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Abstract. Born-Jordan operators are a class of pseudodifferential operators
arising as a generalization of the quantization rule for polynomials on the phase
space introduced by Born and Jordan in 1925. The weak definition of such
operators involves the Born-Jordan distribution, first introduced by Cohen in
1966 as a member of the Cohen class. We perform a time-frequency analysis of
the Cohen kernel of the Born-Jordan distribution, using modulation and Wiener
amalgam spaces. We then provide sufficient and necessary conditions for Born-
Jordan operators to be bounded on modulation spaces. We use modulation
spaces as appropriate symbols classes.

1. Introduction

In 1925 Born and Jordan [2] introduced for the first time a rigorous mathemat-
ical explanation of the notion of “quantization”. This rule was initially restricted
to polynomials as symbol classes but was later extended to the class of tempered
distribution S ′(R2d) [1, 6]. Roughly speaking, a quantization is a rule which assigns
an operator to a function (called symbol) on the phase space R2d. The Born-Jordan
quantization was soon superseded by the most famous Weyl quantization rule pro-
posed by Weyl in [38], giving rise to the well-known Weyl operators (transforms)
(see, e.g. [39]).

Recently there has been a regain in interest in the Born-Jordan quantization,
both in Quantum Physics and Time-frequency Analysis [17]. The second of us has
proved that it is the correct rule if one wants matrix and wave mechanics to be
equivalent quantum theories [16]. Moreover, as a time-frequency representation, the
Born-Jordan distribution has been proved to be better than the Wigner distribution
since it damps very well the unwanted “ghost frequencies”, as shown in [1, 37]. For
a throughout and rigorous mathematical explanation of these phenomena we refer
to [9] whereas [25, Chapter 5] contains the relevant engineering literature about
the geometry of interferences and kernel design.
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To be more specific, the (cross-)Wigner distribution of signals f, g in the Schwartz
class S(Rd) is defined by

(1) W (f, g)(x, ω) =

∫
Rd
e−2πiyωf(x+

y

2
)g(x− y

2
) dy.

The Weyl operator OpW(a) with symbol a ∈ S ′(R2d) can be defined in terms of
the Wigner distribution by the formula

〈OpW(a)f, g〉 = 〈a,W (g, f)〉.
For z = (x, ω), consider the Cohen kernel

(2) Θ(z) := sinc(xω) =


sin(πxω)

πxω
forωx 6= 0

1 forωx = 0.

The (cross-)Born-Jordan distribution Q(f, g) is then defined by

(3) Q(f, g) = W (f, g) ∗Θσ, f, g ∈ S(Rd),

where Θσ is the symplectic Fourier transform recalled in (22) below. Likewise the
Weyl operator, a Born-Jordan operator with symbol a ∈ S ′(R2d) can be defined as

(4) 〈OpBJ(a)f, g〉 = 〈a,Q(g, f)〉 f, g ∈ S(Rd).

Any pseudodifferential operator admits a representation in the Born-Jordan form
OpBJ(a), as stated in [8].

Now, a first relevant feature of this work is to have computed the Cohen kernel
Θσ explicitly (cf. the subsequent Proposition 3.4). Namely

Θσ(ζ1, ζ2) =

{
−2 Ci(4π|ζ1ζ2|), (ζ1, ζ2) ∈ R2, d = 1

F(χ{|s|≥2}|s|d−2)(ζ1ζ2), (ζ1ζ2) ∈ R2d, d ≥ 2,

where χ{|s|≥2} is the characteristic function of the set {s ∈ R : |s| ≥ 2} and where

(5) Ci(t) = −
∫ +∞

t

cos s

s
ds, t ∈ R.

is the cosine integral function.
This expression of Θσ shows that this kernel behaves badly in general: it does not

even belong to L∞loc (see Corollary 3.5) and has no decay at infinity (see Corollary
3.6). In spite of these facts, it was proved in [9] that some directional smoothing
effect is still present, but the analysis carried on there also shows the necessity
of a systematic and general study of the boundedness of such operators OpBJ(a)
on modulation spaces, in dependence of the Born-Jordan symbol space. Modula-
tion spaces, introduced by Feichtinger in [19], have been widely employed in the
literature to investigate properties of pseudodifferential operators, in particular
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we highlight the contributions [3, 4, 14, 24, 28, 31, 32, 33, 34, 35, 36]. For their
definition and main properties we refer to the successive section.

The main result concerning the sufficient boundedness conditions of Born-Jordan
operators on modulation spaces shows that they behave similarly to Weyl pseudo-
differential operators or any other τ -form of pseudodifferential operators. For com-
parison, see [12, Theorem 5.2, Proposition 5.3], [13, Theorem 1.1] and [35, Theorem
4.3]. The necessary boundedness conditions still contain some open problems, as
shown in the following result. We denote q′ the conjugate exponent of q ∈ [1,∞];
it is defined by 1/q + 1/q′ = 1.

Theorem 1.1. Consider 1 ≤ p, q, r1, r2 ≤ ∞, such that

(6) p ≤ q′

and

(7) q ≤ min{r1, r2, r′1, r′2}.
Then the Born-Jordan operator OpBJ(a), from S(Rd) to S ′(Rd), having symbol
a ∈ Mp,q(R2d), extends uniquely to a bounded operator on Mr1,r2(Rd), with the
estimate

(8) ‖OpBJ(a)f‖Mr1,r2 . ‖a‖Mp,q‖f‖Mr1,r2 f ∈Mr1,r2 .

Vice-versa, if this conclusion holds true, the constraints (6) is satisfied and it must
hold

(9) max

{
1

r1
,

1

r2
,

1

r′1
,

1

r′2

}
≤ 1

q
+

1

p

which is (7) when p =∞.

