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ABSTRACT 

Mediterranean streams are mostly characterized by intermittent flow regime, with droughts in 

summer followed by floods in autumn. During droughts, the creation of lentic habitats (i.e. 

lentification process) and isolated pools in the riverbeds (i.e. fragmentation process) represents a 

strong selective pressure on biotic communities. In these highly heterogeneous and disconnected 

habitat patches, species sorting may be driven by stochastic mechanisms, as well as by 

environmental filtering. In this work we investigated the selective mechanisms determining the 

structure and composition of diatom communities during droughts in Mediterranean streams. This 

work was conducted on five oligotrophic streams in the Ligurian Alps (NW-Italy), similar in terms 

of physical-chemical parameters. Data were collected at least monthly from April to October 2014 

in: 1) lentic sites, where the water flow became slower but was permanent during the hot season; 2) 

fragmented sites, where the riverbed stretch dried out creating isolated pools. For each sampling 

site, we collected six benthic diatom samples from different microhabitats. We examined which 

factors, i.e. spatial or environmental, better explained the temporal and spatial variation of diatom 

communities. We then calculated the turnover and nestedness components of dissimilarity by 

comparing samples collected during moderate flow with samples obtained during the hot season. 

We further investigated if the idiosyncrasy of diatom species could be explained by the ecological 

niche width of species and/or by species traits. Our results showed a contribution of both 
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environmental and spatial factors in determining species composition during drought, while the 

main selective mechanism resulted to be species replacement. The number of idiosyncratic species, 

i.e. those departing from the nested pattern, resulted to be more tolerant than nested species, while 

no differences were encountered in terms of species traits. According to our results, species 

replacement due to niche assembly rules seemed to be the dominating process in diatom benthic 

communities during drought. These results indicate that future climate change may drive the loss of 

specialist species, being replaced by more tolerant taxa. A better evaluation of species autecology 

could improve the application of Water Framework Directive (2000/60 EC) classification to 

Mediterranean streams. 

Key-words: intermittent streams, partial RDA, dissimilarity, nestedness, ecological niche 

Running head: drought effects on diatom metacommunities  
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INTRODUCTION 

The Mediterranean climate is characterized by seasonality and variability of rainfalls (Gasith & 

Resh, 1999; Sabater et al., 2006) which often lead to river flow intermittency, i.e. lack of 

hydrological connectivity at multiple spatial scales (Larned et al., 2010). Intermittency in 

Mediterranean rivers is highly predictable and can be summarized in three phases (Datry, Bonada & 

Heino, 2016). Firstly, flow cessation leads to the shift from lotic to lentic conditions, i.e. 

lentification process. Afterwards, the total drying of some stretches causes fragmentation of the 

stream channel. The deepest pools become isolated habitat patches (Datry et al., 2016; Sabater et 

al., 2016) which differ from the main channel in terms of physical-chemical parameters: the 

temperature rises, the oxygen content lowers and nutrients become more concentrated (Lake, 2003). 

In a second moment, remnant pools progressively dry up, thus converting aquatic habitats into 

terrestrial ones (Datry et al., 2016). The third and last phase is represented by the rewetting, that 

occurs suddenly and unpredictably, often as disruptive floods that reconnect all the isolated pools 

and change the streambed morphology (Lake, 2003). 

Due to this hydrological cycle, Mediterranean intermittent streams are characterized by a marked 

spatial and temporal heterogeneity (Lake, 2000), thus representing meta-systems, i.e. a network of 

discrete populations, communities and ecosystems that are intermittently connected by gene, 

material and energy flows and individual dispersal (Larned et al., 2010). As a consequence, biotic 

communities in Mediterranean streams represent metacommunities, defined as networks of local 

communities in which inter- and intra-community dispersal and interactions affect species 

persistence (Hanski, 1994; 1998). Since flow intermittency creates unique dynamics in streams, 

metacommunities in intermittent streams may show typical temporal and spatial patterns (Taylor, 

1997; McAbendroth et al., 2005; Bonada et al., 2006). This is true especially during the first phase 

of flow cessation, when the lentification and fragmentation processes convert connected 

communities into isolated local ones. 
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The spatial and temporal patterns of metacommunities in Mediterranean streams may be explained 

by two coexisting paradigms, i.e. the island paradigm and the trait-environment paradigm (Weiher 

& Keddy, 2001). The former states that assembly rules are governed by dispersal-driven 

mechanisms, so the main focus is represented by stochastic processes like immigration and 

extinction (MacArthur & Wilson, 1967). The latter identifies niche assembly rules as the major 

force in determining community assemblages, emphasising species autecology and how 

environment filters species traits (Diamond, 1975). Within this context, Datry et al. (2016) 

underlined how lentification and fragmentation would cause a dominance of environmental filtering 

processes, including adaptation to lentic conditions, enhancing biotic interactions within contracting 

pools and stronger predator pressure. Conversely, the rewetting phase would be dominated by 

dispersal processes which allow organisms to colonize rewetted habitats. However, as noticed by 

Soininen (2008), the two paradigms may not be mutually exclusive, since some traits may favour 

the ability of colonize new habitats or the autecology of a particular species may be related to the 

spatial structure it exhibits (McAbendroth et al., 2005).  

As a result, great differences between local communities arise, especially in a series of disconnected 

habitat patches, thus increasing beta diversity in the metacommunity. Beta-diversity is a measure of 

the extent of similarity between community assemblage composition in different sites (Koleff, 

Gaston & Lennon, 2003) and it can generally be described as the combination of two dissimilarity 

components, namely turnover and nestedness (Harrison, Ross & Lowton, 1992; Baselga, 2010; 

Baselga, 2012). Turnover is a measure of species replacement, that occurs when species present in 

one site are absent in another one and they are replaced by other, while nestedness measures the 

degree to which communities of species-poor sites are a subset of species-rich sites, i.e. species loss 

or gain (Ulrich & Gotelli 2007; Ulrich, Almeida-Neto & Gotelli, 2009). 

Literature data show contrasting results when trying to define which mechanism is actually driving 

the structure of benthic biofilm metacommunities in temporary streams. In some cases, they 

indicate biological communities of temporary reaches as a subset of communities inhabiting 
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permanent reaches, containing ubiquitous and highly mobile species (Datry et al., 2014), thus 

suggesting species loss. Conversely, in other works, data show how lotic communities are gradually 

replaced by lentic and subaerial species (Stewart et al., 2010; Tornés & Rhuì, 2013; Falasco, Piano 

& Bona, 2016a). However, only presence data are normally considered for underpinning 

dissimilarity patterns, while studies considering also abundance data remain scant. 

