
On the Emergence of Shortest Paths
by Reinforced RandomWalks

Daniel Ratton Figueiredo,Member, IEEE and Michele Garetto,Member, IEEE

Abstract—The co-evolution between network structure and functional performance is a fundamental and challenging problem whose

complexity emerges from the intrinsic interdependent nature of structure and function. Within this context, we investigate the interplay

between the efficiency of network navigation (i.e., path lengths) and network structure (i.e., edge weights). We propose a simple and

tractable model based on iterative biased random walks where edge weights increase over time as function of the traversed path

length. Under mild assumptions, we prove that biased random walks will eventually only traverse shortest paths in their journey towards

the destination. We further characterize the transient regime proving that the probability to traverse non-shortest paths decays

according to a power-law. We also highlight various properties in this dynamic, such as the trade-off between exploration and

convergence, and preservation of initial network plasticity. We believe the proposed model and results can be of interest to various

domains where biased random walks and de-centralized navigation have been applied.

Index Terms—Network co-evolution, random walk, navigation, emergent behavior

Ç

1 INTRODUCTION

THE interplay between network structure (nodes, edges,
weights) and network function (high level features

enabled by the network) is a fundamental and challenging
problem present in a myriad of systems ranging from biol-
ogy to economics and sociology. In many complex systems
network structure and network function co-evolve interde-
pendently: while network structure constraints functional
performance, the drive for functional efficiency pressures
the network structure to change over time. Within this tus-
sle, network activity (i.e., basic background processes run-
ning on the network) plays a key role in tying function and
structure: in one hand, function execution often requires
network activity, while in the other hand network structure
often constraints network activity.

Given the complexity of co-evolution, simple and tracta-
ble models are often used to understand and reveal interest-
ing phenomena. In this paper, we focus on network
navigation, proposing and analyzing a simple model that
captures the interplay between function and structure. In
particular, we consider a case-study where the network
structure has some immutable parts (nodes and edges) and
parts that evolve and adapt over time (edge weights).

Our model embodies repetition, plasticity, randomiza-
tion, valuation and memory which are key ingredients for
evolution: repetition and memory allow for learning; plas-
ticity and randomization for exploring new possibilities;
valuation for comparing alternatives. Moreover, in our

case-study co-evolution is enabled by a single and simple
network activity process: biased random walks, where time-
varying edge weights play the role of memory.

Network navigation (also known as routing) refers to the
problem of finding short paths in networks and has been
widely studied due to its importance in various contexts.
Efficient network navigation can be achieved by running
centralized or distributed algorithms. Alternatively, it can
also be achieved when running simple greedy algorithms
over carefully crafted network topologies. But can efficient
navigation emerge without computational resources and/
or specifically tailored topologies?

A key contribution of our work is to answer affirmatively
the above question by means of Theorem 1, which states
that under mild conditions efficient network navigation
always emerges through the repetition of extremely simple
network activity. More clearly, a biased random walk will
eventually only take paths of minimum length, indepen-
dently of network structure and initial weight assignment.
Beyond its long term behavior, we also characterize the sys-
tem transient regime, revealing interesting properties such
as the power-law decay of longer paths, and the (practical)
preservation of initial plasticity on edges far from ones on
the shortest paths. The building block for establishing the
theoretical results of this paper is the theory of P�olya urns,
applied here by considering a network of urns.

We believe the proposed model and its analysis could be
of interest to various domains where some form of network
navigation is present and where random walks are used as
the underlying network activity, such as computer network-
ing [1], [2], [3], animal movement in biology [4], [5], memory
recovery in the brain [6], [7], [8]. Moreover, our results can
enrich existing theories such as Ant Colony Optimization
(ACO) meta-heuristic [9], [10], Reinforcement Learning (RL)
theory [11], and Edge Reinforced Random Walks (ERRW)
theory [12], [13]—see related work in Section 3.
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2 MODEL

We consider an arbitrary (fixed) network G ¼ ðV; EÞ, where
V is a set of vertices and E is a set of directed edges among
the vertices.1 We associate a weight (a positive real value)
wi;j to every directed edge ði; jÞ 2 E. Edge weights provide a
convenient and flexible abstraction for structure, specially
when considering evolution. Finally, a pair of fixed nodes s,
d 2 V are chosen to be the source and destination, respec-
tively. But how to go from s to d?

We adopt a very simple network activity model to carry
out the function of navigation: weighted random walks
(WRW). Specifically, a sequence of randomwalks, indexed by
n ¼ 1; 2; . . ., is executed on the network one after the other.
EachWRW starts at s and steps from node to node until it hits
d. At each visited node, theWRW randomly follows an outgo-
ing edge with probability proportional to its edge weight. We
assume thatweights on edges remain constant during the exe-
cution of a single WRW, and that decisions taken at different
nodes are independent from each other.

Once the WRW reaches the destination and stops, edge
weights are updated, thus impacting the behavior of the
next WRW in the sequence. In particular, edges on the path
followed by the WRW are rewarded (reinforced) by increas-
ing their weights with a positive amount which depends on
the length of the path taken (expressed in number of hops).
Let f : INþ ! Rþ be some positive function of the path
length, hereinafter called the reward function.

We consider two different ways in which edges are
reinforced:

� single-reward model: Each edge belonging to the path
followed by the WRW is rewarded once, according
to function fð�Þ.

� multiple-reward model: Each edge belonging to the
path followed by the WRW is rewarded according to
function fð�Þfor each time the edge was traversed.

Throughout the paper, we will interpret n, the number of
random walks that have gone from s to d as a discrete time
step. Thus, by co-evolution of the system we actually mean
what happens to the network structure (i.e., weights) and
navigation (i.e., path lengths) as n ! 1.

Let wi;j½n� be the weight on edge ði; jÞ at time n (right
after the execution of the nth WRW but before the ðnþ 1Þth
WRW starts). Let Pn denote the sequence of edges (i.e., the
path) traversed by the nth WRW and Ln ¼ jPnj the path
length (in number of hops).2

After reaching the destination, the weight of any distinct
edge ði; jÞ in Pn is updated according to the rule

wi;j½n� ¼ wi;j½n� 1� þ ui;jðPnÞ � fðLnÞ; (1)

where ui;jðPnÞ ¼ 1 under the single-reward model, whereas
ui;jðPnÞ equals the number of times edge ði; jÞ appears in
Pn, under the multiple reward model. We also allow for the
event that the WRW does not reach the destination because
it ‘gets lost’ in a part of the network from which d is no

longer reachable. In this case, we assume that no edge is
updated by the WRWwho fails to reach d.

Note that our model has the desirable ingredients for co-
evolution: edge set E and initial weights provide plasticity and
WRW provides randomization, which allows for exploring
alternative paths; edge weights provide memory and the
sequence ofWRWprovides repetition, which enables learning;
path length taken by WRW provides valuation, which allows
for comparing alternatives paths. Moreover, note that func-
tional performance induces structural changes through
network activity as navigation (traversed path) changes edge
weights, while network structure constraints function, as edge
weights influence observed path lengths. Thus, our model cap-
tures the essence of co-evolution. But will efficient navigation
emerge? In particular, which pathsPn are taken asn increases?

3 RELATED WORK

The problem of finding shortest paths in networks is, of
course, a well understood problem in graph theory and
computer science, for which efficient algorithms are avail-
able, both centralized (e.g., Dijkstra) and distributed (e.g.,
Bellman-Ford). Our approach follows in the second cate-
gory (distributed), as it does not require knowledge of the
topology, however we stress that our goal is not to propose
yet another way to compute shortest paths in network
(actually, the convergence of our process is slower than that
of Bellman-Ford), but to show that shortest paths can natu-
rally emerge from the repetition of a simple and oblivious
network activity which does not require computational/
memory resources on the nodes. As such, our model is
more tailored to biological systems, rather than technologi-
cal networks.

The celebrated work of Kleinberg [14] was probably the
first to show that efficient navigation is indeed feasible
through a simple greedy strategy based solely on local
information, but under the stringent assumption that the
network exhibits a very particular structure. Greedy algo-
rithms can also lead to efficient network navigation under
distributed hash tables (DHTs), but again this requires the
network to exhibit a very particular topology [15].

The idea of reinforcing edges along paths followed by
random walks is surely reminiscent of Ant Colony Optimi-
zation (ACO), a biologically-inspired meta-heuristic for
exploring the solution space of complex optimization prob-
lems which can be reduced to finding good paths through
graphs [9], [10]. Although some versions of ACO can be
proved to converge to the global optimum, their analysis
turns out to be complicated and mathematically non-rigor-
ous, especially due to pheromone evaporation (i.e., weights on
edges decrease in the absence of reinforcement). Moreover,
like most meta-heuristics, it is very difficult to estimate the
theoretical speed of convergence. In contrast to ACO, our
model is simpler and has the modest goal of revealing short-
est paths in a given network, instead of exploring a solution
space. Moreover, we do not introduce any evaporation, and
we exploit totally different techniques (the theory of P�olya
urns) to establish our results, including the transient behav-
ior (convergence) of the system.

In Reinforcement Learning (RL), the problem of finding an
optimal policy through a random environment has also been
tackled using Monte Carlo methods that reinforce actions

1. Graph G does not need to be finite, e.g., it could be the infinite lat-
tice Zd in d dimensions.

2. In this paper we assume that the cost to traverse any edge is equal
to 1, but results can be immediately generalized to the case in which a
generic (positive) cost ci;j is associated to each edge ði; jÞ.
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based on earned rewards, such as the �-soft policy algo-
rithm [11]. Under a problem formulation with no terminal
states and expected discounted rewards, it can be rigorously
shown that an iterative algorithm converges to the optimal
policy [16]. However, in general and more applicable scenar-
ios, the problem of convergence to optimal policies is still an
open question, with most algorithms settling for an approxi-
mate solution. Although lacking the notion of action set, our
model is related to RL in the sense that it aims at finding paths
accumulating the minimum cost, through an unknown envi-
ronment, using a Monte-Carlo method. Our convergence
results (convergence in probability) and the techniques used
in the analysis (P�olya urns) are fundamentally different from
what is commonly found in RL theory, and could thus be use-
ful to tackle problems in this area.