Notice that the condition (9) is weaker than (7) when p <∞. The condition (9)
is obtained by working with rescaled Gaussians which provide the best localization
in terms of Wigner distribution (cf. [29]). On the Fourier side, the Born-Jordan dis-
tribution is the point-wise multiplication of the Wigner distribution with the kernel
Θ. This reasoning conduces to conjecture that the condition (9) should be the op-
timal one so that the sufficient boundedness conditions for Born-Jordan operators
might be weaker than the corresponding ones for Weyl and τ -pseudodifferential
operators. But the matter is really subtle and requires a new and most refined
analysis of the kernel Θ. In particular the zeroes of the Θ function should play a
key for a thorough understanding of such operators, which certainly deserve further
study.

The paper is organized as follows. Section 2 is devoted to some preliminary
results from Time-frequency Analysis. In Section 3 we perform an analysis of the
kernel Θ and we prove the above formula for Θσ. In Sections 4 and 5 we study the
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Cohen kernels and the boundedness of Born-Jordan operators in the framework of
modulation spaces.

2. Preliminaries

In this section we recall the definition of the spaces involved in our study and
present the main time-frequency tools used.

Modulation and Wiener amalgam spaces. The modulation and Wiener amal-
gam space norms are a measure of the joint time-frequency distribution of f ∈ S ′.
For their basic properties we refer to the original literature [18, 19, 20] and the
textbooks [15, 23].

Let f ∈ S ′(Rd). We define the short-time Fourier transform of f as

(10) Vgf(z) = 〈f, π(z)g〉 = F [fTxg](ω) =

∫
Rd
f(y) g(y − x) e−2πiyω dy

for z = (x, ω) ∈ Rd × Rd.
Given a non-zero window g ∈ S(Rd), 1 ≤ p, q ≤ ∞, the modulation space

Mp,q(Rd) consists of all tempered distributions f ∈ S ′(Rd) such that Vgf ∈ Lp,q(R2d)
(weighted mixed-norm spaces). The norm on Mp,q is

‖f‖Mp,q = ‖Vgf‖Lp,q =

(∫
Rd

(∫
Rd
|Vgf(x, ω)|p(x, ω)p dx

)q/p
dω

)1/p

(with natural modifications when p =∞ or q =∞). If p = q, we write Mp instead
of Mp,p.

The space Mp,q(Rd) is a Banach space whose definition is independent of the
choice of the window g, in the sense that different nonzero window functions yield
equivalent norms. The modulation space M∞,1 is also called Sjöstrand’s class [31].

The closure of S(Rd) in the Mp,q-norm is denoted Mp,q(Rd). Then

Mp,q(Rd) ⊆Mp,q(Rd), andMp,q(Rd) = Mp,q(Rd),

provided p <∞ and q <∞.
Recalling that the conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p+ 1/p′ =

1, for any p, q ∈ [1,∞] the inner product 〈·, ·〉 on S(Rd) × S(Rd) extends to a
continuous sesquilinear map Mp,q(Rd)×Mp′,q′(Rd)→ C.

Modulation spaces enjoy the following inclusion properties:

(11) S(Rd) ⊆Mp1,q1(Rd) ⊆Mp2,q2(Rd) ⊆ S ′(Rd), p1 ≤ p2, q1 ≤ q2.
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The Wiener amalgam spaces W (FLp, Lq)(Rd) are given by the distributions f ∈
S ′(Rd) such that

‖f‖W (FLp,Lq)(Rd) :=

(∫
Rd

(∫
Rd
|Vgf(x, ω)|p dω

)q/p
dx

)1/q

<∞

(with obvious changes for p = ∞ or q = ∞). Using Parseval identity in (10), we
can write the so-called fundamental identity of time-frequency analysis Vgf(x, ω) =

e−2πixωVĝf̂(ω,−x), hence

|Vgf(x, ω)| = |Vĝf̂(ω,−x)| = |F(f̂ Tωĝ)(−x)|
so that

‖f‖Mp,q =

(∫
Rd
‖f̂ Tωĝ‖qFLp(ω) dω

)1/q

= ‖f̂‖W (FLp,Lq).

This means that these Wiener amalgam spaces are simply the image under Fourier
transform of modulation spaces:

(12) F(Mp,q) = W (FLp, Lq).
We will often use the following product property of Wiener amalgam spaces ([18,
Theorem 1 (v)]):

(13) f ∈ W (FL1, L∞) and g ∈ W (FLp, Lq) =⇒ fg ∈ W (FLp, Lq).
In order to prove the necessary boundedness conditions for Born-Jordan operators
we shall use the dilation properties for Gaussian functions. Precisely, consider
ϕ(x) = e−π|x|

2
and define

(14) ϕλ(x) = ϕ(
√
λx) = e−πλ|x|

2

, λ > 0.

The dilation properties for the Gaussian ϕλ in modulation spaces were proved in
[35, Lemma 1.8] (see also [7, Lemma 3.2]).

Lemma 2.1. For 1 ≤ p, q ≤ ∞, we have

(15) ‖ϕλ‖Mp,q � λ
− d

2q′ as λ→ +∞

(16) ‖ϕλ‖Mp,q � λ−
d
2p as λ→ 0+.

The following dilation properties are a straightforward generalization of [9, Lemma
2.3].

Lemma 2.2. Consider 1 ≤ p, q ≤ ∞, ψ ∈ C∞c (Rd) \ {0} and λ > 0. Then

(17) ‖ψ(
√
λ ·)‖W (FLp,Lq) � λ

− d
2p′ as λ→ +∞

(18) ‖ψ(
√
λ ·)‖W (FLp,Lq) � λ−

d
2q as λ→ 0+.
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The same conclusion holds uniformly with respect to λ if ψ varies in bounded subsets
of C∞c (Rd).

Another tool for obtaining the optimality of our results is the cross-Wigner distri-
bution of rescaled Gaussian functions. The proof is a straightforward computation
(see Prop. 244 in [15]):

Lemma 2.3. Consider ϕ(x) = e−π|x|
2

and ϕλ as in (14). Then

(19) W (ϕ, ϕλ)(x, ω) =
2d

(λ+ 1)
d
2

e−
4πλ
λ+1
|x|2e−

4π
λ+1
|ω|2e−4πi

λ−1
λ+1

xω.

