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Abstract 

A Borehole Thermal Energy Storage living lab was built up nearby Torino (Northern Italy). This 
living lab aims at testing the ability of the alluvial deposits of the north-western Po Plain to store the 
thermal energy collected by solar thermal panels and the efficiency of energy storage systems in this 
climatic context. Different monitoring approaches have been tested and analyzed since the start of the 
thermal injection in April 2014. Underground temperature monitoring is constantly undertaken by 
means of several temperature sensors located along the borehole heat exchangers and within the 
hydraulic circuit. Nevertheless, this can provide only pointwise information about underground 
temperature distribution. For this reason, a geophysical approach is proposed in order to image the 
thermally affected zone (TAZ) caused by the heat injection: surface electrical resistivity measurements 
were carried out with this purpose. In the present paper, results of time-lapse daily acquisitions are 
reported with the aim of imaging the thermal plume evolution within the subsoil. Resistivity data, 
calibrated on local temperature measurements, have shown their potentiality in imaging the heated 
plume of the system and depicting its evolution within the day. Different types of data processing were 
adopted in order to face issues mainly related to a highly urbanized environment. The use of apparent 
resistivity proved to be in valid agreement with the results of different inversion approaches. The 
inversion processes did not significantly improve the qualitative and quantitative TAZ imaging in 
comparison to the pseudo-sections. This suggested the usefulness of apparent resistivity data alone for 
a rough monitoring of TAZ in this kind of applications. 
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1. INTRODUCTION 

Renewable energy sources, such as solar thermal energy, often suffer from the 

shortcoming that most of their supply takes place when the user demand is low (e.g. sun 

energy is mostly related to the warm season, when the heating demand is reduced). In this 

respect, several thermal energy storage techniques have been studied since the late 70s 

(Sharma et al., 2009; Xu et al., 2014, Cabeza, 2015). Underground thermal energy storage 

technologies have been developed to ensure reliability, efficiency and economic sustainability 

of the renewable heat. Given the development and the excellent performance of shallow 

Borehole Heat Exchangers (BHEs), some attempts have been successfully conducted by 

storing the heat within the subsoil in Borehole Thermal Energy Storage (BTES) systems (e.g. 

Bakema et al., 1995; Fisch et al., 1998; Reuss et al., 2006; Sibbit et al., 2012; Rapantova et 

al., 2016). 

Both thermal and hydrogeological properties of the subsoil have to be carefully 

characterized for the design and operation of this kind of installations. Correct monitoring 

strategies also appear to be of major importance to better understand thermal exchange 

processes and environmental effects of low enthalpy geothermal applications and heat storage 

systems, particularly into highly populated areas. The Thermally Affected Zone (TAZ) 

generated within the storage volume should be considered and accurately imaged to assess the 

possible side adverse effects on the litho-, hydro- and bio-sphere. Typically, the TAZ is 

imaged through local and pointwise measurements by means of temperature sensors located 

within the system to monitor changes in underground temperatures. In this context, 

geophysics can be adopted to obtain complementary and spatially distributed information 

directly from the ground surface in a quick, cost-effective and non-invasive way. 

Resistivity-based measurements are potentially very powerful since useful relationships 

can be found in literature between electrical resistivity, temperature and several relevant 

hydrogeological parameters. Underground resistivity is indeed related, even if in a complex 

way, to various soil and environmental attributes, such as total dissolved solids (TDS) in the 

fluid, mineral composition, porosity and water content (Friedman, 2005). Archie (1942) and 

Urish (1981), with theoretical and empirical results, were the first to demonstrate a correlation 

between the formation factor (the ratio between the bulk resistivity of the subsoil and the 

resistivity of interstitial fluid) of an aquifer and the pore water resistivity. This relation has 

then been widely adopted in characterization and monitoring studies. Resistivity surveys can 

therefore be useful to assess the properties of the shallow underground for the design of a low 
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enthalpy geothermal system. Moreover, given that electrical resistivity is strongly influenced 

by temperature (Rein et al., 2004; Hayashi, 2004; Hayley et al., 2007), promising applications 

of resistivity measurements can also take place in the monitoring phase. It is potentially 

possible to use resistivity variations as a recording factor in order to image time-lapse 

temperature distribution (e.g. Hermans et al., 2015; Arato et al., 2015) . 