Edge Reinforcement Random Walks (ERRW) is a mathe-
matical modeling framework consisting of a weighted graph
where weights evolve over time according to steps taken by a
random walker [12], [13]. In ERRW, a single random walk
moves around without having any destination and without
being restarted. Moreover, an edge weight is updated imme-
diately after traversal of the edge, according to functions
based on local information. Mathematicians have studied the-
oretical aspects of ERRW such as the convergence of the net-
work structure (relative weights) and the recurrence behavior
of the walker (whether it will continue to visit every node in
the long run, or get trapped in one part). Similarly to our
model, a key ingredient in the analysis of ERRW is the P�olya
urn model, specially on directed networks. In contrast to us,
ERRW model was not designed to perform any particular
function and thus does not have an objective. Our model is
substantially different from traditional ERRW, andwe believe
it could suggest a concrete application as well as new direc-
tions to theoreticiansworking on ERRW.

Animal movement is a widely studied topic in biology to
which probabilistic models have been applied, including
random walk based models [4], [5]. In particular, in the con-
text of food foraging, variations of ERRW models have been
used to capture how animals search and traverse paths to
food sources. A key difference in such variations is a direc-
tion vector, an information external to the network (but avail-
able on all nodes) that provides hints to the random walk.
Such models have been used to show the emergence of rela-
tively short paths to food sources, as empirically observed
with real (monitored) animals. In contrast, we show that
shortest paths (and not just short) can emerge even when
external information is not available.

Understanding how neurons in the brain connect and fire
to yield higher level functions like memory and speech is a
fundamental problem that has recently received much
attention and funding [17], [18]. Within this context, random
walk based models have been proposed and applied [7], [8]
along with models where repeated network activity modi-
fies the network structure [6]. In particular, the latter work
considers a time varying weighted network model under a
more complex rule (than random walks) for firing neurons
to show that the network structure can arrange itself to per-
form better function. We believe our work can provide
building blocks in this direction since our simple model for
a time varying (weighted) network also self-organizes to
find optimal paths.

Biased random walks have also been applied to a variety
of computer networking architectures [1], [2], [3], with the
goal of designing self-organizing systems to locate, store,
replicate and manage data in time-varying scenarios. We
believe our model and findings could be of interest in this
area as well.

4 MAIN FINDING

Let Lmin be the length of the shortest path in graph G con-
necting source node s to destination node d. Denote by Pn

the path taken by the nth WRW, and by P an arbitrary path
from s to d, of length LP .

Theorem 1. Given a weighted directed graph G, a fixed source-
destination pair s-d (such that d is reachable from s), an initial
weight assignment (such that all initial weights are positive),
consider an arbitrary path P from s to d. Under both the sin-
gle-reward model and the multiple-reward model, provided that
the reward function fð�Þ is a strictly decreasing function of the
path length, as the number n of random walks performed on the
graph tends to infinity, we have

lim
n!1PfPn ¼ Pg ¼ cðPÞ; if LP ¼ Lmin

0; if LP > Lmin

�
;

where cðPÞ is a random variable taking values in ð0; 1�, that
depends on the specific shortest path P.
The above theorem essentially says that all shortest paths

are taken with non-vanishing probability, while all non-
shortest paths are taken with vanishing probability, as
n ! 1. Note however that probability cðPÞ that a specific
shortest path is taken (asymptotically as n ! 1) is a ran-
dom variable, in the sense that it depends on the ‘system
run’ (system sample path).

Remark 1. The asymptotic property stated in Theorem 1 is
very robust, as it holds for any directed graph, any strictly
decreasing function fð�Þ, and any (valid) initial weights
on the edges. Note instead that the (asymptotic) distribu-
tion of cðPÞ, for a given shortest path P, as well as the con-
vergence rate to it, depends strongly on the update
function fð�Þ, on the graph structure, and on the initial
conditions on the edges.

Remark 2. We will see in the proof of of Theorem 1 that the
assumption of having a strictly decreasing function fð�Þ
can be partially relaxed, allowing the reward function to
be non-increasing for L > Lmin.

5 PRELIMINARIES

5.1 Definitions

The following definitions for nodes and edges play a central
role in our analysis.

Definition 1 (decision point). A decision point is a node
i 2 V, reachable by s, that has more than one outgoing edge
that can reach d.

Definition 2 (a-edge and b-edge). An outgoing edge of deci-
sion point i is called an a-edge if it belongs to some shortest
path from i to d, whereas it is called a b-edge if it does not
belong to any shortest path from i to d.
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Note that every outgoing edge of a decision point is
either an a-edge or b-edge. Let qaði; j; nÞ denote the proba-
bility that the random walk, at time n, takes a shortest path
from i to d after traversing the a-edge ði; jÞ. Let qbði; j; nÞ
denote the probability that the random walk, at time n, will
not return back to node i after traversing the b-edge ði; jÞ.
Note that the above probabilities depend, in general, on the
considered edge, on the network structure and on the set of
weights at time n.

Definition 3 (a�-edge and b�-edge). An a�-edge is an a-edge
such that, after traversing it, the random walk takes a shortest
path to d with probability 1, and thus qaði; j; nÞ ¼ 1. A b�-edge
is a b-edge such that, after traversing it, the random walk does
not return to node i with probability 1, and thus qbði; j; nÞ ¼ 1.

Note that a�-edge and b�-edge can occur due solely to
topological constraints. In particular, we have an a�-edge
whenever the random walk, after traversing the edge, can
reach d only through paths of minimum length. In a cycle-
free network, all b-edges are necessarily b�-edges.

Fig. 1 illustrates the four different edge types in an exam-
ple topology where the shortest path from s to d has length
two. Edges ðs; 1Þ and ðs; 2Þ are a�-edge and b�-edge, respec-
tively, since the RW has no choice after traversing them.
Edge ðs; 3Þ is an a-edge since, after traversing it, the RW
may reach the destination over a shortest path (taking edge
ð3; dÞ), but could also take longer paths to reach d. Edge
ðs; 4Þ is a b-edge since the RW cannot reach d over a shortest
path after traversing it, and may also return to s. Last, note
that in this network only nodes 3, 4 and s are decision
points, according to Definition 1.

5.2 The Single Decision Point

As a necessary first step, we will consider the simple case in
which there is a single decision point in the network. The
thorough analysis of this scenario provides a basic building
block towards the analysis of the general case.

We start considering the simplest case in which there are
two outgoing edges (edges 1 and 2) from the decision point,
whose initial weights are denoted by w1½0� and w2½0�, respec-
tively. Let L1 and L2 denote the (deterministic) length of the
path experienced by random walks when traversing edges
1 and 2, respectively. Correspondingly, let D1 ¼ fðL1Þ and
D2 ¼ fðL2Þ denote the rewards given the edges 1 and 2,
respectively.

The mathematical tool used here to analyze this system,
especially its asymptotic properties, are P�olya urns [19]. The
theory of P�olya urns is concerned with the evolution of the
number of balls of different colors (let K be the number of
colors) contained in an urn from which we repeatedly draw
one ball uniformly at random. If the color of the ball

withdrawn is i, i ¼ 1; . . . ; K, then Ai;j balls of color j are
added to the urn, j ¼ 1; . . . ; K, in addition to the ball with-
drawn, which is returned to the urn. In general, Ai;j can be
deterministic or random, positive or negative. Let AA be the
matrix with entries Ai;j, usually referred to as the schema of
the P�olya urn.

We observe that a decision point can be described by a
P�olya urn, where the outgoing edges represent colors, the
edge weight is the number of balls in the urn,3 and entries
Ai;j correspond to edge reinforcements according to taken
path lengths (through function fð�Þ). In the simple case with
only two edges, we obtain the following schema:

AA ¼ D1 0
0 D2

� �
: (2)

We first consider the situation in which D1 ¼ D2, which
occurs when both edges are part of a shortest path, and
thus, both edges are a�-edges. A classical result in P�olya
urns states that the normalized weight of edge 1 (similarly
for edge 2), i.e., the weight on edge 1 divided by the sum of
the weights, tends in distribution to a beta distribution

w1½n�
w1½n� þ w2½n�

D!b
w1½0�
D1

;
w2½0�
D2

� �
: (3)

Note that in this simple case the above beta distribution
completely characterizes the asymptotic probability of tra-
versing the shortest path comprising edge 1 (or edge 2).
Hence, we obtain a special case of the general result stated
in 1, where the random variable cðPÞ is a beta distribution
which depends both on the update function and the initial
weights. Informally, we say that both shortest paths will
always ‘survive’, as they will be asymptotically used with a
(random) non-zero probability, independent of the sample
path taken by the system.

The above result can be directly generalized to the case of
K outgoing edges, all belonging to shortest paths. Indeed,
denote the asymptotic normalized weight of edge i by ri

ri ¼ lim
n!1

wi½n�PK
j¼1 wj½n�

:

Moreover, let ai ¼ wi½0�
Di

. Then it is known that the joint prob-
ability density function of the ri’s tends to a Dirichlet distri-
bution with parameters faig.

A useful property of the Dirichlet distribution is aggrega-
tion: if we replace any two edges with initial weights wi, wj

by a single edge with initial weight w1 þ w2, we obtain
another Dirichlet distribution where the ‘combined’ edge is
associated to parameter ai þ aj, i.e., if rr ¼ ðr1; . . . ; rKÞ �
Dirichletða1; . . . ;aKÞ then rr0 ¼ ðr1; . . . ; ri þ rj; . . . rKÞ �
Dirichlet ða1; . . . ;ai þ aj; . . .aKÞ. Note that the marginal dis-
tribution with respect to any of the edges is, as expected, a
beta distribution, i.e.,

Fig. 1. Example of different edge types in a simple network.