The aims of our work are to scrutinize on i) which paradigm better explains patterns of benthic 

diatom communities in Mediterranean streams (i.e. trait-environment or island paradigm) and ii) 

which mechanism drives their variation during droughts i.e. species loss or species replacement. In 

order to achieve these goals, we used diatoms as a model group considering not only presence but 

also abundance data. In a second moment we also evaluated iii) if environmental filtering processes 

mainly selected species based on their autecology or biological traits. 

 

MATERIALS AND METHODS 

Data collection 

This study was conducted in five streams belonging to the Ligurian Alps hydroecoregion (HER 

122; N-W Italy), comparable in terms of geology (mostly calcareous), climate and altitude, 

substratum size (mainly cobbles and pebbles) and water quality. In order to reduce the environmental 

variability among sites and focus only on physical disturbance induced by flow instability, we selected 

stretches with low nutrient inputs. To do this, we checked chemical data collected by the Environmental 

Protection Agency of Liguria (ARPAL) during the last ordinary surveys. All streams are permanent in the 

upper part of their course, but become temporary next to the mouth in the Ligurian Sea (Fig. 1). 

We performed five sampling campaigns from April to September 2014. The first was performed in 

spring (April: 17/04/2014), with moderate flow, while the other four campaigns were performed 

during the drought season, every month from the end of June to the end of September (June: 

30/06/2014; July: 22/07/2014; August: 28/08/2014; September: 24/09/2014). Droughts in the 

selected rivers were mainly caused by rainfall scarcity and water uptakes (for further details see 
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Falasco, Piano & Bona, 2016b). Starting from these considerations and from field observations 

performed during summer, we considered the sampling date as a proxy of the temporal hydrological 

disturbance, since we observed a progressive and gradual lentification, fragmentation and isolation 

of stream stretches. Therefore, the sampling session of April represented our control session. We 

selected 2 sampling sections for each stream, representing two levels of hydrological disturbance 

(Fig. 1): i) an upstream section, where we observed only a progressive flow reduction during 

summer (lentic section, LS); ii) a downstream section, exposed to high hydrological fragmentation, 

with the creation of isolated pools during summer (fragmented section, FS).  

In each section, besides a standard sampling transect, we also identified five sampling plots 

(microhabitats, hereinafter MHs), defined as a circular area of 40 cm of diameter, representing the 

highest heterogeneity in terms of flow velocity, water depth and isolation from the main river 

course. MHs were selected in order to detect differences in the response of diatom community to 

the spatial heterogeneity typical of Mediterranean rivers (Tornés & Sabater, 2010). Among them, 

isolated pools were considered in the data analyses as proxies of the loss of hydrological 

connectivity. 

We measured physical-chemical parameters in both transects and isolated MHs. In particular, we 

detected water dissolved oxygen (DO), oxygen saturation (%O2), pH, temperature and conductivity 

by means of a multiparametric probe (Hydrolab mod. Quanta). Moreover, in each transect and MH 

we measured water depth and flow velocity with a current meter (Hydro-bios Kiel). The 

environmental matrix was finally composed of two types of variables: i) physical-chemical 

variables: DO, %O2, pH, temperature and conductivity; and ii) hydromorphological variables: 

sampling date, sampling section (LS or FS), degree of the MH connection to the main channel 

(connected or isolated), water depth and flow velocity. 

Diatom samples in transects were collected in accordance with the standard procedure defined by 

the European Committee for Standardization (UNI EN 13946, 2003). We chose at least 5 cobbles 

from the main flow and we collected periphyton by scraping their upper surface by means of a 
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toothbrush. Considering the MHs, we chose to sample only one single cobble as representative of 

each 40 cm diameter circular area. From each section, diatom samples from transect and MHs were 

kept separated and preserved in ethanol. In laboratory, samples were treated following the 

standardized method by cleaning them with hydrogen peroxide (30%) and HCl. Slides for the 

observation at the light microscope were mounted with Naphrax. We identified at least 400 valves 

in each sample. Diatom identification was based on several diatom floras and monographies, as well 

as recent taxonomic papers (Krammer & Lange-Bertalot 1986-1991 a, b; Krammer 1997 a, b, 2002, 

2003; Reichardt, 1999; Lange-Bertalot, 2001; Werum & Lange-Bertalot, 2004; Blanco et al., 2010; 

Hofmann, Werum & Lange-Bertalot, 2011; Bey & Ector 2013; Falasco, Piano & Bona, 2013; Ector 

et al., 2015).  

 

Statistical analyses 

Testing paradigms: island or environmental filter 

In order to test which paradigm, i.e. trait-environment and island paradigm, better explains diatom 

community patterns, we applied a Partial RDA to both abundance and presence data following the 

approach suggested in Peres-Neto et al. (2006) and De Bie et al. (2012). 

First, we constructed two biotic matrices both composed of 300 samples, one with the relative 

abundance of each recorded taxon in each sample (hereinafter abundance matrix), and the second 

with presence/absence data (hereinafter presence matrix). 

We then built up an environmental matrix [E] based on a parsimonious combination of 

environmental variables and a spatial matrix [S] with both the coordinates of the sampling sites (LS 

and FS for each river) and the spatial variables extracted by MEM analysis (Moran’s Eigenvector 

Maps, see Dray, Legendre & Peres-Neto, 2006). The MEM analysis produces a set of orthogonal 

spatial variables that are derived from geographical coordinates of the study sites and that can be 

used as explanatory variables to model spatial relationships in community data. Given that 

intermittent streams lack hydrological connectivity, we here did not consider a directional spatial 
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process for modelling a scenario whereby interactions among sampling locations would occur 

through hydrological connections (AEM, Asymmetric Eigenvector Maps, Blanchet et al., 2011). 

Conversely, we evaluated the scenario that spatial interactions among communities are taking place 

through dispersal overland. We separately tested both the [E] and [S] matrices against the 

abundance and the presence matrix and evaluated the jointed fraction of explained variance as well 

as the variance explained by each matrix separately. With variation partitioning, we decomposed 

total community variation into a purely spatial component (S|E) and a purely environmental 

component (E|S). The magnitude of a significant environmental component (E|S) measures the 

degree to which community variation is uniquely structured by the environment, i.e. species sorting 

(Cottenie, 2005). The magnitude of a significant spatial component (S|E) is indicative for the 

amount of spatial variation caused by dispersal limitation or stochastic events (Legendre & 

Legendre, 1998). We tested the significance of both components by means of a Monte Carlo test 

with 1000 permutations. We corrected estimates of explained variation for the number of predictor 

variables and sampling sites (R² adjusted) following the procedure proposed by Peres-Neto et al. 

(2006). 