Easiness of operation and interpretation related to both hardware and software 

developments pushed the use of Electrical Resistivity Tomography (ERT) as one of the most 

used techniques in the field of characterization and monitoring of the subsurface. Surface 

ERT has many practical applications for studying soil properties and processes in the 

subsurface (e.g. Daily and Ramirez, 1992; LaBrecque et al., 1996b; Singh et al., 2001; Slater, 

2007). Thereby, ERT represents a standard method for subsurface monitoring of different 

phenomena (see among others Ramirez et al., 1993; Zhou et al., 2001; Binley et al., 2002; 

Michot et al., 2003; Corwin and Lesch, 2005; Miller et al. 2008; Schwartz et al., 2008) and 

characterization of hydrogeological properties (Carrier, 2003; Slater, 2007) and parameters 

(Hoffman and Dietrich, 2004). 

The use of ERT to exploit electrical resistivity as a key changing factor in temperature 

variation at both field and lab scale has been already conducted for different purposes: 

imaging of heated water injection (Benderitter and Tabbagh, 1982; Hermans et al., 2015), 

monitoring of gas-phase formation due to heat storage (Lüders et al., 2016), geothermal 

exploration (Bruno et al., 2000; Garg et al., 2007), monitoring the performance of low 

enthalpy ground source energy systems (Fragkogiannis et al., 2008; Firmbach et al., 2013) 

and localizing the burning front of underground coal fires (Revil et al., 2013) to name but a 

few. Nevertheless, more examples are particularly necessary in real scale applications, since 

calibrated, robust and reliable correlations between electric resistivity and temperature are not 

available yet (Robert et al., 2013). Indeed, several uncertainties stand at field scale where 

different factors do affect the underground resistivity distribution. Correct acquisition, 

elaboration and interpretation of resistivity surveys are challenging in highly populated areas 

where heat storage applications are usually designed. Particularly, artifacts related to the 

inversion problem can be critical for a correct imaging and quantification of thermally 

induced variations. 

In this respect, the present paper aims to give an additional evaluation of the potential of 

ERT technique as a field-scale TAZ imaging tool. This work is a prosecution of laboratory 

© 2017
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

4 

 

scale electrical measurements performed by Giordano et al. (2016b) and is based on time-

lapse ERT surveys conducted at a BTES site. A field-scale BTES living lab was built up in 

Grugliasco, near the Topography Department of the University of Torino (Giordano et al., 

2016a). The living lab has been working since April 2014. Underground temperature 

monitoring is constantly undertaken by means of several temperature sensors located along 

the BHEs and within the hydraulic circuit. Resistivity surveys were firstly performed monthly 

since the startup of the plant in order to image the evolution of the charge phase in the ground. 

However, too many factors, apart from temperature, can affect the resistivity distribution 

during a whole month. A single rainfall event can indeed completely reset the underground 

resistivity field, since the BHEs are drilled into unsaturated deposits. For this reason, time-

lapse data presented in this paper were acquired during a single operation day during the 

charge phase. These data, calibrated on local temperature measurements, were used to image 

the TAZ of the system. 

2. MATERIALS AND METHODS 

2.1 Description of the BTES living lab 

The test site where the BTES living lab has been constructed is located in the north-

western portion of the Pianura Padana in the municipality of Grugliasco (Torino, Italy). The 

drilling activity performed in the area showed 30 m of Pleistocene-Holocene gravels and 

sands, sometimes with local decimetric layers of compacted gravelly sands. This unit overlies 

deposits of a transitional facies between marine and continental environment, being 

characterized by the alternation of coarse sands and silts due to the progression and regression 

of the coastal line in the Middle Pliocene  Lower Pleistocene (Fig. 1). On the strength of the 

available data, the water table of the unconfined aquifer is located at 35-40 m below ground 

level (b.g.l.) and the groundwater flows towards ESE. Groundwater flow has been 

demonstrated to improve the heat exchange between BHEs and the ground (Wang et al., 

2009; Casasso and Sethi, 2014) thanks to its continuous supply of thermal energy. It 

conversely induces a significant decrease of the BTES efficiency since it can leach out the 

thermal energy stored into the aquifer and reducing the extracted/stored energy ratio (Nguyen 

et al., 2017).  

Due to these geological conditions and owing to specific restrictions from the local 

authorities, the BTES plant was set up in the partially-saturated zone of the unconfined 

aquifer. This situation was however a valuable choice in order to test the ability of partially-

© 2017
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

5 

 

saturated alluvial deposits to store the heat. The underground part of the system stores the heat 

by means of four 27 m deep BHEs. The designed arrangement (Fig. 1 and 2) consists of a 

double U-pipe borehole (DU) placed in the center of an equilateral triangle (2 m side) and 3 

single U-pipe BHEs (A, B and C) located at the vertexes of the triangle. The top of the BHEs 

is placed at a depth of 1.5 m b.g.l. in order to minimize heat losses towards the atmosphere. 

