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Abstract

EU Gender Directive ruled out discrimination against gender in charging premium

for insurance products. This prohibition prevents the use of the standard actuarial

fairness principle to price life insurance products. According to current actuarial prac-

tice, unisex premiums are calculated with a simple weighting rule of the gender-specific

life tables. This procedure is likely to violate portfolio fairness principles. Up to our

knowledge, in the actuarial literature there is no unisex mortality model that respects

the unisex fairness principle. This paper is the first attempt to fill this gap. First,

we recall the notion of unisex fairness principle and the corresponding unisex fair pre-

mium. Then, we provide a unisex stochastic mortality model for the mortality intensity

that is underlying the pricing of a life portfolio of females and males belonging to the

same cohort. Finally, we calibrate the unisex mortality model using the unisex fairness

principle. We find that the weighting coefficient between the males’ and females’ own

mortalities depends mainly on the quote of portfolio relative to each gender, on the
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age, and on the type of insurance product. The knowledge of a proper unisex mortality

model could help life insurance companies to better understanding the nature of the

risk of a mixed portfolio.

Keywords. Actuarial fairness, unisex tariff, stochastic mortality intensity, Gender Direc-

tive, life table, doubly stochastic process.
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1 Introduction and motivation

On 1 March 2011 the European Court of Justice ruled that differences in insurance pre-

miums based on the policyholder’s gender are discriminatory (European Union Directive

2004/113/EC, also called Gender Directive), and that gender equality in the European Union

must be ensured from 21 December 2012. Therefore, insurance policies issued from 21 De-

cember 2012 cannot be priced according to the insured’s gender. Life insurance policies pay

benefits that depend on the duration of life of the insured, i.e. benefits are paid in case of

occurrence of an event such as death or survivorship at a certain date or within a given time

frame. According to the actuarial equivalence principle, the premium of an insurance policy

is based on the probability that the event will occur, i.e., it depends on the probability that

the insured will die or survive within a given time frame. It is well known that the death

and survival probabilities of an individual are strongly related to his/her gender: women

are more likely than men to survive at every given future date, everything else (age, health

status etc.) being equal. The use of gender-specific mortality tables permits the calculation

of actuarially fair premiums of insurance policies. The prohibition of using gender-specific

price rates since December 2012 increases the difficulty in respecting actuarial fairness and

in reserving, and affects competitiveness.

Depending on what type of insurances policies, policyholders’ age and policy duration,

the Gender Directive has both economic and actuarial implications. For the economic aspect,

for instance [12] analyzes the effects of mandatory unisex tariffs on the optimal insurance
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demand and point out that it has an adverse effect on the insurer’s portfolio. They show

that unisex tariffs might cause market distortion, hence reduce the overall social welfare. [13]

discusses unisex insurance pricing from the insurance industry’s, the regulator’s and ethical

point of view. More importantly, through an international consumer survey conducted in

the UK, Germany, France, Italy and Switzerland, they assess the customer’s acceptance of

price differentiation for diverse insurance products. [15] discusses also the fairness and equal-

ity in actuarial risk selection, but from a legal standpoint. They clarify the conditions for

reaching a fair insurance-differentiation scheme. For the actuarial aspect, [5] suggests that

gender information shall be taken into consideration when analyzing the insurance compa-

nies’ data, despite the ban on the gender discrimination. In the future, other indicators like

lifestyle information can serve as a better predictor than gender in the actuarial modelling,

if insurance companies can pay more attention to data quality rather than data quantity.

[6] models the general population in Mexico and compare it with Mexican unisex life tables

that are used for insurance purposes. They suggest that unisex tariffs should be based on

reasonable assumptions about the proportions of males and females in the mixed portfolio.

They discuss the possible bias resulting from using the unisex life tables, particularly when

the proportion of the male and female policyholders is not balanced.

A relevant problem that insurers have to deal with when charging unisex premiums is

adverse selection. The insureds of one sex (“good risk” for the insurance company) have to

pay a higher premium than before the mandatory unisex tariff; and the insureds of the other

sex (“bad risk” for the insurance company) pay a lower premium than before the mandatory

unisex tariff. This asymmetry might induce insureds with “good risk” to refrain from pur-

chasing insurance, and insureds with “bad risk” to buy more insurance. Adverse selection

might cause market distortions, which could be severe if (in the extreme case) eventually the

portfolio consists of only insureds with “bad risk”. In this case, the individual with “good

risk”, who does not find it convenient to buy the insurance product, may well feel discrimi-

nated, and one may even wonder whether the EU Gender Directive, which was introduced to

prevent gender discrimination, has rather introduced gender discrimination in the insurance

market. These important issues are beyond the scope of this paper.
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In this work we focus only on the actuarial aspects of the Gender Directive. An im-

portant issue is: What is the best way to reach actuarial fairness and respect the Gender

Directive? The actuarial literature on this topic is silent. The current practice in insurance

companies seems to be the calculation of a unisex tariff obtained by mixing the life tables

of the two sexes, with a correction that takes into account the insurance product considered

and gives more weight to the life table of the prevailing-risk gender. With this procedure,

the usual actuarial fairness principle is not respected because the total premiums collected

on a mixed life portfolio (i.e., a portfolio of life insurance products written on both males

and females) are not equal to the total premiums charged to the same portfolio before the

Gender Directive. The lack of actuarial fairness reflects in difficult reserving procedures and,

more in general, in lack of competitiveness.

This paper aims to address the relevant issue of how to price life insurance products by

satisfying both actuarial fairness principles and the Gender Directive. We do this in two

steps. First, we recall the notion of unisex fairness principle, that should be used to price

unisex tariffs for mixed portfolios; at the same time, we define the corresponding unisex fair

premium, that respects the unisex fairness principle. Second, we push this process one step

further and suggest what should be the underlying unisex mortality model implicitly used

to calculate the unisex fair premium: we start by proposing the unisex mortality intensity

as a weighted average of the underlying gender-specific mortality intensities, and then we

fix the weights in such a way that the actuarial fairness principle is satisfied. Following a

well established stream of actuarial literature on the doubly stochastic setup for the stochas-

tic mortality (see [10], [2], [1], [14], [9]), we model the stochastic mortality intensity (i.e.,

the stochastic force of mortality) of the single gender as an affine process. In particular,

we model it as an Ornstein-Uhlenbeck non-mean reverting affine process that is a natural

extension of the Gompertz law for the force of mortality. As a consequence, the unisex

mortality intensity is a two-factor continuous-time cohort-based mortality model and has

the desirable feature of providing closed-form survival probabilities. Finally, we exploit the

closed-form survival functions and calibrate the unisex mortality model in practical situa-

tions, considering a variety of cohorts and insurance products. The calibrations show that

the weights identifying the unisex mortality intensity depend on many factors: mainly (and
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expectedly), the quote of portfolio relative to each gender, but also the age, the cohort, the

type of insurance products and the duration of the policy.

Risk management of any kind requires the knowledge of the underlying risk process, and

the asset-liability management of a mixed life portfolio makes no exception. Our unisex

mortality model provides a picture of the dynamics of the mixed portfolio that insurers have

to price, and could facilitate accurate pricing and reserving, improving the companies’ com-

petitiveness.

The remaining of the paper is as follows. Section 2 describes the current practice used

to calculate unisex tariffs. Section 3 formulates the concepts of unisex fairness principle

and unisex fair premium. Section 4 models the unisex mortality intensity as a two-factor

stochastic cohort-based continuous-time intensity process, deriving closed-form expressions

for the unisex survival function. Section 5 introduces the concept of fair unisex mortality

intensity and fair weighting parameter. Sections 6, 7 and 8 report the numerical part.

