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Abstract 

Anaplastic thyroid cancer is one of the most lethal diseases and a curative therapy does not exist. 

Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low 

response rate and causes numerous side effects among which cardiotoxicity is the most prominent. 

Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve drug 

efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic 

thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock 

waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the 

intracellular drug content and in vitro cytotoxicity. In the present study we tested the efficacy of this 

treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the 

combined treatment determined the greatest drug accumulation in tumors with consequent reduction 

of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the 

treatment induced tumor apoptosis and decreased cell proliferation. Finally, whereas doxorubicin 

caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin 

into nanobubbles avoided these effects preventing heart damage.  

The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage 

suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves 

might be a promising drug delivery system for anaplastic thyroid cancer treatment. 
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Introduction 

Anaplastic thyroid cancer (ATC) is one of the most lethal cancers, being its median survival of only 

5 months and 1-year survival less than 20% (Smallridge and Copland 2010). To date a standard 

therapy for ATC does not exist. The American Thyroid Association (Smallridge et al. 2012) and the 

National Comprehensive Cancer Network guidelines® (Haddad et al. 2015) suggest a multimodal 

approach including extensive resection followed by adjuvant chemo-radiotherapy. Nevertheless, the 

management of ATC remains a challenge and ATC is still an incurable disease. Doxorubicin is the 

only cytotoxic drug approved for the treatment in monotherapy of ATC (Haddad et al. 2015). 

Unfortunately, it has a response rate below 22% (Giuffrida et al. 2000) and, if not specifically 

targeted to the tumor cells, it causes severe side effects, among which cardiotoxicity is the most 

prominent. Notably, the severity of cardiac side effects and their occurrence are dose dependent 

(Minotti et al. 2004, Chatterjee at al. 2010, Zhang et al. 2012). Therefore, there is an increasing 

attention towards the development of new doxorubicin formulations to specifically deliver the drug 

to the tumor site increasing its anti-tumor efficacy and reducing its toxicity. To this aim, many 

formulations of doxorubicin-loaded nanoparticles have been developed (Wohlfart et al. 2011, 

Barenholz 2012, Golla et al. 2013, Yu et al. 2014, Razavi-Azarkhiavi et al. 2016). In general, 

nanoparticles can carry loaded drugs to the tumor site through the blood stream taking advantage of 

the enhanced permeability and retention effect, due to the defective vascular architecture of the 

tumor (Fang et al 2011). However, the universal role and advantages of enhanced permeability and 

retention effect in cancer therapy are still debated. In fact, vessel leakage, the absence of a 

functional lymphatic system and increased extracellular matrix frictional resistance, increase tumor 

interstitial fluid pressure and ultimately provoke disruption in blood flow directions, limiting drug 

delivery (Azzi et al. 2013, Carmeliet and Jain 2011). To overcome this problem, a better drug 

delivery to cancer tissues can be obtained by combining physical triggers (e.g. ultrasounds, US) to 

gas-cored micro and nanobubbles (NBs) (Gao et al. 2008, Collis at al. 2010, Cavalli et al. 2012, 
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Cavalli et al. 2016). Indeed, US causes bubble cavitation resulting in cell sonoporation and allowing 

the extravasation of molecules (Collis et al 2010). Extracorporeal Shock Waves (ESWs) are short-

duration focused acoustic waves widely used in urology for lithotripsy (Rassweiler et al. 2011) and, 

more recently, in several musculoskeletal diseases (Wang 2012). ESWs can be focused with high 

precision in depth and they determine permeabilization of plasma membranes (Lauer et al. 1997, 

Kodama et al. 2002, Frairia et al. 2003, Catalano et al. 2007). As a consequence of ESW-induced 

cell permeability, ESWs increase the cytotoxic effects of different anti-cancer drugs (Frairia et al. 

2003, Palmero et al. 2006, Catalano et al. 2007, Canaparo et al. 2008). All these features make 

ESWs an ideal tool to be used in combination with drug-loaded NBs. In line with this hypothesis, 

we recently demonstrated that new perfluoropentane-cored glycol chitosan NBs loaded with 

doxorubicin released the drug in response to ESW treatment in stabilized human ATC cell lines, 

resulting in increased intracellular drug content and enhanced doxorubicin cytotoxicity (Marano et 

al. 2016). Aim of the present study was to evaluate the in vivo efficacy of combining these 

doxorubicin-loaded NBs and ESWs in an ATC xenograft model with the final intent to improve 

doxorubicin anti-tumor effects and to reduce doxorubicin-induced cardiotoxicity. 
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Materials and Methods 

Nanobubble formulations. Empty and doxorubicin-loaded perfluoropentane-cored glycol chitosan 

NBs were prepared by purposely tuning the method reported elsewhere (Marano et al. 2016) 

reaching a final amount of incorporated drug up to 150 g/ml. Physico-chemical characterization, 

loading capacity and encapsulation efficiency of nanobubbles, were determined as described in 

previous study (Marano et al. 2016).  

