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Abstract. Charged particle therapy delivered using scanned pencil beams shows the potential to
produce better dose conformity than conventional radiotherapy, although the dose distributions
are more sensitive to anatomical changes and patient motion. Therefore, the introduction of
engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the
development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions
analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image
Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The
tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a
synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of
organ movements on dose distributions during treatment deliveries with protons and carbon-
ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm®
planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of
170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences
compared with benchmarked Treatment Planning System results are negligible (<10 Gy).

1. Introduction

Although showing a strong expansion in recent years [1], charged particle therapy as a standard
treatment is still developing, and auxiliary technologies that are standard in modern photon radiotherapy
[2, 3] systems are still lacking [4]. In particular, adaptive radiotherapy methods would need to be
introduced, since the advantage of the better dose conformity offered by charged particle therapy comes
to the price of greater sensitivity to delivery-time targeting uncertainties [5], such as patient motion.
This work presents a tool (hamed RIDOS, from Real-Time lon DOse Planning and Delivery System) for
fast dose distribution analysis, able to monitor the dose as it is being delivered, whilst maintaining
similar accuracy to current clinical standard and without prolonging the delivery time. The core of the
tool is represented by a benchmarked irradiation-outcome computation algorithm (Forward Planning,
FP) for scanned ion beams [6], parallelized and adapted to run efficiently on the GPU architecture (Fast-
FP, F-FP). The tool receives in real-time the measured beam parameters through a direct and transparent
connection with the Dose Delivery System (DDS) of a synchrotron-based facility. Online motion
monitoring data will be used to correlate tumour and organ motion with the temporal structure of the
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beam delivery and 4D computed tomography (CT) image to reconstruct a dose-time distribution,
incorporating both interplay effects and range changes. The dose distribution will be repeatedly
calculated during the irradiation, i.e. after the delivery of each energy layer (spill). Moreover, thanks to
a Fast Image Deformation (F-1D) algorithm, each spill-dose is mapped back to the reference image. This
would make possible to monitor the progressive emergence of a motion-corrected dose distribution
during treatment, and therefore to promptly identify motion artefacts.

2. Materials and Methods

The scheme of the RIDOS pipeline is shown in Fig. 1, where the reported times are related to a
synchrotron-based facility. Some of the tool components are executed before the start of the treatment,
while the others are performed in the inter-spill time, which is approximately 3 seconds. The planned
and the delivered dose are calculated in around 300 ms, while the fast dose comparison takes 400 ms.
The whole pipeline is completed by far within 1 second.
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Figure 1. General scheme of the presented tool. OIS = Oncological Information System; OTS =
Optical Tracking System; DDS = Dose Delivery System; F-FP = Fast Forward Planning; F-ID =
Fast Image Deformation.

2.1 CPU off-line pre-processing

2.1.1 Registration. A 4D-CT scan is an image covering the entire breathing cycle, composed by a set of
3D-CT volumes, each corresponding to a particular breathing phase. Due to the respiration, voxels may
migrate and distort among breathing phases, making the comparison of the different 3D-CT volumes on
a voxel-by-voxel basis problematic. Image registration is a method of aligning two images into the same
coordinate system, so that the aligned images can be directly compared, combined and analyzed [7]. A
deformable image registration method was performed on CPU, before the treatment, between each
breathing phase CT (moving image) and the CT used to plan the treatment (reference image), in order
to obtain the corresponding transformation. A parametric non-rigid registration method was adopted,
using Bspline transformation and Mattes Mutual Information [8] as similarity measure. Those
transformations are then used by the F-ID algorithm (see paragraph 2.3.1).

2.1.2 Pretreatment inputs. The following data are loaded and processed before the treatment start: a) the
patient CT (or 4D-CT), needed by the off-line registration step, by the F-FP, and the F-1D; b) the target
and the region-of-interest contours, to compute the Dose Volume Histogram (DVH); ¢) the treatment
plan with the list of planned beam parameters to compute the reference dose distributions, spill by spill.

2.2 FPGA on-line processing

A National Instruments (NI - Austin, USA) digital 1/O module, equipped with a Xilinx Virtex Il FPGA
(San Jose, California, US) and hosted on a NI-PXI chassis, interfaces the DDS with the Workstation
(WS). The FPGA firmware receives in real-time the measured beam parameters (i.e. fluence and
positions) as soon as they are available in the DDS FPGA. These data are transferred spot by spot to the
PXle-CPU via DMA-FIFO to be promptly sent to the WS. A second NI-FPGA module, in the same NI-
PXle system, will receive on-line the three-dimensional patient position corrections and the respiration
phase from the optical tracking system (OTS).
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2.3 GPU on-line processing