3. Although P�olya urn models have been traditionally developed
considering an integer number of balls for each color, analogous results
hold in the case of real numbers, when all Ai;j are positive (as in our
case).
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ri � b ai;
XK

j¼1;j6¼i

ai

 !
:

Let’s now consider outgoing edges that lead to paths of
different lengths, starting from the simple situation in which
we have just two edges. Without lack of generality, let’s
assume that D1 > D2 in which case edge 1 is an a�-edge and
edge 2 is a b�-edge. The analysis of the corresponding P�olya
urnmodel uses a technique known as Poissonization [19]. The
basic idea is to embed the discrete-time evolution of the urn
in continuous time, associating to each ball in the urn an
independent exponential timer with parameter 1. When a
timer ‘fires’, the associated ball is drawn, and we immedi-
ately perform the corresponding ball additions (starting a
new timer for each added ball). The memoryless property of
the exponential distribution guarantees that the time at
which a ball is drawn is a renewal instant for the system.
Moreover, competition among the timers running in parallel
exactly produces the desired probability to extract a ball of a
given color at the next renewal instant. This means that, if tn
is the (continuous) time at which the nth timer fires, at time
tn the number of balls in the continuous-time system has
exactly the same distribution as the number of balls in the
original discrete-time system after n draws. It follows that
the asymptotic behavior (as t ! 1) of the continuous-time
system coincides with the asymptotic behavior of the dis-
crete-time system (as n ! 1), but the continuous-time sys-
tem is more amenable to analysis, thanks to the
independence of all Poisson processes in the urn.

The Poissonization technique leads to the following funda-
mental result: Let wwðtÞ be the (column) vector of edge weights
at time t in the continuous-time system.We have (Theorem 4.1

in [19]):EE½wwðtÞ� ¼ eAA
T t wwð0Þ. The above result can be extended

to the case in which the entries of schema AA are independent
random variables (independent among them and from one

draw to another) by simply substitutingAAT withEE½AAT �

EE½wwðtÞ� ¼ eEE½AAT �t wwð0Þ; (4)

i.e., by considering a schema in which random entries are
replaced by their expectations. This extension will be partic-
ularly useful in our context.

6 ASYMPTOTIC ANALYSIS

In this section we prove Theorem 1 first constrained to
directed acyclic graphs (DAG), then relaxing to general
topologies under the multiple-reward model and finally to
the single-reward model.

6.1 The DAG Case

Let G be a directed acyclic graph (DAG) and note that in this
case edges are either a-edges or b�-edges. Moreover, the
absence of cycles forbids traversing an edge more than
once, so the single-reward model coincides with the multi-
ple-reward model.

We first introduce the following key lemma.

Lemma 1. Consider a decision point having one or more a�-edges
(and no other a-edge) and one or more b�-edges. The normal-
ized weight of any b�-edge vanishes to zero as n ! 1.

Proof. Let L̂ denote the length of the shortest path from the
decision point to d. Note that this path length is realized
by the random walk after following an a�-edge. Observe
that a�-edges can be merged together into a single virtual
a�-edge whose weight, denoted by ŵ, is defined as the
sum of the weights of the merged a�-edges. Similarly, we
will merge all b�-edges into a single virtual b�-edge of
weight _w, defined as the sum of the weights of the merged
b�-edges.

Let fZn; n � 1g be the stochastic process correspond-

ing to Zn ¼ _w½n�
_w½n�þŵ½n�, i.e., Zn is the normalized weight of

the virtual merged b�-edge after the nth random walk.
We are going to show that limn!1 Zn ¼ 0 which implies
that the asymptotic probability to follow any b�-edge
goes to zero as well. The proof is divided into two parts.
First, we show that limn!1 Zn exists almost surely,
namely, Zn converges to a given constant z 2 ½0; 1�. Sec-
ond, we will show that z can only be equal to 0. For the
first part, we will use Doob’s Martingale Convergence
Theorem [20], after proving that Zn is a super-martingale.
Since fZng is discrete time, and 0 	 Zn 	 1, it suffices to
prove that E½Znþ1jFn� 	 Zn, where the filtration F n cor-
responds to all available information after the nth walk.
Now, the normalized weight, at time nþ 1, of any
b�-edge is stochastically dominated by the normalized
weight, at time nþ 1, of the same b�-edge assuming that

it belongs to a path of length L̂þ 1. This is essentially the
reason why we can merge all b�-edges into a single vir-

tual b�-edge belonging to a path of length L̂þ 1. Hence,
E½Znþ1jFn� 	 E½Z0

nþ1jFn�, where Z0
nþ1 is the aggregate

normalized weight of the virtual b�-edge. We proceed by
considering what can happen when running the
ðnþ 1Þth walk. Two cases are possible: i) either the ran-
dom walk does not reach the decision point, in which
case Z0

nþ1 ¼ Zn since edge weights are not updated, or ii)

it reaches the decision point having accumulated a (ran-
dom) hop count ‘nþ1. In the second case, we can further
condition on the value taken by ‘nþ1 and prove that
E½Z0

nþ1jFn; ‘nþ1� 	 Zn, 8 ‘nþ1:

E½Z0
nþ1jFn; ‘nþ1� ¼Zn

_wðnÞ þ fð‘nþ1 þ L̂þ 1Þ
_wðnÞ þ ŵðnÞ þ fð‘nþ1 þ L̂þ 1Þ

þ ð1� ZnÞ _wðnÞ
_wðnÞ þ ŵðnÞ þ fð‘nþ1 þ L̂Þ

¼ Zn
_wðnÞ þ fð‘nþ1 þ L̂þ 1Þ

_wðnÞ þ ŵðnÞ þ fð‘nþ1 þ L̂þ 1Þ

"

þ ŵðnÞ
_wðnÞ

_wðnÞ
_wðnÞ þ ŵðnÞ þ fð‘nþ1 þ L̂Þ

#

	 Zn
_wðnÞ þ fð‘nþ1 þ L̂þ 1Þ þ ŵðnÞ
_wðnÞ þ fð‘nþ1 þ L̂þ 1Þ þ ŵðnÞ

" #
¼ Zn;

(5)

where the inequality holds because fð�Þ is assumed to be
non-increasing.

At last, unconditioning with respect to ‘nþ1, whose
distribution descends from F n, and considering also the
case in which the random walk does not reach the deci-
sion point, we obtain E½Z0

nþ1jFn� 	 Zn and thus E½Znþ1j
F n� 	 Zn. So far we have proven that Zn converges to a
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constant z 2 ½0; 1�. To show that necessarily z ¼ 0, we
employ the Poissonization technique recalled in Section
5.2, noticing again that Zn is stochastically dominated by
Z0
n. For the process Z

0
n, we have

AAT ¼ fð‘þ L̂Þ 0
0 fð‘þ L̂þ 1Þ

� �
;

where ‘ is the (random) hop count accumulated at the deci-
sion point.Wewill show later that the normalizedweight of
any edge in the network converges asymptotically almost
surely. Hence, ‘ has a limit distribution, that we can use to
compute expected values of the entries in the abovematrix

E½AAT � ¼ E‘½fð‘þ L̂Þ� 0
0 E‘½fð‘þ L̂þ 1Þ�

� �
¼ a 0

0 d

� �
;

obtaining that a > d when fð�Þ is strictly decreasing. At
this point, we can just apply known results of P�olya urns’
asymptotic behavior (see Theorem 3.21 in [21]), and con-
clude that the normalized weight of the b�-edge must
converge to zero. Alternatively, we can apply (4) and
observe that in this simple case

EE½ŵðtÞ�
EE½ _wðtÞ�

� �
¼ eat 0

0 edt

� �
ŵð0Þ
_wð0Þ

� �
: (6)

Therefore the (average) weight of the a�-edge increases
exponentially faster than the (average) weight of the
b�-edge. tu
Lemma 1 provides the basic building block to prove The-

orem 1.

Proof of Theorem 1 (DAG case).We sequentially consider
the decision points of the network according to the partial
topological ordering given by the hop-count distance from
the destination. Simply put, we start considering decision
points at distance 1 from the destination, then those at dis-
tance 2, and so on, until we hit the source node s. We
observe that Lemma 1 can be immediately applied to deci-
sion points at distance 1 from the destination. Indeed,
these decision points have one (or more) a�-edge, with

L̂ ¼ 1, connecting them directly to d, and zero or more
b�-edges connecting them to nodes different from d. Then,
Lemma 1 allows us to conclude that, asymptotically, the
normalized weight of the virtual a�-edge will converge to
1, whereas the normalized weight of all b�-edges will con-
verge to zero. This fact essentially allows us to prune the
b�-edges of decision nodes at distance 1, and re-apply
Lemma 1 to decision points at distance 2 (and so on). Note
that after the pruning, an a-edge of a decision point at dis-
tance 2 necessarily becomes an a�-edge. As a consequence
of the progressive pruning of b-edges, we remove from
the graph all edges which do not belong to shortest paths
from a given node i to d (whenwe prune a b-edge, we con-
textually remove also edges that can only be traversed by
following the pruned edge, and notice that by so doing we
can also remove some a-edge).