With this purpose, a layer of insulating filling material was added above the BHEs. A 33 m 

deep monitoring hole (MH) was located 2 m away from the double-U heat exchanger. The 

remaining part of the system is located in the nearby Topography Department (Fig. 2). Two 

solar thermal panels are placed on the roof and they collect solar energy with a total net 

surface of 5.0 m2 and an inclination of approximately 10°. The circuit is governed by a 

hydraulic pump located in the basement of the building. The pump provides the heat transfer 

fluid (HTF) circulation through the whole system at a maximum flow rate of 210 l h-1 and a 

constant pressure of 2.2 bar. 

The temperature monitoring system consists of 20 RTD 4wire Pt100 (measurement 

range -50 ÷ +180 °C, accuracy 5%) placed every 5 m down-hole in 3 of the 4 BHEs and in the 

monitoring hole. In addition, 10 temperature sensors of the same type are placed throughout 

the circuit and on the thermal panels. The operative mode of the system was decided 

according to similar operating plants, where a core volume benefits from the warmest carrier 

fluid and it is surrounded by an annular volume fed with the same fluid at a lower amount of 

heat. Therefore, d HTF warmed up by solar energy is driven 

down into the central BHE (DU), then out to the hydraulic pump and pumped again down into 

the outer BHEs (A, B and C). The system is able to evaluate whether to circulate the fluid or 

not according to a temperature difference constraint. If the difference between the collectors 

and the average ground temperature is more than 5°C, the system works and the ground is 

charged by solar thermal energy. Conversely, the circulation is stopped in order to prevent the 

cooling of the ground. In this way, the plant injects thermal energy only during the day. In 

winter season, the circulation of the system is revers   

More details about the Grugliasco BTES plant and the first long term results obtained since 

the startup of the plant can be found in Giordano et al. (2016a). 

2.2 Electrical resistivity imaging 

Owing to the limited dimensions of the area around the BHE field and in the need of 

trade-off between spatial resolution and satisfactory depth of investigation (DOI), resistivity 
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measurements were performed along a 72 electrode profile with inter-electrode spacing of 1 

m (Fig. 2). Time-lapse measurements reported in this paper were carried out hourly on 2014 

July 25th, from 9 AM to 4 PM. In Tab. 1 a schedule of the executed ERT surveys is reported 

together with instantaneous values of flow rate, fluid temperature difference between in and 

out, power and energy transferred to the ground every 0.5 h. The heating activity lasted since 

8-9 AM until 3-4 PM and a little cooling occurred when the collectors were no longer able to 

collect enough thermal energy. A Wenner-Schlumberger measuring sequence was used for 

acquisitions with Syscal R1 georesistivimeter (Iris Instruments). A short current injection time 

(250 ms) was adopted in order to record the set of measurements (total of 548 quadrupoles for 

each survey) as quick as possible. This configuration allowed us to obtain a reliable DOI of 

about 12-13 m b.g.l. in a vertical cross section. With the aim of comparing results obtainable 

with different computational efforts, both apparent and inverted resistivity data achieved from 

the surveys are hereby discussed. Since Giordano et al. (2016b) demonstrated the ability of 

time-lapse apparent resistivity to reach valuable temperature estimation in porous media at lab 

scale, thus an analogous approach was tested at the field scale. 

The finite-element algorithm R2 (Version 2.7b, A. Binley, Lancaster University) was 

adopted to carry out the resistivity data inversion (Binley and Kemna, 2005). The inverse 

problem is formulated through a set of model parameters m (i.e. model cells resistivities), 

related to a set of measured data, d, through the relation d=F(m), F being the forward 

operator. The inversion algorithm is based on a least square formulation, as it minimizes the 

data misfit according to Eq. [1]: 

                               [1] 

where D is the total number of measured data, di is the i-th observed data vector, Fi(m) is the 

i-th datum i the variance of the i-th datum, 

from which the data weighing matrix Wd is derived (LaBrecque et al., 1996a). The inversion 

requires a regularization term to be minimized, in order to create a reliable and realistic result. 