In Section 6 (i) we calibrate the gender-based mortality intensity processes for a number

of UK cohorts, (ii) we compute the fair weighting coefficient for pure endowment, term

insurance, endowment and immediate lifetime annuity, (iii) we compare the fair weighting

coefficients with the volume-related weights and make comparison across different products

and cohorts. In Section 7 we consider periodic premiums. In Section 8 we set the actuarial

fairness equivalence on annual basis and calculate time-varying fair weighting coefficients.

Section 9 concludes.

2 Unisex premium: current practice

It is rather difficult to report on the current actuarial practice for unisex pricing. The main

reason is the fact that, to our knowledge, after the Gender Directive the insurance compa-

nies have not made clear and detailed disclosure of their pricing process. According to the

Italian Guidelines on the application of the Gender Directive to life insurance products ([4]),

regarding the unisex tariffs we read:

...the unisex demographic basis ...can be defined on the basis of
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- prevailing risk or

- weighted risk, assuming a prudent mix of insured of both genders that represent an estimate

of the theoretical insured population...

If the insurer takes the view only of the prevailing risk, then the premium of the pure

endowment will be based only on the females’ mortality, and the premium of the term insur-

ance will be based only on the males’ mortality. This pricing procedure is safe and prudent,

but gives rise to competitiveness and adverse selection issues. Therefore, we consider it in-

appropriate.

Insurers seem to incorporate both principles of prevailing risk and weighted risk in pricing

unisex tariffs. The unisex tariff is currently based on a simple mix of the gender-based life

tables, that takes into account the risk covered and gives more weight to the prevailing risk.

Therefore, the unisex life table used to price a pure endowment gives more weight to the

females’ life table, and the unisex life table used to price a term insurance gives more weight

to the males’ life table. Similar unisex tariffs are adopted in other European countries, too.

For instance, in Germany, since the insurance companies have not had long-time experience

in determining the weight of female/male in a unisex tariff, the weights are mostly estimated

very cautiously. In order to alleviate the estimation errors, unisex tariffs are set in a safe and

prudent pricing procedure. Cautious procedures for the unisex tariff are adopted in Spain,

too.

It is easy to show that this mixing procedure fails to respect actuarial fairness at the

portfolio level. Indeed, using this mixing procedure the total unisex premiums collected

on the mixed portfolio are not equal to the total fair premiums that were collected on the

two gender-specific subportfolios before the Gender Directive, when the respect of actuarial

fairness was not an issue. In this paper, we take the view of the weighted risk, but aim

primarily to achieve the actuarial fairness at the portfolio level.
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3 Unisex fairness principle and unisex fair premium

In this section we show how the unisex pricing for a mixed portfolio should be done in order

to reach actuarial fairness at the global portfolio level.

Consider a life insurance company operating on a time horizon [0, T ], T < ∞. The

company manages a portfolio of identical life insurance policies (e.g., pure endowment with

duration T , term insurance with duration T , etc.) issued to two groups of policyholders: one

group with m ≥ 1 homogenous male policyholders and one group with n ≥ 1 homogenous

female policyholders. All the policyholders are aged x at time 0. We will call such a portfolio

a “mixed portfolio”, because it contains both male and female policyholders. For simplicity,

let us assume that the cohort mortality tables of the males and females of generation x are

given, respectively, by the vectors

[pmx , p
m
x+1, ..., p

m
ω−1], (1)

and

[pfx, p
f
x+1, ..., p

f
ω−1], (2)

where piy is the one-year survival probability of the individual of gender i = m, f at age

y ∈ {x, x + 1, ..., ω − 1}, and ω is the maximal age (e.g. ω = 120). Assume that the fair

premium for the male of the policy under consideration, using vector (1), is Pm, and the fair

premium for the female of the policy under consideration, using vector (2), is Pf .

Disregarding safety loadings and commissions, the total fair premiums collected before

December 2012 for the mixed portfolio under consideration was

m · Pm + n · Pf ,

because before the Gender Directive the mixed portfolio consisted in two subportfolios, one

with m males and fair premium Pm, and the other with n females and fair premium Pf .

Since December 2012, the most natural way to reach the actuarial fairness at the portfolio

level is to charge the same total premiums. Therefore, the unisex premium Pu charged by
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the insurance company to each of the m+n policyholders of the mixed portfolio must satisfy

(m+ n) · Pu = m · Pm + n · Pf .

Therefore, we can define the following unisex fairness principle:

Definition 3.1 (Unisex fairness principle and unisex fair premium). For a given portfolio

of m male policyholders and n female policyholders, whose fair premiums are Pm and Pf

respectively, we say that the unisex tariff Pu is calculated according to the unisex fairness

principle if

Pu = w · Pm + (1− w) · Pf , (3)

where

w =
m

m+ n
(4)

is the males’ proportion in the portfolio. In this case, the unisex tariff Pu is called unisex

fair premium.

From this definition, it is evident that the actuarial fairness at portfolio level can be

reached only by charging the unisex fair premium.

Remark 1. It is worth noting that the unisex fairness principle and the unisex fair premium

just presented, are not novel concepts in actuarial literature. The unisex fairness principle is

an application of the more general actuarial equivalence principle at the portfolio level, and

the related unisex fair premium is just the premium that reaches the technical equilibrium in

a portfolio of non-homogeneous risks. We now give a brief overview of the general framework

and refer the interested reader to [11] (Chapters 2 and 9), where an accurate treatment of

risk classification and management of portfolios of heterogeneous risks is provided.

Insurance contracts that, according to the insurer, show similar riskiness (in terms of prob-

ability of producing a claim) are grouped into the same risk class. Insurance contracts to

which the insurer assigns the same premium rate are grouped into the same rating class.

Since rating classes are usually fewer than risk classes, the insurer typically needs to select

the same premium for two or more risk classes. To this end, the insurer usually applies the
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actuarial equivalence principle among all the policies considered, that belong to different risk

classes. Therefore, in the presence of several contracts, the actuarial equivalence principle

at the portfolio level reads as

EPV(total liabilities) = EPV(total premiums) (5)

where EPV stands for expected present value, “total liabilities” indicates the future liabilities

arising from all the policies considered, and “total premiums” indicates the future premiums

to be received from all the policies considered. In a very simple case, let us assume that

the insurer has a single rating class for two risk classes, A and B. If there are m policies

belonging to risk class A, for which the actuarially fair premium would be PA, and n policies

belonging to risk class B, for which the actuarially fair premium would be PB, the actuarial

equivalence principle (5) at the portfolio level for the m + n non-homogeneous policies can

be satisfied only if the premium P̄ charged to each policy is

P̄ =
mPA + nPB
m+ n

(6)

(see [11]). In other words, the technical equilibrium at portfolio level is achieved if and only

if the insurer charges P̄ to all policies. It is clear that the unisex fairness principle is a

special case of (5), and the unisex fair premium is a special case of (6), in the presence of

two subportfolios made by policies belonging to two different risk classes identified by the

risk factor gender.

It is interesting and useful to interpret the unisex fair premium Pu as the premium of

a representative unisex policyholder of the mixed portfolio, and to analyze the relationship

between the survival probabilities of the unisex policyholder and those of males and females.

The relationship depends on the type of policy and on its duration. As an illustration, we

consider four classical life insurance products: (1) pure endowment; (2) term insurance; (3)

endowment insurance; (4) immediate lifetime annuity.

Pure endowment

For the male, the gender-based fair premium of a pure endowment insurance contract which
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pays out a unitary payment if the insured survives the maturity date T is

Pm = B(0, T ) ·T pmx

while that for the female is

Pf = B(0, T ) ·T pfx,

where B(0, T ) is the financial discount factor from T to 0 and Tp
i
x, i = m, f , is the T -years

survival probability for individual of gender i aged x at time 0. The unisex fair premium for

the pure endowment is

Pu = w · Pm + (1− w) · Pf = B(0, T ) ·T pux,

where

Tp
u
x = w ·T pmx + (1− w) ·T pfx. (7)

Therefore, managing a mixed portfolio of pure endowments of duration T written on m

males and n females is equivalent to managing a portfolio of m+ n pure endowments issued

to unisex policyholders whose unisex T -years survival probability Tp
u
x, given by (7), is a

weighted average of the T -years survival probabilities of males and females of the portfolio,

with weights w and (1− w), that are volume-related and given by (4).