When the above iterative procedure hits the source
node s, we are guaranteed that only shortest paths from s
to d remain in the residual graph (and all of them). As a
consequence, over the residual graph, a random walk

starting from s can only reach d through a shortest path.
Note that the normalized weight of any edge ði; jÞ belong-
ing to a shortest path will converge to a random variable
zi;j bounded away from zero. Hence the asymptotic prob-
ability to follow any given shortest path P, given by the
product of normalized weights of its edges, will converge
as well to a a random variable cðPÞ bounded away from
zero. Conversely, any path which is not a shortest path
cannot ‘survive’. Indeed, any such path must traverse at
least one decision point and take at least one b�-edge.
However, the above iterative procedure will eventually
prune all b�-edges belonging to the considered non-short-
est path, which therefore cannot survive. tu

6.2 The Multiple Reward Model in General Network

We now consider the case of an arbitrary directed graph
possibly with nodes exhibiting (even multiple) self-loops.
Moreover, we first focus on the multiple-reward model
which is more challenging to analyze, and discuss the sin-
gle-reward model in Section 6.3.

Essentially, we follow the same reasoning as in the DAG
case, by first proving a generalized version of Lemma 1.

Lemma 2. Consider a decision point having one or more a�-edges
(and no other a-edge) and one or more b-edges. The normalized
weight of any b-edge vanishes to zero as n ! 1.

Proof. Similarly to the proof of Lemma 1, we merge all
a�-edges into a single virtual a�-edge with total weight ŵ.
Moreover, wemerge all b-edges into a single virtual b-edge
with weight _w, defined as the sum of the weights of the
merged b-edges. Such virtual b-edge can be interpreted as
the best adversary against the virtual a�-edge. Clearly, the
best b-edge is an outgoing edge that (possibly) brings the
random walk back to the decision point over the shortest
possible cycle, i.e., a self-loop. It is instead difficult, a priori,
to establishwhich is the best possible value of its parameter
qbðnÞ, i.e., the probability (in general dependent on n) the
makes the virtual b-edge the best competitor of the virtual
a�-edge. Therefore, we consider arbitrary values of
qbðnÞ 2 ½0; 1� (technically, if qbðnÞ > 0 then the b-edge can-
not be a self-loop, but we optimistically assume that loops
have length 1 even in this case). In the following, to ease the
notation, let q ¼ qbðnÞ. Similarly to the DAG case, we opti-
mistically assume that if the randomwalk reaches the desti-
nation without passing through the a�-edge, the overall

hop count will be ‘nþ1 þ iþ L̂þ 1, where ‘nþ1 is the hop
count accumulated when first entering the decision point,
while i � 0 denotes the number of (self) loops. Instead, if
the random walk reaches the destination by eventually fol-
lowing the a�-edge, the overall hop count will be

‘nþ1 þ iþ L̂. In any real situation, the normalized cumula-
tiveweightZn of b-edges is stochastically dominated by the
weight of the virtual best adversary, having normalized
weightZ0

n.We have

E½Z0
nþ1jFn; ‘nþ1� ¼

Zn

X1
i¼0

½ð1� qÞZn�i ŵðnÞ
_wðnÞ

_wðnÞ þ iDðiÞ
_wðnÞ þ iDðiÞ þ ŵðnÞ þ DðiÞ

�"

þ q
_wðnÞ þ iD0ðiÞ

_wðnÞ þ iD0ðiÞ þ ŵðnÞ
��

;

(7)
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whereDðiÞ ¼ fð‘nþ1 þ iþ L̂Þ andD0ðiÞ ¼ fð‘nþ1 þ iþ L̂þ 1Þ.
Now, it turns out that the term in square brackets of

the latter expression is smaller than or equal to one for
any value of _wðnÞ, ŵðnÞ, L̂, ‘nþ1, q and non-increasing
function fð�Þ. This property can be easily checked numer-
ically, but a formal proof requires some effort (see App.
A). As a consequence, E½Z0

nþ1jFn; ‘nþ1� 	 Zn. At last,

unconditioning with respect to ‘nþ1, whose distribution
descends from F n, and considering also the case in
which the ðnþ 1Þth random walk does not reach the
decision point, we obtain E½Z0

nþ1jFn� 	 Zn and thus

E½Znþ1jFn� 	 Zn. Hence, we have that Zn converges to a
constant z 2 ½0; 1�.

To show that necessarily z ¼ 0, we employ the Poisso-
nization technique as in Section 5.2, noticing again that
Zn is stochastically dominated by Z0

n. For the process Z0
n,

we have

EE½AAT � ¼ a b
0 d

� �
: (8)

The entries in the above matrix have the following
meaning:

� a is the average reward given to the a�-edge if we
select the a�-edge;

� b is the average reward given to the a�-edge if we
select the b-edge;

� d is the average reward given to the b-edge if we
select the b-edge;

Note that the average reward given to the b-edge if we
select the a�-edge is zero.

Luckily, the exponential of a 2
2 matrix in triangular
form is well known [22] (see also [23] for limit theorems
of triangular P�olya urn schemes). In particular, when
a 6¼ dwe obtain

EE½ŵðtÞ�
EE½ _wðtÞ�

� �
¼ eat b

d�a ðedt � eatÞ
0 edt

 !
ŵð0Þ
_wð0Þ

� �
: (9)

The special case in which a ¼ d will be considered later
(see Section 6.3).

To show that necessarily z ¼ 0, we reason by contra-
diction, assuming that Z0ðnÞ converges to z > 0. This
implies that

_wðtÞ ¼ z

1� z
ŵðtÞ þ oðŵðtÞÞ: (10)

Moreover, we will assume that a large enough number of
walks has already been performed such that, for all suc-
cessive walks, the probability to follow the b-edge is
essentially equal to z. Specifically, let n� be a large
enough time step such that the normalized weight of the
b-edge is z� � < Z0ðnÞ < zþ � for all n > n�. We can
then ‘restart’ the system from time n�, considering as ini-
tial weights _wðn�Þ and ŵðn�Þ (the specific values are not
important).

Taking expectation of (10) and plugging in the expres-
sions of the average weights in (9), we have that the fol-
lowing asymptotic4 relation must hold

edt _wðn�Þ �e
z

1� z
eatŵðn�Þ þ b

d� a
ðedt � eatÞ _wðn�Þ

� �
:

Clearly, the above relation does not hold if d < a. If
d > a, the relation is satisfied when

b

d� a
¼ 1� z

z
, d� a

d� aþ b
¼ z: (11)

Interestingly, we will see that (11) is verified when the
reward function is constant, suggesting that in this case
the b-edge can indeed ‘survive’ the competition with the

a�-edge. Instead, we will show that d�a
d�aþb < z� �, for any

strictly decreasing function fð�Þ, proving that the normal-
ized weight of the b-edge cannot converge to any z > 0.

For simplicity, we will consider first the the case in
which ‘nþ1, the hop count accumulated by the random
walk while first entering the decision point, is not ran-
dom but deterministic and equal to ‘. Under the above
simplification, we have

a ¼ fð‘þ L̂Þ (12)

b ¼ ð1� qÞð1� zÞ
X1
i¼0

½zð1� qÞ�ifð‘þ iþ 1þ L̂Þ (13)

d ¼
X1
i¼0

½zð1� qÞ�i qðiþ 1Þfð‘þ iþ 1þ L̂Þ�
þ ð1� qÞð1� zÞðiþ 1Þfð‘þ iþ 1þ L̂Þ�:

(14)

In the special case in which the reward function is con-
stant (let this constant be C), we obtain

a ¼ C (15)

b ¼ C
ð1� qÞð1� zÞ
1� zþ qz

(16)

d ¼ C
1

1� zþ qz
: (17)

It is of immediate verification that (15), (16), (17) satisfy
(11) for any q 2 ½0; 1Þ (the case q ¼ 1 corresponds to hav-
ing a ¼ d, which is considered separately in Section 6.3).

To analyze what happens when fð�Þ is a decreasing
function, we adopt an iterative approach. We consider a
sequence of reward functions ffkð�Þgk, indexed by

k ¼ 0; 1; 2; . . ., defined as follows. Let L ¼ ‘þ L̂ be the
minimum path length experience by random walks tra-
versing the decision point. We define

fkðLþ iÞ ¼ fðLþ iÞ if 0 	 i 	 k

fðLþ kÞ if i > k

�
: (18)

In words, function fkð�Þ matches the actual reward func-
tion fð�Þ up to hop count Lþ k, while is takes a constant
value (equal to fðLþ kÞ for larger hop count. See Fig. 2.

In our proof, we will actually generalize the result in
Theorem 1, allowing the reward function to be non-
increasing for values larger than L. To simplify the nota-
tion, let fðLÞ ¼ C. For i ¼ 1; 2; . . ., let fðLþ iÞ ¼ C � di,
with d1 > 0, and di � di�1.

4. Given two functions fðnÞ and gðnÞ, we write fðnÞ �e gðnÞ if

limn!1
fðnÞ
gðnÞ ¼ 1.
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Let ak; bk; dk (akþ1; bkþ1; dkþ1) be the entries of matrix
(8) when we assume that rewards are given to edges
according to function fkðÞ (function fkþ1ðÞ), with k � 0.
As a first step, we can show that (11) does not hold
already for k ¼ 0, i.e., for a reward function which is
equal to C for hop count h ¼ L, and equal to C � d1 for
any h > L. Indeed, in this case we have

a0 ¼ C

b0 ¼ ð1� qÞð1� zÞ
X1
i¼0

½zð1� qÞ�iðC � d1Þ

¼ ð1� qÞð1� zÞ
1� zþ zq

ðC � d1Þ

d0 ¼ ð1� zþ zqÞ
X1
i¼0

½zð1� qÞ�iðiþ 1ÞðC � d1Þ

¼ 1

1� zþ zq
ðC � d1Þ:

It can be easily check that d0�a0
d0�a0þb0

< z� � for any 0 < �

< d1ð1�zÞð1�zþzqÞ
ð1�qÞC�d1

.