It follows that:

Corollary 2.4. Consider ϕ and ϕλ as in the assumptions of Lemma 2.3. Then

(20) FW (ϕ, ϕλ)(ζ1, ζ2) =
1

(λ+ 1)
d
2

e−
π
λ+1

ζ21e−
πλ
λ+1

ζ22e−πi
λ−1
λ+1

ζ1ζ2 .

Proof. Formula (20) is easily obtained from (19) using well-known Gaussian in-
tegral formulas; it can also be painlessly obtained from (19) by observing that
for any functions ψ, φ ∈ L2(Rd) the following relation between the cross-Wigner
distribution and its Fourier transform holds:

FW (ψ, φ)(x, ω) = 2−dW (ψ, φ∨)(1
2
ω, 1

2
x)

where φ∨(x) = φ(−x) (see formula (9.27) in [15], or formula (1.90) in Folland [22]).

We denote by σ the symplectic form on the phase space R2d ≡ Rd × Rd; the
phase space variable is denoted z = (x, ω) and the dual variable by ζ = (ζ1, ζ2).
By definition σ(z, ζ) = Jz · ζ = ω · ζ1 − x · ζ2, where

(21) J =

(
0d×d Id×d
−Id×d 0d×d

)
.

The Fourier transform of a function f on Rd is normalized as

Ff(ω) =

∫
Rd
e−2πixωf(x) dx,

and the symplectic Fourier transform of a function F on the phase space R2d is

(22) FσF (ζ) =

∫
R2d

e−2πiσ(ζ,z)F (z) dz.

Observe that FσF (ζ) = FF (Jζ). Hence the symplectic Fourier transform of the
Wigner distribution (19) is given by

(23) FσW (ϕ, ϕλ)(ζ1, ζ2) =
1

(λ+ 1)
d
2

e−
πλ
λ+1

ζ21e−
π
λ+1

ζ22eπi
λ−1
λ+1

ζ1ζ2 .
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We will also use the important relation

(24) Fσ[F ∗G] = FσF FσG.
The convolution relations for modulation spaces are essential in the proof of the

boundedness of a Born-Jordan operator on these spaces and were proved in [10,
Proposition 2.4]:

Proposition 2.1. Let 1 ≤ p, q, r, s, t ≤ ∞. If

1

p
+

1

q
− 1 =

1

r
,

1

t
+

1

t′
= 1 ,

then

(25) Mp,st(Rd) ∗M q,st′(Rd) ↪→M r,s(Rd)

with ‖f ∗ h‖Mr,s . ‖f‖Mp,st‖h‖Mq,st′ .

We also recall the useful result proved in [9, Lemma 5.1].

Lemma 2.5. Let χ ∈ C∞c (R). Then, for ζ1, ζ2 ∈ Rd, the function χ(ζ1ζ2) belongs
to W (FL1, L∞)(R2d).

3. Analysis of the Cohen kernel Θ

Consider the Cohen kernel Θ defined in (2). Obviously Θ ∈ C∞(R2d) ∩ L∞(R2d)
but displays a vary bad decay at infinity, as clarified in what follows.

Proposition 3.1. For 1 ≤ p <∞, the function Θ /∈ Lp(R2d).

Proof. Observe that, for t ∈ R, |t| ≤ 1/2, the function sinct satisfies |sinc t| ≥ 2/π.
Hence, for any 1 ≤ p <∞,∫

R2d

|Θ(x, ω)|p dxdω =

∫
R2d

|sinc(xω)|p dxdω

≥
∫
|xω|≤1/2

|sinc(xω)|p dxdω

≥
(

2

π

)p ∫
|xω|≤1/2

dxdω

=

(
2

π

)p
meas{(x, ω) : |xω| ≤ 1/2} = +∞.

This concludes the proof.

We continue our investigation of the function Θ by looking for the right Wiener
amalgam and modulation spaces containing this function. For this reason, we first
reckon explicitly the STFT of the Θ function, with respect to the Gaussian window
g(x, ω) = e−πx

2
e−πω

2 ∈ S(R2d).
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Proposition 3.2. For z1, z2, ζ1, ζ2 ∈ Rd,

VgΘ(z1, z2, ζ1, ζ2)

=

∫ 1/2

−1/2

1

(t2 + 1)d/2
e
−2πi[ 1

t
ζ1ζ2+

t
t2+1

(z1− 1
t
ζ2)(z2− 1

t
ζ1)]e

−π t2

t2+1
[(z1− 1

t
ζ2)2+(z2− 1

t
ζ1)2] dt.

(26)

Proof. We write Θ(z1, z2) = F1(z1, z2)+F2(z1, z2), where F1(z1, z2) =
∫ 1/2

0
e2πiz1z2tdt

and F2(z) = F1(Jz), z = (z1, z2). Let us first reckon VgF1(z, ζ), z = (z1, z2),
ζ = (ζ1, ζ2) ∈ R2d, where g is the Gaussian function above. For t > 0 we define the
function Ht(z1, z2) = e2πitz1z2 and observe that

(27) FHt(ζ1, ζ2) =
1

td
e−2πi

1
t
ζ1ζ2
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(cf. [22, Appendix A, Theorem 2]). By the Dominated Convergence Theorem,