It is easy to show that this pricing procedure does not correspond to mixing the life tables of

males and females with volume-related weights. Indeed, simply mixing the life tables with

volume-related weights produces (1-year) survival rates that are mixed with volume-related

weights, but, for T ≥ 2 produces T -years survival probabilities that are not weighted aver-

ages of the gender-based T -years survival probabilities with volume-related weights.1

Term insurance

For the male, the gender-based fair premium of a term insurance contract which pays out a

unitary death benefit at the end of year of death if the insured does not survive the maturity

1This is due to the fact that the T -years survival probability for age x is the product of the 1-year survival
rates at ages x, x+ 1, ...x+ T − 1: T px = px · px+1 · ... · px+T−1.
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date T is

Pm =
T−1∑
k=0

B(0, k + 1) ·k/1 qmx ,

while that for the female is

Pf =
T−1∑
k=0

B(0, k + 1) ·k/1 qfx ,

where k/1q
i
x, i = m, f , is the k-year deferred death probability, i.e. the probability of dying

in year (k, k + 1] for individual of gender i aged x at time 0. The unisex fair premium for

the term insurance is

Pu = w · Pm + (1− w) · Pf =
T−1∑
k=0

B(0, k + 1) ·k/1 qux

where

k/1q
u
x = w ·k/1 qmx + (1− w) ·k/1 qfx for all k = 0, 1, ..., T − 1. (8)

Therefore, managing a portfolio of term insurances of duration T written on m males and n

females is equivalent to managing a portfolio of m+ n term insurances issued to unisex pol-

icyholders whose unisex k-year deferred death probability k/1q
u
x , given by (8), is a weighted

average of the k-year deferred death probabilities of males and females of the portfolio, for

every k = 0, 1, ..., T − 1, with weights w and (1− w), that are volume-related and given by

(4).

As before, it is easy to show that this pricing procedure does not correspond to mixing the

life tables of males and females with volume-related weights.

Endowment insurance

Combining the above two contracts, we obtain an endowment insurance contract which pays

out a unitary death benefit at the end of year of death if the insured does not survive the

maturity date T or a unitary survival benefit if the insured survives T . For the male, the

11



gender-based fair premium of this contract is

Pm =
T−1∑
k=0

B(0, k + 1) ·k/1 qmx + Tp
m
x ·B(0, T ),

while that for the female is

Pf =
T−1∑
k=0

B(0, k + 1) ·k/1 qfx + Tp
f
x ·B(0, T ).

The unisex fair premium for the endowment insurance is

Pu = w · Pm + (1− w) · Pf =
T−1∑
k=0

B(0, k + 1) ·k/1 qux + Tp
u
x ·B(0, T )

where

k/1q
u
x = w ·k/1 qmx + (1− w) ·k/1 qfx for all k = 0, 1, ..., T − 1,

and

Tp
u
x = w ·T pmx + (1− w) ·T pfx.

Therefore, managing a portfolio of endowments of duration T written on m males and n

females is equivalent to managing a portfolio of m + n endowments issued to unisex poli-

cyholders whose unisex k-year deferred death probability k/1q
u
x is a weighted average of the

k-year deferred death probabilities of males and females of the portfolio, with weights w and

(1− w), that are volume-related and given by (4), and whose unisex T -years survival prob-

ability Tp
u
x is a weighted average of the T -years survival probabilities of males and females

of the portfolio, with weights w and (1− w).

Immediate lifetime annuity

For the male, the gender-based fair premium of an immediate lifetime annuity with unitary
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benefit (paid in advance) is

Pm =
ω−x−1∑
k=0

B(0, k) ·k pmx

while that for the female is

Pf =
ω−x−1∑
k=0

B(0, k) ·k pfx,

where ω is the maximal age. The unisex fair premium for the immediate lifetime annuity is

Pu = w · Pm + (1− w) · Pf =
ω−x−1∑
k=0

B(0, k) ·k pux

where

k p
u
x = w ·k pmx + (1− w) ·k pfx for all k = 0, 1, ..., ω − x− 1.

Therefore, managing a portfolio of lifetime annuities issued to m males and n females is

equivalent to managing a portfolio of m + n annuities issued to unisex individuals whose

unisex k-years survival probability is a weighted average of the k-years survival probabilities

of males and females of the portfolio, for every k = 0, 1, ..., ω − x − 1, with weights w and

(1− w), that are volume-related and given by (4).

4 Unisex stochastic mortality model

In the previous section, we have seen that the achievement of actuarial fairness boils down

to a simple volume-related mixing of survival probabilities or deferred death probabilities,

depending on the nature of the underlying contract. It is unclear whether this corresponds

precisely to a volume-related mixing of the two underlying gender-specific mortality models.

Generally, this is not the case. In this section, we propose a two-factor stochastic continuous-

time unisex mortality model that is a weighted average of the two underlying gender-specific

stochastic mortality models. In Section 5, we will show how to select the weights in order

to have a unisex mortality model that produces exactly the unisex fair premium calculated

according to the unisex fairness principle of Definition 3.1.
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Let us introduce a complete filtered probability space (Ω,F,P) and a filtration Ft of sub-σ-

algebras representing the state of information at time 0 ≤ t ≤ T . As in Section 2, consider

an insurance company that manages a mixed portfolio with m male policyholders and n

females policyholders, who have the same age x at time 0. For notational convenience, and

because we are assuming that males and females of the mixed portfolio belong to the same

cohort and have the same initial age x, throughout this section and Section 5 we will omit

the dependence on x of the mortality processes. The stochastic mortality intensities of the

two groups are described by two different Ornstein-Uhlenbeck processes (OU processes) with

positive drift and no mean reversion:2

dλm(t) =µmλ
m(t)dt+ σmdW

m(t),

dλf (t) =µfλ
f (t)dt+ σfdW

f (t), (9)

where µi > 0 and σi > 0 for i = m, f , and Wm and Wf are two standard Brownian motions

under the real world measure P, correlated with a correlation coefficient ρ. So, there is a

Brownian motion W⊥m, independent of Wm such that W f = ρWm+
√

1− ρ2W⊥m. The OU

process for the mortality intensity is a natural stochastic generalization of the Gompertz law

for the force of mortality and was introduced by [9], where its properties and the conditions

for its biological reasonableness have been discussed.

Standard properties of affine processes allow us to write the survival probability of a male

2To keep the treatment as simple as possible, in this paper we do not present all the mathematical
arsenal that is behind the introduction of affine processes for the stochastic mortality intensity, i.e. the
doubly stochastic setup for the stochastic mortality. To be precise, in this framework the time of death is
modelled as the first jump time of a doubly stochastic processes with intensity λ. A complete exposition is
beyond the scope of this paper, and we refer the interested reader to the papers on the doubly stochastic
setup cited in Section 1.
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and a female policyholder in closed-form (see [9]):

Si(t, T ) =E

[
exp

{
−
ˆ T

t

λi(u)du

} ∣∣∣Ft] = exp
{
αi(T − t) + βi(T − t)λi(t)

}
, i = m, f

(10)

αi(t) =
σ2
i

2µ2
i

t− σ2
i

µ3
i

eµit +
σ2
i

4µ3
i

e2µit +
3σ2

i

4µ3
i

, i = m, f

βi(t) =
1

µi
(1− eµit), i = m, f.

