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Summary  1 

Root endosymbioses are beneficial associations formed between terrestrial plants and either 2 

bacterial or fungal microorganisms. A common feature of these intracellular symbioses is the 3 

requirement for mutual recognition between the two partners prior to host-regulated microbial 4 

entry. Specific microbial factors activate a highly conserved plant signal transduction 5 

pathway, of which a central component is the triggering of sustained Ca2+ oscillations in the 6 

host epidermis. This then leads to the specialized cellular reprogramming required for the 7 

construction of the transcellular apoplastic microbial entry compartments. Here we focus on 8 

recent findings concerning this crucial Ca2+-dependent signaling step for endosymbiotic 9 

associations involving either arbuscular mycorrhizal fungi or nitrogen-fixing Frankia 10 

actinomycetes, as well as how this knowledge is contributing to the identification of the 11 

respective microbial factors. 12 

Key Words: 13 

Cameleon calcium reporters; Chitin oligomers; Common symbiotic signaling pathway; LysM 14 

receptor-like kinases; Nuclear calcium spiking; Plant-microbe interactions; Root 15 

endosymbioses   16 
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I. Introduction  17 

Throughout the evolution of land plants, mutualistic fungal and bacterial associations have 18 

provided key metabolites (phosphorus, nitrogen, microelements etc.) to their respective hosts, 19 

and thereby played a major role in plant colonization of terrestrial ecosystems. In return, the 20 

microbial partners benefited from both a source of photosynthates as well as privileged 21 

ecological niches. Striking examples of such beneficial associations are the so-called root 22 

endosymbioses, where the microsymbionts are housed within specialized host cell 23 

compartments, whether in the inner root cortex for the ancient and widespread arbuscular 24 

mycorrhizal (AM) symbiosis, or within de novo constructed root organs (nodules) in the case 25 

of the more recently evolved rhizobial/legume and Frankia/actinorhizal plant nitrogen-fixing 26 

symbioses. 27 

Studies initially focused on the rhizobial/legume symbiosis using model legumes such as 28 

Medicago truncatula and Lotus japonicus revealed that the successful establishment of this 29 

association requires host recognition of specific rhizobial lipo-chitooligosaccharide (LCO) 30 

signals known as Nod factors (NFs; Dénarié & Cullimore, 1993). These NF LCOs are 31 

perceived via legume receptor-like kinases (RLK) belonging to the chitin-binding LysM-RLK 32 

family. This then activates a specific host signal transduction pathway in target root hairs, a 33 

central feature of which is the triggering of sustained nuclear-associated Ca2+ oscillations 34 

(known as spiking) which are decoded by a dedicated calcium and calmodulin kinase 35 

(CCaMK) (Oldroyd & Downie, 2006). Major cellular reprogramming in the host cells is thus 36 

initiated, resulting in the progressive construction of the transcellular compartment (infection 37 

thread) within root hairs, through which the rhizobia are conveyed across the root outer 38 

tissues (e.g. Fournier et al., 2008). This sophisticated mode of apoplastic root penetration is 39 

thought to allow selectivity and regulation of microbial access to inner root tissues. 40 

Legume-based research was also instrumental in revealing striking similarities between the 41 

molecular and cellular mechanisms of both rhizobial and AM fungal root colonization, 42 

including the mode of fungal root entry via apoplastic intracellular compartments (Genre et 43 

al., 2005) as well as the activation of the Ca2+ spiking/CCaMK core signaling module (Kosuta 44 

et al., 2008; Chabaud et al., 2011) which lies at the heart of the so-called common symbiosis 45 

signaling pathway (CSSP; see Fig.1). More recently, a key role for Ca2+ signaling has also 46 

been demonstrated for the nitrogen-fixing endosymbioses formed between filamentous 47 

Frankia and their actinorhizal hosts (Chabaud et al., 2015; Granqvist et al., 2015). In this 48 