VgF1(z, ζ) =

∫ 1/2

0

F(HtTzg)(ζ)dt =

∫ 1/2

0

(F(Ht) ∗M−zĝ)(ζ1, ζ2)dt

=

∫ 1/2

0

1

td

∫
R2d

e−2πi
1
t
(ζ1−y1)·(ζ2−y2)e−2πi(z1,z2)·(y1,y2)e−πy

2
1e−πy

2
2 dy1dy2dt

=

∫ 1/2

0

1

td
e−2πi

1
t
ζ1ζ2

∫
R2d

e−2πi
1
t
y1y2+2πi 1

t
(ζ2y1+ζ1y2)−2πi(z1y1+z2y2)e−π(y

2
1+y

2
2) dy1dy2dt

=

∫ 1/2

0

1

td
e−2πi

1
t
ζ1ζ2

∫
Rd
e2πi(

1
t
ζ1y2−z2y2)e−πy

2
2

·
(∫

Rd
e−2πiy1·(

1
t
y2− 1

t
ζ2+z1)e−πy

2
1 dy1

)
dy2dt

=

∫ 1/2

0

1

td
e−2πi

1
t
ζ1ζ2

∫
Rd
e−2πiy2·(z2−

1
t
ζ1)e−πy

2
2e−π(

1
t
y2− 1

t
ζ2+z1)2 dy2dt

=

∫ 1/2

0

1

td
e−2πi

1
t
ζ1ζ2e−π(z1−

1
t
ζ2)2
∫
Rd
e−2πiy2·(z2−

1
t
ζ1)e−π((1+

1
t2

)y22−2(z1−
1
t
ζ2)· 1t y2)dy2dt

=

∫ 1/2

0

1

td
e−2πi

1
t
ζ1ζ2e

−π t2

t2+1
(u1− 1

t
ζ2)2
∫
Rd
e−2πiy2·(u2−

1
t
ζ1)

· e
−π(
√
t2+1
t

y2− t√
t2+1

(z1− 1
t
ζ2))2

dy2dt

=

∫ 1/2

0

1

(t2 + 1)d/2
e−2πi

1
t
ζ1ζ2e

−π t2

t2+1
(z1− 1

t
ζ2)2

·
∫
Rd
e
−2πi( t√

t2+1
w+ t

t2+1
(z1− 1

t
ζ2))(z2− 1

t
ζ1)
e−πw

2

dwdt

=

∫ 1/2

0

1

(t2 + 1)d/2
e−2πi

1
t
ζ1ζ2e

−π t2

t2+1
(z1− 1

t
ζ2)2e

−π t2

t2+1
(z2− 1

t
ζ1)2

· e
−2πi t

t2+1
(z1− 1

t
ζ2)(z2− 1

t
ζ1)dt.

Now, an easy computation shows

VgF2(z, ζ) = VgF1(Jz, Jζ)

so that VgΘ = VgF1 + VgF2 and we obtain (26).

Proposition 3.3. The function Θ in (2) belongs to W (FL1, L∞)(R2d).

Proof. We simply have to calculate

sup
z∈R2d

∫
R2d

|VgΘ(z, ζ)|dζ.
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From (26) we observe that

‖VgΘ(z, ·)‖1 ≤
∫ 1/2

−1/2

∫
R2d

1

(t2 + 1)d/2
e
−π t2

t2+1
(z1− 1

t
ζ2)2e

−π t2

t2+1
(z2− 1

t
ζ1)2dζ1dζ2dt

=

∫ 1/2

−1/2

∫
R2d

1

(t2 + 1)d/2
e
−π 1

t2+1
(tz1−ζ2)2e

−π 1
t2+1

(tz2−ζ1)2dζ1dζ2dt

=

∫ 1/2

−1/2

∫
R2d

(t2 + 1)d/2e−π(v
2
1+v

2
2)dv1dv2dt = C <∞,

from which the claim follows.

Using the STFT of the function Θ in (26) we observe that

‖VgΘ(·, ζ)‖1 ≤
∫ 1/2

−1/2

∫
R2d

1

(t2 + 1)d/2
e
−π t2

t2+1
(u1− 1

t
ζ2)2e

−π t2

t2+1
(u2− 1

t
ζ1)2du1du2dt = +∞

so that we conjecture that Θ /∈ M1,∞(R2d). The previous claim will follow if we
prove that Θσ /∈ W (FL1, L∞)(R2d).

Note that Θσ(ζ) = FΘ(Jζ) = FΘ(ζ). Furthermore, the distributional Fourier
transform of Θ can be computed explicitly as follows. First, recall the definition of
the cosine integral function (5).

Proposition 3.4. For d ≥ 1 the distribution symplectic Fourier transform Θσ of
the function Θ is provided by

(28) Θσ(ζ1, ζ2) =

{
−2 Ci(4π|ζ1ζ2|), (ζ1, ζ2) ∈ R2, d = 1

F(χ{|s|≥2}|s|d−2)(ζ1ζ2), (ζ1ζ2) ∈ R2d, d ≥ 2,

where χ{|s|≥2} is the characteristic function of the set {s ∈ R : |s| ≥ 2}. The case
d = 1 can be recaptured by the case d ≥ 2 using (5).

Proof. We carry out the computations of Θσ by studying first the case in dimension
d = 1 and secondly, inspired by the former case, d > 1.

First step: d = 1. By Proposition 3.1, the function Θ is in

L∞(R2) \ Lp(R2) ⊂ S ′(R2), 1 ≤ p <∞,
so that the Fourier transform is meant in S ′(R2). Observe that

FΘ(ζ1, ζ2) = F2F1Θ(ζ1, ζ2),

where F1 (resp. F2) is the partial Fourier transform with respect to the first (resp.
second) variable. Indeed, for every test function ϕ ∈ S(R2),

〈FΘ, ϕ〉 = 〈Θ,F−1ϕ〉
and F−1ϕ(x, ω) = F−11 F−12 ϕ(x, ω) = F−12 F−11 ϕ(x, ω), by Fubini’s Theorem.
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Using

F1sinc(y2·)(ζ1) =
1

|y2|
p1/2(ζ1/y2), y2 6= 0,

where p1/2(t) is the box function defined by p1/2(t) = 1 for |t| ≤ 1/2 and p1/2(t) = 0
otherwise, we obtain, for ζ1ζ2 6= 0 (hence in particular |ζ1| > 0),

FΘ(ζ1, ζ2) =

∫
R
e−2πiζ2y2

1

|y2|
p1/2(ζ1/y2) dy2 =

∫
|y2|≥2|ζ1|

e−2πiζ2y2
1

|y2|
dy2

=

∫
|s|≥2|ζ1ζ2|

e−2πis
1

|s|
ds

=

∫
|s|≥2|ζ1ζ2|

cos(2πs)− i sin(2πs)

|s|
ds

=

∫
|s|≥2|ζ1ζ2|

cos 2πs

|s|
ds

= 2

∫ +∞

2|ζ1ζ2|

cos 2πs

s
ds = −2Ci(4π|ζ1ζ2|),

by (5), so that, since ζ1ζ2 = 0 is a set of Lebesgue measure equal zero on R2, we
can write

(29) Θσ(ζ1, ζ2) = −2Ci(4π|ζ1ζ2|), (ζ1, ζ2) ∈ R2.