The key idea of this paper is to model the mortality intensity of a representative unisex

policyholder of the mixed portfolio as a weighted average of the males’ and females’ mortality

intensities, according to the following definition:

Definition 4.1 (Unisex mortality intensity). For a mixed portfolio of male and female pol-

icyholders, whose stochastic mortality intensities are λm and λf respectively, we define the

ξ-driven unisex mortality intensity by mixing the male and female intensities with the weight

ξ ∈ [0, 1]:

λuξ (t) = ξλm(t) + (1− ξ)λf (t). (11)

Clearly, Definition 4.1 defines a family of unisex mortality intensities, the members of

which are identified by the weight ξ ∈ [0, 1]. The appropriate identification of the weight ξ

is the subject of the next section.

From (9) and (11), we obtain

dλuξ (t) =
(
ξµmλ

m(t) + (1− ξ)µfλf (t)
)
dt+ ξσmdW

m(t) + (1− ξ)σfdW f (t). (12)

Note that λuξ does not follow a simple OU process like λm and λf , because in general µm

is different from µf . Despite this, the survival probability related to the mixed mortality

intensity λuξ can still be computed nicely.3

Proposition 4.2. Conditional on t, the survival probability for the remaining time τ = T−t
3In the following, in order to simplify notation, we will omit the subscript ξ in the functions α, β1 and

β2.
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related to the mixed mortality intensity λuξ in (11) is given by

Suξ (t, T ) = E

[
exp

{
−
ˆ T

t

λuξ (s)ds
∣∣∣Ft}] = exp

{
αu(τ) +β1,u(τ)λm(t) +β2,u(τ)λf (t)

}
, (13)

with

β1,u(τ) =
ξ

µm
(1− eµmτ ),

β2,u(τ) =
1− ξ
µf

(1− eµf τ ),

and

αu(τ) =
σ2
mξ

2

4µ3
m

[
(eµmτ − 2)2 + 2µmτ − 1

]
+
σ2
f (ξ − 1)2

4µ3
f

[
(eµf τ − 2)2 + 2µfτ − 1

]
(14)

− ρσmσfξ(ξ − 1)

µ2
mµ

2
f (µm + µf )

{
µ2
m(1− eµf τ ) + µ2

f (1− eµmτ ) + µmµf [(1− eµmτ )(1− eµf τ ) + (µm + µf )τ ]
}
.

Proof. Following [3], and the fact that λu is a linear function of the two state variables λm

and λf , the survival probability related to the mixed mortality intensity λu can be expressed

as follows:

E

[
exp

{
−
ˆ T

t

λuξ (s)ds

} ∣∣∣Ft] = exp
{
αu(t) + β1,u(t)λ

m(t) + β2,u(t)λ
f (t)
}
,

where αu(t), β1,u(t) and β2,u(t) follow some ODEs. In order to find out the ODEs, we need

to discuss the following conditions.

• The mean of the state variables shall satisfy the affine structure:(
µmλ

m

µfλ
f

)
:= K0 +K1

(
λm

λf

)
⇒ K0 = 0, K1 =

(
µm 0

0 µf

)
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• The volatility of the state variables shall satisfy the affine structure:(
σm 0

ρσf
√

1− ρ2σf

)(
σm ρσf

0
√

1− ρ2σf

)
=

(
σ2
m ρσfσm

ρσfσm σ2
f

)

:=H0 +H1

(
λm

λf

)
⇒ H0 =

(
σ2
m ρσfσm

ρσfσm σ2
f

)
, H1 = 0.

• λu is a linear function of λm and λf :

(ξ 1− ξ)

(
λm

λf

)
:= ρ0 + ρ1

(
λm

λf

)
⇒ ρ0 = 0, ρ1 = (ξ 1− ξ)

After having determined all the necessary parameters, we can write down the conditions for

αu(t), β1,u(t) and β2,u(t):

β′1,u(t) =ξ − µmβ1,u(t), with β1,u(T ) = 0

β′2,u(t) =(1− ξ)− µfβ2,u(t), with β2,u(T ) = 0

α′u(t) =− 1

2
(β1,u(t) β2,u(t))H0

(
β1,u(t)

β2,u(t)

)
=− 1

2

(
β2
1,u(t)σ

2
m + β2

2,u(t)σ
2
f + 2β1,uβ2,uρσfσm

)
, with αu(T ) = 0.

When we consider survival probabilities, we do not have terminal conditions, αu(T ) =

β1,u(T ) = β2,u(T ) = 0. Instead it holds αu(0) = β1,u(0) = β2,u(0) = 0. Noticing the

fact that β′i(τ) = −β′i(t), i = 1, 2, and α′u(τ) = −α′u(t), the above three ODEs can be

transformed to

β′1,u(τ) =µmβ1,u(τ)− ξ, with β1,u(0) = 0

β′2,u(τ) =µfβ2,u(τ)− (1− ξ), with β2,u(0) = 0

α′u(τ) = =
1

2

(
β2
1,u(τ)σ2

m + β2
2,u(τ)σ2

f + 2β1,uβ2,uρσfσm
)
, with αu(0) = 0.

with τ := T−t. Solving the ODEs leads to the expressions for β1,u(τ), β2,u(τ) and αu(τ).
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Figure 1 illustrates a trajectory for the intensity of mortality and Figure 2 plots the

survival functions, for males and females, and the joint one for UK population, cohort 1950,

initial age 45, with ξ = 0.5 and ρ = 0.95. We have used the maximal age 120. As noticed,

the male and female force of mortality follows an OU process which is an exponential with

a random noise, and the joint force of mortality is just the weighted sum of the male and

female forces of mortality. Like using Gompertz-Makeham force of mortality, the survival

probabilities approach zero for high ages.
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Figure 1: A trajectory for the force of mortality using UK population, cohort 1940, initial
age 45 (see values of Table 1) (source: HMD-2013).

Remark 2. As a special case, if we set σm = 0 and σf = 0 in the stochastic framework,

we retrieve the deterministic mortality model where the males’ and the females’ forces of

mortality are Gompertz:

λi(t) = λi(0)eµit, i = m, f
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Figure 2: Survival probabilities relative to UK population, cohort 1940, initial age 45 (see
values of Table 1) (source: HMD-2013).

Accordingly, the deterministic survival probabilities are:

Si(t, T ) = exp

{
λi(0)

µi
(eµit − eµiT )

}
, i = m, f

Suξ (t, T ) = exp
{ξλm(0)

µm
(eµmt − eµmT ) +

(1− ξ)λf (0)

µf
(eµf t − eµfT )

}
.

5 Fair unisex mortality intensity

In this section, we assume that the mixed life insurance portfolio is given and we aim to

determine the fair unisex mortality intensity that is consistent with the unisex fairness prin-

ciple (3) for that portfolio.

Regarding notation, we observe that the fair premium of a life insurance policy is just a

function Prem(·) of the underlying mortality intensity process. Therefore, assuming that
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the mortality intensities of male, females and unisex policyholders are given by λm, λf and

λuξ respectively, we shall naturally call

Pm := Prem(λm) Pf := Prem(λf ) Pu := Prem(λuξ )

With this new notation, we can define what is the fair unisex mortality intensity that pro-

duces the unisex fair premium:

Definition 5.1 (Fair unisex mortality intensity). For a given portfolio of m male policy-

holders and n female policyholders, whose fair gender-based premiums are Prem(λm) and

Prem(λf ) respectively, we say that λuξ∗ is a fair unisex mortality intensity if the corresponding

unisex premium

Prem(λuξ∗) = Prem(ξ∗λm + (1− ξ∗)λf )

is fair, i.e. it satisfies the unisex fairness principle (3):

m · Prem(λm) + n · Prem(λf ) = (m+ n) · Prem(ξ∗λm + (1− ξ∗)λf ). (15)

The weight ξ∗ is said to be fair mortality intensity mixing parameter.