Page 3 of 16

Manuscript submitted to New Phytologist for review



For Peer Review

4 
 

review we will focus on the latest discoveries which throw light on Ca2+ signaling during the 49 

establishment of both the AM and Frankia/actinorhizal root symbioses as well as the resulting 50 

approaches which are now being employed to identify the corresponding microbial factors 51 

which activate the Ca2+-dependent CSSP.  52 

II. Nuclear calcium signaling and the AM symbiosis  53 

AM fungi, collectively known as Glomeromycota, are widespread obligate biotrophs which 54 

are able to colonize roots of the majority (approx. 80%) of plant species, forming elaborate 55 

ramified symbiotic structures known as arbuscules within inner cortical cells. Fossil evidence 56 

has revealed that analogous structures were present in the tissues of early land plants (over 57 

400 million years ago), suggesting that the AM symbiosis played a central role in facilitating 58 

plant access to nutrients in a harsh terrestrial environment (Bonfante & Genre, 2008). 59 

Furthermore, recent phylogenomic studies have shown that the complete CSSP module is 60 

present throughout extant plant clades, thus emphasizing the importance of microbe-host 61 

Ca2+-dependent signaling even during these earliest mutualistic associations (Delaux et al., 62 

2015).  63 

An important advance in the study of oscillatory nuclear Ca2+ signaling during the initial 64 

stages of endosymbiotic associations was the development of in vivo cameleon-based calcium 65 

reporters coupled with confocal microscopy imaging (Miwa et al., 2006). In particular, the 66 

development of nuclear-localized cameleons such as Nup-YC2.1 (Sieberer et al., 2009) 67 

greatly facilitated the detection of Ca2+ spiking in atrichoblasts, the non root hair epidermal 68 

cells which are the primary targets of AM colonization. Experiments using both legume (M. 69 

truncatula) and non-legume (Daucus carota) root organ cultures (ROCs) expressing Nup-70 

YC2.1 were instrumental in first demonstrating nuclear Ca2+ spiking in atrichoblasts 71 

associated with AM fungal contact and hyphopodium formation (Chabaud et al., 2011; Fig. 72 

2a). Significantly, spiking frequency was highest in those cells where the nucleus had 73 

migrated to the site of fungal attachment, a key event which precedes the construction of 74 

transcellular apoplastic compartment (Genre et al., 2005).  75 

The presence of symbiotic fungal signals in germinating spore exudates of several AM 76 

species was also examined using Ca2+ spiking responses as a bio-assay in both Medicago and 77 

carrot ROCs expressing Nup-YC2.1. These studies led to the identification of short-chain 78 

chitin oligomers (chitotetraose and chitopentaose) as candidate AM signals (Genre et al., 79 

2013). Not only can these so-called Myc-COs activate the host CSSP at low concentrations 80 
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(10-8 M) but their levels are greatly enhanced in the spore exudates if the synthetic 81 

strigolactone GR24 is present during spore germination. Since plant strigolactones stimulate 82 

AM hyphal development prior to initial root contact, these findings provide evidence for 83 

reciprocal molecular signaling between host and fungal symbiont during the pre-infection 84 

stage. Finally, the nuclear Ca2+ spiking elicited in M. truncatula atrichoblasts by AM fungal 85 

contact, fungal exudates or short-chain Myc-COs (Fig. 2a-c) is generally less regular in both 86 

periodicity and spike profile compared to NF-activated spiking in root hairs (Russo et al., 87 

2013; Fig. 2d). The reason for this difference in spiking signature is currently unclear, and 88 

contrasts with the similar Ca2+ spiking profiles associated with both rhizobial and AM 89 

infection of cortical cells (Sieberer et al., 2012). 90 

In parallel to these studies, the use of NF bioassays (root hair deformation and early nodulin 91 

gene expression) had revealed other potential AM fungal signals in the form of either 92 

sulphated or non-sulphated LCOs, present in both AM spore and colonized root exudates 93 