Cell line. Stabilized ATC cell line CAL-62 was purchased from Deutsche Sammlung von 

Mikroorganismen and Zellkulturen (Braunschweig, Germany), which certifies the origin and 

identity of the cells. Cells were routinely maintained in 75 cm
2
 flasks at 37°C, in 5% CO2 and 95% 

humidity, with 100 IU/ml penicillin and 100 g/ml streptomycin (Gibco, Life Technologies Corp., 

Grand Island, NY, USA) added in DMEM-F12 (Invitrogen, Groningen, The Netherlands) 

supplemented with 10% FCS (Euroclone, Wetherby, West York, UK). CAL-62 cells are included in 

the list of the authenticated unique thyroid cancer cell lines (Schweppe et al. 2008). 

Xenograft model. The study was conducted on Mus musculus in accordance with the national 

guidelines for the care and use of research animals, and was approved by the Ethics Committee of 

the University of Turin and by the Italian Board of Health with authorization n.492/2015-PR. 

Suspension of 5 x 10
5
 CAL-62 cells in Matrigel (1:1) (Corning, New York, NY, USA) was injected 

under the skin in the two flanks of 7-week-old female NOD Scid Gamma (NSG) mice (Molecular 

Biotechnology Center, Turin, Italy). When tumors reached a minimum volume of 100 mm
3
, animals 

were randomly assigned to different treatment groups.  

To determine the time needed to deliver NBs to the tumors, 0.75 mg/kg doxorubicin-loaded NBs 

were intravenously (i.v.) injected in the animal tail vein. After 0.5, 1.5, 5 and 24 hours, mice (n=5 

per group) were sacrificed and doxorubicin was quantified in tumors by High Performance Liquid 

Chromatography (HPLC) as described below (doxorubicin quantification paragraph). 
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For all the other in vivo experiments, 100 l 0.9% (v/v) saline solution (CTRL; n=5), or 0.75 mg/kg 

doxorubicin solution (DOXO; n=5), or 0.75 mg/kg doxorubicin-loaded glycol chitosan NBs (NBs-

DOXO; n=5) were i.v. injected into the tail vein.  

At the selected time, each mouse was anesthetized by intramuscular injection with 80 mg/kg 

tiletamine/zolazepam (Zoletil® 100, Virbac, France) and 16 mg/kg xylazine (Rompun, Bayer SpA, 

Germany) and treated with ESWs (0.59 mJ/mm
2
, 500 pulses) on one of the two tumors. A 

piezoelectric shock wave generator (Piezoson 100, Richard Wolf, Knittlingen, Germany), provided 

by Med & Sport 2000 S.r.l., Torino, Italy, was used for the study. This device generates focused 

underwater shock waves at various frequencies (1-4 pulses/s) and intensities (0.05-1.48 mJ/mm
2
). 

Shock wave intensity is the energy at the focal point, defined as energy flux density (EFD) per 

impulse recorded as joules per area (mJ/mm
2
). The focus volume is defined as the zone where 50% 

of the maximum energy is delivered; with regard to the Piezoson 100, the focus zone has a length of 

10 mm in the direction of the axis of the shock wave propagation and a diameter of 2.5 mm 

perpendicular to this axis. For treating mice, the hair over the tumor was shaved and ultrasound gel 

applied to the naked skin. The transducer was placed in close contact with the tumor. The position 

and the angle of the mouse were adjusted to locate the tumor at the focal spot and, thus, allow the 

focused wave to propagate throughout the cancer. 

Treatments were repeated once a week for a total duration of 21 days. Tumor volume was assessed 

every seven days. Tumors were measured with calipers and volumes were calculated with the 

formula a
2
 x b x 0.5, where a is the shortest diameter and b is the diameter perpendicular to a. 

Doubling time of tumor volume was calculated according the following formula: T x log2/(logVf -

logVi); where Vf is the final tumor volume, Vi is the initial tumor volume, and T is the time interval 

(days) between Vf and Vi (Guo et al. 2009).  
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At sacrifice, tumors and hearts were collected. Tumors were weighted and photographed by digital 

camera. Pieces of tumors and hearts were either fixed in 10% buffered formalin, or frozen, or put in 

All Protect Tissue Reagent (Life Science, Italy).  