To show that (11) cannot hold for the actual reward
function fð�Þ, it is then sufficient to prove the inductive step

bk
dk � ak

	 bkþ1

dkþ1 � akþ1
:

Note, indeed, that the sequence of functions ffkð�Þgk
tends point-wise to fð�Þ. Now, for any k for which
dkþ1 ¼ dk there is nothing to prove, since in this case
bk

dk�ak
¼ bkþ1

dkþ1�akþ1
. So let’s suppose that dkþ1 > dk.

We have ak ¼ akþ1 ¼ C. We can write bk as

bk ¼ b̂þ ð1� qÞð1� zÞ
X1
i¼kþ1

½zð1� qÞ�iðC � dkÞ

¼ b̂þ ð1� qÞð1� zÞðC � dkÞ ½zð1� qÞ�kþ1

1� zþ zq
;

where

b̂ ¼ ð1� qÞð1� zÞ
Xk
i¼0

½zð1� qÞ�iðC � diþ1Þ:
We can write bkþ1 as

bkþ1 ¼ b̂þ ð1� qÞð1� zÞ
X1
i¼kþ1

½zð1� qÞ�iðC � dkþ1Þ

¼ b̂þ ð1� qÞð1� zÞðC � dkþ1Þ ½zð1� qÞ�kþ1

1� zþ zq
:

Similarly, we have

dk ¼ d̂þ ðC � dkÞ½zð1� qÞ�kþ1 kþ 1þ 1

1� zþ zq

� �

dkþ1 ¼ d̂þ ðC � dkþ1Þ½zð1� qÞ�kþ1 kþ 1þ 1

1� zþ zq

� �
;

where

d̂ ¼
Xk
i¼0

½zð1� qÞ�iðiþ 1Þð1� zþ zqÞðC � diþ1Þ:

We will assume that both dk > ak and dkþ1 > akþ1,
otherwise the result is trivial (if dk < ak, then also
dkþ1 < akþ1, since akþ1 ¼ ak, dkþ1 < dk. If dkþ1 < akþ1,
the normalized ratio of the b-edge can only tend to zero).
Under this assumption, we can show that

bk
dk � ak

<
bkþ1

dkþ1 � akþ1
: (19)

Indeed, plugging in the expressions of ak; bk; dk; akþ1;
bkþ1; dkþ1, after some algebra we reduce inequality (19) to

b̂½ðkþ 1Þð1� zþ zqÞ þ 1� þ Cð1� qÞð1� zÞ > d̂ð1� qÞð1� zÞ:
At last, recalling the definitions of b̂ and d̂, we obtain that
the above inequality is satisfied if

Xk
i¼0

½zð1� qÞ�i½ðkþ 1Þð1� zþ zqÞ þ 1�ðC � diþ1Þ >

Xk
i¼0

½zð1� qÞ�iðiþ 1Þð1� zþ zqÞðC � diþ1Þ;

which is clearly true, since k � iwhen i varies from 0 to k.
We now provide a sketch of the proof for the case in

which the random walk arrives at the decision point hav-
ing accumulated a random hop count ‘nþ1. After long
enough time, we can assume that the probability distri-
bution of ‘nþ1 has converged to a random but fixed distri-
bution that no longer depends on n. Indeed, such
distribution depends only on normalized edge weights,
which in the long run converge to constant values. Let
pm ¼ Pf‘nþ1 ¼ ‘min þmg, m � 0, where ‘min is the mini-
mum hop count that can be accumulated at the decision
point. We can use fpmgm to compute expected values of
a, b, d as defined in (12), (13), (14), and apply again the
Poissonization technique to compute asymptotic values
of edge weights.

Specifically, letting C ¼ fðlmin þ L̂Þ, we obtain

E½a� ¼
X1
m¼0

pmðC � dmÞ

E½b� ¼ ð1� qÞð1� zÞ
X1
m¼0

X1
i¼0

½zð1� qÞ�iðC � dmþiþ1Þ

E½d� ¼ ð1� zþ zqÞ
X1
m¼0

X1
i¼0

½zð1� qÞ�iðiþ 1ÞðC � dmþiþ1Þ:

Similarly to before, we prove by contradiction that (11)
cannot hold, through an iterative approach based on the
sequence of reward functions ffkð�Þgk. As basic step of
the induction, we take the reward function f0ð�Þ equal to

Fig. 2. Example of reward functions fkð�Þ and fkþ1ð�Þ. Values taken by the
actual reward function fðkÞ are denoted by squares. Values taken by
function fkð�Þ (function fkþ1ð�Þ) are connected by solid (dashed) line.
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C � d1 for any hop count larger than ‘min þ L̂. Hence, we
have dmþiþ1 ¼ d1, 8m; i � 0. It follows that E½b� is exactly
the same as in (13), and E½d� is exactly the same as in (14).
The only quantity that is different is E½a� ¼ p0C þ ð1 �
p0ÞðC � d1Þ ¼ C � d0, where d0 < d1 as long as p0 > 0.
Therefore, whenever there is a non-null probability p0 to
reach the decision point with minimum hop count, the
basic induction step proven before still holds here, by
redefining C and d1 as C � d0 and d1 � d0, respectively.
One can also prove that the generic iterative step still
holds, by following the same lines as in the basic case.
Indeed, one can verify that

E½bk�
E½dk� � E½ak� 	

E½bkþ1�
E½dkþ1� � E½akþ1� ;

when E½dkþ1� > E½akþ1�. This concludes the proof of
Lemma 2. tu

Proof of Theorem 1 (general case). The proof is exactly
the same as in the DAG case, with the difference that we
employ Lemma 2 instead of Lemma 1 to iteratively prune
b-edges from the decision points, leaving only paths from
s to d of minimum length. tu
Fig. 3 illustrates the application of our pruning technique

to the example network shown in Fig. 1. Following the proof
of Theorem 1, we first consider decision points at distance 1
from d (in the example, only decision point 3). Fig. 3a shows
the modified topology obtained after the execution of this
first step, and note that some edge labels have changed for
effect of the pruning, in particular some a-edges have
become a�-edges. Next, we consider decision points at dis-
tance 2 from d (nodes 4 and s). The resulting network after
the execution of the second step is shown in Fig. 3b, where
edge labels have also changed. Since node s has been
reached, pruning stops. Note that in the final network all
possible paths from s to d correspond to shortest paths.

6.3 The Single Reward Model in General Network

We conclude the asymptotic analysis considering the single-
reward model in a general directed network. Given the
analysis for the multiple-reward model, the single-reward

model is almost immediate. Indeed, the expressions for a
and b (respectively in (12) and (13)) are left unmodified, as
well as their averages E½a� and E½b� with respect to hop
count accumulated at the decision point. Instead, we have

E½d� ¼ ð1� zþ zqÞ
X1
m¼0

X1
i¼0

½zð1� qÞ�iðC � dmþiþ1Þ; (20)

which is clearly smaller than the E½d� obtained under the
multiple-reward model. Hence, the basic step of the induc-
tion used to prove Lemma 2 follows immediately from the

consideration that E½d��E½a�
E½d��E½a�þE½b� is an increasing function of

E½d�. Moreover, simple algebra shows that the iterative step
holds also in the case of single-reward, allowing us to
extend the validity of Lemma 2, and thus Theorem 1.

Last, it is interesting to consider the case of single reward
model and constant reward function, fð�Þ ¼ C. We have in
this case

a ¼ C (21)

b ¼ C
ð1� qÞð1� zÞ
1� zþ qz

(22)

d ¼ C: (23)

Since a ¼ d, the matrix exponential takes a different form
with respect to 9, that now reads

EE½ŵðtÞ�
EE½ _wðtÞ�

� �
¼ eat

1 b
0 1

� �
ŵð0Þ
_wð0Þ

� �
: (24)

We can show by contradiction that the normalized weight
of the b-edge cannot tend to any z > 0. Indeed, assuming to
restart the system after a long enough number of walks n�

such that ŵðn�Þ � 1�z
z _wðn�Þ, we should have

eat _wðn�Þ �e
z

1� z
eatŵðn�Þ þ eat b _wðn�Þ� 	

;

which can only be satisfied if b ¼ 0. Interestingly, b equals 0
when q ¼ 1, i.e., when the b-edge becomes a b�-edge. This
means that, asymptotically, the probability that the random
walk makes any loop must vanish to zero. We conclude
that, in the case of a constant single reward model, many
paths can survive (including non-shortest paths), but not
those containing loops. In other words, surviving edges
must belong to a DAG. Simulation results, omitted here due
to lack of space, confirm this prediction.

7 TRANSIENT ANALYSIS

Beyond the asymptotic behavior, it is interesting to consider
the evolution of edge weights over time. In particular, since
all non-shortest paths are taken with vanishing probability,
what law governs their decay rate? How does the decay
rate depend on system parameters, such as network topol-
ogy and reward function? Such questions are equivalent to
understanding how normalized edge weights evolve over
time, as the probability of taking a given path is simply
the product of the probabilities of taking its edges. Thus,
we investigate the transient behavior of normalized edge
weights.

Fig. 3. Networks obtained from Fig. 1 after pruning edges from decisions
points: (a) after pruning edges from node 3, (b) after pruning edges from
nodes 4 and d. Note that edge labels can change after decision point are
pruned.

FIGUEIREDO AND GARETTO: ON THE EMERGENCE OF SHORTEST PATHS BY REINFORCED RANDOMWALKS 63



7.1 Single Decision Point

We again start by considering the case of a single decision
point with two outgoing edges (edges 1 and 2), whose initial
weights are denoted by w1½0� and w2½0�, respectively. Let
D1 ¼ fðL1Þ and D2 ¼ fðL2Þ be the rewards associated to
edges 1 and 2, and L1;2 the corresponding path lengths.