(Maillet et al., 2011). These Myc-LCOs structurally resemble rhizobial LCOs and elicit 94 

similar Ca2+ spiking responses to NFs in root hairs of M. truncatula seedlings (Sun et al., 95 

2015). Whilst M. truncatula mutants defective in the LysM receptor-like kinase NFP (Nod 96 

Factor Perception) fail to nodulate and are totally unresponsive to NFs (Ben Amor et al., 97 

2003), these same mutants exhibit normal AM colonization. Nevertheless, Ca2+ spiking is 98 

blocked in nfp mutants in response to exogenous Myc-LCOs (Sun et al., 2015). Furthermore,  99 

transcriptomic approaches have shown that root gene expression in young seedlings in 100 

response to Myc-LCOs is also essentially dependent on NFP (Czaja et al., 2012; Hohnjec et 101 

al., 2015). These similarities between the perception and biological activities of NF and Myc-102 

LCOs make it difficult to evaluate the extent to which both sulphated and non-sulphated Myc-103 

LCO root responses may result from inappropriate activation of the NF-signalling pathway in 104 

legumes.  105 

In contrast to Myc-LCOs, the Ca2+ spiking activity elicited by Myc-COs is unaffected in an 106 

nfp mutant background (Genre et al., 2013). In addition to the use of whole plants, M. 107 

truncatula ROCs were also used in these studies since ROCs are readily colonized by AM 108 

fungi, but cannot be nodulated and are unresponsive to either rhizobia or NFs. When applied 109 

to ROCs Myc-COs are significantly more active in triggering spiking compared to Myc-LCOs 110 

(Genre et al., 2013). Together, these results suggest differences in the symbiotic roles played 111 

by AM fungal COs and LCOs, and indeed it has been demonstrated that whereas both NF- 112 

and Myc-LCOs can stimulate lateral root development (Maillet et al., 2011), this is not the 113 
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case for chitotetraose (Olah et al., 2005). Further detailed discussions of these and related 114 

findings can be found in the recent reviews of Bucher et al., (2014); Nadal & Paszkowski 115 

(2013) and Schmitz & Harrison (2014). 116 

Unfortunately, the absence of AM fungal genetic approaches makes it difficult to ascribe 117 

unequivocal signaling roles for either Myc-COs or LCOs. In addition, nod gene orthologs 118 

were unfortunately not identified in the recently sequenced genome of the AM fungus 119 

Rhizophagus irregularis (Tisserant et al., 2013). On the other hand, recent studies on non-120 

legume AM hosts are now throwing fresh light on early AM fungal signal perception and in 121 

particular the role of certain LysM-RLK receptors. Two research teams have independently 122 

shown that CERK1, the rice receptor kinase associated with chitin-triggered immunity is also 123 

required for establishing the AM symbiosis. Both knock-out mutant and RNAi experiments 124 

have demonstrated that OsCERK1 is essential for initial AM fungal infection in rice, with a 125 

block at the level of epidermal entry (Miyata et al., 2014; Zhang et al., 2015). In contrast, 126 

inactivation of OsCEBiP, the second LysM RLK required for perceiving long chain chitin 127 

elicitors and activating host immunity, does not result in a defect in AM colonization (Miyata 128 

et al., 2014). Interestingly, the closest legume homologs to rice CERK1 are M. truncatula 129 

LYK3 and Lotus japonicus NFR1, both of which are implicated in rhizobial LCO perception. 130 

Recent experiments performed using limiting AM inoculation conditions for the two legume 131 

hosts have revealed reduced colonization levels for both Mtlyk3 and Ljnfr1 mutants (Zhang et 132 

al., 2015), thus raising the question of the potential role of these CERK1 orthologs in AM 133 

fungal perception in legumes. 134 

In addition to studies on the monocot rice, two additional examples of defective AM 135 

phenotypes result from the silencing of LysM-RLKs in non-legume dicots. Firstly, Op den 136 

