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Abstract 
In this work, iron/silica/gold core-shell nanoparticles (Fe3O4@SiO2@Au NPs) characterized by magnetic and 

optical properties have been synthetized to obtain a promising theranostic platform. In order to improve their 

biocompatibility, the obtained multilayer nanoparticles have been entrapped in polymeric micelles (PMs), 

decorated with folic acid moieties and tested in vivo for Photoacustic (PA) and MRI detection of ovarian cancer. 

 

Introduction 

The increasing availability of nanomaterials with highly controlled magnetic and optical properties has created a great 

interest in the use of core-shell NPs in biological systems for diagnostic and therapeutic applications,1 giving rise to the 

emerging concept of theranostics.2 Magnetic NPs, especially based on Fe3O4 (magnetite) and Fe2O3 (maghemite), have 

attracted interest due to their superparamagnetism and good bio-tolerability that justify the high number of literature 

reports on the synthesis of magnetic core/shell nanoparticles in which the core is Fe3O4 and the shell consists of a metal 

or metal-oxide with peculiar optical properties.  

Recently, much effort has been devoted to the synthesis and characterization of silica-coated iron-oxide NPs,3 since the 

magnetic NPs are easily coated with amorphous silica via the sol–gel process.4 Moreover, they can further react with 

gold NPs, thus creating a multilayer iron oxide/silica/gold nano-shells. Compared to the iron-oxide or iron oxide/silica 

core-shell NPs, the addition of gold layer extends the theranostic potential of the system due to the peculiar optical 

properties of this metal. Moreover, due to the high dielectric constant of silica, the three-layered Fe3O4/SiO2/Au 

nanocomposite ensures a stronger light-absorption than the two-layered iron oxide/gold nanoshell. In spite of that, very 

few reports have appeared in the literature on these systems. 

Kim et al. reported the synthesis of magnetic gold nanoshell as one of the first multifunctional nanomedical platforms 

characterized by magnetic and optical properties.5 However, that system was not a core-shell type, because Fe3O4 and 

gold seed nanoparticles were assembled on amino-modified silica spheres. Li and Melancon coated commercially 

available iron-oxide NPs first with amorphous silica via the sol-gel process and then with gold nanocrystal seeds.6,7 The 

obtained magnetic-Au nanoshells showed high r2 and r2/r1 values and a strong NIR absorbance that make them suitable 

for MRI-guided photo-thermal therapy mediated by the application of external magnetic field. 
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However, the mere use of MRI modality for cancer early detection still has some limitations due to low sensitivity and 

specificity that can be partially overcome through the combination with other, possibly complementary, diagnostic 

techniques.89 

Photoacoustic Imaging (PAI) represents an emerging diagnostic method with non-invasive and non-ionizing properties 

with ease applicability in clinical setup.10 The combination of MRI and PAI could offer a way to overcome the depth 

and resolution limits of PAI and the relatively poor sensitivity in contrast agent detection of MRI.11 

A similar approach was exploited in the recent work of Zhou et al., where multifunctional superparamagnetic iron 

oxide-containing gold nanoshell (SPIO@AuNS) nanoparticles have been used for guiding and monitoring by PA and 

MR dual imaging the photothermal ablation therapeutic effects in tumor bearing mice.12 

It is noteworthy that surface functionalization is a key step to design hybrid organic-inorganic nanosystems, none of the 

published reports followed this approach, and only naked core-shell NPs were investigated so far. On the other hand, 

functional groups on the outer shell allowing for targetable nanocarriers containing core-shell NPs would be highly 

desirable because targeted nanostructures hold a lot of promises in biomedical applications. 

In this work, we synthesized a multi-layered nanosystem constituted by a magnetic core of Fe3O4 NPs coated with an 

inner silica layer and outer gold shell. The so-obtained Fe3O4@SiO2@Au NPs have been coated with an organic ligand 

by exchange ligand reaction to make them lipophilic and suitable for entrapment into biocompatible polymeric micelles 

(PMs). Then, folic acid (FA) has been conjugated on the PMs surface to obtain a water-soluble nanocarrier for targeting 

folate receptors (FR), which are overexpressed in many solid tumours, including ovarian cancer (Figure 1).13 Finally, 

the potential of the developed system as bimodal MRI/PAI agent has been assessed in vitro and in vivo on a mouse 

model of ovarian cancer. 