Testing mechanisms: turnover or nestedness 

In order to test which dissimilarity component, i.e. turnover vs nestedness, would become dominant 

with the progression of drought, pair-wise dissimilarities were calculated using the approach 

suggested by Baselga (2013) on the abundance matrix. This framework consists of decomposing the 

Bray–Curtis dissimilarity index (dBC) into two additive components accounting for the balanced 

variation in abundances (dBC-bal) and abundance gradients (dBC-gra). The balanced variation in 

abundances (dBC-bal) describes the variation in species density with the overall species density 

remaining constant and corresponds to true species turnover (some individuals are substituted by 

individuals of different species from site to site). The measure for abundance gradients (dBC-gra) 

describes the decrease (or increase) in species density from one site to the other. This is equivalent 
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to species nestedness, as some individuals may be lost from one site to the other without any 

substitution. 

For each of the three dissimilarity measures (dBC, dBC-bal and dBC-gra) we calculated the pair-wise 

dissimilarities of all samples against the transect samples collected in April, which represent the 

control sampling occasion. In this way, we obtained a measure of the distance of each sample from 

the control communities in terms of dBC, dBC-bal and dBC-gra. 

To analyse community dissimilarities on the presence matrix, we measured the degree of nestedness 

with the software ANINHADO (Guimaraes & Guimaraes, 2006). We computed the classical matrix 

temperature (T; Atmar & Patterson, 1993), which can be interpreted as a thermodynamic measure of 

disorder, ranging from 0° in ordered systems (totally nested systems) to 100° in disordered systems 

(totally not nested systems). We considered the temperature value calculated for each sample 

(T_sample) as a measure of their nestedness and we extracted the T value for each species 

(T_species). We considered as idiosyncratic those species with a T value higher than the T value of 

the whole matrix. For each sample we calculated the percentage of idiosyncratic species 

(%idiosyncratic), as an indirect measure of sample nestedness. 

In order to test the response of dissimilarity and nestedness measures against environmental 

variables, we performed Generalized Linear Mixed Models (GLMMs, in accordance with Zuur et 

al., 2009) in R environment (R Core Team, 2015).  

Given the high correlation between environmental variables, we applied a Principal Component 

Analysis (PCA) in order to reduce the number of variables and synthetize them into orthogonal 

axes. Given that the sampling date (proxy of temporal hydrological disturbance), the isolation from 

the main river course and the sampling section (proxies of spatial hydrological disturbance) were 

categorical variables, we converted them into numerical variables to include them in the PCA. 

Scores were assigned in order to have increasing value with increasing hydrological disturbance.  

We tested the retained PCA axes (i.e. those explaining the highest percentage of variance) against 

our dependent dissimilarity variables — dBC, dBC-bal and dBC-gra — via GLMMs. Given the spatial 
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dependence of the data (two sections in each river), we applied the mixed procedure to include a 

grouping variable (site) nested in a second grouping variable (river) as random factors in order to 

account for the variation they introduced in our samples, rather than to test for their direct effect on 

the dependent variables. The same procedure was repeated for the nestedness measures, i.e. 

T_samples and %idiosyncratic. GLMMs were fitted via the lme4 R package (Bates et al., 2014, 

version 1.0-6).  

Environmental filtering: autecology or species traits 

In order to test the third hypothesis, i.e. whether the filtering process would apply more to species 

autecology than to species traits, we verified if the T_species was related to species niche width or 

life-history traits.  

We firstly calculated the niche width of each species based on our data by means of the Outlying 

Mean Index (OMI) with the ade4 R package (Dray & Dufour, 2007). This is a two-table ordination 

technique that positions species in a multidimensional space as a function of environmental 

parameters (Doledec et al., 2000). The analysis returns the tolerance parameter, which measures the 

niche width, i.e. the amplitude in the distribution of each species along the sampled environmental 

gradients. Low values mean that a species is distributed across a limited range of conditions 

(specialist species), while high values imply that a species is distributed across habitats with widely 

varying environmental conditions (generalist species). The tolerance parameter (tol) was selected as 

a proxy of species niche breadth. The OMI analysis was performed via the function “niche” in the 

package ade4 (Dray & Dufour, 2007) for the R software (R Core Team, 2015).  

Considering the species traits, we followed the procedure suggested by Elias et al. (2015) and we 

focused our attention on two traits, namely life-forms and biovolume. Within the life-form trait, 

four categories were considered: mobile, colonial, tube-forming and stalked. The mobile taxa have 

the ability of selecting the most suitable habitat. The colonial taxa are in constant contact within 

each other, thus being capable of surviving with less moisture. The tube-forming taxa are colonial 

taxa living in a mucilaginous protective structure within which they are able to move freely. The 
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formation of this structure provides protection from desiccation, osmotic stress and intense light 

radiation. These three traits are thus expected to favour species survival during drought. Conversely, 

the stalked taxa are fixed to the substratum through a mucilage stalk and are potentially exposed to 

higher risk of desiccation. Considering biovolume, we expected small species to be favoured during 

drought given their higher capacity to live with less moisture, while large species have higher cell 

surface exposed which reduces their capacity to live with less moisture. In addition to these two 

traits, we also considered aerophily since we expected more aerophilous taxa to be favoured during 

water scarcity compared to taxa strictly dependent from water.  

Classification of species based on these traits was derived from literature data. In particular, the 

classification based on life-forms and the attribution of the biovolume values were performed in 

accordance with Rimet & Bouchez (2012), while the classification of species based on aerophily 

was performed in accordance with van Dam, Mertens & Sinkeldam (1994). Given the high 

variability of biovolume values, we applied a log-transformation in order to achieve a 

homogenization of its distribution. 

We then tested the T_species against their niche breadth, life-form, biovolume and aerophily by 

means of a linear regression, after log-transformation of T for achieving a normal error distribution. 

Data referring to life-history traits and temperature values for each species are reported in table S1. 

 

RESULTS 

Testing paradigms: island or environmental filter 

The results of Partial RDA showed different results for the abundance and the presence matrices. 

Considering the abundance matrix, the Partial RDA revealed that variation among communities 

could be significantly explained by the environmental component, while the spatial component gave 

a much lower contribute, as demonstrated by the lower value of adjusted R2 (Tab. 1). 

Environmental filtering mechanisms seem then to dominate the community structure in terms of 

species abundance. Opposite results were obtained for the presence matrix, for which the highest 
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percentage of variance was explained by the spatial component, even if the environmental 

component also contributed in explaining species distribution (Tab. 1). Stochastic mechanisms then 

showed to play a major role when considering the species composition of communities. 

Testing mechanisms: turnover or nestedness 

The first three axes of the PCA explained the 72% of total variance and were then considered for 

subsequent analysis. Axis 1 and 3 explained 36% and 15% of variance respectively and were both 

positively correlated with the hydrological disturbance (Table 2). In particular, axis 1 was 

negatively correlated with water depth and positively correlated with the sampling section. Axis 3 

was negatively correlated with dissolved oxygen and was positively correlated with the sampling 

section and with the isolation. Conversely, axis 2 explained 21% of variance and was negatively 

correlated with the hydrological disturbance (Table 2), since it was negatively correlated with 

conductivity, temperature, sampling section, sampling date and isolation, while it was positively 

correlated with dissolved oxygen. 

