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Scale-dependent colocalization in a population of gyrotactic swimmers
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We study the small scale clustering of gyrotactic swimmers transported by a turbulent flow, when the
intrinsic variability of the swimming parameters within the population is considered. By means of extensive
numerical simulations, we find that the variety of the population introduces a characteristic scale R∗ in its spatial
distribution. At scales smaller than R∗ the swimmers are homogeneously distributed, while at larger scales an
inhomogeneous distribution is observed with a fractal dimension close to what observed for a monodisperse
population characterized by mean parameters. The scale R∗ depends on the dispersion of the population and it
is found to scale linearly with the standard deviation both for a bimodal and for a Gaussian distribution. Our
numerical results, which extend recent findings for a monodisperse population, indicate that in principle it is
possible to observe small scale, fractal clustering in a laboratory experiment with gyrotactic cells.
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I. INTRODUCTION

The microscopic distribution of aquatic microorganisms
has profound effects on the ecology of the oceans [1,2]. One
example is the observed patchiness of phytoplankton at the
submeter scale which has a fundamental impact on the rate
at which cells encounter each other and their predators [3,4].
Patchiness of phytoplankton at different scales has different
origins. While at large scales it is driven by reproduction and/or
nutrients [5,6], at scales smaller than one kilometer patchiness
is expected to be produced by physical mechanisms, including
plankton motility and the interaction with the flow. Indeed,
field observations have revealed that motile phytoplankton
are considerably more patchy at small scales than nonmotile
species [7,8].

Several species of motile phytoplankton are able to swim
in the vertical direction guided by a stabilizing torque arising
from an unbalance distribution of the mass in the cell [9,10].
The resulting swimming direction of these gyrotactic cells
stems from the competition between the stabilizing torque
and the shear-induced viscous torque [11–14]. Numerical and
experimental works have revealed how gyrotactic motility,
combined with the presence of a flow, generates strongly
inhomogeneous distributions. In the case of laminar flow,
gyrotaxis produces a beamlike accumulation in downwelling
pipe flows [11], while in horizontal shear flow it generates
accumulation in thin layers [10,15,16]. Recent works have
shown that gyrotaxis also produces clustering at very small
scales (comparable with the Kolmogorov scale) in nonsta-
tionary turbulent flows [17–20]. In this case cells are found
to accumulate on fractal dynamical clusters characterized
by a fractal dimension which depends on the cell and flow
parameters [17,18,21].

In this work we consider the dynamics of an inhomogeneous
population of gyrotactic cells, characterized by a distribution
of cells’ parameters, transported by a turbulent flow in the limit
of dilute concentration, i.e., neglecting the interaction among
cells and possible feedback on the flow. The motivation of
our study is to determine the robustness of fractal clustering
induced by turbulence on a distribution of cells with slightly
different biological parameters, typical of a natural population.
The main result, obtained by means of extensive numerical

simulations, is that fractal clustering is observable, at large
enough scales, also in populations with significant variability
(up to 20% of relative variation in gyrotactic parameters).
Moreover, by considering a simplified bimodal population,
we introduce a crossover scale (above which fractal clustering
is observable) and we predict how this scale depends on the
population variability.

The remaining part of this paper is organized as follows.
In Sec. II we introduce the mathematical model for gyrotactic
swimmers and we discuss, on the basis of simple arguments,
how clustering depends on the population distribution. Sec-
tion III is devoted to numerical results for two particular
distributions, while Sec. IV summarizes our results.

II. MATHEMATICAL MODEL

We consider the classical model of gyrotactic swimmers
which describes the motion of a bottom-heavy spherical cell
[11,22] at position X swimming in the direction p (with
| p| = 1),

d X
dt

= u(X,t) + V p, (1)

d p
dt

= 1

2B
[k − (k · p) p] + 1

2
ω(X,t) × p, (2)

where u(x,t) is the velocity field, ω = ∇ × u is the vorticity,
k = (0,0,1) is the vertical unit vector. The first term on the
right-hand side of (2) represents the effect of the gravitational
torque which orients the swimming direction towards the
vertical, while the last term is viscous torque which rotates
the cells with the local vorticity. V is the swimming velocity,
assumed constant, while B = 3ν/(gh) is the gyrotactic reori-
entation time where ν is the kinematic viscosity of the fluid, g

the acceleration of gravity, and h measures the displacement
of the center of mass from the geometrical center of the cell.