Second step: d > 1. This is a simple generalization on the former step. For

(z1, z2), (ζ1, ζ2) ∈ R2d, d > 1, we write

(30) zi = (z′i, zi,d), ζi = (ζ ′i, ζi,d), z′i, ζ
′
i ∈ Rd−1, zi,d, ζi,d ∈ R, i = 1, 2.

We decompose FΘ = F2dF ′F1Θ where, for Θ = Θ(z1, z2), F1 is the partial Fourier
transform with respect to the variable z1,d, F ′ is the partial Fourier transform with
respect the 2d−2 variables (z′1, z

′
2) ∈ R2d−2 and F2d is the partial Fourier transform

with respect to the last variable z2,d. We start with computing the partial Fourier
transform F1:

F1Θ(z′1, ·, z′2, z2,d)(ζ1,d) = F1(T−z′1z′2
z2,d

sinc(z2,d·))(ζ1,d)

= e
2πi

ζ1,d
z2,d

z′1z
′
2 1

|z2,d|
F1(sinc)

(
ζ1,d
z2,d

)
= e

2πi
ζ1,d
z2,d

z′1z
′
2 1

|z2,d|
p1/2

(
ζ1,d
z2,d

)
.
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Using the Gaussian integrals in [22, Appendix A, Theorem 2]) we calculate

F ′(e2πi
ζ1,d
z2,d

z′1z
′
2)(ζ ′1, ζ

′
2) =

∣∣∣∣z2,dζ1,d

∣∣∣∣d−1 e−2πi z2,dζ1,d
ζ′1ζ
′
2 ,

so that

FΘ(ζ1, ζ2) = F2d

(
e
−2πi

z2,d
ζ1,d

ζ′1ζ
′
2

∣∣∣∣z2,dζ1,d

∣∣∣∣d−1 1

|z2,d|
p1/2

(
ζ1,d
z2,d

))
(ζ2,d)

=

∫
∣∣∣∣ ζ1,dz2,d

∣∣∣∣≤ 1
2

∣∣∣∣z2,dζ1,d

∣∣∣∣d−1 1

|z2,d|
e
−2πi

z2,d
ζ1,d

ζ1ζ2
dz2,d

=

∫
|s|≥2

e−2πis(ζ1ζ2)|s|d−2 ds,

as claimed.

Notice that the second equation (28) can be written

Θσ(ζ1, ζ2) =

∫
|s|≥2

e−2πis(ζ1ζ2)|s|d−2 ds.

Corollary 3.5. We have

Θσ /∈ L∞loc(R2d).

Proof. For the case d = 1, recall that the cosine integral Ci(x) has the series
expansion

Ci(x) = γ + log x+
+∞∑
k=1

(−x2)k

2k(2k)!
, x > 0

where γ is the Euler–Mascheroni constant, from which our claim easily follows.
For d ≥ 2, Θσ is only defined as a tempered distribution.

Corollary 3.6. The function Θσ /∈ Lp(R2d), for any 1 ≤ p ≤ ∞.

Proof. The case p = ∞ is already treated in Corollary 3.5. For d ≥ 2 again we
observe that Θσ is not defined as function but only as a tempered distribution.
For d = 1, 1 ≤ p < ∞, the claim follows by the expression (29). Indeed, choose
0 < ε < π/2, then |Ci(x)| ≥ |Ci(ε)|, for 0 < x < ε, so that∫

R2

|Θσ(ζ1, ζ2)|p dζ1dζ2 ≥ 2

∫
|ζ1ζ2|< ε

4π

|Ci(4π|ζ1ζ2|)|p dζdζ2

≥ Cpmeas{(ζ1, ζ2) : |ζ1ζ2| <
ε

4π
} = +∞,

for a suitable constant Cp > 0.
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Since FL1 ⊂ L∞, the Wiener amalgam space W (FL1, L∞) is included in L∞loc.
This proves our claim:

Corollary 3.7. The function Θσ /∈ W (FL1, L∞)(R2d) or, equivalently, Θ /∈M1,∞(R2d).

4. Cohen Kernels in modulation and Wiener spaces

In this section we focus on other members of the Cohen class, introduced by
Cohen in [5], which define, for τ ∈ [0, 1], the (cross-)τ -Wigner distributions

(31) Wτ (f, g)(x, ω) =

∫
Rd
e−2πiyζf(x+ τy)g(x− (1− τ)y) dy f, g ∈ S(Rd).

Such distributions enter in the definition of the τ−pseudodifferential operators as
follows

(32) 〈Opτ (a)f, g〉 = 〈a,Wτ (g, f)〉 f, g ∈ S(Rd).

It is then natural to investigate the time-frequency properties of such kernels and
compare to the corresponding Weyl and Born-Jordan ones. The Cohen class con-
sists of elements of the type

M(f, f)(x, ω) = W (f, f) ∗ σ
where σ ∈ S ′(R2d) is called the Cohen kernel. When σ = δ, then M(f, f) =
W (f, f) and we come back to the Wigner distribution. When σ = Θσ, then
M(f, f) = Q(f, f), that is the Born-Jordan distribution. The τ -Wigner function
Wτ (f, f) belongs to the Cohen class for every τ ∈ [0, 1], as proved in [1, Proposition
5.6]:

Wτ (f, f) = W (f, f) ∗ στ ,
where

στ (x, ω) =
2d

|2τ − 1|d
e2πi

2
2τ−1

xω, τ 6= 1

2

and σ1/2 = δ (the case of the Wigner distribution, as already observed).
In what follows we study the properties of the Cohen kernels στ in the realm of

modulation and Wiener amalgam spaces. As we shall see, the Born-Jordan kernel
and the Wigner one display similar time-frequency properties and are locally worse
than the kernels στ , τ 6= 1/2.