Regularization of the model can incorporate a-priori information on the geology of the area, 

introducing penalties for departure from an initial model and for anisotropy in the 

reconstruction (Eq. [2]):  

           [2] 
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where, on the right hand side, the first term is the penalty for the deviation from a starting 

model m0, the second and third terms are penalties for roughness in horizontal and vertical 

direction, the s,x,z are the related smoothing factors and Ws,x,z are the weighting matrices 

composing the model regularization matrix Wm. The total objective function = d+ m must 

be minimized iteratively, by searching the model improvement mk that drives the model to 

the best-fitting solution (Eq. [3]): 

       [3] 

where J is the Jacobian , mk+1=mk+ mk is the updated model at k-th 

iteration. R2 has the possibility to build different types of finite element meshes with regular 

quadrilateral, general quadrilateral or triangular cells. A quadrilateral cell array was used in 

this case, with finite element sizes progressively increasing with increasing distance from the 

electrodes (i.e. with depth). The data error estimation, necessary to set the matrix Wd, is 

computed according to LaBrecque et al. (1996a). The model regularization can be forced to 

penalize undesired departures from an a priori model, or to follow vertical/horizontal 

anisotropic reconstruction. For the present study, an isotropic regularization was maintained.  

The starting model of the time-lapse inversion of the subsequent time steps was the 

model resulting from the inversion of background data which is the one collected at 9 AM 

(zero condition). Time-lapse data were inverted with the difference inversion algorithm 

described by LaBrecque and Yang (2001). Difference inversion is an extension of the 

 and is based on the minimization of Eq. [4]: 

                                          [4]

where d and F(m) represent the data vector and the forward response for the model m 

response. The vector parameter m0 comes from a single inversion of the background dataset 

and constitutes the starting and the reference model for the difference inversion process. The 

m=mk+1-mk is obtained by solving Eq. [5] as an optimization problem, 

usually with a conjugate-gradient approach, 

                       [5] 

The regularization matrix, R, is hereby expressed as Eq. [6]: 
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                              [6] 

LaBrecque and Yang (2001) proved that this algorithm is less sensitive to systematic errors in 

the data, more efficient in terms of computational requirements and more robust in imaging 

the real changes in the resistivity distribution. In fact, the method is based on the calculation 

of a single Jacobian matrix, which is supposed to adequately describe the sensitivity 

distribution of both the model at time t and the background model. This assumption implies 

non dramatic changes in the resistivity distribution and the process is oriented to find small 

perturbation with respect to the initial model. 

2.3 Data error analysis 

Globally, raw data showed good quality and repeatability. Apparent resistivity values 

ranged Since repeatability of the measurements was available and 

the measured data distribution was not scattered, the 2% of the measured resistance values 

was taken as a reasonable weighting parameter for inverting the background dataset. In order 

to perform the time-lapse inversions, data errors were reduced to 1% for the subsequent 

datasets. With 2% error the starting model coincided with the solution and the inversion 

process was indeed not able to find the variations between the consecutive time steps. Few 

outliers, such as measurement errors and anomalous high and low apparent resistivity values, 

were filtered out before the inversion process, giving a dataset of 540 resistance values to be 

inverted. 

Demonstrating the difficulty of operating in highly urbanized areas, it has been noticed 

that the concrete entry way to the building gets overheated around noon. Moreover, the 

presence of underground water pipes and electric cables supplying the nearby building were 

also causes of disturbance in data acquisition. This created anomalous measurements (both 

low and high resistance values) which behaved differently with respect to the surrounding 

soil. In order to get rid of noisy data, the measurements involving electrodes that fall around 

the entry way itself (electrodes from 33 to 38) were filtered out. Then, a reduced time-lapse 

dataset (with 341 quadrupoles) was also inverted. In any case, the algorithm used for 

resistivity inversion at Grugliasco BTES site was ideal since the data errors were likely to 

follow a Gaussian distribution and the resistivity model was expected to change in a smooth 

manner. 

2.4 Temperature estimation based on resistivity values 
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A quantitative interpretation of resistivity data in terms of temperature variation was 

performed by using both apparent data and inversion results. Both data were processed 

according to Eq. [7]: 

                                   [7] 

where  (%) is the resistivity variation between a defined step and the zero condition, T0 and 

Tt are temperatures at respective time steps and m is the fractional change in electrical 

resistivity (°C-1). A range of 0.018 ÷ 0.025 °C-1 has been found by several authors for m 

(Revil et al., 1998; Hayashi, 2004; Hayley et al., 2007; Hermans et al., 2012) and it varies 

according to the type of fluid and sediments. For the present case, Eq. [7] was adopted with 

 (%) obtained both from apparent and inverted resistivity. An m value of 0.021 °C-1 was 

assumed after calibration tests at lab scale (Giordano et al., 2016b). Reference temperature 

(T0) could not be adopted homogenous within the whole investigated ground. Indeed, at the 

beginning of the day the BHE field showed temperature values higher than the undisturbed 

ground, since the charge phase started 4 months earlier. The reference temperature field was 

thus obtained from the values registered by temperature sensors in the boreholes and in the 

monitoring hole at the beginning of the day of measurements. A value of 14.2 °C was used for 

the undisturbed ground aside the BHE field. Then a smooth gradient was applied from the 

borders of the BHE field to the center of the heated volume where a temperature of 17.5 °C 

was registered by the sensors. 