 
Results and discussion 
 

Synthesis of Fe3O4@SiO2@Au@PMs 

 

The synthesis of the multi-layered nanosystem was accomplished by combining several procedures reported in 

literature. Iron oxide nanoparticles were synthetized with thermal decomposition method.14 Silica shell was formed 

following sol-gel and Stober method:15 by using the oil-in-water technique, a microemulsion with the surfactant agent 

CTAB was obtained, and silica shell thickness was controlled by adjusting the MTEOS/Fe3O4 NPs concentration. 

APTMS was added to produce positively charged amino groups onto silica surface: this allowed for electrostatically 

coating of the Fe3O4@SiO2 core-shell system with the gold seeds obtained by Duff and Baiker’s method,16 which indeed 

present a negatively charged surface (Figure 1). The formation of an entire shell of gold performed by a shell growth 

reaction, where gold is mildly reduced, led to the multi-layered Fe3O4@SiO2@Au NPs (see the experimental procedures 

in the Supporting Information for details). The obtained particles were fully characterized by Dynamic Light Scattering 

(DLS) and showed a hydrodynamic diameter of 222 nm, with a PDI of 0.251 and a ζ-potential of -32.2 mV (Figure S1). 

While, TEM images indicated that particles had a diameter in the range of 100 - 110 nm with a spherical shape and an 

external thickness silica shell of 20 nm (Figure S2). STEM and EDX mapping analysis confirmed the presence of the 

three different shells with iron in the core, silica in the middle and gold onto the surface (Figure S3). Atomic absorption 

analysis revealed an iron and gold concentration of 4.1 mM and 12.3 mM, respectively. 

 

 



 
Figure 1: A. Schematic representation of the synthetic process for the obtainment of multilayered Fe3O4@SiO2@Au NPs and their 

entrappment into polymeric nanomicelles (Fe3O4@SiO2@Au@PNPs) 

 

The different results obtained by DLS and TEM characterizations, can be ascribed to the difference between the 

hydrodynamic diameter of the Fe3O4@SiO2@Au NPs dissolved in water and their real size, but also to a slight particles 

aggregation due to the lacking of a steric stabilizer on their surface.  

The so-obtained nanoparticles are water-soluble, but lipophilic agents are necessary to achieve the entrapment into the 

hydrophobic core of polymeric micelles in order to obtain a highly biocompatible final system. In our case, the use of a 

core-shell system Fe3O4@SiO2@Au NPs allowed to obtain an efficient ligand exchange reaction by taking advantages 

of the presence of gold on the shell. For this purpose, the ethyl 11-(4-mercaptobenzamido)undecanoate (1) was our 

organic ligand of choice.17,18 Once modified, the lipophilic NPs was entrapped in the polymeric micelles by using the 

oil-in-water technique.19 The well-known poly(lactic-co-glycolic)-block-polyethylene glycol (PLGA-b-PEG) was 

selected due to the Food and Drug Administration (FDA) approval in biomedical formulation and for its ability to form 

polymeric micelles (PMs) with a lipophilic core that can host lipophilic particles.25 PLGA-b-PEG-NH2 was used due to 

the amino functional groups required for the subsequent surface functionalization with folic acid.  

The DLS characterization of the Fe3O4@SiO2@Au@PMs particles indicated an hydrodynamic diameter of 157 ± 0.4 

nm, a PDI value of 0.3 ± 0.3 and a ζ-potential of -14 mV (Figure S4), while TEM analysis showed the maintenance of 



the nanoparticles morphology and their confinement into an organic matrix (Figure 2). In addition, UV-Vis analysis 

confirmed that the optical proprieties of gold were retained after polymeric entrapment (Figure S7). 