Camp et al. (2011) were able to show defects in arbuscule formation in roots of Parasponia 137 

andersonii following RNAi knockdown of the PaNFP gene, although it is not clear whether 138 

the initial entry of the AM fungus into the epidermal/cortical tissue is affected. More recently, 139 

Buendia et al. (2015) have demonstrated by a virus-induced gene silencing approach that 140 

knockdown of the SlLYK10 gene, the tomato orthologue of MtNFP and PaNFP, leads to a 141 

block in AM root entry. In conclusion, these important findings in non-legume AM hosts at 142 

last provide convincing evidence that fungal symbiotic signals are indeed chitin-based, but at 143 

the same time underline the difficulty of deducing the function and precise ligand structure of 144 

LysM-RLK receptors based on their phylogenetic proximity. 145 
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The fact that non-legume AM hosts such as rice, tomato and carrot do not form additional N-146 

fixing endosymbiotic associations also means that, as for legume ROCs, there should be no 147 

interference between AM fungal and rhizobial signaling when studying the activation of the 148 

CSSP and associated Ca2+ spiking. By introducing a nuclear-localized cameleon into rice, Sun 149 

et al. (2015) have discovered that Myc-COs  (but not Myc-LCOs) are able to elicit Ca2+ 150 

spiking in rice atrichoblasts, and furthermore at similar concentrations (10-8 M) to those used 151 

previously for Medicago or carrot. Whether the rice oscerk1 mutant is defective for Myc-CO 152 

perception remains to be determined. 153 

III. Pre-infection signaling during Frankia/actinorhizal plant nodulation  154 

Gram-positive Frankia are filamentous actinomycetes which are able to establish 155 

endosymbiotic N-fixing associations with a diverse group of angiosperms (8 plant families 156 

and 25 genera) belonging to the Rosid I clade (Santi et al., 2013). These actinorhizal hosts are 157 

essentially woody shrubs and trees growing in varied habitats and are natural pioneer species 158 

due to their capacity for forming mutually beneficial associations with both Frankia and 159 

mycorrhizal fungi. Despite major differences between legume and actinorhizal nodule 160 

ontogeny and structure, the mechanism of Frankia root hair infection is nevertheless highly 161 

reminiscent of rhizobial/legume infection. For example, in both Casuarina and Alnus species, 162 

Frankia enter the host root via infection thread structures formed within root hairs (Wall, 163 

2000). Furthermore, homologs of many components of the CSSP signaling module are 164 

present in both actinorhizal hosts (Hocher et al., 2011), and the essential roles of at least two 165 

of these (SYMRK and CCaMK) in Frankia nodulation has now been clearly demonstrated for 166 

Casuarina glauca using RNAi approaches (Gherbi et al., 2008; Svistoonoff et al., 2013). On 167 

the other hand, little is currently known about the Frankia signals that activate this conserved 168 

endosymbiotic pathway. Indeed, the absence of the suite of canonical nod genes required for 169 

NF-like LCO biosynthesis in the sequenced genomes of Frankia strains which nodulate 170 

Casuarina and Alnus  (Normand et al., 2007), as well as the failure of Frankia DNA to 171 

complement rhizobial nod gene mutants argues that Frankia/host recognition involves 172 

different types of molecular signals (Cérémonie et al.,1998).  173 

The requirement for a functional CSSP (and in particular CCaMK) in order to initiate Frankia 174 

infection in actinorhizal hosts also implies that the activation of Ca2+ spiking is part of pre-175 

infection Frankia-host signaling. This important question has been addressed in two recent 176 

publications. Using sonicated extracts from the Frankia alni strain ACN14a, Granqvist et al. 177 
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(2015) were able to show that Ca2+ oscillations could be elicited in the root hair cytoplasm of 178 