Doxorubicin quantification. Tissue extracts from frozen tumors and hearts were prepared by 

adding one volume of methanol followed by two volumes of 1 M Tris buffer pH 8.5. The mixtures 

were homogenized using Polytron® (Kinematica GMBH, Eschbach, Germany) and the tissue 

homogenates kept on ice for 15 min before adding seven volumes of acetonitrile. The mixtures were 

vortexed and allowed to stand at room temperature for 15 min before removing the precipitated 

proteins by centrifugation at 3000 x g for 5 min. After centrifugation, clear supernatants were 

assessed for doxorubicin content by HPLC. HPLC system consisted of a pump (LC-9A PUMP C, 

Shimadzu, Japan) equipped with a fluorescence detector (Chrompack, Japan) and analyses were 

performed using an Agilent TC C18 column (250 mm × 4.6 mm, 5 µm). To calculate the drug 

concentration a linear calibration curve was set up with a concentration range of 0.025−2.5 g/ml 

with a regression coefficient of 0.999. 

Tunel assay. Apoptosis was evaluated by TUNEL (terminal deoxynucleotidyl transferase-mediated 

dUTP nick end labeling) assay (ApopTag Plus, Millipore, Billerica, MA, USA). Briefly, paraffin 

embedded slices of tumors were deparaffined and TUNEL assay was performed following the 

manufacturer’s instruction. Positive cells were stained by brown precipitated of oxidized 3,3'- 

diaminobenzidine (DAB) (Dako, Agilent Technologies, Santa Clara, CA, USA). Slides were 

observed under optical microscope Olympus AX70 provis (Olympus Optical CO., Hamburg, 

Germany). To count positive cells, pictures were acquired by digital camera suite Leica Application 

Suite X 2.0.0.14332 (Leica Microsystems, Wetzlar, Germany). After excluding areas of necrosis, 

the number of apoptotic cells per field was counted in 10 randomly chosen sections using x200 final 

magnification. 
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Proliferating Cell Nuclear Antigen (PCNA). Tumor paraffin sections were deparaffined and 

probed using an anti-PCNA antibody (1:300 dilution in PBS 0.1% BSA; Santa Cruz Biotechnology, 

CA, USA). Secondary antibody was a goat anti-mouse Horseradish Peroxidase (HPR)-conjugated 

antibody (1:300 dilution in PBS 0.1% BSA; Thermo Fisher Scientific, Waltham, Massachusetts, 

USA). DAB (Dako, Agilent Technologies, Santa Clara, CA, USA) was used as substrate of HPR 

conjugated to secondary antibody. To count PCNA positive cells, pictures were acquired by digital 

camera suite Leica Application Suite X 2.0.0.14332 (Leica Microsystems, Wetzlar, Germany). The 

ten fields with the highest density of positive nuclei were captured at x200 final magnification and 

positive vs total cells were counted using ImageJ software. Only nuclei with a strongly positive 

label were counted.  

Hematoxylin and Eosin stain. Heart paraffin sections were deparaffined and stained with 

hematoxylin and eosin. Scansions of the entire slides were captured by Aperio ScanScope slide 

scanner (Leica Microsystems, Wetzlar, Germany).  

Masson’s trichrome stain. Collagen fibers in hearts were detected by Masson’s trichrome stain kit 

(Bio-Optica Milano S.p.a., Milan, Italy). Briefly, paraffin embedded slices of hearts were 

deparaffined and trichrome stain was performed following the manufacturer’s instruction. Collagen 

fibers were stained by Aniline Blue Solution included in the kit. Slides were observed under optical 

microscope Olympus AX70 provis (Olympus Optical CO., Hamburg, Germany). Pictures were 

acquired by digital camera suite Leica Application Suite X 2.0.0.14332 (Leica Microsystems, 

Wetzlar, Germany). The percentage of blue area vs total area was counted in ten randomly chosen 

fields at x200 final magnification using ImageJ software. 

Gene expression. Total RNA was extracted from heart pieces, homogenizing tissues by Polytron 

(Kinematica GMBH, Eschbach, Germany) in TRIzol Reagent (Invitrogen Ltd, Paisley, UK). DNase 

I was added to remove remaining genomic DNA. 1 g total RNA was reverse-transcribed with 

iScript cDNA Synthesis Kit (BioRad Laboratories, Inc.), following the manufacturer’s protocol. 
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Primers (Table 2) were designed using Beacon Designer 5.0 software according to parameters 

outlined in the BioRad iCycler Manual. Specificity of primers was confirmed by BLAST analysis. 

Real-time PCR was performed using a BioRad iQ iCycler Detection System (BioRad Laboratories, 

Inc.) with SYBR green fluorophore. Reactions were performed in a total volume of 25 l including 

12.5 l IQ SYBR Green Supermix (BioRad Laboratories, Inc.), 1 l of each primer at 10 µM 

concentration, and 5 l of the previously reverse-transcribed cDNA template. Protocol for primer 

set up was optimized using seven serial 5X dilutions of template cDNA obtained from cells in basal 

conditions. The protocol used is as follows: denaturation (95°C for 5 min), amplification repeated 

40 times (95°C for 15 sec, 60°C for 30 sec). A melting curve analysis was performed following 

every run to ensure a single amplified product for every reaction. All reactions were carried out at 

least in triplicate for each sample. Results were normalized using the geometric mean for three 

different housekeeping genes (ribosomal protein L13A, ribosomal protein large P0, and 

glyceraldehyde-3-phosphate dehydrogenase) and expressed as relative expression fold vs untreated 

controls. 