In the last preparative step, an active targeting vector has been chemically conjugated on Fe3O4@SiO2@Au@PMs 

surface. 

 

 
Figure 2: TEM images of Fe3O4@SiO2@Au@PMs. Scale bar 100 nm. 

 

For this purpose, folic acid (FA) was chosen as targeting agent due to its high affinity to the folate receptor, which is a 

membrane-anchored protein overexpressed on many cancer cells.20 The conjugation of folic acid was pursued upon 

EDC activation of its carboxylic group to make it suitable for the reaction with the amine groups at the PMs surface. 

The so-obtained Fe3O4@SiO2@Au@PMs-FA were purified and characterized by DLS, AAS, and UV-Vis. DLS 

analysis showed that the conjugation with FA did not significantly affect the diameter of the particles (165 ± 0.3 nm vs 

157 ± 0.4 nm) as well as the polydispersion index that was unchanged. As expected, the ζ-potential of the FA-

conjugated particles decreased (from -14 mV to -23 mV) due to the free carboxylate group on the FA molecule. Atomic 

Absorption Spectroscopy (AAS) indicated that the micelles were characterized by a good concentration of both metals; 

in particular, iron and gold concentration of 0.1 mM and 1.2 mM were determined, respectively. The developed systems 

(Fe3O4@SiO2@Au@PMs and Fe3O4@SiO2@Au@PMs-FA) underwent to in cellulo and in vivo studies in order to 

evaluate their suitability as MRI and PAI contrast agents. 

 

Cytotoxicity assay 

According to the observations available in the literature, it should be noticed that the cytotoxicity outcome of 

engineered NPs is strongly influenced by testing technique and modalities.  

We have used two tumour cell lines as well as a primary normal cell model. The effects of Fe3O4@SiO2@Au@PMs-FA 

on viability of cells growing as monolayers in culture, was assessed using MTT assay, which has become a standard 

technique in recent nanoparticle research (Figure 3). Two different FR-positive human carcinoma cells, ovarian 

(IGROV) and cervical (HeLa) carcinomas, were tested.   



 
Figure 3. In vitro cytotoxicity of nanoparticles at different concentration on IGROV, HeLa and HF cells after incubation for 24 

hours.  Note: Cell viability was evaluated by MTT assay. Results are expressed as means ± SD of experiments performed in 

triplicate.*p<0.05, **p<0.01 Abbreviations: MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; HF, Human 

Fibroblast. 

 

These cell lines are both known to express high level of FR-α.21 The Fe3O4@SiO2@Au@PMs-FA did not show any 

significant cytotoxicity to HeLa cells at different NP concentrations (0.5, 2.5, 5 and 10 µg/ml) for 24 hours. It can be 

seen that the cell viability still remained as high as 80% at the highest concentration used of 10 µg/ml. These results are 

in accordance with the previously reported cytotoxicity of magnetic NPs towards HeLa cells.22,23 

IGROV cells were shown to be more sensitive than HeLa cells and upon increasing NP concentration above 5 µg/ml, a 

modest statistically significant decrease was noticed in the relative cell viability. Next, primary human fibroblasts (HFs) 

were chosen as a normal cell model. We can see that HFs were found to be more sensitive to Fe3O4@SiO2@Au@PMs-

FA. Our results indicate that after 24 hours of post-treatment HFs showed excellent viability at the concentration of 0.5 

µg/ml, but a 40% of decrease in the relative cell survival was observed at the highest concentration of 10 µg/ml.  

Comparison of in vitro cytotoxicity of Fe3O4@SiO2@Au@PMs-FA and Fe3O4@SiO2@Au@PMs on IGROV cells after 

incubation for 24 hours (Figure S5) did not show significant differences between targeted and non-targeted 

nanoparticles. Overall, MTT assay as a measure of metabolic competence of the cells revealed that: i) in line with 

previous reports on core-shell NPs, Fe3O4@SiO2@Au@PMs-FA are nontoxic at low dosages but that cell viability 

decreases at high dosages; ii) fibroblast cells with long doubling times are more susceptible to injury induced by 

Fe3O4@SiO2@Au@PMs-FA exposure than tumour cells with short doubling times. 