Considering the abundance matrix, the observed Bray-Curtis dissimilarities showed, on average, a 

dominant turnover pattern in the sampled communities (dBC = 0.69 ± 0.18; dBC-bal = 0.67 ± 0.19; dBC-

gra = 0.02 ± 0.02). Results of statistical models showed a significant positive relationship with axis 3 

for the total Bray Curtis dissimilarity dBC (Tab. 3 and Fig. 2a) and the turnover component dBC-bal 

(Tab. 3 and Fig. 2b), while the nestedness component dBC-gra was negatively correlated (Tab. 3 and 

Fig. 2c). These results underlie how the progression of water scarcity causes a turnover of the 

diatom community. 

Considering the temperature metrics, results obtained from statistical models showed a significant 

effect of the hydrological disturbance. In particular, we observed a significant positive relationship 

between T_samples and axis 1 and 3 (Tab. 3 and Figs. 2d and 2e), while %idiosyncratic was 

significantly affected by axis 2 (Tab. 3 and Fig. 2f). These results confirm what we obtained with 

the dissimilarity measures, showing that the nestedness of the community decreases with the 

progression of hydrological disturbance.  
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Environmental filtering: autecology or species traits 

According to the results of the regression analysis (Tab. 4), the Temperature value of each species 

(T_species) is positively correlated with the niche width. Conversely, we could not find any 

significant effects of species traits. According to our results, the tolerance to drought seems to be 

linked to the ecological niche more than to species traits. 

 

DISCUSSION 

Mediterranean rivers are subjected to periodical intermittency of flow regime with highly 

predictable cycles of drought and rewetting (Bonada & Resh, 2013). The extent to which riverine 

communities differ in terms of species composition during an increasing drought may be linked 

both to the decrease of the hydrological connectivity, which restricts dispersal and mixing of 

freshwater organisms (Larned et al., 2010), as well as to environmental harsh conditions which 

filter out maladapted species (Gutierrez-Cánovas et al., 2015). We here demonstrated that 

environmental and spatial components both contribute in determining the composition of diatom 

communities. This is in accordance with recent research, which suggests that assemblages of 

microorganisms, and in particular of lotic diatoms, are both spatially structured and environmentally 

controlled (Heino et al., 2010; Wetzel et al., 2012; Fontaneto & Hortal, 2013; Göthe et al., 2013; 

Heino et al., 2015). 

More in detail, the contribution of the environmental and spatial components is different when 

considering presence or abundance data. While the species composition is mainly explained by 

spatial factors, the environmental filter plays a major role in determining the local success of 

species. The role of environmental and spatial components on diatom diversity is often 

controversial. One view of microbial distributions, including diatoms, is that they have unlimited 

access to all sites within a region, particularly over a long time period, but they are selected by the 

environment (Ubiquity Hypothesis; Finlay, 2002; Fenchel & Finlay, 2004). In several cases it has 

been demonstrated that small passive dispersers, like diatoms, are more affected by environmental 
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than spatial components (De Bie et al., 2012; Padial et al., 2014). However, if diatom species were 

dispersed everywhere, they should be found at all sites with similar environmental conditions, 

which is often not the case, leading to a large portion of variation explained by spatial factors 

(Potapova & Charles, 2002; Vyverman et al., 2007; Smucker & Vis, 2011; Sakeva et al., 2016). 

According to our results, the island paradigm better reflects distributional patterns of species 

generated by dispersal limitation as a consequence of isolated habitat creation in Mediterranean 

streams. Then, once that species have reached a patch, their relative ecological success is better 

explained by the trait-environment paradigm.  

Secondly, we demonstrated that the variation in diatom community composition along the drought 

was mainly explained by the turnover component of dissimilarity, while the nestedness component 

played a much minor role compared to the turnover component. Despite some contrasting results 

found in literature (Datry et al., 2014), this is in agreement with Rolls, Heino & Chessman (2016) 

who showed a dominance of turnover processes in the dissimilarity partitioning on 

macroinvertebrates and fish subjected to intermittent flow. Beta-diversity within a flow regime 

should be low during non-drought phases for taxa that are strong dispersers because environmental 

conditions are not harsh and organisms experience favourable high hydrological connectivity 

between sites (Thomaz et al., 2007; Larned et al., 2010). Conversely, the turnover component of 

dissimilarity increases with increasing intermittency (McAbendroth et al., 2005; Soininen, 2008). 

This pattern is furtherly strengthened by the higher number of idiosyncratic species in fragmented 

sites than in lentic sites. Similar results were obtained by Tornés & Ruhì (2013), who observed a 

higher percentage of idiosyncratic species in temporary streams compared to permanent ones in a 

Mediterranean basin. Since the turnover component becomes dominant with the progression of 

drought, we can hypothesize that resistance rather than resilience is the principal mechanism of 

survival in these highly disturbed systems (Ledger et al., 2008; Datry et al., 2014; Acuña et al., 

2015). 
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In Mediterranean regions, stream drying is a natural part of the hydrological cycle, thus stream biota 

possess attributes adapted to tolerate or escape dry conditions (Bonada & Resh, 2013). These 

attributes can include species traits, i.e. characterizing organisms in terms of their multiple 

biological attributes (physiological, morphological, biochemical, structural, phenological, 

behavioral) (Violle et al., 2007), as well as aspects of their realized niche, such as environment 

experienced over the geographic range or position in the trophic web (Bowler et al., 2015). For 

diatoms, our results demonstrated how the niche width of species better explains their idiosyncrasy 

than biological traits, since idiosyncratic species are more generalists than the nested ones (Tornés 

& Ruhì, 2013). While for macroinvertebrates drought selects adapted traits (Robson, Chester & 

Austin, 2011), diatom communities seem more shaped based on their ecological tolerance (Boix et 

al., 2010). The main reason could be that they are directly influenced by nutrient availability and 

water quality (Tornés et al., 2007), which are in turn altered by hydrological intermittency (Gasith 

& Resh, 1999; Lake, 2003). 