3. RESULTS 

The aim of evaluating the thermally affected zone of the underground from electrical 

resistivity measurements is not an easy task in the test site under consideration. Firstly, the 

system is operating in the partially-saturated zone, so that possible complex resistivity 

variations can be highlighted with increasing temperature (e.g. de-saturation); secondly, the 

available space for the surveys is limited; lastly, the presence of several anthropic elements 

(entry ways, water pipes, electric cables and foundations of the buildings) could affect data 

collection, processing and interpretation. These are the main reasons why both apparent 

resistivity and true resistivity models were processed in order to highlight qualities and flaws 

of each one. 

3.1 Apparent resistivity data 

© 2017
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

10 

 

Time-lapse variations (in % with respect to the zero condition at 9 AM) of apparent 

resistivity for steps at 1, 2 and 3 PM are shown in Fig. 3. As previously mentioned, the entry 

way and its underlying pipes create a noticeable disturbance to the dataset (vertical anomaly 

at an abscissa of about 35 m). This anomaly is a combination of errors due to water pipes and 

electric cables (constant) and to the heat up of the entry way (variable). Constant sources of 

noise could be easily erased from data, while variable sources are more complicated to tackle. 

The portions of the ground on both sides of the concrete way are subjected to a heat up more 

pronounced than the other parts of the section. Besides these effects though, the BTES 

influence is evident between 20 and 30 m, where the decrease in resistivity is higher (-1 ÷ -

2% at 3 PM) than on the right of the entry way. 

Percentage differences among the resistivity pseudo-sections were processed for 

temperature estimation using Eq. [7]. Data obtained are reported in Fig. 4 for the zone around 

the BHEs (for location see Fig. 3). The dataset population is small but the variogram spatial 

analysis confirmed that a valuable Kriging interpolation could be achieved. At 1 PM, a 

heating plume is clear around the BHEs, with temperature 2 ÷ 3 °C higher than the 

surrounding soil. In the successive steps, the TAZ is progressively more evident with 

maximum values of 18.5 °C in the core at 2 and 3 PM. An increase in temperature can also be 

observed at greater depths. The heated volume is symmetric at 1 PM, whereas the influence of 

the concrete entry way is clear in the following sections, extending the TAZ towards West. 

3.2 Inverted resistivity data 

The inverted background resistivity model (9 AM) for the whole dataset is shown in 

Fig. 5a. The resistivity section reports a shallow low resistivity anomaly in correspondence to 

the boreholes and to the excavation made up to a depth of 1.5 m to provide an insulation to 

the pipes. A more pronounced anomaly is also highlighted around an abscissa of 35 m, where 

the electrodes were hammered in the concrete bricks of the entry way. The remaining part of 

the model shows a relatively homogeneous medium characterized by unsaturated gravels and 

sands, apart from the high resistivity volume in the Eastern part, most likely due to the 

basement of the buildings. The same background model for the filtered dataset is reported in 

Fig. 5b. As in the aim of the filtering, this model does not show the marked low resistivity 

anomaly at 35 m, confirming the success of data filtering. 

Results of time-lapse inversions for the same three example time steps of apparent 

resistivity data, respectively at 1, 2 and 3 PM, are reported for the whole dataset in Fig. 6. At 
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1 PM two small volumes of negative and positive resistivity variation are clear between 25 

and 35 m. In the following steps, these anomalies increase of intensity and volume and at 3 

PM a sharp contrast between a -10% and a +10% volume is located in the middle of the 

section. The negative variation can be related to the operation of the plant (temperature 

increase) while the small positive one is located below the position of the entry way. The 

whole resistivity distribution is however characterized by a general decrease of resistivity (-3 

to -5%) apart from three volumes with positive variation. The increasing resistivity anomaly 

at 12 m appears to be related to the high resistivity anomaly located in the same position in 

the background model (Fig. 5a). The highest negative variation is located at 29 m. The entire 

volume has a lateral extension of about 10 m and seems to continue below the end of the 

section (> 10 m). Knowing the position of the plant, this can be ascribed to the effect of heat 

injection, but the highest intensity at 3 PM (-5.3%) is shifted by 4 m towards West with 

respect to the position of the central borehole DU. As above mentioned, the concrete-made 

entry way gets overheated and transfers the heat to the underground. 