 

Cell fluorescence imaging 

As a prelude to in vivo studies, we examined cellular uptake of green fluorescently labelled Fe3O4@SiO2@Au@PMs-

FA by fluorescence microscopy. Figure 4 shows fluorescence images of IGROV cells after incubation in media 

containing 10 µg/ml of Fe3O4@SiO2@Au@PMs-FA. For the purpose of distinguishing adsorbed 

Fe3O4@SiO2@Au@PMs-FA from the internalized one, we used a blue-fluorescent dye (Alexa Fluor® 350) for plasma 

membrane staining. It can be seen that green fluorescence appears localized inside the cell, suggesting that the cells are 

effective in taking up Fe3O4@SiO2@Au@PMs-FA.  



 
Figure 4. Fluorescence cell imaging. Igrov cells were incubated with nanoparticles (10 mg/ml) at 37°C for 24 hours, to allow 

nanoparticle cell internalization before microscopy analysis. Representative cell images are shown. DAPI and Alexa Fluor® 350 

staining were carried out to visualize nuclei and cell membranes, which appear in blue, while fluorescein-labelled nanoparticles 

appear in green. (a) DAPI and Alexa Fluor® 350 staining; (b) Green fluorescence emission; (c) Merged images (bar = 20 µm).  

 

MRI studies 

Figure 5 shows a series of representative T2w MR images acquired before (pre) and 1, 4, and 24 h after the i.v. injection 

(0.17 mg Fe/kg) of Fe3O4@SiO2@Au@PMs (lower raw) and its folate-targeted form Fe3O4@SiO2@Au@PMs-FA 

(upper raw) in mice bearing the IGROV subcutaneous xenograft (labelled with “T” in the pre-injection images). The 

image voxels with a statistically significant T2-contrast enhancement generated by the Fe3O4 core of the particles were 

highlighted in orange (Figure 5). 

 

 
Figure 5: T2w MR images acquired at 1T before, and 1 h, 4 h and 24h after the intravenous injection of Fe3O4@SiO2@Au@PMs-FA 

(upper panel) or Fe3O4@SiO2@Au@PMs (lower panel) at the dose of 0.17 mg Fe/kg bw. The orange-coloured spots correspond to 

the pixels with a statistically significant T2 contrast enhancement. 

 

The result clearly revealed that the NPs-induced tumour contrast is maximum 4 hours post injection for both the 

nanoparticles, and, importantly, it was higher for the targeted system. In fact, the fraction of contrast-enhanced pixels in 

the tumour 4 h after the NPs injection was almost three-fold higher for the targeted systems than the control NPs (27.5% 

vs 10%). Moreover, the data reported in Figure 6 indicate that difference in the MR signal reduction in the tumour 

region between the two samples is statistically significant (p<0.05) only 4 h post injection. 



 
Figure 6: The % Signal Intensity reduction measured in tumor after the i.v. injection of Fe3O4@SiO2@Au@PMs ( black) or 

Fe3O4@SiO2@Au@PMs-FA (white) at different time points. Error bars represent SE of the mean (n=3). (*p<0.05) 

 

As expected, a more remarkable T2 contrast (30-70 % in signal reduction) was measured in the main organs responsible 

for the blood clearance of nanoparticles, i.e. liver and spleen, whereas a negligible contrast was observed in kidneys 

(Figure S6). The PA spectrum of the particles was characterized by a very broad NIR absorption with a maximum in the 

range 850-900 nm (Figure S7). Compared to the absorption spectrum of the NPs (shown in Figure S7), the maximum 

acoustic emission was shifted towards longer wavelength of ca. 120 nm. This observation supports the view that the 

difference between optical and photoacoustic spectral properties for gold nanoparticles is affected by the size-

dependence of the scattering contribution to absportion.24 

 

 
Figure 7: Representative PA (upper) and US (lower) images of the tumour xenograft acquired before (pre) and 4 h after the injection 

of Fe3O4@SiO2@Au@PMs-FA. PA excitation wavelength was set at 860 nm. 