 

CONCLUSIONS 

Overall, our results emphasize how the dispersal limitation may play a role in determining diatom 

species composition, but then species success is driven by an environmental filtering processes 

acting on species autecology (Tornés & Ruhì, 2013; Viktória et al., 2014). Moreover, our results 

suggest that coupling evaluations of diversity patterns, i.e. dissimilarity and functional responses, 

may help in disentangling the selective mechanisms exerted by droughts in Mediterranean streams 

on benthic diatoms. A better understanding of these mechanisms may give a comprehensive view of 

the potential effects on biotic communities of flow intermittency, which is expected to increase in a 

future climate change scenario. Given that biomonitoring of water quality in Mediterranean streams 

is still challenging (Dallas, 2013), a better definition of the autecology of diatom species in 

Mediterranean streams could represent a key aspect for a proper quality classification of this stream 

typology. 
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Supplementary information 

Table S1: List of diatom species identified with their relative values of niche width and life-history 

traits.  
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Table 1. Results of the pure environmental model (E|S) and the pure spatial model (S|E) obtained 

from the partial RDA applied to the abundance (a) and the presence/absence (b) matrices (DF = 

Degrees of Freedom, Adj-R2 = adjusted R2). 

(a) ABUNDANCE 

MATRIX 

DF Adj-R
2
 Variance F P 

Environmental model (E|S) 8 0.1010 0.0668 4.459 0.001 

Spatial model (S|E) 11 0.0441 0.0435 2.112 0.001 

Residual 220 0.8330 0.4120   

(b) PRESENCE 

MATRIX 

DF Adj-R
2
 Variance F P 

Environmental model (E|S) 9 0.0776 0.0658 3.825 0.001 

Spatial model (S|E) 

Residual 

13 

217 

0.1497 0.1202 4.842 0.001 

0.6895 0.4145   
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Table 2. Loadings of each environmental variable to PCA components. 

 

 Axis 1 Axis 2 Axis 3 

Flow velocity    

Water depth -0.982   

Conductivity  -0.705 -0.649 

O2 Saturation  0.425 -0.215 

Dissolved Oxygen  0.296 -0.159 

Temperature  -0.125  

pH    

Sampling section 0.176 -0.133  

Sampling date  -0.401 0.609 

Isolation  -0.195 0.137 
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Table 3. Results of the test of the response of dBC (total Bray-Curtis dissimilarity), dBC-bal (balanced 

variation in species abundance), dBC-gra (abundance gradient), T_samples (temperature value for 

each sample) and %idiosyncratic (percentage of idiosyncratic species in each sample) towards the 

three selected PCA axes. Significant results are highlighted in bold. 

 Variable PCA axis Estimate SE t P 

dBC-bray 

axis 1 0.011 0.015 0.723 0.47 

axis 2 -0.033 0.032 -1.032 0.303 

axis 3 0.261 0.039 6.693 < 0.001 

dBC-bal 

axis 1 0.010 0.015 0.638 0.525 

axis 2 -0.042 0.033 -1.280 0.202 

axis 3 0.261 0.040 6.562 < 0.001 

dBC-gra 

axis 1 0.001 0.001 0.538 0.591 

axis 2 0.002 0.002 0.175 0.241 

axis 3 -0.007 0.002 -3.102 0.002 

T_samples 

axis 1 0.173 0.066 2.605 0.010 

axis 2 0.174 0.175 0.990 0.323 

axis 3 2.251 0.216 10.40 < 0.001 

% idiosyncratic 

axis 1 -0.002 0.007 -0.376 0.707 

axis 2 -0.028 0.012 -2.337 0.020 

axis 3 -0.022 0.015 -1.506 0.134 
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Table 4. Results of the test for the response in the species temperature (T_species) towards niche 

width (Tol), species mobility (mobile), production of stalks (stalk), creation of colonies (colonial), 

creation of tube-forming colonies (tube), biovolume classes (biovolume) and degree of aerophily 

(aerophily) across the range of the species. Significant values are highlighted in bold. 

Category Variable Estimate SE t P 

Autecology Tol 0.2240 0.0977 2.292 0.023 

Species 

traits 

Mobile 0.3030 0.1986 1.525 0.129 

Stalk 0.2255 0.2127 1.060 0.291 

Colonial 0.0188 0.2014 0.093 0.926 

Tube -0.0242 0.3818 -0.063 0.950 

Biovolume -0.0511 0.0607 -0.842 0.401 

Aerophily -0.0937 0.0574 -1.631 0.105 
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Figure captions 

Figure 1. Map of the five study streams and relative sampling sections (triangles = lentic sections, 

LSs; circles = fragmented sections, FSs). 

Figure 2. Predicted values and confidence intervals (95%) for dependent variables in relation to 

PCA axes resulted significant from statistical models: (a) dBC (total Bray-Curtis dissimilarity) vs 

PCA axis 3; (b) dBC-bal (balanced variation in species abundance) vs PCA axis 3; (c) dBC-gra 

(abundance gradient) vs PCA axis 3; (d) T_samples vs PCA axis 1; (e) T_samples vs PCA axis 3; 

(f) %idiosyncratic in relation to PCA axis 2. 
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Figure 1. Map of the five study streams and relative sampling sections (triangles = lentic sections, LSs; 
circles = fragmented sections, FSs).  
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Figure 2. Predicted values and confidence intervals (95%) for dependent variables in relation to PCA axes 
resulted significant from statistical models: (a) dBC (total Bray-Curtis dissimilarity) vs PCA axis 3; (b) dBC-
bal (balanced variation in species abundance) vs PCA axis 3; (c) dBC-gra (abundance gradient) vs PCA axis 
3; (d) T_samples vs PCA axis 1; (e) T_samples vs PCA axis 3; (f) %idiosyncratic in relation to PCA axis 2.  
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Table S1. List of diatom species identified with their relative values of tolerance (tol), life-forms (motile: 0 = not motile species, 1 = motile species; 

stalk: 0 = not stalked species, 1 = stalked species; colonial: 0 = non-colonial species, 1 = colonial species; tube: 0 = not tube-forming species, 1 = 

tube-forming species), aerophily (1 = never, or only very rarely, occurring outside water bodies, 2 = mainly occurring in water bodies, sometimes in 

wet places, 3 = mainly occurring in water bodies, also rather regularly on wet and moist places, 4 = mainly occurring on wet and moist, or 

temporarily dry places, 5 = nearly exclusively occurring outside water bodies), biovolume and nestedness temperature (T_species) 

Species tol motile stalk colonial tube aerophily biovolume T_species 

Achnanthidium affine (Grun) Czarnecki  9.9 0 0 0 0 0 163 15.31 

Achnanthidium lineare W.Smith                                    9.2 0 0 0 0 0 46 33.91 

Achnanthidium atomoides Monnier, Lange-Bertalot & 
Ector          

6.5 0 0 0 0 0 34 12.1 

Achnanthidium catenatum (Bily & Marvan) Lange-Bertalot                                9.6 0 0 1 0 0 62 4.36 

Achnanthidium eutrophilum (Lange-Bertalot)Lange-
Bertalot         

15.7 0 0 0 0 3 72 51.35 

Achnanthidium gracillimum (Meister)Lange-Bertalot               19.1 0 0 0 0 0 97 13.05 