Protein extraction. Total proteins were extracted from heart tissue homogenates in 10% (w/v) 

RIPA buffer (0.5% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mmol/l EDTA, and 

protease inhibitors). After 40 min of incubation in ice, samples were sonicated and cleared by 

centrifugation at 14,000 x g at 4 °C for 20 min. Supernatants were used for ROS and glutathione 

determinations and for immunoblotting.  

Reactive Oxygen Species (ROS). ROS were measured using the 2',7'-dichlorofluorescein diacetate 

(DCFH-DA) probe. DCFH-DA is a stable, non-fluorescent molecule, that is hydrolyzed by 

esterases to non-fluorescent 2',7'-dichlorofluorescein (DCFH), which is rapidly oxidized in the 

presence of peroxides to the highly fluorescent 2',7'-dichlorofluorescein (DCF). Protein extracts 

were incubated with 5 M of DCFH-DA for 15 min at 37° C, and then DCF was measured 

fluorimetrically at 485 nm excitation and 538 nm emission. 
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Oxidized-to-reduced glutathione ratio (GSSG/GSH). GSSG/GSH was assessed by mixing in a 

cuvette 0.05 M Na-phosphate buffer (pH 7.0), 1 mM EDTA (pH 7.0), and 10 mM 

dithionitrobenzoic acid (Sigma-Aldrich, St Louis, MO) plus an aliquot of the sample. After 2 min of 

reaction, GSH content was evaluated by reading absorbance at 412 nm, calculated referring to a 

standard curve, and expressed as g/mg protein. Suitable volumes of diluted glutathione reductase 

and of reduced nicotinamide adenine dinucleotide phosphate were then added to convert the 

oxidized glutathione to the reduced form and then evaluate the total glutathione level. The 

difference between total glutathione and GSH content represents the GSSG content, also expressed 

as g/mg protein. 

Immunoblotting. SDS-PAGE was performed on 12% acrylamide (Sigma-Aldrich, St Louis, MO, 

USA) gel, loading 30 g protein/well. Separated proteins were electro-transferred onto PVDF 

membrane (BioRad Laboratories, Inc.) and probed with anti- Manganese Superoxide Dismutase 

(Mn-SOD ) antibody (1:1500 dilution, Upstate, Millipore, USA) and with anti -tubulin antibody 

(1:100 dilution, Abcam, UK) to check protein loading. Proteins were detected with Pierce Super 

Signal chemiluminescent substrate following the manufacturer’s instructions. Bands were 

photographed and analyzed using Image J software. 

Statistical analysis. Data are expressed throughout the text as means ± SD, calculated from at least 

three different experiments. Comparison between groups was performed with analysis of variance 

(one-way ANOVA) and the threshold of significance was calculated with the Bonferroni test. 

Statistical significance was set at p<0.05. 
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Results 

Physico-chemical characteristics of nanobubble formulation 

Doxorubicin-loaded NBs showed an average diameter of about 350 nm and positive surface charge 

(Table 1). A prolonged drug release kinetics of doxorubicin from doxorubicin-loaded nanobubbles 

was demonstrated in in vitro release studies, as previously reported (Marano et al., 2016). 

In particular, less than 10% of the drug was released from nanobubbles and no initial burst effect 

was observed, after 6 hours in the absence of ESW. On the contrary, following ESW treatment 

doxorubicin was released in a larger extent from nanobubbles. 

Anti-tumor effects. In order to establish the time needed to deliver NBs to the tumor, doxorubicin 

content was measured in tumors of ATC-bearing mice at different times after doxorubicin-loaded 

NB injection. As shown in Fig. 1A, after 30 minutes, the drug was already present in the tumor 

tissue, and no significant difference in drug content was observed up to 24 hours. Therefore, 1.5 

hours was chosen as waiting time before ESW treatment, since this time better fitted with our ESW 

treatment schedule.  

To test the anti-tumor effect of different treatments, ATC-bearing mice were randomly divided into 

three groups: control mice (CTRL), doxorubicin-treated mice (DOXO) and mice treated with 

doxorubicin-loaded NBs (NBs-DOXO). After 1.5 hours, one of the two tumors of each animal was 

treated with ESWs (0.59 mJ/mm
2
, 500 pulses) and treatments were repeated once a week for a 21-

day period. Treatments are schematized in Fig. 1B. 