 

Next, NPs were injected systemically in the tail vein of the tumour bearing mice at a gold concentration of 8.0 mg 

Au/kg, and PA images of the tumour upon excitation at 860 nm were acquired 4 h post injection, i.e. when the particles 

showed the maximum MRI T2 contrast. Figure 7 shows a representative example of the results obtained for the targeted 

system. The position of the xenograft tumour in PAI was determined under US guidance (bottom row images figure 7). 

The spectral and contrast features of the photoacoustic imaging experiments observed 4 h post injection of the two types 

of NPs are reported in Figure 8.  



In addition to the broad peak arising from the core-shell NPs, the in vivo photoacoustic spectra showed the expected 

sharper signal at ca. 760 nm generated by the absorption of blood haemoglobin. The result obtained strongly confirmed 

the increased accumulation of the FA-targeted system in the tumour lesion 4 h after their injection. 

 

 
Figure 8: Left: photoacoustic spectra measured in the tumour of animals before (black line) and 4 hours after the injection of 

Fe3O4@SiO2@Au@PMs-FA (dotted line) or Fe3O4@SiO2@Au@PMs (grey line). Gold injected dose 8 mg/kg. Excitation 860 nm. 

Right: corresponding PA signal enhancement generated by the targeted system (white) and gold NPs (black). Error bars represent SE 

of the mean (n=3). 

 

Conclusions 

In summary, we have developed the synthesis of iron/silica/gold core-shell nanoparticles and their subsequent surface 

functionalization and entrapment into polymeric micelles. The advantage of this approach arises from the possibility to 

manipulate the final dual-imaging nanostructures in water and to build targetable nanostructures. These features have 

been demonstrated in the case of the ovarian cancer using the Folic Acid targeting agent in vivo on tumor-bearing mice 

showing dual-imaging capabilities, clearly opening promising nanomedicine applications. 

 

 

Experimental Procedures 
 

Synthesis of native Iron oxide nanoparticles (Fe3O4 NPs) 

Iron triacetylacetonate (0.002 mmol; 1 eq) was dissolved in diphenyl ether (20 mL). Oleic acid (0.0044 mmol; 2.2 eq), 

oleyl amine (0.00395 mmol; 2 eq) and hexadecanediol (0.00994 mmol; 5 eq) were then added and the mixture was 

heated to reflux (267 °C) for 60 min under nitrogen atmosphere, to prevent unwanted oxidation. The mixture was then 

cooled down to room temperature. The Fe3O4 NPs were purified by magnetic precipitation with excess of cold ethanol, 

dispersed in 5 mL of hexane and washed by four centrifugations (6000 rpm, 45 minutes) in ethanol. The NPs were re-

dispersed in 5 mL of hexane (30 mg/mL). 

 

Synthesis of core-shell iron oxide-silica nanoparticles (Fe3O4@SiO2 NPs)  

Firstly, hydrosoluble cetyl trimethylammonium bromide (CTAB) micelles loaded with Fe3O4 NPs were prepared. 500 

mg of CTAB were dissolved in 25 mL of water and sonicated with a tip probe sonicator (600 W, 50% amplitude, 6 min) 

with 2.5 mL of a solution of Fe3O4 NPs (73 mg) in hexane. The hexane was then removed by heating at 70°C for 10 

minutes. The as-synthetized micelles were diluted with 125 mL of water and 2.5 mL of ethyl acetate and 3.4 mL of a 

28% NH3 solution were added under vigorous stirring. After 10 minutes, 1.5 mL of methyltriethoxysilane (MTEOS) 

were added dropwise, and the mixture was stirred 3 days at room temperature (25-30 °C). Then, 1.3 mL of 3-



aminopropyl-methoxysilane (APTMS) were added dropwise and the mixture was stirred 3 other days at room 

temperature. 