Proposition 4.1. We have, for every τ ∈ [0, 1] \ {1/2},
στ ∈ W (FL1, L∞)(R2d) ∩M1,∞(R2d).

Proof. We exploit the dilation properties for Wiener spaces (cf. [33, Lemma 3.2]
and its generalization in [7, Corollary 3.2]): for A = λI, λ > 0,

(33) ‖f(A ·)‖W (FLp,Lq) ≤ Cλd(
1
p
− 1
q
−1)(λ2 + 1)d/2‖f‖W (FLp,Lq).
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Using the dilation relations for Wiener amalgam spaces (33) for λ =
√
t, 0 < t <

1/2, p = 1, q =∞, we obtain

‖e±2πiζ1ζ2t‖W (FL1,L∞) ≤ C‖e±2πiζ1ζ2‖W (FL1,L∞)

with constant C > 0 independent on the parameter t. For t = 2
2τ−1 , when τ > 1/2

and t = − 2
2τ−1 , when 0 ≤ τ < 1/2, we obtain that στ ∈ W (FL1, L∞)(R2d). Now,

an easy computation gives

Fστ (ζ1, ζ2) = e−πi(2τ−1)ζ1ζ2 ,

so that, using FM1,∞(R2d) = W (FL1, L∞)(R2d) and repeating the previous argu-
ment we obtain στ ∈M1,∞(R2d) for every τ ∈ [0, 1] \ {1/2}.

The case τ = 1/2 is different. Indeed, σ1/2 = δ and for any fixed g ∈ S(R2d)\{0}
the STFT Vgδ is given by

Vgδ(z, ζ) = 〈δ,MζTzg〉 = g(−z),

that yields δ ∈M1,∞(R2d) \W (FL1, L∞)(R2d).
The Born-Jordan kernel Θσ behaves analogously. Indeed, using Proposition 3.3

and Corollary 3.7, we obtain

Θσ ∈M1,∞(R2d) \W (FL1, L∞)(R2d).

Those distributions can be used in the definition of the τ -pseudodifferential oper-
ators

5. Symbols in modulation spaces

This section is focused on the proof of Theorem 1.1. We first demonstrate the
sufficient boundedness conditions.

Theorem 5.1. Assume that 1 ≤ p, q, r1, r2 ≤ ∞. Then the pseudodifferential
operator OpBJ(a), from S(Rd) to S ′(Rd), having symbol a ∈ Mp,q(R2d), extends
uniquely to a bounded operator onMr1,r2(Rd), with the estimate (8) and the indices’
conditions (6) and (7).

The result relies on a thorough understanding of the action of the mapping

(34) A : a 7−→ a ∗Θσ,

which gives the Weyl symbol of an operator with Born-Jordan symbol a, on mod-
ulation spaces.

Proposition 5.1. For every 1 ≤ p, q ≤ ∞, the mapping A in (34), defined initially
on S ′(R2d), restricts to a linear continuous map on Mp,q(R2d), i.e., there exists a
constant C > 0 such that

(35) ‖Aa‖Mp,q ≤ C‖a‖Mp,q .
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Proof. By Proposition 3.3, the function Θ ∈ W (FL1, L∞)(R2d). Its symplectic
Fourier transform Θσ belongs to FσW (FL1, L∞)(R2d) = M1,∞(R2d). Now, for
every 1 ≤ p, q ≤ ∞, the convolution relations for modulation space s (25) give

Mp,q(R2d) ∗M1,∞(R2d) ↪→Mp,q(R2d)

and this shows the claim (35).

Proof of Theorem 5.1. Assume a ∈ Mp,q(R2d), then Proposition 5.1 proves that
Aa = a ∗Θσ ∈Mp,q(R2d) as well. We next write OpBJ(a) = OpW(Aa) and use the
sufficient conditions for Weyl operators in [12, Theorem 5.2]: if the Weyl symbol
Aa is in Mp,q(R2d), then OpW(Aa) extends to a bounded operator on Mr1,r2(Rd),
with

‖OpBJ(a)f‖Mr1,r2 = ‖OpW(Aa)f‖Mr1,r2 . ‖Aa‖Mp,q‖f‖Mr1,r2

where the indices r1, r2, p, q satisfy (6) and (7). The inequality (35) then provides
the claim.

The necessary conditions of Theorem 1.1 require some preliminaries.
We reckon the adjoint operator OpBJ(a)∗ of a Born-Jordan operator OpBJ(a)

using the connection with Weyl operators. Recall that OpW(b)∗ = OpW(b̄) [26], so
that

OpBJ(a)∗ = OpW(a∗Θσ)∗ = OpW(a ∗Θσ) = OpW(ā∗Θ̄σ) = OpW(ā∗Θσ) = OpBJ(ā)

because Θ is an even real-valued function. Hence the adjoint of a Born-Jordan
operator OpBJ(a) with symbol a is the Born-Jordan operator having symbol ā (the
complex-conjugate of a). This nice property is the key argument for the following
auxiliary result, already obtained for the case of Weyl operators in [12, Lemma
5.1]. The proof uses the same pattern as the former result and hence is omitted.

Lemma 5.2. Suppose that, for some 1 ≤ p, q, r1, r2 ≤ ∞, the following estimate
holds:

‖OpBJ(a)f‖Mr1,r2 ≤ C‖a‖Mp,q‖f‖Mr1,r2 , ∀a ∈ S(R2d), ∀f ∈ S(Rd).