As discussed in Section 5.2, the dynamics of this discrete
time system can be usefully embedded into continuous time
using the Poissonization technique, which immediately pro-
vides the transient behavior of the system in the simple
form (4). To complete the analysis, the solution in continu-
ous time t should be transformed back into discrete time n.
Unfortunately, this operation can be done exactly only in
the trivial case of just one edge. With two (or more) edges,
we can resort to an approximate (yet quite accurate) heuris-
tic called depoissonization, which can be applied to all
P�olya urn models governed by invertible ball addition
matrices [19]. In this simple topology, assuming D1 > D2,
the approximation consists in assuming that ball all extrac-
tions that have occurred by time t are associated to the win-
ning edge only (this becomes more and more true with the
passing of time), which permits deriving the following
approximate relation between n and �tn, where �tn is the aver-
age time at which the nth ball is drawn

n � w1½0�
D1

eD1�tn ; (25)

from which one obtains �tn � ðlog nD1
w1½0�Þ=D1. Using this

approximate value of �tn into (4), we can approximate the
expected values of edge weights after nwalks as

EE½w1½n��
EE½w2½n��

� �
� eD1�tn 0

0 eD2�tn

 !
w1½0�
w2½0�

� �

¼
D1n

w2½0� nD1
w1½0�

 �D2

D1

0
@

1
A:

(26)

The above approximation is not accurate for small values of
n. In particular, the normalized weight of edge 2, according

to (26), can be larger than the initial value w2½0�
w1½0�þw2½0�. For this

reason, for small values of n, we improve the approximation
by assuming that the (average) normalized weight of edge 2
cannot exceed its initial value at time 0. Indeed, we can eas-
ily find analytically the maximum value of n, denoted by
n�, for which we bound the (average) normalized weight of

edge 2 to the value w2½0�
w1½0�þw2½0�. It turns out that n

� ¼ w1½0�
D1

. Note

that n� depends solely on parameters of the first edge.
Our final approximation for the (average) normalized

weight of edge 2 is then

EE
w2½n�

w1½n� þ w2½n�
� �

�

w2½0�
w1½0�þw2½0� if n 	 n�

1

1þw1 ½0�
w2 ½0�

nD1
w1 ½0�


 �1�D2
D1

if n > n�

8>><
>>: : (27)

The expression for the (average) normalized weight of edge
1 is then easily derived as the complement of the above.

The value of n� can be used to separate the transient
regime into two parts: for n 	 n�, we have an exploration

phase because in this time period there is still no clear win-
ner between the competing edges, and random walks
explore both possibilities with lots of variability in the
selected edges. Instead, for n > n�, we have a convergence
phase, where the winning edge starts to emerge and domi-
nate the competition, whereas the loosing edge inexorably
decays. The behavior of this phase is much more determin-
istic than the initial one, especially because at this point
edges have accumulated quite a lot of weight, which indi-
vidual random walks cannot significantly modify from one
walk to another. These two phases and decays are illus-
trated numerically in Section 8 (Fig. 7).

Interestingly, from (27) we see that the probability to
select edge 2 decays asymptotically to zero (as n ! 1)

according to the power law n
D2
D1

�1
. In particular, the larger

the ratio between D1 and D2, the faster the decay, which can-

not however be faster than n�1.

7.2 General Network: Recursive Method

We propose two different approaches to extend the tran-
sient analysis to a general network. Our goal is to approxi-
mate the evolution of the average weight E½wi;j½n�� of
individual edges over time n (where the average is with
respect to all sample paths of the system).

The first approach is computationally more expensive
but conceptually simple and surprisingly accurate in all sce-
narios that we have tested (see Section 8). It is based on the
simple idea of making a step-by-step, recursive approxima-
tion of E½wi;j½n�� by just taking the average of (1)

E½wi;j½n�� ¼ E½wi;j½n� 1�� þ E½Di;j½n��; (28)

where the approximation lies in the computation of
E½Di;j½n��, which is the expected reward given to edge ði; jÞ
after executing the nth walk. This quantity can be (approxi-
mately) evaluated using just the set of values fE½wi;j ½n�
1��gi;j obtained at step ðn� 1Þ.

Indeed, note that E½Di;j½n�� requires to compute the distri-
bution of the lengths of paths from s to d containing edge
ði; jÞ. Note that we do not need the complete enumeration
of these paths, but just the distribution of their length. The
fundamental approximation in determining this distribu-
tion is the following. First, recall that the probability to fol-
low a given path at time n is given by the product of
probabilities to follow individual edges along this path.

However, the (average) probability to follow any given
edge corresponds to its normalizedweight at time n� 1

E½ri;j½n�� ¼ E
wi;j½n� 1�P
k wi;k½n� 1�

� �
;

which cannot be evaluated exactly, since we do not know
the (joint) probability density function of edge weights. So
we approximate E½ri;j½n�� by the ratio of averages

E½ri;j½n�� � E½wi;j½n� 1��
E½Pk wi;k½n� 1�� ;

which is instead completely known if we have values
fE½wi;j½n� 1��gi;j. In essence, this approximation consists in

using the ratio of expectations as the expectation of a ratio.
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In order to illustrate this recursive approach, consider the
topology in Fig. 4, comprising two decision points: the source
node s and the relay node r. The arcs shown in Fig. 4 do not
represent individual edges but paths (i.e., sequence of nodes)
with lengths denoted by li, i ¼ 1; . . . ; 4, in hops. We also
denote bywi, with some abuse of notation, the weight associ-
ated to the first edge of the corresponding path li.

The approximate transient analysis of this graph is
obtained by the following set of recursive equations

E½w1½n�� ¼ E½w1½n� 1�� þ E½r1½n��D1

E½w2½n�� ¼ E½w2½n� 1�� þ E½r2½n��D2½n�
E½w3½n�� ¼ E½w3½n� 1�� þ E½r2½n��E½r3½n��D3

E½w4½n�� ¼ E½w4½n� 1�� þ E½r2½n��E½r4½n��D4

8>><
>>: ; (29)

where D1 ¼ fðl1Þ, D2½n� ¼ E½r3½n��fðl2 þ l3Þ þ E½r4½n��fðl2 þ l4Þ,
D3 ¼ fðl2 þ l3Þ, D4 ¼ fðl2 þ l4Þ. In the above equations we
have denoted the (approximated) normalized weights as

E½ri½n��. For example, E½r1½n�� � E½w1½n�1��
E½w1½n�1��þE½w2½n�1��, and simi-

larly for the other values E½ri½n��
The recursive approach can be applied to an arbitrary

graph, but in general it requires to recompute (in the case of
the single reward model), at each time n and for each edge
ði; jÞ of a decision point i: 1) the distribution of path lengths
from s to j passing through edge ði; jÞ; 2) the distribution of
path lengths from j to the destination d.

The above distributions can be computed numerically by
solving the transient regime of discrete-time Markov chain
with proper absorbing states, but we do not provide the
details here. Since the overall procedure can be computa-
tionally expensive for large graphs, we present below a dif-
ferent and much simpler approach which captures the
decay rate of edge weights.

7.3 General Network: Asymptotic Power-Law Decay

The asymptotic analysis in Section 6 shows that the normal-
ized weight of all b-edges (or b�-edges) vanishes to zero as
n ! 1. Can we predict the asymptotic law for such decay?
The answer is affirmative (in approximation), and the
results offer fundamental insights into how the network
weight structure evolves over time.

We start defining a key concept associated to decisionpoints.

Definition 4 (clock of a decision point). The clock ci½n� of
a decision point i is the expected number of random walks that
reach i by time n

ci½n� :¼
Xn
j¼1

Pfrandomwalk j hits ig:

The clock of a decision point dictates how fast the
dynamics of its outgoing edges evolve with respect to the
reference time n. As a corollary of Theorem 1, the clock of
all decision points traversed by at least one shortest path is
QðnÞ, since any shortest path is asymptotically used with
non-zero probability. However, decision points not tra-
versed by shortest paths have clock oðnÞ but also vð1Þ.
Thus, it can be shown that clocks of all decision points
diverge, but at very different rates.

To illustrate, consider the simple topology in Fig. 4, and
suppose that l1 is the only shortest path and that l3 < l4.
Since l4 will be asymptotically used a vanishing fraction of
times as compared to l3 (restricting our attention to the set
of random walks passing through r, i.e., the clock of r), we
can asymptotically consider decision point s as the sole
decision point of the network with two outgoing paths of
lengths l1 and l2 þ l3. Hence, we can just apply (27) to com-
pute the power law decay of the b-edge leading to the path
with length l2 þ l3

EE
w2½n�

w1½n� þ w2½n�
� �

¼ Qðn
D2
D1

�1Þ; (30)

where D1 ¼ fðl1Þ and D2 ¼ fðl2 þ l3Þ.
Moreover, we can again use (27) to approximate the scal-

ing order of the (average) clock of decision point r

E½cr½n�� ¼ E
Xn
j¼1

w2½j�
w1½j� þ w2½j�

" #
¼
Xn
j¼1

E
w2½j�

w1½j� þ w2½j�
� �

�
Xn
j¼1

1

1þ w1½0�
w2½0�

jD1
w1½0�

 �1�D2

D1

¼Q

Z n

0

x
D2
D1

�1
dx

� �
¼Qðn

D2
D1Þ:

(31)

Note that the clock of r is both oðnÞ and vð1Þ. We can
now approximate the power law decay of the b-edge of
node r (edge l4), by simply applying again (27) to decision
point r, with the caveat of using in the clock of r in place of n

EE
w4½n�

w3½n� þ w4½n�
� �

¼ Q ðn
D2
D1Þ

D4
D3

�1
� �

¼ Q n
D2
D1

ðD4
D3

�1Þ
� �

;

where D3 ¼ fðl2 þ l3Þ and D4 ¼ fðl2 þ l4Þ.
A simple algorithm, that we omit here, can recursively

compute the clock of all decision points (in scaling order),
and the power law decay exponent of all decaying edges,
starting from the source and moving towards the destina-
tion. We will discuss the implications of these results in a
significant example presented in Section 8.4.