The Fe3O4@SiO2 were purified by centrifugation (6000 rpm, 1 h) in water. To remove the CTAB, the Fe3O4@SiO2 NPs 

were stirred for 30 minutes in a mixture of ethanol/acetic acid 95/5 and centrifuged (6000 rpm, 30 min) for 3 times. 

Then, the last purifications were performed by centrifugation in ethanol/water 1/1. The Fe3O4@SiO2 NPs were 

dispersed in 20 mL of ethanol (2 mg/mL).  

 

Synthesis of core-shell iron oxide-silica-gold nanoparticles (Fe3O4@SiO2@Au NPs)  

Gold seeds were prepared by reduction of chloroauric acid (HAuCl4) with Tetrakis (Hydroxymethyl)Phosphonium 

Chloride (THPC). Briefly, 91 mL of water, 3 mL of a 0.2 M NaOH solution, and 2 mL of a THPC solution (120 µL of 

THPC 80% in 10 mL of water) were mixed. Then, 4 mL of a 25 mM HAuCl4 solution were added under vigorous 

stirring. Next, 40 mg of Fe3O4@SiO2 NPs were dispersed in 40 mL of ethanol/water 1/1. This mixture was diluted with 

100 mL of water and vigorously stirred for 10 minutes. 50 mL of the previous gold seeds solution were added and the 

mixture was stirred overnight at room temperature. The resulting Fe3O4@SiO2-gold seeds NPs were purified by 

centrifugation (6000 rpm, 1 h) in water for 4 times, and then dispersed in water (2 mg/mL). The synthesis of an entire 

shell of gold was performed by a shell growth reaction. HAuCl4 was mildly reduced using hydroxylamine as reducing 

agent: 101 mg of potassium carbonate were dissolved in 393 mL of water then 7.05 mL of a 25 mM solution of 

chloroauric acid solution were added. The solution was stirred overnight in darkness at room temperature. 

To 100 mL of the so obtained solution, 10 mL of Fe3O4@SiO2-gold seeds NPs solution (20 mg) were added under 

vigorous stirring. 65 mL of a 1.87 mM hydroxylamine hydrochloride solution were added dropwise in 30 min. The 

obtained Fe3O4@SiO2@Au NPs were purified by centrifugation (6000 rpm, 30 min) in water, 3 times, and dispersed in 

water.  The size of the gold shell was increased by iteration of this previous shell growth reaction.  

 

Synthesis of lipophilic Fe3O4@SiO2@Au NPs by ligand exchange  

The hydrophilic Fe3O4@SiO2@Au NPs were free of any organic coating agent, and they were made lipophilic by 

organic coating with the ligand ethyl 11-(4-mercaptobenzamido)undecanoate (ligand 1), already synthesized by us.24 50 

mg of ligand 1 were dissolved in 10 mL of ethanol. 3.5 mg of Fe3O4@SiO2@Au NPs were dispersed in 10 mL of water. 

The two solutions were mixed, sonicated with ultrasound bath for 45 minutes and let to react overnight on vortex. These 

lipophilic NPs were purified by centrifugation (6000 rpm, 15 min) in ethanol/water 1/1, 2 times, and dispersed in 

chloroform. 

 

Synthesis of Fe3O4@SiO2@Au@PMs  

A solution of lipophilic Fe3O4@SiO2@Au NPs (3 mg) and PLGA-b-PEG-NH2 (50 mg), obtained by an already reported 

procedure,25 in 4 mL of chloroform was prepared. This organic mixture was sonicated (600 W input, 50 % amplitude, 3 

min) with 40 mL of water, in an ice bath. The organic solvent was removed under vacuum and the nanoparticles were 

purified and concentrated to 2 mL with centrifugal filter devices (Amicon Ultra, Ultracel membrane with 100.000 

NMWL, Millipore, USA). 