Alnus glutinosa after microinjection with calcium dyes. In contrast, Ca2+ spiking was not 179 

observed in response to NFs of the broad host-range Rhizobium NGR234. In a second 180 

publication, the expression of the nuclear fluorescent probe (Nup-YC2.1) in transgenic roots 181 

of C. glauca confirmed that sustained nuclear Ca2+ spiking can be triggered following the 182 

addition of diluted cell-free Frankia supernatants (Chabaud et al., 2015; Fig. 2e). These same 183 

supernatants can also activate transcription of the infection-related CgNIN gene in Casuarina 184 

root hairs (Clavijo et al., 2015) and furthermore there is a good correlation between nuclear 185 

Ca2+ spiking and promoterCgNIN-GFP expression as a function of the species-specific 186 

Frankia strains tested (Chabaud et al., 2015). 187 

Finally, these two pre-infection responses were used as bio-asssays for the preliminary 188 

characterization of signaling molecules present in the Frankia culture supernatants. These 189 

experiments revealed that the Frankia factors, in contrast to NF LCOs, partition to the 190 

aqueous phase after butanol extraction (Chabaud et al., 2015). Furthermore, since chitinase 191 

treatment of the Frankia supernatant does not abolish either Ca2+ spiking or ProCgNIN 192 

activity, the Frankia symbiotic signals are presumably distinct from those of both rhizobia 193 

and AM fungi. If so, this also implies that the host receptors which recognize these signals are 194 

unlikely to belong to the chitin-binding LysM-RLK family. Thus, a major priority for future 195 

research will be to isolate and chemically identify these novel endosymbiotic signaling factors 196 

and their corresponding actinorhizal host receptors.  197 

IV. Conclusions & future outlook  198 

Until now, difficulties in manipulating both the actinorhizal woody host plants and the N-199 

fixing actinomycete Frankia have retarded research on early pre-infection signaling. 200 

However, the development of genetic transformation systems and extensive databases for the 201 

C. glauca model have at last made it possible to study host responses to secreted Frankia 202 

factors at the cellular level. Recent results reviewed here now provide final confirmation that 203 

nuclear-associated Ca2+ oscillatory signaling is indeed a universal hallmark for the activation 204 

of the highly conserved CSSP module in endosymbiotic host plants in response to the 205 

perception of the appropriate microbial signals. The stage is now set for the purification and 206 

chemical characterization of the novel Frankia signaling molecules.  207 

Concerning the AM symbiosis, recent successes in identifying infection-defective 208 

mycorrhizal phenotypes for certain LysM-RLK mutant or knock-down lines for both rice and 209 
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tomato provide a powerful argument in favor of the use of such non-legume AM host species 210 

for future studies of both the symbiotic fungal signals and the mechanisms of their perception. 211 

In the case of rice, mutants such as oscerk1, in combination with cameleon-based bioassays 212 

for Ca2+ signaling/CSSP activation, now offer the means to examine to what extent Myc-CO 213 

perception correlates with the AM-defective phenotype, and thus whether short-chain COs 214 

may be considered as bona fide fungal symbiotic signals. 215 
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Figure Legends 355 

Figure 1   356 

Schema illustrating the role of the Common Symbiosis Signaling Pathway (CSSP) 357 

A number of plant genes and secondary messengers are required for the successful 358 

functioning of the conserved CSSP core module, first discovered in the model legume species 359 

Lotus japonicus and Medicago truncatula, and now extended to plant hosts of all known root 360 

endosymbiotic associations including the rhizobial/legume, AM and actinorhizal symbioses. 361 

Although several important features of this signaling module still remain to be elucidated, we 362 

present here a consensus linear representation of the best-studied pathway components which 363 

have been identified for both model legumes, organized around the activation of the nuclear-364 

associated Ca2+ spiking response observed in cells of the root epidermis (root hairs or 365 

atrichoblasts) prior to the initiation of apoplastic microbial infection (see text). In the case of 366 

the rhizobial and AM symbioses the CSSP is activated following symbiotic signal perception 367 

by plasma membrane (PM) localized LysM-RLK receptors, most probably part of a larger 368 

complex including the leucine-rich repeat receptor-like kinase known as LjSYMRK/MtDMI2 369 