2.3.1 Fast Forward Planning and Fast Image Deformation. The F-FP algorithm has been obtained by
implementing on GPU the computing kernel of a benchmarked Treatment Planning System (TPS)
called PlanKIT [6]. The dose calculation program, implemented in the CUDA (Nvidia Corporation,
Santa Clara, CA, USA) C/C++ programming language, consists of the following steps:

e ray-tracing operations are performed in the voxelized CT volume to identify the segments of
the beam axis belonging to different traversed materials;

o the path length of a beam in a heterogeneous material is converted into its water equivalent path
length (WEPL), using the information of the stopping power assigned to each CT voxel by a CT-
scanner-specific curve that relates Hounsfield numbers to stopping power ratios;

¢ a downsampled matrix of the CT matrix (computing grid) is hereinafter considered, and for each
beam the voxels of the computing grid are selected within a chosen radial distance (radial cut-
off) from the beam axis. The radial cut-off is the distance at which the interaction is considered.
o for each voxel position rn=(Xm,Ym,Zm) in the beam coordinate system, the projection on the
beam axis zn is rescaled to z, according to the WEPL and a water-equivalent position
rw=(Xm,Ym,Zw) i$ Obtained,;

o the dose for every selected voxel is obtained through the interpolation from the look-up tables
(LUTSs) of PlanKIT. The LUTs are 3D sampling of the beams effectiveness in water, in terms of
dose per single particle, obtained simulating the used beamline with the Monte Carlo method
(Fluka).

Spill by spill, the F-FP calculates the dose on the specific CT phase and on the reference CT. The
cumulative planned dose is repeatedly updated by summing the dose calculated on the reference CT.
The F-ID receives in input the transformation parameters of each CT phase created by the registration
algorithm in the pretreatment step, and warps the dose distribution of the specific CT phase according
to the reference CT, and the cumulative delivered dose is updated.

2.3.2 Fast dose comparison. The delivered dose is compared online to the planned dose distribution
using a fast 3D gamma evaluation algorithm. The method was implemented in CUDA according to
Persoon et al [9]. Moreover, the DVHs are calculated.

3. Results

A WS HP 7420 (2xIntel XeE5-2670v2) equipped with a NVIDIA Tesla K20c was used to test the
algorithms. Since, at present, the connection with the DDS and the OTS is not complete, to evaluate the
results of the F-FP, F-ID and Fast Dose Comparison an artificial rotation of 2 degrees (around the
perpendicular to the axial plane) was applied to a static CT case, and the rotated CT image was used as
CT phase. The static CT case was referred to a 61.3 cm? planning target volume (PTV) brain case,
treated with protons (one beam entrance direction, 39 energy layers, and 1248 spots). The dimension of
the CT matrix was 512x512x125 voxels (320x320x250 mmd), while the computing grid was
170x170x125 voxels. Table 1 presents the time gain of the RIDOS F-FP in respect to the PlanKIT FP
to calculate the dose distribution of the entire treatment, although it is worth to underline that no
particular effort has been made to optimise the computing times of PlanKIT.

The gamma index calculation times were inversely dependent on the dose interpolation
resolution. Using an interpolation of 0.1 mm and the already defined computing grid, gamma values
were obtained in about 400 ms. Fig. 2 presents the results of the dose comparison step. The absolute
differences between the dose distribution computed by the RIDOS F-FP and the PlanKIT FP are
negligible (<10* Gy). As already mentioned, for individual spills, the F-FP dose calculation and the F-
ID times are about 300 ms, while fast gamma index and the DVHs computation times are estimated to
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be around 400 ms. Therefore, the dose computation and comparison of one spill are expected to be
within 1 s. Similar results are obtained considering a carbon-ion treatment.

Table 1. Computing times of the RIDOS F-FP and the PlanKIT FP, and related gain, by varying the radial
distance from each beam axis at which the interaction is considered (radial cut-off). The dose is calculated for
the number of voxels selected, which increase by augmenting the radial cut-off.

Radial cut-off (mm) Number of voxels RIDOS F-FP time (s) PlanKIT FP time (s) Gain

20 44678 1.35 157 116
40 178702 2.33 636 273
50 279243 2.76 997 361
80 714861 4.68 2534 541

Figure 2. Comparison of the planned dose calculated on the reference CT in Gy (A), the delivered
dose calculated on the rotated CT in Gy (and that warped according to the reference CT by the F-ID
algorithm) (B), the absolute dose difference between A and B in Gy (C), and the gamma index (C)
for a distance to agreement = 3 mm, and dose difference = 3%.

-18

E)

4. Discussion

The precise dose localization enabled by ions makes them favourable for highly conformal radiotherapy
treatments but also sensitive to uncertainties due to range variations, patient intra-fractional motion and
interplay effects between target and beam movement during delivery. This work represents an important
step towards adaptive hadron therapy providing the pre-clinical validation of a new GPU-based system,
able to monitor the dose as it is being delivered. These preliminary results suggest the readiness of the
tool for the possible test in a clinical environment, to verify its potential contribution to the developments
of on-line dose measurements and verification modalities. Additionally, the system could find
application in the real-time interactive treatment planning [10], or to monitor the dose delivery in
hypofractionated treatments.
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