 

Conjugation of folic acid (Fe3O4@SiO2@AuNPs@PMs-FA) 

The surface of the PMs was conjugated with the folic acid as a targeting agent. 2 mg of folic acid were dispersed in 0.1 

mL drops of DMSO and diluted in 1 mL of water. In order to activate the carboxylic moiety of the active targeting, 1 



mL of a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) solution (3.5 mg in 5 mL) and 1 mL of N-

hydroxysulfosuccinimide (Sulfo-NHS) solution (4.4 mg in 5 mL) have been added to the acid folic and the obtained 

solution was stirred for 30 minutes. Then 2 mL of the Fe3O4@SiO2@AuNPs@PMs were added and the mixture was 

stirred 1 night at room temperature. The conjugated PMs were purified and concentrated into centrifugal filter devices 

(Amicon Ultra, Ultracel membrane with 100.000 NMWL, Millipore, USA). 

 

Conjugation of fluorescein (Fe3O4@SiO2@AuNPs@PMs-FA/fluo) for cellular uptake studies with fluorescence 

microscopy 

For the synthesis of Fe3O4@SiO2@AuNPs@PMs-FA/fluo, folic acid (2 mg, 4.5 mmol) has been dissolved in 

DMSO/H2O (1:10) and activated by adding 1 mL of a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) solution 

(3.5 mg in 5 mL of H2O) and 1 mL of N-hydroxysulfosuccinimide (Sulfo-NHS) solution (4.4 mg in 5 mL of H2O). The 

obtained solution was stirred for 30 minutes. In a different glass vial, fluorescein isothiocyanate (50 nmol) was 

dissolved in 1 ml of water.  Both folic acid solution and fluorescein solution, were added to 2 mL of the 

Fe3O4@SiO2@AuNPs@PMs and the mixture was stirred 1 night at room temperature. The conjugated PMs were 

purified and concentrated into centrifugal filter devices (Amicon Ultra, Ultracel membrane with 100.000 NMWL, 

Millipore, USA).  The Fe3O4@SiO2@AuNPs@PMs-FA/Fluo were characterized by Dynamic Light Scattering (DLS) 

and showed a hydrodynamic diameter 177.6 ± 9.6 nm, with a PDI of 0.212 ± 0.017 and a ζ-potential of -8.12 mV. 

 

In cellulo experiments 
  

Cells and culture conditions  

IGROV and HeLa cell lines (purchased from American Type Culture Collection, ATTC, USA) were cultured in 

DMEM:F12 (1:1) medium and in DMEM medium respectively, supplemented with 10% fetal bovine serum, 1% L-

glutamine and 1% pennicilin/streptomicyn. Primary human fibroblast (HF) culture, obtained from fresh skin biopsy of 

healthy donor following informed consent (Institute of Maternal and Child Health, IRCSS Burlo Garofolo, Trieste) was 

cultured in RPMI 1640 medium supplemented with 15% fetal bovine serum, 1% L-glutamine and 1% 

pennicilin/streptomicyn (all provided by Euroclone, Milano, Italy). Cell cultures were kept at 37°C with humidified 

atmosphere of 5% CO2. 

 

Cytotoxicity assay 

Cytotoxicity assay was performed using MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide, 

Sigma Aldrich USA). IGROV, HeLa and HF cells were seeded in 96-well plates (SARSTEDT,  

Numbrecht, Germany) at a density of 5x103 cells per well in the culture media described above. Fe3O4@SiO2@Au PMs 

nanoparticles were suspended in culture media and serially diluted to obtain graduated concentrations. After 24h post 

seeding, the cells were exposed to different concentrations of Fe3O4@SiO2@Au PMs nanoparticles (0.5, 2.5, 5.0 and 10 

µg/ml, respectively). After 24 h post incubation, MTT substrate (Sigma Aldrich, San Luis, MO) was prepared and 

filtered at 5mg/ml in PBS and added to cells in culture at a final concentration of 0,5 mg/ml. Cell cultures were 

incubated for 4 h to allow MTT to be metabolized. 100 µl of ethanol were added into each well to re-suspended purple 

formazan crystal.  

The cell viability was measured in absorbance at the wavelength of 570 nm using a plate reading spectrophotometer 

(Glomax Multi Detection System, Promega Madison WI USA). 