As shown in Fig. 1C, after 21 days, tumor volume was significantly reduced in mice that received 

the combined treatment with NBs-DOXO and ESWs with respect to CTRL (p<0.01), DOXO 

(p<0.05) and NBs-DOXO (p<0.05) groups. The significant increase of the tumor doubling time 

(Table 3) after the combined treatment (vs CTRL, p<0.001; vs DOXO, p<0.001; vs NBs-DOXO, 

p<0.01) was in agreement with the significant decrease of tumor volume. The most efficient anti-

tumor effect of the combined treatment was already evident by visual observation of tumors at 
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sacrifice (Fig. 1D). Moreover, the combined treatment determined the greatest reduction in tumor 

weights (vs CTRL, DOXO, and NBs-DOXO, p<0.001) as demonstrated in Fig. 1E.  

In accordance with these observations, at sacrifice, the highest doxorubicin content (Fig. 1F) was 

found in tumors treated with doxorubicin-loaded NBs plus ESWs (vs DOXO, p<0.001; vs NBs-

DOXO, p<0.001).  

To explore the mechanisms underlying the tumor growth inhibition, we evaluated apoptotic (Fig. 

2A and 2B) and proliferating cells (Fig. 2C and 2D). As shown in Fig. 2B, the number of apoptotic 

cells in tumors treated with NBs-DOXO was significantly increased with respect to CTRL 

(p<0.001) and to DOXO (p<0.01) groups. But, was the combined treatment with NBs-DOXO and 

ESWs to determine the greatest number of apoptotic cells (vs CTRL, p<0.001; vs DOXO, p<0.001; 

vs NBs-DOXO, p<0.01). 

Moreover, the combined treatment with NBs-DOXO and ESWs decreased PCNA positive cells 

with respect to any other condition (Fig. 2C). Fig. 2D shows the percentage of PCNA positive cells. 

In tumors treated with NBs-DOXO the percentage was significantly reduced with respect to CTRL 

(p<0.001) and to DOXO (p<0.01) groups. The combined treatment elicited the greatest reduction in 

the percentage of proliferating cells (vs CTRL, p<0.001; vs DOXO, p<0.001; vs NBs-DOXO, 

p<0.01). 

Cardiotoxicity. At sacrifice, hearts of doxorubicin-treated mice showed areas of disorganized 

muscle fibres with poor cellularity (Fig. 3A). On the contrary, cardiac tissue of mice treated with 

NBs-DOXO conserved the same appearance of hearts of the CTRL group (Fig. 3A).  

As collagen is usually found in fibrotic tissues (Hinz 2007), Masson’s trichrome specific stain was 

performed. Extended collagen blue areas were observable in hearts of DOXO group, while they 

were present in a very little extension in CTRL and in NBs-DOXO groups (Fig. 3B). Indeed, the 

percentage of collagen areas in heart of DOXO group was significantly increased as compared to 

CTRL group (p<0.001, Fig. 3C). On the contrary, the percentage of collagen in hearts of NBs-
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DOXO group was significantly reduced with respect to DOXO group (p<0.001, Fig. 3C) and was 

comparable to that of the CTRL group. 

Moreover, doxorubicin significantly increased the expression of collagen type 1 alpha 1 (Col1a1; 

p<0.05, Fig. 3D,), and of alpha-smooth muscle actin (α-sma; p<0.001, Fig. 3E) genes, well 

established markers of cardiac fibrosis (Hinz 2007). Encapsulating the drug into NBs counteracted 

these increases and resulted in Col1a1 and α-sma expression levels similar to those of the CTRL 

group (p<0.05 for Col1a1, Fig. 3D; p<0.001 for α-sma, Fig. 3E). 

Being an index of doxorubicin-induced heart damage (Singal et al. 2000, Spallarossa et al. 2006, 

Mukhopadhyay et al. 2009, Zhao et al. 2010), oxidative stress was also assessed. Doxorubicin 

significantly induced cardiac ROS production (vs CTRL, p<0.001, Fig. 4A), increased GSSG/GSH 

ratio (vs CTRL, p<0.01, Fig. 4B) and Mn-SOD protein expression (vs CTRL, p<0.05, Fig. 4C and 

D). Notably, in hearts of NBs-DOXO treated mice, ROS levels, GSSG/GSH ratio and Mn-SOD 

were significantly reduced with respect to DOXO group (p<0.001, Fig. 4A; p<0.05, Fig. 4B; 

p<0.05, Fig. 4C and D), and comparable to those of the CTRL group. In accordance with these 

observations doxorubicin was detected only in hearts of DOXO group whereas it was undetectable 

in hearts of NBs-DOXO group (Fig. 4E). 
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Discussion 

The present in vivo preclinical study demonstrates that in ATC, a lethal tumor with no standard 

therapy, the combined treatment with doxorubicin-loaded glycol chitosan NBs and ESWs enhances 

the anti-tumor effects of doxorubicin and, at the same time, prevents the drug-induced heart 

damage.  