The gyrotactic swimmers are transported by a turbulent
velocity field u(x,t) obtained by direct numerical simulations
(DNS) of the incompressible Navier-Stokes equations,

∂t u + u · ∇u = −∇p + ν∇2u + f , (3)
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where f represents a zero-mean, temporally uncorrelated
Gaussian forcing which injects energy at large scales at a rate
ε. Together with the viscosity, the energy injection rate defines
the Kolmogorov length scale ηK = (ν3/ε)1/4, the Kolmogorov
time scale τK = (ν/ε)1/2, and the Kolmogorov velocity vK =
ηK/τK = (νε)1/4 [23]. These characteristic scales are used to
make the parameters in the gyrotactic model dimensionless.
The ratio of the two terms on the right-hand side of (1) defines
the swimming number � ≡ V/vK , while the ratio of the two
terms in Eq. (2) gives the stability number � ≡ B/τK .

Formally, Eqs. (1) and (2) define a dissipative dynamical
system in the (X, p) phase space of dimension 2d − 1 (d = 3)
with an expansion rate in the phase space given by

d∑
i=1

(
∂Ẋi

∂Xi

+ ∂ṗi

∂pi

)
= −d − 1

2B
p3. (4)

As the swimming direction orients towards the vertical
direction (p3 > 0) the expansion rate becomes negative and the
trajectories collapse on a fractal attractor in the phase space.
When the attractor has dimension less than d the swimmers
concentrate (in physical space) on clusters with the same
fractal dimension [24].

When the swimming number vanishes (i.e., V = 0) the cells
in Eq. (1) are simply transported by an incompressible velocity
field and therefore they cannot accumulate [as (1) decouples
from (2)]. Moreover, when B is smaller than the Kolmogorov
time, i.e., � � 1, we can expand (2) at the first order in B/τK

to obtain, in stationary conditions [17],

p ≈ (Bωy,−Bωx,1), (5)

which shows that when B = 0, p is aligned towards the vertical
direction and the motion of the swimmers is given by the
superposition of an incompressible velocity and a uniform
vertical migration which, again, cannot produce clustering.
Similarly, for B → ∞ the expansion rate (4) vanishes and also
in this case swimmers are not expected to cluster. Previous
numerical simulations have shown that indeed gyrotactic
swimmers produce clusters for intermediate values of � (and
� > 0) with maximum clustering for � 	 1 [17].

To quantify the degree of clustering we use the correlation
dimension D, defined as the scaling exponent of the probability
to find two particles at a distance less than r: P (|X1 − X2| <

r) ∝ rD as r → 0 [24]. For homogeneous distribution in space
one has D = d, while D < d indicates fractal clustering.

When considering a population of swimmers with different
parameters V and B we can extend the above definition to
measure the cross-correlation dimension D12(r) defined in
terms of the probability of finding two swimmers characterized
by two sets of parameters (V1,B1) and (V2,B2) at a distance
smaller than r: P12(r) ∝ rD12 [25]. In principle, we cannot
expect a power-law scaling for P12(r) for a generic couple of
swimmer parameters and therefore D12 is a function of r and
not simply a scaling exponent. Of course, for a monodisperse
population, with V2 = V1 and B2 = B1 the cross-correlation
dimension recovers the correlation dimension of the popula-
tion, D12(r) = D.