8 VALIDATION AND INSIGHTS

We present a selection of interesting scenarios explored
numerically through simulations to confirm our approximate
transient analysis and offer insights into the system behavior.

8.1 Emergence of Shortest Paths

We start by considering a 25-nodes network containing a
few loops, evolving under the multiple reward model.
Nodes are arranged in a 5
5 grid, with the source located at
the bottom left corner and the destination at the top right

Fig. 4. Example of topology comprising two decision points.
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corner. The initial weight on any edge is 1, and the reward
function is fðLÞ ¼ 1=L. Fig. 5 (in color, better seen on
screen) shows three snapshots of one system run, at times

n ¼ 0, n ¼ 103, n ¼ 106, where magnitude of edge weights
is converted into a color code according to a heat-like pal-

ette. We observe that, by time n ¼ 106, edge weights along
the two shortest paths are dominant. Note that one shortest
path (along the diagonal) appears to be stronger than the
other (i.e., more likely to be used) but this changes from one
run to another, since the asymptotic probability to use a spe-
cific shortest path is a random variable (recall Theorem 1).

8.2 Non-Monotonous Behavior of RandomWalks

Interestingly, although edge weights increase monotoni-
cally, normalized edge weights (which are the quantities
actually steering the randomwalk through the network) can
exhibit non-monotonous behavior, even when we consider
their expected values (across system runs). We illustrate this
on the simple topology of Fig. 4, using segment lengths
l1 ¼ 7, l2 ¼ l3 ¼ 3, l4 ¼ 18. Fig. 6 shows the transient of the
normalized weights of the four outgoing edges, comparing
simulation results (obtained averaging 1,000 runs) and the
analytical approximation based on the recursive approach

(29). Here initial weights are equal to 1, fðLÞ ¼ L�2.
Besides showing the surprising accuracy of the recursive

approximation, the plot in Fig. 6 confirms that normalized
edge weights can be non-monotonous (see r1 or r2). Note that
this might appear to contradict a fundamental result that we
have obtained while proving Lemma 1 (or Lemma 2),

namely, the fact that the (average) normalized weight of a
b-edge competing against an a�-edge in non-increasing.
However, this result cannot be applied to the first decision
point (the source s) since the assumptions of Lemma 1 do not
hold here (there are no a�-edges going out of s).

8.3 Trade-Off Between Exploration and
Convergence

What happens when we change the reward function fðLÞ?
How is the transient of a network affected by taking a
reward function that decreases faster or slower with the
hop count? We investigate this issue in the case of a single
decision point, considering the family of reward functions

fðLÞ ¼ L�f where we vary the exponent f > 0.
We consider a simple topology in which the source is

connected to the destination by two edge-independent
paths of length 10 and 11. The first edges of these paths
have weights w1½n� and w2½n�, respectively, with initial value
1. Fig. 7 shows the transient behavior of the average normal-
ized weight E½w2½n�=ðw1½n� þ w2½n�Þ�, for three different val-
ues of f ¼ 0:5, 2, 4, comparing simulation results (averaging
1,000 runs) with our approximation (27).

We observe an interesting trade-off between exploration
and convergence. Note the role of the threshold n� intro-

duced in Section 7.1, here equal to n� ¼ w1½0�
D1

¼ 10f. Thus, the

duration of the exploration phase grows exponentially with
f. Moreover, the exponent of the asymptotic power law

decay (30) is equal to D2=D1 � 1 ¼ ð10=11Þf � 1. Thus, larger
f leads to larger exponent and thus faster convergence.

Fig. 5. From random walks to short walks: (a) At n ¼ 0, all weights are identical; (b) at n ¼ 103 an edge weight structure starts to emerge along shorter
paths; (c) at n ¼ 106 edge weights along the (two) shortest paths are dominant.

Fig. 7. Transient behavior of a single decision between two paths of
length 10 and 11, update function L�f, initial weights 1.

Fig. 6. Transient behavior of normalized weights in a simple topology
with two decision points. Comparison between simulation and analytical
approximation based on the recursive approach.
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Therefore, as f increases (corresponding to a reward func-
tion that decreases much more rapidly with the hop count),
convergence is asymptotically faster but exploration
requires much more time. Intuitively, reward functions that
decay too fast with path lengths require many repetitions of
the WRW before some initial structure emerges. However,
when a structure does emerge, they will quickly drive the
WRW deeper and deeper into it.

8.4 Slowing-Down Clocks

Consider the network illustrated in Fig. 8, comprising of an
long sequence of decision points indexed by 1; 2; . . .. Each
decision point is directly connected to the destination d and
to the next decision point in the sequence. The source coin-
cides with node 1.

This scenario provides interesting insights into the
impact of slowing-down clocks on the evolution of the sys-
tem structure, and will also illustrate the calculation of the
asymptotic power-law decay of b-edges.

Note that, asymptotically, random walks reaching deci-
sion point i will end up going directly to d instead of the
next decision point. This means that, asymptotically, each
decision point can be studied in isolation, considering two
outgoing edges: an a�-edge belonging to a path of length i,
and a b�-edge belonging to a path of length iþ 1.

Following this reasoning, we can iteratively compute the
power law decay of all b�-edges, along with the scaling law
for the clocks of the respective decision points, using the for-

mulas introduced in Section 7.3. Let eib be the scaling expo-

nent of the outgoing b�-edge of node i, and eic be the scaling

exponent of node i’s clock. Using (30) we have e1b ¼ fð2Þ
fð1Þ � 1,

and from (31) we get e2c ¼ fð2Þ
fð1Þ. Subsequently, we can derive

e2b ¼ fð2Þ
fð1Þ

fð3Þ
fð2Þ � 1

 �

¼ fð3Þ�fð2Þ
fð1Þ and from this obtain e3c ¼ 1 þ

fð3Þ�fð2Þ
fð1Þ . We then have e3b ¼ ðfð1Þþfð3Þ�fð2ÞÞðfð4Þ�fð3ÞÞ

fð1Þfð3Þ , and so on.5

In Figs. 9 and 10 we compare simulation and analytical
results for the first four decision points shown in Fig. 8, con-
sidering initial weights equal to 1, fðLÞ ¼ L�1. Analytical
predictions for the power-law exponents are represented by
segments placed above the corresponding simulation curve
(note the log-log scale). Besides showing the accuracy of the
analytical prediction, results in Figs. 9 and 10 illustrates an
important fact: the network structure (i.e., weights on
edges) is left essentially unmodified as we move away from
the shortest path. Note that this is not quite evident from
the math, which predicts that the clock of any decision point
in the sequence diverges. In practice, clocks of decision
points sufficiently far from the shortest paths evolves so
slowly that we can essentially ignore the perturbations
caused by the random walks. Hence, sufficiently far regions
of a large network preserve their initial ‘plasticity’, allowing
them to be used for other purposes.

8.5 Transient Analysis of the Complete Graph

As a final interesting case, we consider the complete graph
with m nodes, where the shortest path has length 1 and
every node has cycles of all lengths. Without lack of general-
ity, let the source and destination correspond to nodes 1 and
m, respectively.

The asymptotic decay exponent of b-edges can be easily
computed following the approach in Section 7.3. Due to
symmetry, there are essentially two types of decision point
to analyze: the source node (node 1), and any other node
different from the source and the destination (e.g., node 2).

Node 1 will have, asymptotically, one surviving edge tra-
versed by the unique shortest path of length 1, and m� 2
decaying b-edges traversed by paths whose average length
will converge to 2. Hence, the decay exponent of any b-edge

going out of s, such as edge ð1; 2Þ, is fð2Þ
fð1Þ � 1. The clock of

decision point 2 will then run with scaling exponent fð2Þ
fð1Þ.

Fig. 8. Network with multiple decision points in sequence.

Fig. 9. Clocks associated to the first four decision points of the network in
Fig. 8.

Fig. 10. Normalized weight of b-edges going out of the first four decision
points of the network in Fig. 8.

5. We lack a general closed-form expression for eib or e
i
c.

FIGUEIREDO AND GARETTO: ON THE EMERGENCE OF SHORTEST PATHS BY REINFORCED RANDOMWALKS 67



Node 2 will have, asymptotically, one surviving edge tra-
versed by paths of length 2, and ðm� 2Þ decaying edges tra-
versed by paths of average length tending to 3. Each of

them will decay with power law exponent fð3Þ�fð2Þ
fð1Þ .

For the complete graph, we have also run the recursive
method introduced in Section 7.2, which required us to
numerically solve, at each time step, the transient behavior
of different discrete-time Markov chains with structure sim-
ilar to that of the complete graph, modified by the introduc-
tion of proper absorbing states to obtain the path length
distributions needed by the recursive formulas.

The recursive approach provides a more detailed predic-
tion of the system behavior (at the cost of higher computa-
tional complexity). In particular, it allows to distinguish,
among the ðm� 2Þ b-edges going out of decision point 2,
the special case of edge ð2; 1Þ. Intuitively, such edge will
accumulate more weight than the b-edge connecting node 2
to, say, node 3, because node 1 is a different decision point
with respect to all other decision points (in particular, it has
the smallest average residual path length to reach the desti-
nation). Considering the completely symmetric structure of
the rest of the graph, it turns out that there are, essentially,
five types of edges having different transient behavior6: 1)
the a-edge ð1;mÞ; 2) the b-edge ð1; 2Þ; 3) the a-edge ð2;mÞ; 4)
the b-edge ð2; 1Þ; 4) the b-edge ð2; 3Þ;

The results obtained by the recursive method are com-
pared against simulations in Fig. 11, for m ¼ 50 nodes, ini-

tial weights equal to 1, fðLÞ ¼ L�1, and single reward
model. Besides confirming the surprising accuracy of the
recursive approximation, results in Fig. 11 suggest that,
except for the outgoing edges of the source node, all other
edges are marginally affected by the reinforcement process.
Indeed, there are so many edges in this network (i.e., avail-
able structure) that the ‘perturbation’ necessary to discover
and consolidate the shortest path between two particular
nodes practically does not significantly affect any edge
which is not directly connected to the source.