Results of time-lapse inversions for the same three example time steps are reported for 

the filtered dataset in Fig. 7. These results show a general smaller resistivity decrease, but still 

significant in correspondence of the BTES. The highest amount of negative resistivity 

variation at 3 PM (-2.7%) is located at 28 m, but in the top 1 ÷ 1.5 m. The filtering is 

successful in reducing the effect of the entry way, but at the same time it highlights the 

influence of the solar radiation on the surface, shifting the maximum decrease in resistivity 

towards the ground level. 

For both datasets, resistivity values were processed in order to achieve an estimate of 

underground temperature distribution. Figs. 8 and 9 report the temperature maps such 

obtained for the part of the resistivity section shown in Figs. 6 and 7, just close to BHE field. 

A percentage variation with respect to background (9 AM) was calculated at each cell of the 

volume and then adopted to get resistivity-derived temperature values (from Eq. [7]). 

Temperature data were then interpolated with Kriging algorithm, accounting for the analysis 

of spatial data variability. 

The whole set of data (Fig. 8) presents a radial thermally affected zone around the 

central BHE, with maximum values of 17.5, 18.5 and 19.5 °C at 1, 2 and 3 PM respectively. 

The volume influenced by temperature increase is roughly symmetric, but the portion at 2.5 m 

right from the BHEs is warmer (16 °C at 1 PM) and this difference is amplified at 2 PM and 3 
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PM. It is interesting to note that at 3 PM the top 1.5 m is colder than the deeper portions: 

indeed, it is only influenced by solar radiation since the top of the boreholes is located 1.5 m 

b.g.l., with a thermal insulation above this depth. 

The filtered dataset (Fig. 9) shows lower temperatures as expected, with 18 °C as 

maximum value reached at 3 PM in the center of the BHE field. Thermally affected zone is 

symmetric with respect to the central BHE; a shift towards the Western part is not significant 

but still noticeable at 3 PM. This means that the influence of the overheated concrete way is 

higher than expected, but filtering more data would reduce the reliability of the data inversion 

too much. The top of the BHEs is not visible, even in the last considered step. As explained 

above, after filtering the noisy data out, the maximum decrease in resistivity is shifted towards 

the ground level. This can be explained by considering that some of the filtered data, at the 

center of the BHE system and at 8 ÷ 12 m of depth, appeared significantly influenced by the 

entry way. The shallowest data are nevertheless equal before and after filtering, since a 

temperature of 18 °C is reached between the abscissa range 25.5 ÷ 27.5 m in both datasets. 

Therefore, the action of filtering contributed to reduce the resistivity decrease in the whole 

section, but it did not provide a noteworthy improvement of the TAZ imaging. 

4. DISCUSSION 

A detailed discussion can be conducted in order to highlight qualities and flaws of the 

adopted methodologies, that can serve as fast and reliable qualitatively TAZ imaging and 

quantitative temperature investigation tools. 

Fig. 10 reports a graph with the temperature recordings of the control system in two of 

the four BHEs (A and DU) and in the monitoring hole (MH), and the resistivity-derived 

temperatures achieved by the three methods above described. Resistivity-derived 

temperatures are reported for points located in correspondence of DU and MH at 6 m of depth 

(black asterisks in Figs. 3, 6 and 7), while temperature values from the monitoring system are 

obtained by averaging along the entire drilling depth the values of temperature sensors (4 Pt-

100 sensors, every 5 m).  

At a first glance, it can be noticed that the direct temperature data are not perfectly in 

agreement with resistivity-derived temperatures. Owing to the operative mode of the plant, 

the highest temperatures are observed in the DU, reaching a peak between 1 and 3 PM at 

around 23 °C, while the outer borehole A shows reduced temperatures. Resistivity-derived 
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temperatures appear roughly comparable to the data from the outer BHEs ranging between 

18.5 and 19.5 °C, but with an apparently delayed peak. It is important to note that temperature 

sensors in the boreholes (DU and A), owing to operational issues, are attached to plastic pipes 

where the HTF flows (temperatures of about 30 ÷ 33 °C in DU and 24 ÷ 25 °C in A have been 

monitored throughout the day). This obviously can result in higher values with respect to the 

real ground temperatures, which are supposed to be better imaged by resistivity data. 

Data from the monitoring hole are instead not affected by the presence of the HTF. 