Achnanthidium jackii Rabenhorst  4.6 0 0 0 0 0 72 10.3 

Achnanthidium latecephalum Kobayasi 0.4 0 0 0 0 0 96 8.4 

Achnanthidium minutissimum (Kützing) Czarnecki  19.8 0 0 0 0 3 76 0 

Achnanthidium delmontii Peres, Le Cohu et Barthes                    6.4 0 0 0 0 0 NA 30.32 

Adlafia minuscula (Grunow) Lange-Bertalot  9.7 0 0 0 0 4 64 14.98 

Achnanthidium minutissimum (Kütz.) Czarnecki abnormal 
form 

24.7 0 0 0 0 3 76 36.52 

Achnanthidium pyrenaicum (Hustedt) Kobayasi abnormal 
form 

10.2 0 0 0 0 0 106 43.45 

Achnanthidium pyrenaicum (Hustedt) Kobayasi  14.3 0 0 0 0 0 106 7.61 

Achnanthidium straubianum (Lange-Bertalot)Lange-
Bertalot         

11.3 0 0 0 0 3 36 25.84 

Achnanthidium subatomus (Hustedt) Lange-Bertalot                8.9 0 0 0 0 0 61 3.71 

Achnanthidium subatomus (Hustedt) Lange-Bertalot 
abnormal form  

7.2 0 0 0 0 0 61 3.18 

Achnanthidium thienemannii (Hustedt) Lange-Bertalot             4.9 0 0 0 0 0 87 7.52 

Amphora ovalis (Kützing) Kützing var.ovalis                      16.1 0 0 0 0 1 52858 6.72 
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Amphora pediculus (Kützing) Grunow abnormal form 7.9 0 0 0 0 3 72 3.93 

Amphora pediculus (Kützing) Grunow  12.3 0 0 0 0 3 72 3.15 

Amphipleura pellucida Kützing  0.5 0 0 1 0 2 3454 1.79 

Brachysira neoexilis Lange-Bertalot 6.9 0 0 0 0 2 115 10.76 

Cymbella excisa Kützing var. excisa  8.6 0 1 0 0 2 520 20.22 

Cymbella affinis Kützing var.affinis  8.5 0 1 0 0 2 520 35.7 

Cymbella affinis Kützing abnormal form 0.3 0 1 0 0 2 520 5.29 

Cymbopleura amphicephala Krammer 3.8 0 0 1 0 3 695 0.31 

Cyclotella distinguenda var.distinguenda Hustedt  9 0 0 0 0 1 990 2.24 

Cymbella excisa Kützing var. excisa abnormal form 1.7 0 1 0 0 2 520 1.97 

Cocconeis euglypta Ehrenberg emend Romero & Jahn  18.4 0 0 0 0 2 2533 38.92 

Cymbella excisiformis Krammer var.excisiformis  10.4 0 1 0 0 0 663 23.91 

Cymbella hustedtii Krasske var.hustedtii                              2.5 0 1 0 0 3 298 10.72 

Cymbella laevis Naegeli in Kützing var.laevis 19.4 0 1 0 0 0 145 2.33 

Caloneis lancettula (Schulz) Lange-Bertalot & Witkowski  22.1 1 0 0 0 0 626 22.7 

Cocconeis lineata Ehrenberg  9.8 0 0 0 0 0 2871 34.97 

Cymbella lancettula (Krammer) Krammer  2.3 0 1 0 0 0 193 1.58 

Cyclotella meneghiniana Kützing  11.4 0 0 0 0 2 1356 11.67 

Cymbella neoleptoceros Krammer var. neoleptoceros 0.1 0 1 0 0 0 848 1.69 

Cocconeis pseudolineata (Geitler) Lange-Bertalot   1.8 0 0 0 0 0 1223 24.75 

Cymbella parva (W.Sm.) Kirchner in Cohn  6.6 0 1 0 0 0 234 24.02 

Cocconeis pediculus Ehrenberg  10.1 0 0 0 0 1 2281 37.2 

Cocconeis placentula Ehrenberg var. placentula  9 0 0 0 0 2 2963 5.67 

Cymbella perparva Krammer  1.1 0 1 0 0 0 227 1.53 

Cocconeis placentula Ehrenberg f. anormale  5.8 0 0 0 0 2 2963 16.54 

Cymbella subtruncata Krammer var.subtruncata  12 0 1 0 0 0 316 46.54 

Cymbella tropica Krammer var. tropica Krammer  2.2 0 1 0 0 0 1023 13.13 

Cymbella tumida (Brebisson) Van Heurck 4.4 0 1 0 0 1 6291 13.83 

Cymbella tumida (Brebisson) Van Heurck abnormal form 0.5 0 1 0 0 1 6291 1 

Cymbella vulgata Krammer var.vulgata Krammer  11.9 0 1 0 0 0 388 4.03 
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Diadesmis confervacea Kützing var. confervacea                       5.6 0 0 1 0 3 416 4.97 

Diadesmis contenta (Grunow ex V. Heurck) Mann 1.1 0 0 1 0 4 129 1.74 

Diatoma ehrenbergii Kützing 13.6 0 0 1 0 1 2064 43.72 

Diatoma ehrenbergii Kützing abnormal form 3.7 0 0 1 0 1 2064 7.71 

Didymosphenia geminata (Lyng.)Schmidt morphotyp 
geminata Metzelt 

6.8 0 1 1 0 0 10200 14.83 

Denticula kuetzingii Grunow var.kuetzingii   12.9 1 0 0 0 3 337 54.63 

Diatoma moniliformis Kützing 14 0 0 1 0 0 303 59.76 

Diatoma moniliformis Kützing abnormal form 2.5 0 0 1 0 0 303 2.48 

Diploneis parma Cleve sensu Krammer & Lange-Bertalot 0.1 0 0 0 0 0 1442 0.72 

Diploneis separanda Lange-Bertalot 1 0 0 0 0 0 274 5.71 

Denticula tenuis Kützing 5.7 1 0 0 0 3 337 50.14 

Diatoma vulgaris Bory 17.5 0 0 1 0 1 3033 31.71 

Diatoma vulgaris Bory abnormal form 16.2 0 0 1 0 1 3033 6.13 

Encyonema caespitosum Kützing var.caespitosum 9.3 0 0 1 1 0 751 32.75 

Encyonopsis cesatii (Rabenhorst) Krammer  28.1 0 0 0 0 3 679 15.53 

Encyonopsis microcephala (Grunow) Krammer abnormal 
form 

0.1 0 0 0 0 3 60 6.34 

Encyonopsis minuta Krammer & Reichardt 18 0 0 0 0 0 304 15.41 

Encyonema lange-bertalotii Krammer morphotype 1 1.7 0 0 1 1 0 1094 1.65 

Encyonema minutum (Hilse in Rabh.) D.G. Mann in Round 
Crawford & 

15.6 0 0 1 1 0 213 39.69 

Encyonema minutum (Hilse in Rabh.) D.G. Mann abnormal 
form 

1.2 0 0 1 1 0 213 2.5 

Encyonema ventricosum (Agardh) Grunow in Schmidt & 
al.  