In other words, among the unisex mortality intensities of the family of Definition 4.1, the

fair unisex mortality intensity computed with ξ∗ respects actuarial fairness.

Due to the closed-form expressions for the survival functions Sm(·, ·), Sf (·, ·) and Suξ (·, ·),
the numerical computation of the fair ξ∗ is not complicated, once the mortality intensity

processes λm and λf have been calibrated. But we need to point out that despite its closed-

form, the survival probably is a rather complex function of the mortality intensity mixing

parameter ξ, thus the fair ξ∗ has to be determined with numerical procedures, and therefore

the practical implementation of the model can be limited.

In the following, as an illustrative example, we will again consider the four insurance prod-

ucts: pure endowment, term insurance, endowment insurance and immediate lifetime annu-

ity. We will assume that the discount factor is B(0, T ) = e−rT , where r ≥ 0 is the risk free

interest rate.
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Pure endowment

Consider the case in which m males and n females with the same age buy a pure endowment

insurance contract which pays out a unitary payment if they survive the maturity date T .

According to (15), the fair ξ∗ for the mixed portfolio with m + n policyholders results by

setting:

m · e−rT · Sm(0, T ) + n · e−rT · Sf (0, T ) = (m+ n) · e−rT · Suξ∗(0, T ),

where the survival functions Sm(0, T ) and Sf (0, T ) are given by (10) (with i = m, f respec-

tively), and the unisex survival function Suξ (0, T ) is given by (13). The above equation can

be reduced to

m · Sm(0, T ) + n · Sf (0, T ) = (m+ n) · Suξ∗(0, T ), (16)

from which ξ∗ can be computed numerically. Notice that in this case the fair ξ∗ does not

depend on the risk free rate r.

Term insurance

Consider the case in which m males and n females with the same age buy a term insurance

contract which pays out a unitary death benefit at the end of year of death if the insureds do

not survive the maturity date T . The fair ξ∗ for the mixed portfolio with m+n policyholders

results by setting:

m ·
T−1∑
i=0

e−r(i+1)(Sm(0, i)− Sm(0, i+ 1)) + n ·
T−1∑
i=0

e−r(i+1)(Sf (0, i)− Sf (0, i+ 1))

= (m+ n) ·
T−1∑
i=0

e−r(i+1)(Suξ∗(0, i)− Suξ∗(0, i+ 1)). (17)

Notice that in this case the fair ξ∗ depends on the risk free rate r.

Endowment insurance
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Consider the case in whichmmales and n females with the same age buy an endowment insur-

ance contract with a maturity date T which pays out a unitary benefit upon death/survival.

The fair ξ∗ for the mixed portfolio with m+ n policyholders results by setting:

m ·
T−1∑
i=0

e−r(i+1)(Sm(0, i)− Sm(0, i+ 1)) +m · e−rTSm(0, T )

+ n ·
T−1∑
i=0

e−r(i+1)(Sf (0, i)− Sf (0, i+ 1)) + n · e−rTSf (0, T )

= (m+ n) ·
T−1∑
i=0

e−r(i+1)(Suξ∗(0, i)− Suξ∗(0, i+ 1)) + (m+ n) · e−rTSuξ∗(0, T ). (18)

Naturally, also in this case the fair ξ∗ depends on the risk free rate r.

Immediate lifetime annuity

Finally, let us come back to the immediate lifetime annuity product, which pays out an

annual unitary pension income 1 at the beginning of the year, starting immediately. In this

case, the fair ξ∗ results from

m
ω−x−1∑
i=0

e−riSm(0, i) + n
ω−x−1∑
i=0

e−riSf (0, i) =(m+ n)
ω−x−1∑
i=0

e−riSuξ∗(0, i). (19)

Notice that also in this case the fair ξ∗ depends on the risk free rate r.

Apart from the pure endowment contracts, all the resulting ξ∗ depend on the interest rate.

But it shall be pointed out that this is not a special property resulting from the stochastic

modelling of the force of mortality. If we plug in the deterministic survival probabilities as in

Remark 2 in the above Equations (17), (18), and (19), we still have the effect of the risk-free

rate on the fair mortality intensity mixing parameter ξ∗. Clearly, also in the deterministic

case, ξ∗ cannot be determined explicitly and has to be found numerically. Finally, unlike the

portfolio weight (4), note that the fair mortality intensity parameter ξ∗ depends on the choice

of the product crucially. This will become clear in Section 6, where ξ∗ will be calculated
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with a variety of products.

Remark 3. It is important to stress that the stochastic mortality model introduced in Sec-

tion 4 is only one special case among the mortality models that can support the unisex

fairness principle. Clearly, every mortality model can support the unisex fairness princi-

ple. Together with the deterministic setup illustrated in Remark 2, another sensible choice

could be considering two gender-specific projected mortality tables, say {pmy }y=x,x+1,...,ω−1

and {pfy}y=x,x+1,...,ω−1 for males and females aged x, respectively. One can mix the gender-

specific survival rates with a mixing coefficient φ and define the unisex projected survival

rates as follows:

punisexy = φ pmy + (1− φ) pfy y = x, x+ 1, ..., ω − 1.

A fair mortality mixing parameter φ∗ will then result from satisfying the unisex fairness

principle introduced in Definition 3.1. Clearly, the resulting fair φ∗ will differ from the fair

ξ∗. Similarly to ξ∗, the fair φ∗ will vary among different contract products.

The analysis of this section, and in particular Equations (16)–(19), indicates that the

computation of ξ∗ has to be done numerically, and the relationship between the fair ξ∗ and

the portfolio weight w is highly non-linear and convoluted. In general, very little can be said

about this relationship, which is indeed the object of the numerical analysis of Section 6.

However, it is possible to state a fairly general result in the case of deterministic forces of

mortality, and not necessarily Gompertz-type. In this case, if the unisex force of mortality is

defined as in Definition 4.1 and the fair unisex force of mortality is defined as in Definition

5.1, then, under reasonable assumptions, in the case of the pure endowment we have ξ∗ ≤ w.

This is proved in the next proposition.4

Proposition 5.2. Let λm(t) and λf (t) be the force of mortality of the males and the females,

respectively. Let

λuξ∗(t) = ξ∗λm(t) + (1− ξ∗)λf (t)

be the fair unisex force of mortality satisfying Definition 5.1 for a portfolio of pure endowment

with maturity T years, and let w ∈ [0, 1] be the proportion of males in the portfolio. If

4We are grateful to Pietro Millossovich for suggesting this result.
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λm(t) ≥ λf (t) for all t ∈ [0, T ], then

ξ∗ ≤ w. (20)

Proof. Let Tp
m
x and Tp

f
x be the T -years survival probability for the male and the female,

respectively. Then, (16) yields

e−
´ T
0 [ξ∗λm(t)+(1−ξ∗)λf (t)]dt = w Tp

m
x + (1− w)Tp

f
x.

Because the weighted arithmetic mean is greater than the weighted geometric mean, we have

w Tp
m
x + (1− w)Tp

f
x ≥ (Tp

m
x )w(Tp

f
x)

1−w,

hence

e−
´ T
0 [ξ∗λm(t)+(1−ξ∗)λf (t)]dt ≥ (Tp

m
x )w(Tp

f
x)

1−w = e−
´ T
0 [wλm(t)+(1−w)λf (t)]dt.

Therefore

−
ˆ T

0

[ξ∗λm(t) + (1− ξ∗)λf (t)]dt ≥ −
ˆ T

0

[wλm(t) + (1− w)λf (t)]dt,

that is equivalent to ˆ T

0

(w − ξ∗)[λm(t)− λf (t)]dt ≥ 0.

Finally, since

λm(t)− λf (t) ≥ 0 for t ∈ [0, T ],

we have

w ≥ ξ∗,

as desired.