Then the same estimate is satisfied with r1, r2 replaced by r′1, r
′
2 (even if r1 =∞ or

r2 =∞).

The above instruments let us show the necessity of (6) and (9).

Theorem 5.2. Suppose that, for some 1 ≤ p, q, r1, r2 ≤ ∞, C > 0 the estimate

(36) ‖OpBJ(a)f‖Mr1,r2 ≤ C‖a‖Mp,q‖f‖Mr1,r2 ∀a ∈ S(R2d), f ∈ S(Rd)

holds. Then the constraints in (6) and (9) must hold.
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Proof. The estimate (36) can be written as

|〈a,Q(f, g)〉| ≤ C‖a‖Mp,q‖f‖Mr1,r2‖g‖
Mr′1,r

′
2

∀a ∈ S(R2d), f, g ∈ S(Rd)

which is equivalent to

‖Q(f, g)‖Mp′,q′ ≤ C‖f‖Mr1,r2‖g‖
Mr′1,r

′
2

∀f, g ∈ S(Rd).

Now, one should test this estimate on families of functions fλ, gλ such that Q(fλ, gλ)
is concentrated inside the hyperbola |x · ω| < 1 (say), see Figure 1, where θ � 1,
so that the left-hand side is comparable to ‖W (fλ, gλ)‖

Mp′,q′
and can be estimated

from below.
The choice fλ(x) = gλ(x) = e−πλ|x|

2
, provides the estimate (6) when λ → +∞.

Indeed in this case we argue exactly as in the proof of [9, Theorem 1.4]. We recall

this pattern, useful also for other cases. Remind that ϕ(x) = e−π|x|
2

and ϕλ is
defined in (14). By (15) we obtain the estimate

(37) ‖ϕλ‖Mr1,r2‖ϕλ‖Mr′1,r
′
2
. λ

− d
2r′2 λ

− d
2r2 .

We gauge from below the norm ‖Q(ϕλ, ϕλ)‖Mp′,q′ as follows. By taking the sym-
plectic Fourier transform and using Lemma 2.5 and the product property (13) we
have

‖Q(ϕλ, ϕλ)‖Mp′,q′ = ‖Θσ ∗W (ϕλ, ϕλ)‖Mp′,q′

� ‖ΘFσ[W (ϕλ, ϕλ)]‖W (FLp′ ,Lq′ )

& ‖Θ(ζ1, ζ2)χ(ζ1ζ2)Fσ[W (ϕλ, ϕλ)]‖W (FLp′ ,Lq′ )

for any χ ∈ C∞c (R). Choosing χ supported in the interval [−1/4, 1/4] and = 1 in
the interval [−1/8, 1/8], we write

χ(ζ1ζ2) = χ(ζ1ζ2)Θ(ζ1, ζ2)Θ
−1(ζ1, ζ2)χ̃(ζ1ζ2),

x

ω

Figure 1. The region |x · ω| < 1 (d = 1).



TIME-FREQUENCY ANALYSIS OF BORN-JORDAN OPERATORS 17

with χ̃ ∈ C∞c (R) supported in [−1/2, 1/2] and χ̃ = 1 on [−1/4, 1/4], therefore on
the support of χ. Since by Lemma 2.5 the function Θ−1(ζ1, ζ2)χ̃(ζ1ζ2) belongs to
W (FL1, L∞), again by the product property the last expression is estimated from
below as

& ‖χ(ζ1ζ2)Fσ[W (ϕλ, ϕλ)]‖W (FLp′ ,Lq′ ).

Consider a function ψ ∈ C∞c (Rd) \ {0}, supported in [−1/4, 1/4]. Using

|ζ1ζ2| ≤
1

2
(|
√
λζ1|2 + |

√
λ
−1
ζ2|2)

we see that χ(ζ1ζ2) = 1 on the support of ψ(
√
λζ1)ψ(

√
λ
−1
ζ2), for every λ > 0.

Then, we can write

ψ(
√
λζ1)ψ(

√
λ
−1
ζ2) = χ(ζ1ζ2)ψ(

√
λζ1)ψ(

√
λ
−1
ζ2)

and by Lemma 2.2 we also infer

‖ψ(
√
λζ1)ψ(

√
λ
−1
ζ2)‖W (FL1,L∞) . 1

so that we can continue the above estimate as

& ‖ψ(
√
λζ1)ψ(

√
λ
−1
ζ2)Fσ[W (ϕλ, ϕλ)]‖W (FLp′ ,Lq′ ).

Using (see e.g. [23, Formula (4.20)])

(38) W (ϕλ, ϕλ)(x, ω) = 2
d
2λ−

d
2ϕ(
√

2λx)ϕ(

√
2

λ
ω),

we calculate

Fσ[W (ϕλ, ϕλ)](ζ1, ζ2) = 2
d
2λ−

d
2ϕ((
√

2λ)−1 ζ2)ϕ(

√
λ

2
ζ1),

so that

‖ψ(
√
λζ1)ψ(

√
λ
−1
ζ2)Fσ[W (ϕλ, ϕλ)]‖W (FLp′ ,Lq′ )

= 2d/2λ−
d
2‖ψ(

√
λζ1)ϕ((1/

√
2)
√
λ ζ1)‖W (FLp′ ,Lq′ )‖ψ(

√
λ
−1
ζ2)ϕ((

√
2λ)−1 ζ2)‖W (FLp′ ,Lq′ ).

By Lemma 2.2 we can estimate the last expression so that

‖Q(ϕλ, ϕλ)‖Mp′,q′ & λ
−d+ d

2p′+
d

2q′ as λ→ +∞.