9 CONCLUSION AND FUTURE WORK

Focusing on the important problem of network navigation,
we have introduced and analyzed a novel, simple model
capturing the co-evolution of network structure and func-
tion performance. We have shown how the repetition of a
simple network activity process (WRW with edge reinforce-
ment) is able to build over time a network structure that
always leads itself to navigate through shortest paths, in a
surprisingly robust manner. Many variations and exten-
sions of the proposed model are possible, which could shed
light on how information is efficiently found and/or stored
in biological systems lacking the computational and storage
resources required to run sophisticated routing algorithms.

APPENDIX A
COMPLEMENT TO THE PROOF OF LEMMA 2

The algebraic property related to (7) that we need to prove
holds even if the reward function is constant. Therefore, we
will prove it under the assumption that DðiÞ ¼ C, 8i. The
proof can be extended to a general non-increasing reward
function using the sequence of functions ffkð�Þgk and the iter-

ative approach introduced in Section 6.2, but we omit this
extension here. Moreover, we will first consider the simpler
case in which q ¼ 0. Introducing the following normalized

variables: a ¼ _w
ŵ and s ¼ C

ŵ, we essentially need to show that

1

a

X1
i¼0

a

aþ 1

� �i
aþ is

aþ 1þ ðiþ 1Þs
� �

	 1;

for any a > 0 and s > 0. Observe that the above expression
is exactly equal to 1 for s ¼ 0. We make another change of

variable, introducing x ¼ aþ1
s
. After some simple algebra,

our target reduces to show that

gða; xÞ ¼ xþ aþ 1

a

X1
k¼xþ1

a

aþ 1

� �k�x1

k
� 1;

for any a > 0 and x > 0. We know that, 8a > 0,
limx!1 gða; xÞ ¼ 1. Therefore, for arbitrarily small � > 0,
there exists an x� such that, for x > x�, gða; xÞ � 1� �.

We can show that, if gða; xÞ � 1� �, than
gða; x� 1Þ > 1� �, for any a > 0 and � � 0. Indeed,we have

gða; x� 1Þ ¼ xþ a

a

X1
k¼x

a

aþ 1

� �k�xþ11

k

¼ xþ a

a

a

aþ 1

X1
k¼x

a

aþ 1

� �k�x1

k

¼ xþ a

aþ 1
gða; xÞ a

xþ aþ 1
þ 1

x

� �

� ð1� �Þ xþ a

xþ aþ 1

a

aþ 1
þ 1

x

xþ a

aþ 1
> 1� �;

as can be easily checked. Note that, by recursion, if
gða; xÞ � 1� �, than gða; x�mÞ > 1� � for any m such that
x�m > 0. Armed with this result, we can easily prove that
gða; xÞ > 1 for any x > 0. Indeed, suppose, by contradic-
tion, that gða; xsÞ < 1 at a given point xs . Then we can write
gða; xsÞ ¼ 1� 2�. Now, we build a sequence of values

Fig. 11. Transient behavior of the complete graph with 50 nodes, com-
paring simulation and recursive approximation, for five different edge
types.

6. To avoid complex notation, we take decision point 2 as represen-
tative of any decision point different from 1, and decision point 3 as
representative of any decision point other than 1 and 2.
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fxs þ 1; xs þ 2; . . . ; xs þm; . . .g which eventually enters
the stripe ½1� �; 1þ ��, since limx!1 gða; xÞ ¼ 1. Therefore
there exists a sufficiently large m � 1 such that
gða; xs þmÞ > 1� �. But then it must be gða; xsÞ > 1� �,
which contradicts the hypothesis that gða; xsÞ ¼ 1� 2�. It
remains to prove that gða; xÞ cannot be identically equal to 1
at all points x > 0. Again, this can be proven by contradic-
tion: suppose that gða; xÞ ¼ 1 at any x. Considering a
generic point xs þ 1, gða; xs þ 1Þ ¼ 1 implies that
gða; xsÞ > 1, which contradicts the hypothesis. The more
general case in which q > 0 can be treated essentially in the
same way, but requires more tedious algebra. In this case,
we need to show that

ða; x; qÞ ¼
X1

k¼xþ1

að1� qÞ
aþ 1

� �k�x 1

k

aþ 1þ x

að1� qÞ þ xqa

� �

� 1� aq:

Evaluating the expression of gða; x� 1; qÞ, one can again
show that, if gða; x; qÞ � 1� �, then gða; x� 1; qÞ > 1� �, for
any a > 0, q � 0, � � 0, and repeat the arguments adopted
in the case q ¼ 0.

ACKNOWLEDGMENTS

D. Figueiredo received financial support through grants
from FAPERJ and CNPq (Brazil).

REFERENCES

[1] A. Passarella, “A survey on content-centric technologies for the
current Internet: CDN and P2P solutions,” Comput. Commun.,
vol. 35, no. 1, pp. 1–32, 2012.

[2] H. Huang, J. H. Hartman, and T. N. Hurst, “Data-centric routing
in sensor networks using biased walk,” in Proc. IEEE Conf. Sensor
Ad Hoc Commun. Netw., 2006, pp. 1–9.

[3] K. Leibnitz, N. Wakamiya, and M. Murata, “Biologically inspired
self-adaptive multi-path routing in overlay networks,” Commun.
ACM, vol. 49, no. 3, pp. 62–67, 2006.

[4] E. A. Codling, M. J. Plank, and S. Benhamou, “Randomwalk mod-
els in biology,” J. Roy. Soc. Interface, vol. 5, no. 25, pp. 813–834,
2008.

[5] P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester,
and J. M. Morales, “Stochastic modelling of animal movement,”
Philos Trans. Roy. Soc. London B: Biol. Sci., vol. 365, no. 1550,
pp. 2201–2211, 2010.

[6] S. Sadeh, C. Clopath, and S. Rotter, “Emergence of functional
specificity in balanced networks with synaptic plasticity,” PLoS
Comput. Biol., vol. 11, no. 6, pp. 1–27, 2015.

[7] J. T. Abbott, J. L. Austerweil, and T. L. Griffiths, “Human memory
search as a randomwalk in a semantic network,” in Proc. Advances
Neural Inf. Process. Syst., 2012, pp. 3050–3058.

[8] M. Saerens, Y. Achbany, F. Fouss, and L. Yen, “Randomized short-
est-path problems: Two related models,” Neural Comput., vol. 21,
no. 8, pp. 2363–2404, 2009.

[9] M. Dorigo and T. St€utzle, Ant Colony Optimization. Holland, MI,
USA: Bradford Company, 2004.

[10] M. Dorigo and C. Blum, “Ant colony optimization theory: A
survey,” Theoretical Comput. Sci., vol. 344, no. 2, pp. 243–278, 2005.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[12] B. Davis, “Reinforced random walk,” Probability Theory Related
Fields, vol. 84, no. 2, pp. 203–229, 1990.

[13] R. Pemantle, “A survey of random processes with reinforcement,”
Probability Surveys, vol. 4, pp. 1–79, 2007.

[14] J. Kleinberg, “The small-world phenomenon: An algorithmic
perspective,” inProc. ACMSymp. Theory Comput., 2000, pp. 163–170.

[15] I. Stoica, et al., “Chord: A scalable peer-to-peer lookup protocol
for internet applications,” IEEE/ACM Trans. Netw., vol. 11, no. 1,
pp. 17–32, Feb. 2003.

[16] J. N. Tsitsiklis, “On the convergence of optimistic policy iteration,”
J. Mach. Learn. Res., vol. 3, pp. 59–72, 2003.

[17] S. Seung, Connectome: How the Brain’s Wiring Makes Us Who We
Are. Boston, MA, USA: Houghton Mifflin, 2012.

[18] Human brain project, 2013. [Online]. Available: https://www.
humanbrainproject.eu/

[19] H. M. Mahmoud, P�olya Urn Models. Boca Raton, FL, USA: Chap-
man & Hall/CRC, 2008.

[20] R. Durrett, Probability: Theory and Examples. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

[21] S. Janson, “Functional limit theorems for multitype branching
processes and generalized P�olya urns,” Stochastic Processes Appl.,
vol. 110, no. 2, pp. 177–245, 2004.

[22] D. S. Bernstein and W. So, “Some explicit formulas for the matrix
exponential,” IEEE Trans. Automat. Control, vol. 38, no. 8,
pp. 1228–1232, Aug. 1993.

[23] S. Janson, “Limit theorems for triangular urn schemes,” Probability
Theory Related Fields, vol. 134, no. 3, pp. 417–452, 2005.

Daniel Ratton Figueiredo received the PhD
degree in computer science from the University
of Massachusetts Amherst (UMass), in 2005,
after which he worked as a post-doc researcher
with Swiss Federal Institute of Technology,
Lausanne (EPFL). In 2007, he joined in the
Department of Computer and Systems Engineer-
ing (PESC/COPPE), Federal University of Rio de
Janeiro (UFRJ), Brazil, as an associate profes-
sor. His main interests include network science
and in particular models for processes on
dynamic networks. He is a member of the IEEE.

Michele Garetto (S’01-M’04) received the DrIng
degree in telecommunication engineering and the
PhD degree in electronic and telecommunication
engineering from Politecnico di Torino, Italy, in
2000 and 2004, respectively. He is currently an
assistant professor with the University of Torino,
Italy. His research interests include field of perfor-
mance evaluation of wired and wireless commu-
nication networks. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FIGUEIREDO AND GARETTO: ON THE EMERGENCE OF SHORTEST PATHS BY REINFORCED RANDOMWALKS 69



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