Doxorubicin delivery to the tumor cells, with the specific aim to increase its anti-tumor efficacy and 

to reduce its side effects, is an important goal in ATC therapy. In fact, even if doxorubicin is the 

only chemotherapeutic drug approved for ATC treatment in monotherapy (Haddad et al. 2015), it 

has a poor clinical response (Giuffrida and Gharib 2000), and it causes severe dose-dependent side 

effects among which cardiotoxicity is the most prominent (Minotti et al. 2004, Chatterjee et al. 

2010, Zhang et al. 2012).  

Based on the promising results of our recent in vitro study (Marano et al. 2016), where we 

delineated the cytotoxic effects and the mechanism of this new combined treatment with NBs-

DOXO and ESWs, we here go further moving to a xenograft in vivo model. Even if the cytotoxic 

efficacy of different types of nanoparticles to deliver doxorubicin has been reported in other tumor 

histotypes (Du et al. 2011, Wohlfart et al. 2011, Barenholz 2012, Golla et al. 2013, Yu et al. 2014, 

Fan et al. 2016, Lin et al. 2016, Razavi-Azarkhiavi et al. 2016); to date, no other study has used 

delivery systems to target doxorubicin in ATC. In 2011 Du et al. showed that US-responsive 

doxorubicin-loaded PEGylated perfluoropentane NBs resulted in a more efficient inhibition of 

tumor growth in hepatocarcinoma-bearing mice (Du et al. 2011). Others reported a greater anti-

tumor efficacy in human prostate cancer xenograft model using doxorubicin-loaded lipid NBs in 

combination with US (Fan et al. 2016). In nude mice xenograft of fibrosarcoma, the combination of 

US with asparagine–glycine–arginine (NGR) peptide modified NBs, loaded with doxorubicin 

conjugated with cell-permeable peptides, resulted in higher tumor growth inhibition with respect to 

NBs or doxorubicin alone (Lin et al. 2016).  



15 

 

In 2012, Cavalli et al. developed stable chitosan NBs able to release DNA into COS7 cells after US 

treatment. In the presence of US, the perfluoropentane of the nanobubble core, which is liquid at 

room temperature, underwent a conversion from droplet to bubble at 37°C, inducing DNA release 

into the cells (Cavalli et al. 2012). The US-responsive doxorubicin-loaded nanoparticulate system 

prepared in 2011 by Du et al. was based on the same mechanism (nanodroplet/NB transition). 

Indeed, PEGylated perfluoropentane nanodroplets were converted into NBs at 37° C and only little 

drug was released if no US was applied (Du et al. 2011).   

The novelty of both our previous (Marano et al. 2016) and present works is not only the use of new 

perfluoropentane drug-loaded NBs, but it is especially the use of ESWs as novel physical strategy to 

trigger drug release from NBs, specifically at the tumor site. Indeed, unlike US, ESWs have not 

heating effects and this characteristic could be an advantage for in vivo applications, since 

temperature increase is difficult to control spatially and temporally, especially in large tumors with 

heterogeneous vascularization, such as ATC (Diederich and Hynynen 1999). 

In our xenograft murine model of human ATC, after doxorubicin-loaded NB injection in the tail 

vein, the drug was already detected in tumors after 30 minutes, accordingly to the above studies 

where a 30-minute waiting time before US treatment has been reported (Du et al. 2011, Fan et al. 

2016, Lin et al. 2016). As in our experimental conditions the drug concentration remained stable up 

to 24 hours, we chose a 1.5 hour lag time before applying ESWs, since this time better fitted with 

our ESW treatment schedule. At the end of the 21-day period, combining doxorubicin-loaded NBs 

and ESWs elicited the best effect in term of tumor growth inhibition, reducing tumor volumes and 

weights and extending the tumor doubling time. The greatest doxorubicin accumulation observed in 

tumors treated with drug-loaded NBs plus ESWs paralleled the anti-tumor effect. Present data 

further confirm our previous in vitro results, where the combination of ESWs with doxorubicin-

loaded NBs elicited the greatest intracellular drug accumulation in ATC cells, and significantly 
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increased doxorubicin cytotoxicity decreasing the drug Growth Inhibition Fifty of about 40 % 

(Marano et al. 2016). 