Finally, using the estimate (37) we infer (6).
We now prove that max{1/r1, 1/r′1} ≤ 1/q + 1/p. If we show the estimate

1/r1 ≤ 1/q + 1/p, then the constraint 1/r′1 ≤ 1/q + 1/p follows by the duality
argument of Lemma 5.2. To reach this goal, we consider fλ = ϕ (independent
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of the parameter λ) and g = ϕλ as before and use the previous pattern for these
families of functions, in the case λ→ 0+. By (15) the upper estimate becomes

(39) ‖ϕ‖Mr1,r2‖ϕλ‖Mr′1,r
′
2
. λ

− d
2r′1 .

The same arguments as before let us write

‖Q(ϕ, ϕλ)‖Mp′,q′ & ‖ψ(
√
λζ1)ψ(

√
λ
−1
ζ2)Fσ[W (ϕ, ϕλ)]‖W (FLp′ ,Lq′ ),

where Fσ[W (ϕ, ϕλ)] is computed in (23). Observe that, given any F ∈ W (FLp′ , Lq′),

‖eπi
λ−1
λ+1

ζ1ζ2F (ζ1, ζ2)‖W (FLp′ ,Lq′ ) & ‖e
−πiλ−1

λ+1
ζ1ζ2eπi

λ−1
λ+1

ζ1ζ2F (ζ1, ζ2)‖W (FLp′ ,Lq′ )

= ‖F (ζ1, ζ2)‖W (FLp′ ,Lq′ ),

because ‖e−πi
λ−1
λ+1

ζ1ζ2‖W (FL1,L∞) ≤ C, for every λ > 0 by [9, Proposition 3.2]. So,
writing

cλ =
1

(λ+ 1)
d
2

(notice cλ → 1 for λ→ 0+) we are reduced to

‖Q(ϕ, ϕλ)‖Mp′,q′ & cλ‖ψ(
√
λζ1)e

− πλ
λ+1

ζ21‖W (FLp′ ,Lq′ )‖ψ(
√
λ
−1
ζ2)e

− π
λ+1

ζ22‖W (FLp′ ,Lq′ ).

By Lemma 2.2 we can estimate, for λ→ 0+,

‖ψ(
√
λζ1)e

− πλ
λ+1

ζ21‖W (FLp′ ,Lq′ ) = ‖ψ(
√
λζ1)e

− π
λ+1

(
√
λζ1)2‖W (FLp′ ,Lq′ ) � λ

− d
2q′ ,

whereas

‖ψ(
√
λ
−1
ζ2))e

− π
λ+1

ζ22‖W (FLp′ ,Lq′ ) & λ
d
2 (λ+ 1)

d
2‖
∫
ψ̂(
√
λ(ζ2 − η))e−π(λ+1)|η|2 dη‖Lp′

= λ
d
2 (λ+ 1)

d
2λ
− d

2p′ ‖
∫
ψ̂(ζ2 −

√
λη))e−π(λ+1)|η|2 dη‖Lp′

= (λ+ 1)
d
2λ
− d

2p′ ‖
∫
ψ̂(ζ2 − t)e−π

λ+1
λ
|t|2dt‖Lp′

= λ
d
2
− d

2p′ ‖ψ̂ ∗K1/
√
λ‖Lp′

∼ λ
d
2
− d

2p′ ‖ψ̂‖p′ , as λ→ 0+

where K1/
√
λ(ζ2) = λ−

d
2 (λ + 1)

d
2 e−

π(λ+1)
λ
|ζ2|2 , λ → 0+, is an approximate identity.

So that

λ
− d

2r′1 & λ
− d

2q′ λ
d
2p

and, for λ→ 0+, we obtain
1

r1
≤ 1

q
+

1

p
,

as desired.



TIME-FREQUENCY ANALYSIS OF BORN-JORDAN OPERATORS 19

It remains to prove that max{1/r2, 1/r′2} ≤ 1/q + 1/p. Again, it is enough to
show that 1/r2 ≤ 1/q + 1/p and invoke Lemma 5.2 for 1/r′2 ≤ 1/q + 1/p.

An explicit computation (see [12, Proposition 5.3]) shows that

(40) F−1 OpW(σ)F = OpW(σ ◦ J),

where J(x, ω) = (ω,−x) as defined in (21) (this is also a consequence of the inter-
twining property of the metaplectic operator F with the Weyl operator OpW(σ)
[15, Corollary 221]).

Now, observing that Θσ ◦ J = Θσ, we obtain

(a ∗Θσ)(Jz) =

∫
R2d

a(u)Θσ(Jz − u) du =

∫
R2d

a(u)Θσ(J(z − J−1u))du

=

∫
R2d

a(u)Θσ(z − J−1u)du =

∫
R2d

a(Ju)Θσ(z − u) du

= (a ◦ J) ∗Θσ(z).

The previous computations together with (40) gives

F−1 OpBJ(a)F = F−1 OpBJ(a ◦ J)F .
On the other hand, the map a 7−→ a ◦ J is an isomorphism of Mp,q, so that (36) is
in fact equivalent to
(41)
‖OpBJ(a)f‖W (FLr1 ,Lr2 ) . ‖a‖Mp,q‖f‖W (FLr1 ,Lr2 ) ∀a ∈ S(R2d), f ∈ S(Rd).

The estimate (41) can be written as

|〈a,Q(f, g)〉| ≤ C‖a‖Mp,q‖f‖W (FLr1 ,Lr2 )‖g‖W (FLr
′
1 ,Lr

′
2 )

∀a ∈ S(R2d), f, g ∈ S(Rd)

which is equivalent to

‖Q(f, g)‖Mp′,q′ ≤ C‖f‖W (FLr1 ,Lr2 )‖g‖W (FLr
′
1 ,Lr

′
2 )

∀f, g ∈ S(Rd).

Now, taking f = ϕ and g = ϕλ as before, we observe that, for λ→ 0+, by (15),

‖ϕλ‖W (FLr
′
1 ,Lr

′
2 )
� λ−

d
2‖ϕ1/λ‖Mr′1,r

′
2
� λ

− d
2
+ d

2r2 = λ
− d

2r′2 .

Arguing as in the previous case we obtain 1/r2 ≤ 1/q + 1/p. This concludes the
proof.
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