16.6 0 0 1 1 0 185 60.94 

Eolimna minima (Grunow) Lange-Bertalot  12.7 1 0 0 0 3 88 32.84 

Eolimna minima (Grunow) Lange-Bertalot abnormal form 17.9 1 0 0 0 3 88 10.68 

Encyonema prostratum (Berkeley) Kützing 0.4 0 0 1 1 1 8278 2.27 

Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann 
abnormal form 

4.3 0 0 1 1 1 821 1.14 
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Encyonema silesiacum (Bleisch in Rabh.) D.G. Mann               13.5 0 0 1 1 1 821 20.92 

Encyonopsis subminuta Krammer & Reichardt  11 0 0 0 0 0 62 43.14 

Eucocconeis flexella (Kützing) Meister  27.4 0 0 0 0 3 6052 11.4 

Eucocconeis laevis (Oestrup) Lange-Bertalot 15.6 0 0 0 0 3 392 16.33 

EUNOTIA C.G. Ehrenberg  25.2 0 0 1 0 0 417 3.18 

Fragilaria alpestris Krasske ex Hustedt 4 0 0 1 0 4 233 5.48 

Fragilaria amphicephaloides Lange-Bertalot in Hofmann 
& al.  

0.8 0 0 1 0 0 NA 2.27 

Fragilaria arcus (Ehrenberg) Cleve var. arcus  1.7 0 0 1 0 3 1462 3.75 

Fragilaria austriaca (Grunow) Lange-Bertalot 13.4 0 0 1 0 0 240 9.95 

Fragilaria capucina Desmazieres abnormal form 11.7 0 0 1 0 0 233 4.83 

Fragilaria capucina Desm.var.capitellata (Grunow) 
Lange-Bertalot abnormal form 

6.3 0 0 1 0 0 149 4.73 

Fragilaria capucina var.vaucheriae(Kütz.)Lange-Bertalot 
abnormal form 

3.5 0 0 1 0 3 294 1.27 

Fragilaria delicatissima (W.Smith) Lange-Bertalot 3.4 0 0 1 0 1 244 3.08 

Fragilaria gracilis Østrup 7.8 0 0 1 0 0 92 6.24 

Fragilaria mesolepta Rabenhorst 10.7 0 0 1 0 0 294 10.42 

Fistulifera pelliculosa (Brebisson) Lange-Bertalot  3 1 0 0 0 0 59 4.92 

Fragilaria perminuta (Grunow) Lange-Bertalot  14.1 0 0 1 0 0 89 38.22 

Fragilaria pararumpens Lange-Bertalot, Hofmann & 
Werum in Hofmann & al. 

2 0 0 1 0 0 NA 17.21 

Fragilaria recapitellata Lange-Bertalot & Metzeltin  5 0 0 1 0 0 233 55.5 

Fragilaria rumpens (Kütz.) G.W.F.Carlson  9.1 0 0 1 0 0 233 29.89 

Fragilaria capucina var. rumpens (Kütz)Lange-Bert.ex 
Bukht. abnormal form 

12.8 0 0 1 0 0 233 11 

Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-
Bertalot 

17.1 1 0 0 0 3 18 22.72 

Fragilaria vaucheriae (Kützing) Petersen 11.5 0 0 1 0 3 294 7.16 

Geissleria acceptata (Hust.) Lange-Bertalot & Metzeltin         10.2 1 0 0 0 4 112 5.65 

Gomphonema acuminatum Ehrenberg 1.2 0 1 1 0 2 1860 10.54 
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Gomphonema angustum Agardh  4.3 0 1 0 0 0 1301 7.01 

Gomphonema capitatum Ehr.  13.3 0 1 1 0 0 1150 9.94 

Gomphonema cymbelliclinum Reichardt & Lange-Bertalot  15.7 0 1 0 0 0 289 23.42 

Gomphonema elegantissimum Reichardt & Lange-Bertalot 
in Hofmann 

8.1 0 1 0 0 0 360 27.43 

Gomphonema gracile Ehrenberg  2.4 0 1 0 0 3 1095 4.74 

Gomphonema italicum Kützing  6.9 0 1 1 0 0 1243 31.14 

Gomphonema lateripunctatum Reichardt & Lange-Bertalot 16.2 0 1 0 0 3 1034 37.18 

Gomphonema micropus Kützing var. micropus 11.2 0 1 0 0 3 855 33.12 

Gomphonema minutum(Ag.)Agardh f. minutum 5.3 0 1 1 0 0 318 28.28 

Gomphonema olivaceum (Hornemann) Brébisson var. 
olivaceum 

6.2 0 1 1 0 1 510 41.26 

GOMPHONEMA C.G. Ehrenberg  5.6 0 1 1 0 0 510 4.76 

Gomphonema parvulum (Kützing) Kützing var. parvulum 
f. parvulum  

17.2 0 1 0 0 3 331 44.21 

Gomphonema pumilum var. rigidum Reichardt & Lange-
Bertalot 

5.9 0 1 0 0 0 270 4.08 

Gomphonema pumilum (Grunow) Reichardt & Lange-
Bertalot  

3.9 0 1 0 0 0 270 43.76 

Gomphonema rhombicum Fricke  19.1 0 1 0 0 0 1800 3.74 

Gomphonema tergestinum (Grunow in Van Heurck) 
Schmidt in Schmidt 

12.5 0 1 0 0 3 673 3.74 

Gomphonema tenoccultum Reichardt 5.2 0 1 0 0 0 NA 1.37 

Gomphonema vidalii Beltrami & Ector 3.6 0 1 0 0 0 NA 2.33 

Halamphora montana (Krasske) Levkov  6.9 0 0 0 0 4 664 4.5 

Hippodonta pseudacceptata (Kobayasi) Lange-Bertalot 
Metzeltin &  

0.8 1 0 0 0 0 NA 1.96 

Halamphora veneta (Kützing) Levkov  36.4 0 0 0 0 3 3543 0.29 

Karayevia clevei (Grunow) Bukhtiyarova var.clevei  1.8 0 0 0 0 1 485 1.97 

Meridion circulare (Greville) C.A.Agardh var. circulare  6 0 0 1 0 1 671 13.59 

Mayamaea permitis (Hustedt) Bruder & Medlin  13.2 1 0 0 0 3 66 24.77 

Melosira varians Agardh  17.4 0 0 1 0 2 3267 29.97 
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Nitzschia acicularis(Kützing) W.M.Smith 8.9 1 0 0 0 1 289 3.5 