Proposition 5.2 points out that, in the case of pure endowment, with deterministic forces

of mortality the fair mixing coefficient ξ∗ that is equivalent to the proportion w of males in

the portfolio is lower than the proportion w itself, provided that the force of mortality of

males is larger than that of females. The extension of this result to a stochastic mortality
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model and to life insurance products other than the pure endowment is not trivial. The

numerical analysis of Section 6 will shed more light on the relationship between ξ∗ and w.

6 Numerical analysis

In this section, we analyze numerically how the fair ξ∗ depends on the parameters of the

model. In Section 6.1 we calibrate the parameters µm, µf , σm, σf for a number of cohorts

and ages. In Section 6.2.1, we first fix the value of ρ and determine, for all cohorts, the fair ξ∗

for different insurance products and different durations; we analyze how ξ∗ depends on the

insurance product, on the duration and on the cohort; we then let ρ taking values in [−1, 1]

and, for each cohort, we analyze how ξ∗ depends on ρ for different insurance products.

6.1 Calibration procedure

We have taken cohort death rates from the Human Mortality Database (Last-modified: 06-

May-2013) (HMD hereafter) for four different cohorts belonging to the UK population:

• cohort born in 1950 with initial age 35;

• cohort born in 1940 with initial age 45;

• cohort born in 1930 with initial age 55;

• cohort born in 1920 with initial age 65.

The calibration procedure is the following. For each cohort of initial age x and each gender

i = m, f we have extrapolated from the HMD twenty observed survival probabilities tp̂
i
x,

t = 1, ..., 20; then, we have calibrated the values of the parameters µm, µf , σm, σf that

appear in the theoretical survival functions Smx (0, t) and Sfx (0, t) given by (10) by minimizing

the following mean square error

1

20

20∑
t=1

(
tp̂
i
x − Six(0, t)

)2
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for i = m, f . In all cases, the value of the initial observed intensity λix(0) is set equal to

− ln p̂ix. This calibration procedure is standard and in the actuarial context has been used

to calibrate the OU intensity process in [7], [8] and [9]. Table 1 reports the calibrated values

of the parameters for the generations 1950 and 1940 for both genders and Table 2 those for

cohorts 1930 and 1920. For each cohort and gender, the parameters satisfy the conditions

for biological reasonableness as in [9].

Cohort 1950, initial age x = 35 Cohort 1940, initial age x = 45

Female Male Female Male
λx(0) 0.00075028 0.00112463 0.00207816 0.00329542
µx 0.08001563 0.08171875 0.07561318 0.07731571
σx 0.00010305 0.00011789 0.00011809 0.00012212
Calibration Error 0.00000006 0.00000007 0.00000003 0.00000046

Table 1: Calibrated values and errors for males and females of cohort 1950 (initial age 35)
and 1940 (initial age 45).

Cohort 1930, initial age x = 55 Cohort 1920, initial age x = 65

Female Male Female Male
λx(0) 0.00588629 0.00976351 0.016477 0.0313689
µx 0.07452112 0.07609306 0.080625 0.06820313
σx 0.00011364 0.00012183 0.00009711 0.00009953
Calibration Error 0.00000085 0.00000111 0.00001412 0.00001689

Table 2: Calibrated values and errors for males and females of cohort 1930 (initial age 55)
and 1920 (initial age 65).

6.2 The fair ξ∗

6.2.1 Fixed ρ

For conciseness reasons, we have computed the fair ξ∗ only for two cohorts for each of the

products. We have computed the fair ξ∗ values for the pure endowment, the term insurance

and the endowment insurance for cohorts 1950 and 1940. For these three products we have
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considered two different contract durations: T = 30 and T = 40 years. For the immediate

lifetime annuity, we have computed the fair ξ∗ values for cohorts 1930 and 1920. Common

assumptions on the portfolios are ρ = 0.95 and r = 0.03. We have considered different

portfolio compositions by setting a fixed number of females n = 50 and varying the number

of males m in the range [10, 200]. Therefore, the proportion w = m/(m + n) of males in

the portfolio varies from a minimum of 17% to a maximum of 80%. Tables 3 and 4 report

the fair ξ∗ for pure endowment (PE), term insurance (TI), and endowment insurance (EI)

for T = 30, 40 for cohorts 1950 (initial age 35) and 1940 (initial age 45). Table 5 reports

the fair ξ∗ for the immediate lifetime annuity (ILA) for cohorts 1930 (initial age 55), and

1920 (initial age 65), respectively. In each table the second column reports the proportion

w = m/(m+ n) of males in the portfolio.

m w = m
m+n

PE, T = 30 PE, T = 40 TI, T = 30 TI, T = 40 EI, T = 30 EI, T = 40

10 0.167 0.1629 0.1577 0.1635 0.1593 0.1649 0.1627
20 0.286 0.2802 0.2724 0.2810 0.2748 0.2831 0.2780
50 0.500 0.4932 0.4834 0.4942 0.4865 0.4968 0.4929
100 0.667 0.6606 0.6517 0.6614 0.6545 0.6638 0.6603
150 0.750 0.7449 0.7373 0.7436 0.7397 0.7496 0.7447
200 0.800 0.7959 0.7899 0.7962 0.7912 0.7979 0.7954

Table 3: Fair ξ∗ for pure endowment (PE), term insurance (TI) and endowment insurance
(EI) with parameters: n = 50, ρ = 0.95, r = 0.03, generation born in 1950, initial age 35.

We observe the following:

• ξ∗, that is the weight given to the males’ mortality intensity in the fair unisex intensity,

is never equal to the fraction of males in the portfolio w = m/(m+n); this means that

the mix of the mortality intensities of males and females cannot be done using exactly

the volume-related weights;

• nonetheless, ξ∗ strongly depends on w and increases when w = m/(m + n) increases;

this is obvious, because when there are more males in the portfolio, more weight must

be given to the males’ mortality;
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m w = m
m+n

PE, T = 30 PE, T = 40 TI, T = 30 TI, T = 40 EI, T = 30 EI, T = 40

10 0.167 0.1564 0.1436 0.1579 0.1485 0.1618 0.1569
20 0.286 0.2704 0.2509 0.2727 0.2586 0.2785 0.2712
50 0.500 0.4808 0.4553 0.4838 0.4655 0.4911 0.4820
100 0.667 0.6493 0.6253 0.6521 0.6352 0.6587 0.6504
150 0.750 0.7353 0.7143 0.7376 0.7230 0.7433 0.7362
200 0.800 0.7873 0.7681 0.7893 0.7768 0.7942 0.7882

Table 4: Fair ξ∗ for pure endowment (PE), term insurance (TI) and endowment insurance
(EI) with parameters: n = 50, ρ = 0.95, r = 0.03, generation born in 1940, initial age 45.

m w = m
m+n

ILA (x = 55) ILA (x = 65)

10 0.167 0.1345 0.1391
20 0.286 0.2375 0.2442
50 0.500 0.4389 0.4468
100 0.667 0.6109 0.6176
150 0.750 0.7023 0.7079
200 0.800 0.7590 0.7636

Table 5: Fair ξ∗ for immediate lifetime annuity (ILA) with parameters for generation born
in 1930 (x = 55) and in 1920 (x = 65): n = 50, ρ = 0.95, r = 0.03, ω = 120.