Consider now a couple of swimmers at positions X1 and
X2 = X1 + R with slightly different parameters, e.g., with
the same swimming velocity V2 = V1 and with different

reorientation time B2 = B1 + 
B. We assume that 
B is
a small parameter such that the separation between the two
trajectories R is smaller than the Kolmogorov scale. According
to (1) this separation evolves according to

d R
dt

= 
u(R) + V 
 p, (6)

where 
u(R) = u(X2) − u(X1) and 
 p = p2 − p1.
The first term on the right-hand side of (6) is proportional

to vK (R/ηK ), while the second term, in the limit of small
stability numbers, contains the difference ω
B. The ratio of
these two terms defines a characteristic scale R∗ 	 ηK�
�.
When R < R∗ the swimmer velocity difference is dominated
by the second term in Eq. (6): The two trajectories are
uncorrelated and one swimmer sees the other population as
uniformly distributed. On the contrary, when R > R∗, the first
term in Eq. (6) dominates and correlations between the two
populations appear, induced by the common velocity field [26].
Therefore, for a bimodal distribution, we expect two different
behaviors for D12(r): D12(r) = 3 for R < R∗ and D12(r) 	
D11 for R > R∗ (D11 	 D22 are the correlation dimensions of
the two populations, which are close by hypothesis).

In the case of two swimmers with the same reorientation
time B and different swimming velocity V1 and V2 = V1 +

V , a similar argument, in the limit of small parameter
difference, leads again to a characteristic scale R∗ 	 ηK�
�

which separates scales with homogeneous and fractal relative
distribution.

The general case of a polydisperse population, character-
ized by a probability density function of parameters f (V,B)
is the most interesting for applications to experimental data
where one cannot avoid the natural intrinsic variability of
the population. Also in this case we will consider the
cumulative probability of having two swimmers at a distance
lower than r , integrated over the distribution f (V,B). Again,
for very small r we expect this probability to decrease
proportional to r3 as different cells in the population are
spatially decorrelated. The interesting question is whether also
for a continuous distribution of cell parameters with finite
support there exists a characteristic scale R∗ above which a
fractal dimension can be observed which can be interpreted
as that of an “average” monodisperse population. To address
this point we will consider a population characterized by a
Gaussian parameter distribution f (B) with mean value B̄ and
variance σB .

III. NUMERICAL RESULTS

We have performed a numerical investigation of the spatial
distribution of several populations of swimmers, characterized
by different distributions f (V,B) of swimming parameters.
The velocity (and vorticity) field in (1) and (2) are obtained
by a direct numerical simulation of the NS equations (3)
by using a fully dealiased pseudospectral code at different
resolutions. After the flow has reached a statistical steady state,
a population of Ns cells is initialized with uniform random
positions X in the domain and orientation p on the unit sphere.
The motion of the swimmers is obtained by the simultaneous
integration of (3) and (1) and (2) in which fluid velocity
and vorticity at the cell positions are obtained by trilinear
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FIG. 1. Correlation dimension D for a homogeneous population
of gyrotactic swimmers as a function of the stability number �.
Different lines correspond to different swimming numbers: � = 0.33
(red crosses), � = 0.66 (blue squares), � = 1.0 (purple circles),
and � = 3.0 (black triangles). The error bars are estimated on the
fluctuations of the dimension with the statistics.

interpolation [27]. After the swimmer distribution has reached
a statistical steady state, we collect data for several large-scale
eddy turnover times to ensure statistical convergence.

In Fig. 1 we plot the correlation dimension for a monodis-
perse population as a function of the swimming number
� and stability number �. As already reported, clustering
is maximum (i.e., D is minimum) for � 	 1 and large �

[17,20] while D 	 3 for both large and small values of �,
as discussed in Sec. II. The position of the minimum D

(maximum clustering) depends on the swimming velocity as,
for small �, one has 3 − D ∝ (��)2 [17].

A. Bimodal distribution

We first consider a bimodal population composed by two
species with the same swimming number � and different
stability numbers �1 and �2 = �1 + 
� with the same
number of cells in each species, i.e., with marginal distribu-
tion f (B) = 1

2δ(B − B1) + 1
2δ(B − B2). The difference 
�

defines the standard deviation of the distribution σB = 
�/2.
Figure 2 shows a two-dimensional (2D) section of the

three-dimensional (3D) distribution of a bimodal population
with dimensionless parameters �1 = 0.5, �2 = 0.667, and
�1 = �2 = 3.0 with the two species plotted with different
color. Both species are expected to cluster according to the
results shown in Fig. 1 with correlation dimension D 	 2.0.
It is evident that the two populations display similar structures
at large scales, although the small scale features of the
distributions do not overlap. This is in qualitative agreement
with the argument discussed in Sec. II.