(Antolin-Llovera et al., 2014). SYMRK can also interact with 3-hydroxy-3-methylglutaryl-370 

CoA reductase (HMGR), a key enzyme in the so-called mevalonate pathway, a source of 371 

potential secondary messengers including mevalonate itself (Venkateshwaran et al., 2015).  372 

Following signal transduction from the PM to the nucleus, nuclear membrane cation channels 373 

known as LjCASTOR/LjPOLLUX/MtDMI1, likely in association with the recently 374 

discovered cyclic nucleotide gated-calcium channel complex CNGC15 (Charpentier et al., 375 

2016) are then required for rapid Ca2+ release and the initiation of nucleoplasmic Ca2+ 376 

spiking. Efficient re-uptake of Ca2+ across the nuclear membrane between repeated spiking 377 

requires a calcium ATPase pump which has been identified as MCA8 in M. truncatula 378 

(Capoen et al., 2011). The subsequent decoding of the intranuclear Ca2+ oscillatory response 379 

involves two key associated components (LjCCaMK/MtDMI3 and LjCYCLOPS/MtIPD3). 380 

Binding of Ca2+ to the calcium and calmodulin-dependent kinase CCaMK (both directly and 381 

indirectly via Ca2+/calmodulin) leads to phosphorylation of the coiled-coil protein CYCLOPS 382 

(Singh et al., 2014). Finally, the activation of a downstream signaling cascade via a repertoire 383 

of GRAS/ERF transcription factors results in the synthesis of the suite of proteins required for 384 

the transcriptional re-modeling of the epidermal cell in preparation for apoplastic infection. 385 

Note that only recent references have been included here, and that further details about the 386 

CSSP and nuclear-associated Ca2+ spiking can be found in a number of comprehensive review 387 
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articles (e.g. Charpentier & Oldroyd, 2013; Gutjahr & Parniske, 2013; Oldroyd, 2013; 388 

Venkateshwaran et al., 2013). Note also that in the case of the N-fixing actinorhizal 389 

association, the nature of both the Frankia signal (AF=Actinorhizal Factor) and the 390 

corresponding host receptor remain to be determined, and that direct evidence for an essential 391 

role in microbial/host signaling has only been demonstrated so far for CgSYMRK and 392 

CgCCaMK (see text). 393 

Figure 2  394 

Nuclear-associated Ca2+ spiking in response to bacterial and fungal symbiotic signals 395 

(a-c). Nuclear Ca2+ responses to AM fungal symbiotic factors were recorded in epidermal 396 

atrichoblasts using Medicago truncatula (Mt) root organ cultures (ROCs) expressing the Nup-397 

YC2.1 cameleon (Chabaud et al., 2011; Genre et al., 2013). Representative spiking observed 398 

over a 20 min period are shown for (a) cells in direct contact with a fungal hyphopodium 399 

prior to infection, or following treatment with either (b) a germinated spore exudate 400 

(concentrated 10-fold) of Gigaspora rosea or (c) a 10-8 M solution of chitotetraose (CO4). 401 

(d,e). The identical cameleon reporter was used to compare the nuclear Ca2+ spiking observed 402 

in (d) M. truncatula root hairs (intact plant) treated with 10-9 M Sinorhizobium meliloti (Sm) 403 

Nod factor with (e) Casuarina glauca (Cg) root hair spiking in response to a crude Frankia 404 

Cci3 supernatant (SN, diluted 100-fold) (Chabaud et al., 2015).  Note that the spiking patterns 405 

in response to AM fungal signaling in atrichoblasts are less regular in both frequency and 406 

individual spike profile as compared to either Rhizobium or Frankia-elicited spiking in host 407 

root hairs.  408 
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