• for all life insurance products considered, all cohorts and durations, ξ∗ is smaller than

w = m/(m+ n); for the pure endowment, this is in line with the result of Proposition

5.2, noting that the calibrated values of the volatilities σm and σf are small, and

therefore for both genders the stochastic intensity is not significantly different from a

deterministic force of mortality. This result sheds light on the complex relationship

between ξ∗ and w, and points out that the fair ξ∗ equivalent to a given males’ proportion

w is smaller than w, or, in other words ξ∗(w) ≤ w;

• for each cohort, portfolio size and duration, ξ∗ is greater for the term insurance than

for the pure endowment; this is reasonable, because with the term insurance it is

prudent to give more weight to the males’ mortality and with the pure endowment it

is prudent to give more weight to the females’ mortality; this is consistent with the
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current practice of giving more weight to the males’ life table for the term insurance

and less weight to the males’ life table for the pure endowment;

• for each cohort, portfolio size and duration, ξ∗ is greater for the endowment insurance

than for the pure endowment and the term insurance. This can be explained by noting

that the actuarial value of a standard endowment is equal to the price of a zero coupon

bond plus the premium of a term insurance with decreasing sum assured (see e.g.

[11]), therefore from the probabilistic point of view the endowment is similar to the

term insurance;

• immediate lifetime annuities deliver plausible and intuitive results: ξ∗ is always sub-

stantially smaller than w = m/(m + n), i.e. always more weight must be given to

the females’ mortality. The difference between w and ξ∗ turns out to be higher with

annuities than with pure endowment (although different cohorts are considered for the

two products): this can be explained by noting that the lifetime annuity is paid until

death of the policyholder; at very old ages the portfolio is likely to consist mainly of

females, and therefore in a portfolio of annuities the mortality of females should be

dominating those of males; this requirement is crucial for lifetime annuities but is less

important for pure endowment, given that towards the time duration T the portfolio

of pure endowment is not likely to consists mainly of females;

• overall, ξ∗ is higher for shorter duration (T = 30) and smaller for longer duration

(T = 40); this result is meaningful and indicates that when the duration is high, the

importance given to females should increase; this is probably due to the fact that

females live longer, so the share of males m/(m+n) decreases in the long run, as more

males die.

The comparisons between ξ∗ across different products, cohorts, duration T and males’ pro-

portions w highlight that ξ∗ is affected by all these components, and reflects all information

about the future evolution of mortality of the mixed portfolio. These different values shed

light on how the unisex mortality should be treated in different portfolios in order to ensure

actuarial fairness.
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6.2.2 Varying ρ

In Tables 3, 4, and 5, the correlation coefficient ρ is set to 0.95. However, ξ∗ in principle

may depend also on ρ and, if this is the case, the insurer should take into account this

dependence in pricing unisex tariffs. Thus, we have investigated the dependence of ξ∗ on ρ.

Figures 3− 5 show, for the considered cohorts, the effect of ρ on ξ∗ for the pure endowment,

the term insurance, the endowment insurance and the immediate lifetime annuity. Common

assumptions on the portfolios are m = n = 50, that implies w = m/(m + n) = 0.5, T = 30

and r = 0.03. For the duration T = 40 we would get similar figures.

-1.0 -0.5 0.0 0.5 1.0
0.40

0.42

0.44

0.46

0.48

0.50

0.52

Ρ

Ξ
*

Endowment Insurance

Term Insurance

Pure Endowment

-1.0 -0.5 0.0 0.5 1.0
0.40

0.42

0.44

0.46

0.48

0.50

0.52

Ρ

Ξ
*

Endowment Insurance

Term Insurance

Pure Endowment

Figure 3. ξ∗ versus ρ, cohort 1950. Figure 4. ξ∗ versus ρ, cohort 1940.
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Figure 5. ξ∗ versus ρ for immediate lifetime annuity, cohort 1930 (x = 55) and cohort 1920

(x = 65).
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The graphs show that ξ∗ is almost constant when ρ varies for cohorts 1920, 1930 and

1940, and is slightly increasing for cohort 1950. Therefore, the effect of ρ on ξ∗ is essentially

negligible. This is consistent with related work, not reported here, that shows that the

calculation of the fair parameters ξ∗ with the sample correlation ρsample delivers numerical

results that are identical (or almost identical) to those presented in the previous section.

7 Periodic premiums

In Section 6.2.1 we have calculated ξ∗ only in the case of single premium. In this section,

we consider the case of periodic annual premiums, and calculate the corresponding fair

mortality intensity parameter. We note that relaxing the single premium assumption makes

the fair mortality intensity mixing parameter look less intuitive and more complex, even for

simple contracts like pure endowment. But theoretically, it is possible to track down the

equations that can be solved for the fair mortality intensity mixing parameter. Taking the

pure endowment with unit sum assured as an example, let us elaborate on this issue. Letting

πm, πf and πu denote the fair flat periodic premiums, they satisfy:

T−1∑
k=0

Si(0, k)πie−rk =e−rTSi(0, T ),

⇒ πi =
e−rTSi(0, T )∑T−1
k=0 S

i(0, k)e−rk
i = m, f, u.

The fair mortality intensity parameter ξ∗ results from solving the following equality:

e−rTSu(0, T )∑T−1
k=0 S

u(0, k)e−rk
= w

e−rTSm(0, T )∑T−1
k=0 S

m(0, k)e−rk
+ (1− w)

e−rTSf (0, T )∑T−1
k=0 S

f (0, k)e−rk
,

where ξ∗ is hidden in Su(0, k), k = 1, · · · , T . Compared to the single premium case, ξ∗

depends also on the interest rate r. Similar equations hold for the other life insurance

products, and we do not report them for conciseness reasons.

We have calculated the fair ξ∗ in the presence of periodic annual premiums payable over the

whole policy duration for the term insurance, the pure endowment and the endowment (we

31



have not done it for lifetime annuities, because in that case the single premium is usually

adopted). The results are reported in Tables 6 and 7.

m w = m
m+n

PE, T = 30 PE, T = 40 TI, T = 30 TI, T = 40 EI, T = 30 EI, T = 40

10 0.167 0.1636 0.1587 0.1649 0.1617 0.1664 0.1653
20 0.286 0.2813 0.2740 0.2830 0.2784 0.2853 0.2837
50 0.500 0.4945 0.4854 0.4967 0.4909 0.4995 0.4875
100 0.667 0.6618 0.6535 0.6637 0.6585 0.6662 0.6644
150 0.750 0.7459 0.7388 0.7475 0.7431 0.7496 0.7481
200 0.800 0.7965 0.7904 0.7979 0.7941 0.7996 0.7984

Table 6: Fair ξ∗ in case of periodic premiums for pure endowment (PE), term insurance (TI)
and endowment insurance (EI) with parameters: n = 50, ρ = 0.855, r = 0.03, generation
born in 1950, initial age 35.

m w = m
m+n

PE, T = 30 PE, T = 40 TI, T = 30 TI, T = 40 EI, T = 30 EI, T = 40

10 0.167 0.1591 0.1476 0.1626 0.1562 0.1663 0.1640
20 0.286 0.2745 0.2570 0.2797 0.2702 0.2852 0.2819
50 0.500 0.4861 0.4663 0.4926 0.4807 0.4994 0.4952
100 0.667 0.6541 0.6329 0.6600 0.6493 0.6661 0.6624
150 0.750 0.7394 0.7210 0.7444 0.7352 0.7495 0.7464
200 0.800 0.7909 0.7750 0.7952 0.7874 0.7996 0.7969

Table 7: Fair ξ∗ in case of periodic premiums for pure endowment (PE), term insurance (TI)
and endowment insurance (EI) with parameters: n = 50, ρ = 0.832, r = 0.03, generation
born in 1940, initial age 45.

