainly mycor-

rhizal and, by hosting different AMF taxa and/or richness, the possibility exists that they could

influence the AMF communities of B. subacaulis both directly and indirectly, through modify-

ing the soil properties. However, this has been shown not to occur, in accords with the sugges-

tion of [82] that plant species identity may be less important than other factors in structuring

local AMF communities.

The NMDS ordination confirmed that the community composition of AMF changed from

plot to plot, and was affected by soil parameters related to salinity (EC, Mg and Na) plus slope

(Fig 5). This result is in line with previous findings that showed that soil salinity may influence

the distribution of AMF in agricultural soils [83]. Moreover, even if to our knowledge, the

impact of slope on AMF diversity has not been reported in the literature, it probably affects

both water and ion leakage and the stability of the substrate. In fact, slope had the opposite

effect on the AMF diversity of the soil salinity parameters (Fig 5). Moreover, because of the

increasing downward movement of rock fragments and soil, slope may contribute to mechani-

cal disturbance of the substrate in mountain screes, probably physically disrupting AM hyphal

networks, as it occurs in ploughed soils, and this may affect the AMF community, as men-

tioned above.

Conclusions

In the present study, we have investigated fungal diversity in an environment that has so far

been studied little, but which is very common in the Alps, calcareous scree slopes. The plant
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species in this harsh environment are subjected to extreme climatic and edaphic variable

ranges, and they have to adapt to debris falls and substrate movements.

Arbuscular mycorrhizal fungi are known for their capacity to improve plant performances

in hostile environments and under different stresses, especially drought and poor soil quality.

This study has demonstrated that the abundance and diversity of AMF in B. subacaulis
roots is related to the chemical and physical properties of the soil and, according to the litera-

ture, has suggested a role of AMF in improving soil quality. Moreover, it has shown that also

the slope influences AMF diversity.

Although the soil profiles of Alpine screes differ very little, these screes are very heteroge-

neous, as far as the rate of the substrate movements in function of the slope and debris sizes is

concerned. Despite the established relationships between the occurrence of AM fungi and the

physical disturbance of soils in an agronomic context, to date few studies have examined the

effects of slope on AM fungal diversity and abundance in a natural ecosystem. We suggested

that the aforementioned heterogeneity of Alpine screes might have contributed to the selection

of AMF taxa with different degrees of disturbance tolerance, thus creating the conditions for a

variegated situation of plant-fungus assemblages.

The study of the interactions between threatened plants of extreme habitats, such as B. sub-
acaulis, and the associated AMF is gaining importance because of their implications on species

conservation, especially in view of the ongoing climate changes. In fact, variations in the occur-

rence and diversity of AMF can influence the stability and population dynamics of an ecosys-

tem by changing plant competiveness and persistence.
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