Nitzschia amphibia Grunow f.amphibia 8.9 1 0 0 0 3 334 20.93 

Navicula antonii Lange-Bertalot 12.4 1 0 0 0 0 434 63.45 

Nitzschia amphibia Grunow abnormal form 8.8 1 0 0 0 3 434 2.05 

Navicula capitatoradiata Germain 12.1 1 0 0 0 1 705 41.51 

Navicula cryptocephala Kützing 6.3 1 0 0 0 2 431 46.23 

Navicula cryptotenella Lange-Bertalot  11.1 1 0 0 0 2 386 15.46 

Navicula cryptotenelloides Lange-Bertalot  15.4 1 0 0 0 0 100 43.16 

Navicula caterva Hohn & Hellerman  17.5 1 0 0 0 2 145 11.69 

Nitzschia dissipata (Kützing) Grunow ssp. dissipata  18.8 1 0 0 0 3 625 19.05 

Nitzschia dissipata (Kützing) Grunow abnormal form 0.5 1 0 0 0 1 1339 4.69 

Nitzschia fonticola Grunow in Van Heurck  17.9 1 0 0 0 1 344 26.35 

Nitzschia fonticola Grunow in Cleve et Möller abnormal 
form 

18.6 1 0 0 0 1 344 9.21 

Nitzschia gessneri Hustedt 3.6 1 0 0 0 0 490 19.03 

Navicula gregaria Donkin  22.1 1 0 0 0 3 485 18.72 

Nitzschia heufleriana Grunow  9.5 1 0 0 0 0 1771 4.98 

Nitzschia archibaldii Lange-Bertalot  15.8 1 0 0 0 0 169 38.88 

Nitzschia lacuum Lange-Bertalot  10.5 1 0 0 0 0 35 21.27 

Nitzschia inconspicua Grunow  7.5 1 0 0 0 3 89 37.13 

Nitzschia perminuta (Grunow) M.Peragallo 9.6 1 0 0 0 3 107 17.19 

NITZSCHIA abnormal form 9.3 1 0 0 0 0 89 2.04 

Nitzschia linearis (Agardh) W.M.Smith var.linearis  20.2 1 0 0 0 3 1624 24.55 

Navicula lundii Reichardt 4.6 1 0 0 0 3 188 3.74 

Nitzschia microcephala Grunow in Cleve & Moller  12.3 1 0 0 0 1 93 8.68 

Navicula novaesiberica Lange-Bertalot  1.2 1 0 0 0 2 869 6.36 

Nitzschia palea (Kützing) W.Smith var. debilis (Kützing) 
Grunow in  

10.6 1 0 0 0 3 235 30.53 

Nitzschia paleacea (Grunow) Grunow 7.6 1 0 0 0 3 391 27.93 

Navicula radiosa Kützing  21.9 1 0 0 0 3 1852 11.09 
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Navicula reichardtiana Lange-Bertalot var. reichardtiana        10.6 1 0 0 0 0 176 26.71 

Nitzschia recta Hantzsch in Rabenhorst                           0.8 1 0 0 0 1 871 6.43 

Navicula subalpina Reichardt  4.8 1 0 0 0 0 364 3.41 

Nitzschia solgensis Cleve-Euler  0.1 1 0 0 0 4 259 0.7 

Navicula splendicula Van Landingham  20 1 0 0 0 0 1161 7.28 

Nitzschia tabellaria (Grunow) Grunow in Cl. & Grunow  3 1 0 0 0 3 289 14.96 

Navicula tripunctata (O.F.Müller) Bory  13.6 1 0 0 0 3 966 60.41 

Navicula trivialis Lange-Bertalot var. trivialis  36.5 1 0 0 0 3 1097 1.99 

Navicula veneta Kützing  16.4 1 0 0 0 3 279 19.84 

Nitzschia costei Tudesque, Rimet & Ector  1.2 1 0 0 0 0 170 6.72 

Nitzschia inconspicua Grunow abnormal form 8.8 1 0 0 0 3 89 2.12 

Planothidium frequentissimum(Lange-Bertalot)Lange-
Bertalot  

14.6 0 0 0 0 0 219 28.1 

Pseudostaurosira brevistriata (Grun.in Van Heurck) 
Williams & Round 

6.6 0 0 1 0 2 157 7 

Planothidium lanceolatum(Brebisson ex Kützing) Lange-
Bertalot    

7.8 0 0 0 0 3 475 20.8 

Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot              6.2 0 1 1 0 2 568 15.83 

Rhopalodia gibba (Ehr.) O.Muller 2.4 1 0 0 0 3 185472 0.38 

Reimeria sinuata (Gregory) Kociolek & Stoermer  9.1 0 1 0 0 3 406 14.7 

Reimeria uniseriata Sala Guerrero & Ferrario  12.7 0 1 0 0 0 456 29.02 

Synedra acus Kützing  14.8 0 0 1 0 0 467 21.57 

Stenopterobia anceps (Lewis) Breb. ex V. Heurck 
ssp.gigantea Metzelti 

0 1 0 1 0 0 NA 3.04 

Surirella angusta Kützing 3 1 0 0 0 3 1315 5.43 

Surirella brebissonii var.kuetzingii Krammer et Lange-
Bertalot 

0.8 1 0 0 0 3 1347 2.09 

Staurosira binodis Lange-Bertalot in Hofmann Werum & 
Lange-Bertalot 

10.2 0 0 1 0 2 166 7.11 

Sellaphora bacillum (Ehrenberg) D.G.Mann 9.9 1 0 0 0 2 2129 8.12 

Simonsenia delognei Lange-Bertalot 8.5 1 0 0 0 3 53 3.93 
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Sellaphora pupula (Kützing) Mereschkowksy  4.1 1 0 0 0 2 1183 17.05 

Sellaphora seminulum (Grunow) D.G. Mann 4.2 1 0 0 0 3 69 6.29 

Sellaphora stroemii (Hustedt) Kobayasi in Mayama Idei 
Osada & Nagumo 

9.4 1 0 0 0 4 83 17.11 

Staurosira venter (Ehr.) Cleve & Moeller  3.9 0 0 1 0 1 315 7.3 

Sellaphora ventraloides (Hustedt) Falasco & Ector 4.5 1 0 0 0 0 NA 1.79 

Ulnaria biceps (Kützing) Compère  17 0 0 1 0 0 12752 31.52 

Ulnaria ulna (Nitzsch.) Compère  15 0 0 1 0 2 4724 15.51 

Ulnaria ulna (Nitzsch.) Compère abnormal form 10.7 0 0 1 0 2 4724 4.55 
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