The effects demonstrated in the single premium case can be observed here, too. The

exclusive difference in this case is that the magnitude of ξ∗ here is higher than that in the

single premium case. In other words, by charging periodic premiums, we obtain ξ∗ closer

to the portfolio weight w. In particular, for endowment insurance contracts, ξ∗ can become

extremely close to w, if the number of males is large in the portfolio.
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8 Time-varying ξ∗

In Section 5, we have introduced the unisex fair mortality intensity mixing parameter ξ∗ in

the case of the single premium as the parameter that ensures actuarial fairness at time 0

only. In Section 7, we have dealt with the case of periodic premiums, but considering again

the actuarial fairness at time 0 only. It is clear that if at any time t > 0 we define a unisex

mortality model for the portfolio by using the fair parameter ξ∗ calculated at time 0, the

resulting unisex mortality model will no longer be fair, because from 0 to t the proportion of

males in the portfolio does not remain constant trough time, due to the different mortality

paths of males and female. It might however be interesting to calculate the fair mortality

mixing parameter ξ∗t at time t that is equivalent to the updated males’ proportion at time

t, wt. This could be useful if, for instance, the insurer prefers to do reserving on the whole

portfolio rather than on the two gender-based subportfolios and needs a unisex fair mortality

model.5 Therefore, in this section we address the issue of time-varying ξ∗t .

The calculation of the fair ξ∗t at time t is not straightforward. Taking a pure endowment

insurance contract as an example, the initial fairness results from satisfying the following

condition:

mSm(0, T ) + nSf (0, T ) = (m+ n)Su(0, T ).

If we want to compute the fair ξ∗t for a later time point t ∈ (0, T ), we need to know how

many policyholders have survived time t, and the realized mortality intensities. All these are

unknown at time 0 and can be simulated. But if we use simulated values, we will obtain a

different ξ∗t for every different simulated number, which make a comparison with the initial ξ∗

difficult. To overcome this problem, we use the expected survival number until time t as the

realized number of survivals, i.e. wt = mSm(0, T )/(mSm(0, T ) + nSf (0, T )). Furthermore,

we assume that the realized mortality intensities at time t equals their expected value, i.e.

5This could be the case of Danish insurers, considering that after the EU Gender Directive in Denmark
regulators have introduced fiscal incentives to do reserving considering the whole portfolio rather than the two
subportfolios of males and females. Therefore, the knowledge of a single unisex mortality model that respects
actuarial fairness at any time can be useful in all countries where such fiscal incentives were introduced.
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E (λi(t)) = λi(0)eµ
it. In other words, we assume that the fair ξ∗t satisfies:

mSm(0, t)Sm(0, t, T ) + nSf (0, t)Sf (0, t, T ) = (mSm(0, t) + nSf (0, t))Su(0, t, T ), (21)

here we have used Si(0, t, T ), i = m, f, u to point out the fact that we are using the expected

value in 0 of λi(t), E (λi(t)), to compute the survival probabilities during [t, T ].

Figures 6, 8, 10, 12 illustrate how ξ∗t change in time for the four contract types: pure

endowment, term insurance, endowment insurance and immediate lifetime annuities. Figure

7, 9, 11 and 13 report the difference wt − ξ∗t over time, that is crucial given that ξ∗t depends

essentially on wt. Here we have used m = n = 50 and the sample correlation coefficients.6

Note that in Figure 12 , ξ∗t is only plotted until t = 50 for generation 1920.

We observe the following:

• In the figures, we can distinguish two distinct patterns for ξ∗t and the difference wt−ξ∗t :
one is for the three products PE, TI, and EI, the other is for ILA. In other words,

products with a time duration T display strong similarities, that make them different

from lifetime annuities.

• For all the contract types, wt > ξ∗t for all t. Interestingly, when t approaches the

contract maturity (for the lifetime annuity, the maximal age), the difference wt − ξ∗t
becomes smaller and tends to 0. In other words, when maturity approaches the fair ξ∗t

becomes closer and closer to the real portfolio weight wt.

• For PE, TI, and EI, ξ∗t is almost constant for the youngest cohort 1950, while it is

slightly decreasing for cohort 1940.

• For PE, TI, and EI, the positive difference wt − ξ∗t is lower for the youngest cohort

1950 than for the oldest cohort 1940.

• For ILA, ξ∗t sharply decreases towards 0 as time goes by for cohort 1930. This is

due to the fact that at very old ages only females remain in the pool and this pushes

down both wt and ξ∗t . For cohort 1920, ξ∗t decreases towards approximately 0.1 as the

6The sample correlation ρ is 0.855 for cohort 1950, 0.832 for cohort 1940, 0.876 for cohort 1930 and 0.948
for cohort 1920.

34



maximal age ω approaches. Considering that also for this cohort wt − ξ∗t tends to 0

when the age tends to ω, this means that also wt tends approximately to 0.1.

• For ILA, the difference wt−ξ∗t for cohort 1930 slightly increases for 30 years, then drops

quickly towards 0 close to maximal age. For cohort 1920 there is a gradual reduction

towards 0 when maximal age approaches.
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Figure 6. Time-varying fair ξ∗t Figure 7. Difference of wt and ξ∗t
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Figure 8. Time-varying fair ξ∗t Figure 9. Difference of wt and ξ∗t
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0 10 20 30 40 50 60

0.0

0.1

0.2

0.3

0.4

t

Fair ξt
* (Immediate life annuity)

generation 1920

generation 1930

0 10 20 30 40 50 60
0.00

0.02

0.04

0.06

0.08

0.10

t

wt-ξt
* (Immediate life annuity)

generation 1920

generation 1930

Figure 12. Time-varying fair ξ∗t Figure 13. Difference of wt and ξ∗t

9 Concluding remarks

The EU Gender Directive (European Union Directive 2004/113/EC) has introduced bind-

ing rules for the pricing of life insurance products. In the lack of theoretical models, the

current practice adopted by actuaries for the calculation of the unisex premium seems to be

a weighted average of the gender-specific life tables, with proper corrections linked to the

type of insurance product. This paper proposes a theoretical model for the pricing of the

unisex premium of a life insurance products. First, we recall the notion of unisex actuarial

fairness principle and the corresponding unisex actuarially fair premium. Second, as the
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main contribution of the paper, we introduce the fair unisex mortality intensity, that is the

unisex intensity underlying the unisex fair premium.

The numerical application is rich of interesting results. First, the comparison between the

unisex fair mortality models to be adopted with the same proportion males/females in the

portfolio for different insurance products provides meaningful and useful information. In-

deed, with the same males/females proportion, the weight to be given to the males’ mortality

in the fair unisex mortality model is different for different insurance product. For instance, if

the insurer has two portfolios, one with term insurances (or endowments) and the other with

lifetime annuities (or pure endowments), which have the same proportion males/females, the

weight that he must give to the males’ mortality intensity in the portfolio of term insurances

(or endowments) is higher than that to be given in the portfolio of lifetime annuities (or pure

endowments). This is also prudent and consistent with current actuarial practice. Second,

as a feature of the mortality model selected (stochastic force of mortality) we find that the

weight to be given to the males’ mortality in the unisex model is smaller than the proportion

of males in the portfolio. Third, by setting the actuarial fairness principle on an annual basis

rather than at the policy issue only, we find that when the time horizon of the policy ap-

proaches the weight to be given to the males’ mortality converges to the proportion of males

in the portfolio. Annual fairness condition and time-varying unisex mortality models could

be useful if, based on the EU Gender Directive, regulators were to encourage (or require)

the reserving done on the whole portfolio basis rather than on gender-based subportfolios –

as it is happening in some countries.

In the present paper, we apply the traditional actuarial equivalence principle at the portfolio

level in a modern way and address the specific recent problem caused by mandatory unisex

tariff. The unisex fair premium as well as the fair unisex mortality intensity could be use-

ful tools for the life insurance company. The knowledge of the fair unisex mortality model

should enhance the understanding of the nature of the risk of a mixed portfolio. The use of

the present model for the calculation of Solvency II SCR for mixed life insurance portfolios

is in the agenda for future research.
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Finally, this paper leaves space for further research. Possible extensions are: the intro-

duction of a stochastic discount factor; the introduction of safety loading and commissions;

a stochastic proportion of males in the portfolio; the derivation of a unisex fair mortality

model underlying the fair unisex premium with a different mortality model.
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