Furthermore, we here demonstrated that loading doxorubicin into NBs avoided doxorubicin-

induced heart damage and oxidative stress. In fact, whereas doxorubicin induced disorganization of 

muscle fibers, hearts of mice treated with doxorubicin-loaded NBs had a normal morphological 

aspect. Moreover, loading doxorubicin into NBs, prevented the increase of the fibrosis markers 

Col1a1 and α-sma, determined by free doxorubicin. Doxorubicin is a conventional anthracycline 

acting by intercalation with DNA base pairs (Minotti et al. 2004) or through inhibition of 

topoisomerase I and II by direct linking to the two enzymes (Tacar et al. 2013). ROS production is 

another mechanism of doxorubicin anti-tumor activity that causes direct damage to the DNA, RNA, 

lipids and proteins (Sinha et al. 1987). However, doxorubicin-induced cardiomyopathy is strongly 

linked to an increase in cardiac oxidative stress and the induction of free radical production is the 

main mechanism through which doxorubicin injures the myocardium (Singal et al. 2000, 

Spallarossa et al. 2006, Mukhopadhyay et al. 2009, Zhao et al. 2010). Loading doxorubicin into 

NBs determined inhibition of doxorubicin-induced ROS production, and reduction of both 

GSSG/GSH ratio and Mn-SOD protein. ROS have an important role in the progression of fibrosis 

modulating fibroblast proliferation and differentiation into myofibroblasts expressing α-SMA and 

producing extracellular matrix proteins, as type 1 collagen (Krstić et al. 2015, Kuwahara et al. 

2002). The absence of the drug in hearts of mice treated with doxorubicin-loaded NBs explained the 

prevention of cardiac side effects. As the probability of developing cardiomyopathy is largely dose-

dependent (Sheppard et al. 2013), the possibility to use lower drug doses, together with delivering 

doxorubicin to the tumor tissue, is fundamental to reduce drug accumulation in not-target districts. 

Summarizing, the drug delivery system presented in this study, by adding ESWs as physical trigger 

to glycol chitosan doxorubicin-loaded NBs, allowed increasing drug content in tumor tissue 

favoring the increase of doxorubicin anti-tumor effect with respect to the classic treatment with the 
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free drug. Moreover, the use of glycol chitosan NBs, reduced doxorubicin accumulation in heart 

avoiding cardiac oxidative stress and fibrosis. 

In conclusion, this preclinical study on the use of ESWs and doxorubicin-loaded NBs suggests that 

this combined treatment may be a promising drug delivery tool for precisely targeting doxorubicin 

to ATC. The possibility to focus ESWs with high precision in depth without heating effect, with 

consequent controlled drug release in the tumor tissue, makes this new strategy feasible for other 

aggressive solid tumors in which chemotherapy unfortunately remains the first option. 

Given these promising results and the lack of a standard therapy for ATC, the further step will be 

clinical trials with the hope to open new perspectives for improving ATC treatment and patient 

quality of life. 
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Figures legends 

Figure 1. Tumor growth inhibition. (A) Doxorubicin content at 0.5, 1.5, 5 and 24 hours after i.v. 

injection of doxorubicin-loaded NBs (n=5 per group) expressed as ng of drug/g tissue. (B) 

Schematic representation of the treatments of ATC-bearing mice. Two tumors per mouse were 

allowed to grow in the flanks of 7-week-old female NSG mice. When tumors reached an 

appropriate volume (100 mm
3
), 100 l vehicle, or 0.75 mg/kg doxorubicin solution, or 0.75 mg/kg 

doxorubicin-loaded NBs were i.v. injected into the tail vein. After 1.5 hours, one tumor for each 

mouse was treated with ESWs. (C) Tumor volumes at 0, 7, 14 and 21 days (n=5 per group), 

calculated  with the formula a
2
 x b x 0.5, where a is the shortest diameter and b is the diameter 

perpendicular to a. (D) Representative pictures of tumors after 21 days of treatment. E) Weights of 

tumors at 21 days (n=5 per group). (F) Doxorubicin content (n=5 per group) after 21 days of 

treatments expressed as ng of drug/g tissue.  

Significances were calculated with one-way ANOVA analysis and Bonferroni post-test. 

Significance vs CTRL: p<0.05 (*); p<0.01 (**); p<0.001 (***). Significance vs DOXO: p<0.05 (#); 

p<0.01 (##); p<0.001 (###). Significance plus ESWs vs no ESWs: p<0.05 (°); p<0.01 (°°); p<0.001 

(°°°). 

Figure 2. Apoptosis and proliferation of tumor cells. (A) Representative pictures of TUNEL 

stained slides after 21 days of treatments (scale bar: 50 m). (B) Quantification of apoptotic cells 

per field, excluding necrosis areas, by ImageJ software in 10 randomly chosen sections at x200 final 

magnification (n=5 per group). (C) Representative pictures of PCNA slides after 21 days of 

treatments (scale bar: 50 m). (D) Percentage of PCNA positive cells per field quantified by ImageJ 

software counting 10 randomly chosen x200 final magnification (n=5 per group).  