These data are almost stable throughout the day. In the long term, MH data show indeed an 

increasing temperature trend of about 0.5 °C/month which is a too low gradient to show a 

significant daily variation. However, resistivity-derived temperatures in a location proximal to 

the MH describe a trend more similar in time and smaller in temperature increase to data near 

the BHEs. This can be explained by the influence of the BHEs to the whole resistivity 

distribution, which coarse resolution struggles to differentiate and to image a distinct situation 

between DU and MH. We can estimate that temperature amounts to 20 ÷ 21 °C at 2 ÷ 3 PM in 

the core and to around 16 °C at the limit of a 2-m-radius circle. This temperature difference (4 

÷ 5 °C) should be highlighted by a -10 % resistivity variation that in fact is smoothed within 

the ground volume where the boreholes are placed. 

Temperature estimation derived by inverted resistivity values on the whole dataset 

outputs the highest temperatures both in DU and MH, as already described in the previous 

section. Inverted resistivities on the filtered dataset allowed us to reduce the contribution of 

the overheating on the entry way and to decrease the temperature trend at the same time. 

Temperature peaks are therefore 1 ÷ 1.2 °C lower at both monitoring points at 3 PM. Values 

achieved by processing only apparent resistivities are a valid compromise between the 

previous processing approaches. The direct imaging of apparent resistivity data could 

therefore be considered as a valuable approach for the qualitative imaging of the TAZ and a 

rough estimation of the temperature increase. This could moreover be obtained with 

significantly less computational effort in data elaboration and could be potentially used as an 

indirect monitoring tool. 

The imaged TAZ by all the data presented appears to be reliable, considering the 

reduced dimensions and energy input (Tab. 1) of the living lab and the unsaturated material 

characterizing the subsoil. Available literature data of similar setup in the vadose zone are 

scarce. Moradi et al. (2016) presented an interesting experimental lab scale setup where a 
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BTES was simulated in an unsaturated porous medium and heat transfer mechanisms were 

tested and numerically analyzed. The area outside the BHE field reached 10 to 15 °C increase 

after each experiment lasting 8 h, but the finite dimensions of the apparatus and the absence 

of the geothermal grout around the plastic pipes make it difficult to do a thorough comparison 

with our field-scale living lab. An easier comparison can be done with the work by Rapantova 

et al. (2016); a BTES fed by a CHP plant injects in the charge phase (6 months) around 500-

600 GJ in a geological section made of water-saturated gravels and sands (about 10 m) 

overlying a claystone formation. The numerical results showed that in the alluvial deposits the 

ground temperature is no more disturbed by heat injection at around 6 m from the outermost 

BHE at the end of the injection phase. In the underlying claystones, where conduction is the 

predominant heat transfer mechanism and it can be roughly comparable to the present study, 

at 4.5 m no disturbance is registered. Considering that the Grugliasco plant injected around 

1.5% of that amount of energy in 6 months (9 GJ from Giordano et al., 2016a), the thermal 

plume extension and intensity highlighted by the ERT monitoring in the present work is 

consistent with the energy input and the geological setting. 

To sum up, a qualitative TAZ imaging of the plant was successfully achieved, but the 

same is not true with respect to the quantitative estimation. This can also be partially related 

to the lack of precise independent temperature recordings from the monitoring system for a 

valuable comparison (i.e. not affected by the presence of the HTF). However, MH values 

report that all the three resistivity-derived temperature trends tend to overestimate the real 

ground thermal behavior at 2 m from the central BHE. This can be mainly related to a non-

optimal resolution of the acquisition, to the intrinsic smoothing of the resistivity method and 

to the already discussed disturbances that create significant noise in the datasets. 

5. CONCLUSIONS 

Time-lapse resistivity surveys carried out on a BTES living lab in Grugliasco (Torino, 

Italy) in order to image the thermally affected zone have been reported. Measurements were 

performed hourly from 9 AM to 4 PM with a linear 72-electrode 1-m spaced array and both 

apparent and true resistivity values were adopted as a qualitative and quantitative TAZ 

imaging tool. Different types of data processing were adopted in order to face issues mainly 

related to a highly man-made environment. 

Thanks to the direct monitoring system set up on the BTES living lab, temperature 

recordings in three BHEs and in the MH allowed us to define the initial temperature (T0) and 
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thus to achieve a valuable qualitative TAZ imaging. Nevertheless, the temperature prediction 

from resistivity variation acquired throughout the day was not completely reliable if compared 

with direct recordings. It is however true that standalone sensors chains are not available in 

the BTES core and those adopted for comparison were strongly affected by HTF flowing 

within the plastic pipes. Results from all the three adopted methodologies showed a rather 

homogeneous temperature distribution from the center up to a 2 m distance (MH position), 

with difficulties in detecting temperature differences within a couple of meters. This can be 

partially attributed to the intrinsic spatial smoothing of the ERT method itself. 