 

Cell fluorescence imaging 

IGROV cells were seeded onto 6-well coverglass (Thermo Fischer Scientific Inc, Waltham, MA, USA) at a density of 

15x104/well. After one day, the initial medium was replaced by fresh medium containing 10 m g/ml of 

Fe3O4@SiO2@Au@PMs nanoparticles. 24 hours later, cell cultures were washed twice with phosphate buffered saline 

(PBS) and incubated with 5µg/ml of Alexa Fluor® 350 (Thermo Fisher Scientific Inc., Waltham, MA, USA) at 37°C 

for 20 minutes to stain cell membranes. Then, cells were washed twice with PBS, fixed with paraformaldehyde (PFA) 

4% for 30 minutes and slides were mounted using Vectashield mounting medium for fluorescence with DAPI to stain 

cellular nuclei (Vector laboratories Inc. Burlingame, CA). Finally, cells were observed by fluorescence microscopy: 

fluorescent images were acquired by using an inverted microscope with a CCD camera and the objectives lens 40X. 

(Axioplan2, with Axiocam MRc, ZEISS Oberkochen Germany) 

 

Statistical analysis 

Statistical verification of the differences of cell viability between treated and control cells for each experiment and 

concentration was done using an unpaired Welch Two sample t-test. A p-value of less than 0.05 was considered 

significant. 

 

In vivo experiments 
 

Tumor animal model 

Balb/C nude mice (nu/nu, aged 6 weeks and weighed 18-22 g) were purchased from Harlan Laboratories. Ten million 

of IGROV-1 cells were suspended in 1:1 MatrigelTM: RPMI-1640 medium and subcutaneously injected in the back of 

the animal. Tumor growth was monitored after inoculation by palpation and caliper measurement. When the tumor 

reached 0.4-0.6 cm in diameter, the animals were enrolled in the in vivo imaging studies. Each experimental group 

consisted of 3 animals. All the experiments involving animals were performed according to the authorization 

(229/2016-PR) obtained by the National Ministry of Health. 

 

MRI and PAI experiments 

MRI experiments were performed at a magnetic field strength of 1 T on Bruker ICON (Bruker, Germany). T2w images 

were obtained using the multiecho RARE sequence (relevant acquisition parameters: TR 2000 ms, TE 50 ms, FA 180°, 

NEX 4, MTX=192 x 192, FOV 3.5 cm). 

MR images were analysed to calculate the relative signal intensity (rSI) in liver, spleen, kidneys, and tumour according 

to the following equation: 

 

rSI(organ)= (SI(organ)-SI(muscle))/(SI(organ)+SI(muscle)) 

 

where SI(organ) is the mean of three ROIs drawn on the organ, and SI(muscle) is the corresponding value measured on the 

paraspinal muscle. Then, the % of the Signal Intensity Reduction was calculated comparing the rSI(organ) before and after 

the injection of the agent. 

Photoacoustic images were acquired on VEVO-2100 LAZR (VisualSonics - Fujifilm System) using the LZ250 

transducer (broadband frequency 13-24 MHz) in spectrum modality (wavelength values ranging from 680 to 960 nm, 1 



nm step size, pulse of 4-6 ns, transducer gain 38 dB, The spot size was 1x24mm with a full field of view width of 14-23 

mm. The acquisition rate was 5 frames per second. 

The PA signal intensity was calculated using the VEVO lab tool. All values were normalized in function of the number 

of pixels of each ROI. The particles (Fe3O4@SiO2@Au@PMs or Fe3O4@SiO2@Au@PMs-FA) were injected 

intravenously in single bolus at a dose of 0.17 mg Fe/kg bw. MRI and PAI acquisitions were performed at times 0 (pre 

contrast), 1, 4, and 24 hours post injection.  Animals were anaesthetized with isofluorane gas (2%) in 98% O2. During 

MRI experiments, anaesthesia was maintained by adjustment of gas level in function of the breath rate. Animals were 

maintained warmed at 37°C during all acquisitions. 
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