Significances were calculated with one-way ANOVA analysis and Bonferroni post-test. 

Significance vs CTRL, p<0.001 (***); significance vs DOXO, p<0.01 (##), p<0.001 (###); 

significance plus ESWs vs no ESWs, p<0.01 (°°). 
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Figure 3. Heart fibrosis. (A) Representative pictures of Hematoxylin-Eosin stained heart slide 

scans (scale bar: 100 m; n=5 per group). (B) Representative pictures of Masson’s trichrome 

stained heart slides for collagen identification (scale bar: 50 m; n=5 per group). (C) Percentage of 

blue area, corresponding to collagen fibers, vs total area counted on ten randomly chosen fields at 

x200 magnification by ImageJ software. (D) Cardiac gene expression of col1a1 and (E) α-sma 

evaluated by RT-PCR (n=5 per group). Results are normalized vs three different housekeeping 

genes (ribosomal protein L13A, ribosomal protein large P0, and glyceraldehyde-3-phosphate 

dehydrogenase) and expressed as relative fold expression vs the CTRL group.  

Significances were calculated with one-way ANOVA analysis and Bonferroni post-test. 

Significance vs CTRL, p<0.05 (*), p<0.001 (***); significance vs DOXO, p<0.05 (#), p<0.001 

(###). 

Figure 4. Oxidative stress in cardiac tissue. (A) ROS measured in heart tissue after 21 days of 

treatments (n=5 per group). Results were expressed as pmol/mg protein content.  (B) GSSG and 

GSH content in cardiac tissue after 21 days of treatments (n=5 per group) expressed as ratio 

between GSSG and GSH content. (C) A typical Mn-SOD western blot on heart extracts is reported. 

(D) Western blot quantification by ImageJ software (n=5 per group). (E) Doxorubicin content in 

hearts after 21 days of treatments (n=5 per group) expressed as ng/g tissue.  

Significances were calculated with one-way ANOVA analysis and Bonferroni post-test. 

Significance vs CTRL, p<0.05 (*), p<0.01 (**), p<0.001 (***); significance vs DOXO, p<0.05 (#), 

p<0.001 (###). 
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Table 1. Physico-chemical characteristics of NB formulations. 

 

 

 

 

 

 

 

 

  Empty NBs Doxorubicin-loaded 

NBs 

Average diameters ± SD (nm) 344.6 ± 13.8 356.2 ± 15.1 

PDI (Polydispersity Index) 0.19 ± 0.01 0.20 ± 0.02 

ζ-Potential ± SD (mV) 29.8 ± 2.122 30.4 ± 2.85 

Encapsulation efficiency - 75 % 

Loading capacity - 4.5 % 
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Table 2. Primers for Real-time PCR.  

 

 

GENE PRIMERS 

α- sma (alpha-smooth muscle actin) 
Sense:5’-GCCAGTCGCTGTCAGGAACC-3’ 

Antisense:5’-CAGAGCCCAGAGCCATTGTCG-3’ 

Col1 A1 (collagen type 1 alpha 1) 
Sense:5’-GCCACTGCCCTCCTGACG-3’ 

Antisense:5’-AGATCAAGCATACCTCGGGTTTCC-3’ 

L13A (ribosomal protein L13a) 
Sense: 5’-GTGGTCCCTGCTGCTCTCAAG-3’ 

Antisense: 5’-GCTGTCACTGCCTGGTACTTCC-3’ 

Rplp0 (ribosomal protein, large, P0) 
Sense:5’-AGGAAGAGTCGGAGGAATCAGATG-3’ 

Antisense:5’-CTTGGTTGCTTTGGCGGGATTAG-3’ 

Gapdh (glyceraldehyde-3-phosphate 

dehydrogenase) 

Sense:5’-AGCAAGGACACTGAGCAAGAGAG-3’ 

Antisense:5’-GGGATGGAAATTGTGAGGGAGATG-3’ 
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Table 3. Doubling time
1
 of tumor volume.  

TREATMENT DOUBLING TIME (DAYS) 

CTRL 11.2 ± 0.4 

ESWs 12.3 ± 1 

DOXO 11.2 ± 0.2 

DOXO + ESWs 14.8 ± 2.4 

NBs-DOXO 14 ± 1.3 

NBs-DOXO + ESWs 24.5 ± 4.3 (***)(###)(°°) 
2
 

 

                                                             
1
 Doubling time of tumor volume was estimated according to the formula described by Guo and 

colleagues et al. (29) and reported in methods section. 

2Significances were calculated with one-way ANOVA analysis and Bonferroni post-test. 

Significance vs CTRL: p<0.001 (***). Significance vs DOXO: p<0.001 (###). Significance plus 

ESWs vs no ESWs: p<0.01 (°°). 
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