Apparent resistivity differences proved to be in valid agreement with inverted results, 

behaving as an average between the entire dataset and the filtered dataset. In fact, the 

inversion process did not allow us to significantly improve qualitative and quantitative TAZ 

imaging in comparison to the pseudo-sections, even removing part of the data located beneath 

and around the entry way. This suggests the usefulness of even apparent resistivity data alone 

for a rough monitoring of TAZ in this kind of applications. 

Future research will focus on surface 3D electric surveys and cross-borehole 

tomographies around the BHE site in order to improve resolution and DOI of the resistivity 

acquisitions. A 3D numerical simulation will moreover be carried out to serve as consistent 

background thermal model to perform a reliable comparison with resistivity-derived 

temperatures. 
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Figure Captions 
Fig. 1 a) Schematic geological cross-section at the field test site. b) Cross-section of the BTES plant: the 
monitoring hole is a piezometer that serves as water table check in case of rise.  
Fig. 2 Plan view of the Grugliasco BTES plant with the position of the ERT survey. 
Fig. 3 Time-lapse variation (in %) of apparent resistivities at 1, 2 and 3 PM. Highlight of imaging section in Fig. 
4 and temperature comparison points in Fig. 10 are also shown. 
Fig. 4 Resistivity-derived temperature values achieved from the variation of apparent resistivities at 1, 2 and 3 
PM. 
Fig. 5 Inverted resistivity section at 9 AM, used as background for the calculation of resistivity variations: a) 
whole dataset; b) filtered dataset (data from electrode 33 to 38 were removed) 
Fig. 6 Time-lapse variation (in %) of inverted resistivities for the whole dataset at 1, 2 and 3 PM. Highlight of 
section in Fig. 8 and temperature comparison points in Fig. 10 are also shown. 
Fig. 7 Time-lapse variation (in %) of inverted resistivities for the filtered dataset at 1, 2 and 3 PM. Highlight of 
section in Fig. 9 and temperature comparison points in Fig. 10 are also shown. 
Fig. 8 Resistivity-derived temperature values achieved from the variation of inverted resistivities for the whole 
dataset at 1, 2 and 3 PM. 
Fig. 9 Resistivity-derived temperature values achieved from the variation of inverted resistivities for the filtered 
dataset at 1, 2 and 3 PM. 
Fig. 10 Comparison between temperature data recorded by the sensors in the BTES plant (A and DU boreholes 
and MH) and those derived by the resistivity variation of points at specific locations (23 and 25 m on x at 6 m 
depth). 
 
Tables 
Tab. 1 Plant data collected during July 25th. Time of ERT surveys is also indicated. 
 

Time ERT 
surveys 

Flow rate 
[l h-1] 

Tin-Tout 
[°C] 

Power 
[W] 

Energy 
[kJ] 

7 AM  0 0.1 0 0 

7.30 AM  0 0.1 0 0 

8 AM  70 5.0 404 727.2 

8.30 AM  70 7.8 636 1144.8 

9 AM survey 0 90 11.9 1246 2242.8 

9.30 AM  170 7.5 1483 2669.4 

10 AM survey 1 210 10.3 2520 4536.0 

10.30 AM  180 9.1 1901 3421.8 

11 AM survey 2 80 8.6 803 1445.4 

11.30 AM  80 9.8 909 1636.2 

12 PM survey 3 210 13.2 3212 5781.6 

12.30 PM  110 9.8 1259 2266.2 

1 PM survey 4 170 13.3 2620 4716.0 

1.30 PM  210 12.5 3060 5508.0 

2 PM survey 5 100 13.2 1539 2770.2 

2.30 PM  90 11.0 1149 2068.2 

3 PM survey 6 210 9.8 2391 4303.8 
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3.30 PM  180 7.8 1633 2939.4 

4 PM survey 7 210 11.1 2718 4892.4 

4.30 PM  200 8.6 1998 3596.4 

5 PM  30 6.2 217 390.6 

5.30 PM  70 9.2 750 1350.0 

6 PM  40 5.0 234 421.2 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Highlights 

 ERT was used to image the thermally affected zone of a BTES; 
 Both apparent data and inverted results were adopted; 
 Resistivity-derived temperatures were compared to values from direct monitoring; 
 Apparent data can provide valuable interpretation as inverted results; 
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