The scale-dependent colocalization is quantified by the
cross probability P12(r) plotted in Fig. 3 for pairs of popu-
lations with different values of 
�. We see that, for all pairs
considered, the probability displays a scaling close to r3 at
very small scales confirming that, at these scales, the two
populations have uncorrelated distributions. On the contrary,

z
x

FIG. 2. Vertical section of the positions of two species of swim-
mers with �1 = 0.5 (red), �2 = 0.667 (blue), and �1 = �2 = 3.0 in
a turbulent flow.

for sufficiently large scales, the probability distribution follows
a power-law scaling with exponent 	2.2, close to the fractal
dimension of a homogeneous population with stability number
�, the average of the two species.

The transition between the two scaling ranges, although
broad, clearly moves to larger scale as the difference 
�

increases. In order to quantify this transition, we computed the
crossover scale R∗ defined empirically by the intersection of
two power-law fits of P12(r) at small scales and large scales,
respectively. The small scale exponent is close to 3 (we obtain
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FIG. 3. Probability P12(r) to find two cells of different popula-
tions 1 and 2 at distance smaller than r for different pairs of population
parameters with 
� = 0.0042 (red crosses), 
� = 0.021 (blue
squares), 
� = 0.042 (purple circles), and 
� = 0.125 (black
triangles). Each population is composed by 6.4 × 104 individuals.
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FIG. 4. Crossover scale R∗ as a function of 
� for two different
sets of populations with � = 3 (red squares) and � = 1.5 (blue
circles). (Inset) The same data plotted as a function of �
�.

an exponent between 2.8 and 3.0 for all the cases considered),
while the large-scale exponent depends on �. Figure 4 shows
the dependence of R∗ on the population variance 
�, for
different swimming number �, which confirms the linear
scaling of R∗ predicted in Sec. II. The inset of Fig. 4 shows
the remarkable collapse of R∗ when plotted as a function of
�
�, as predicted in Sec. II.

A similar behavior is observed when considering a bimodal
population with two different swimming numbers �1 and
�2 = �1 + 
�. Figure 5 refers to three examples of bimodal
populations characterized by three different stability numbers
� close to the value for maximum clustering shown in
Fig. 1 (� = 0.4, � = 0.65, and � = 0.85). Also in this case,
different scaling behaviors of P12(r) are observed for small
and large separations and the fit of these scaling laws are used
to define the crossover scale R∗ plotted in the figure. The inset
of Fig. 5 shows a good collapse of the different crossover
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FIG. 5. Crossover scale R∗ as a function of 
� for two different
sets of populations with � = 0.4 (red squares), � = 0.65 (blue
circles), and � = 0.85 (pink triangles). (Inset) The same data plotted
as a function of �
�.
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FIG. 6. Probability P (r) to find two cells at distance smaller than
r for a population of gyrotactic swimmers with fixed � = 3 and �

Gaussian distributed with � = 0.583 and σ� = 0.008 (red crosses),
σ� = 0.042 (blue squares), σ� = 0.083 (purple circles), and σ� =
0.166 (black triangles). Each population is composed by 3 × 105

individuals. (Inset) Crossover scale R∗ as a function of σ� .

scales when plotted as a function of the combination �
�,
confirming that this is the relevant parameter in the process.

B. Gaussian distribution

We now consider the more realistic case of a population
of swimmers with stability number � following a Gaussian
distribution with mean value � and standard deviation σ� .
Having in mind an experimental study in which we do not
know the value of � (i.e., B) for each individual, we consider
the cumulative probability P (r) of having two cells at a
distance smaller than r integrated on all the possible pairs
in the population.

The dependence of P (r) on r is shown in Fig. 6 for several
populations with different standard deviations σ� . Similarly
to the case of bimodal distribution, we recognize different
ranges of scales. At very small scale, P (r) converges towards
the uniform scaling r3, more clearly for the case with larger
variance while for small variance a smaller scaling exponent
is observed (between 2.6 and 2.8). At larger scales, r � η,
we observe a different power-law behavior with an exponent
which weakly depends on σ� and is very close to the exponent
of a monodisperse population D(�) 	 2 for the smallest
variance while grows to above 2.3 for the population with
largest variance. As in the case of bimodal distribution, also in
this case the transition from homogeneous (D 	 3) to fractal
(D 	 2) distribution moves to larger scales as σ� increases,
as shown in Fig. 6. It is remarkable that also for the largest
standard deviation, for which σ�/� 	 0.29, the distribution
of the population at large scales is strongly inhomogeneous
and the probability P (r) indicates a fractal dimension close to
D(�).

IV. CONCLUSIONS

We have studied, by means of direct numerical simulations,
the small-scale clustering of a population of gyrotactic cells,
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characterized by a distribution of gyrotactic parameters,
swimming in a turbulent environment. The main goal of our
work was to extend the results obtained for a monodisperse
population to a more realistic population, characterized by a
distribution of the swimming parameters.

We considered two very different families of test popula-
tions: bimodal populations, made of two hypothetical strains
with different swimming or stability number, and a more real-
istic case where the swimming number is Gaussian distributed
within the population. Despite the differences between the
distributions considered, they show similar features for what
concerns small-scale clustering. In all cases, the probability of
finding interparticle distances less than r exhibits two scaling
ranges r3 and rD for separations smaller and larger than a
crossover scale R∗, respectively. The exponent D represents
the effective correlation dimension of the distribution when it is
coarse grained at a scale R∗. The crossover scale grows with the
variance of the distribution, confirming the linear dependence
predicted for a narrow bimodal distribution. Furthermore, in
this case our numerical data confirm the prediction that R∗
depends on the product of the two dimensionless swimming
parameters.

From an experimental point of view, our results allow one
to estimate a priori, based on biological and fluid-dynamical
data, whether clustering is expected in a given range of
scales for a given species. This should be taken into account
in designing or analyzing field measurements in relation
to turbulence-induced phytoplankton patchiness. Of course,
analogous considerations apply every time fractal clustering is
predicted, with a fractal dimension depending on parameters
with a non-negligible intrinsic variability, as exemplified by
works on inertial-particle transport in turbulence [26].

In this work we consider the limit of dilute concentration,
i.e., we ignore possible effects due to direct interaction among
cells and the feedback on the flow produced by cell motion.

These effects can be not negligible at high concentrations
and in particular in the regions of fractal clustering where
local density can be much larger than the average one [17].
On the basis of a model for the feedback force and torque
induced by gyrotactic swimmers [28], one can estimate that the
assumption of passive swimmers is valid up to concentrations
of the order of 106 cells/ml which is hardly achieved in typical
oceanic conditions.

Our findings should help assess the ecological relevance of
turbulence-induced demixing [17]. Fractal clustering implies
smaller distances between neighboring cells with respect to a
homogeneous distribution with the same average density. This
has consequences for mating, resource exploitation, and risk
of predation. Consideration of the variability in swimming
parameters might lead one to conclude that small-scale
clustering is in practice irrelevant. However, if indeed the
distribution is fractal on a finite range of scales, the effect
on nearest-neighbor distance could be diminished but still
relevant. If predation by zooplankton is considered, R∗ could
be larger than the typical perception radius of the predator
(e.g., a copepod or a fish larva), which would detect a locally
homogeneous distribution of prey, but smaller than the typical
swimming distances covered while cruising for prey, so that
the underlying fractality might still have consequences for
the predation strategy [29]. Moreover, the possibility of a
heterogeneous population to retain a fractal distribution on
larger scales may have effects for population dynamics [30,31].
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