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ABSTRACT 

Optimization of dry adhesion in biological organisms is achieved using 

various strategies at different scale levels. In the past, studies have shown how 

contact splitting is used effectively by animals such as geckos and insects to 

increase the total peeling line of contacts and therefore adhesion force. Also, 

tapering of contacts or grading of their mechanical properties has been shown 

to be instrumental in the achievement of improved adhesion efficiency. On a 

more macroscopic scale, structures such as spider web anchorages exploit 

hierarchical structure or nonlinear constitutive material properties to improve 

resilience and to achieve tunability in adhesion/detachment characteristics. 

Here, we analyse some of these properties and propose some mechanisms for 

the optimization of adhesion that have thus far been neglected in modelling 

approaches, and could be potentially exploited for the design of bioinspired 

adhesives. We consider hierarchical structure, contact tapering, and 

grading of mechanical properties, and their interaction. It emerges that these 

mechanisms contribute on various size scales in achieving optimal adhesive 

properties through structural complexity and hierarchical organization. 

 
Keywords: Adhesion, modelling, multiple peeling, bioinspired, gecko 

adhesion, spider web anchorages, contact splitting, contact tapering, Kendall 

theory, Griffith energy balance, thin film peeling, tunability, hierarchical 

structure, peeling line, peeling force, stress concentrations, Finite Element 

Analysis, grading, fibrillar structures, peeling angle. 
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1. INTRODUCTION 

Natural structural materials have been widely used as a source of 

inspiration for advanced materials, due to their outstanding mechanical 

properties. This applies to the field of adhesives [1], where notable examples 

are fibrillar structures such as those found in gecko toe pads or in insects 

[2,3]. Another interesting example is that of spider web attachment discs, in 

which different types of spider silk threads and hierarchical branching are 

employed to tune adhesion for specific applications [4-6]. In all of these 

examples, material properties and structure concur in determining adhesive 

functionality. As for many natural materials, hierarchical structures are 

observed in many cases (“hierarchical branching”), and it is thought that these 

are essential in determining optimal adaptation to the surface, load 

redistribution without self-bunching and possibly tunability in adhesive 

properties [7]. This hierarchical branching allows so-called “contact 

splitting”, whereby larger contacts are split into smaller ones (fibrils), with 

benefits deriving from fibril deformation, adaptability to rough surfaces, size 

effects due to surface-to-volume ratio, uniformity of stress distributions [8]. 

Contact splitting also contributes to increasing the so-called “peeling line”, 

i.e. the sum of the contact tape widths, also increasing adhesion [7]. 

Additionally, it has been shown that in biological structures adhesion can be 

optimized by variable contact unit geometry [9] and spatial variation of 

mechanical properties, e.g. in the tarsal setae of the ladybird beetle, allowing 

it to achieve adaptation to rough surfaces while simultaneously ensuring 

sufficient stability [10]. These concepts are illustrated in Fig. 1, highlighting 

the multiscale nature of these mechanisms. 

Artificial dry adhesives mimicking natural systems have recently been 

introduced [11]. For example, creating pillar (or mushroom)-shaped patterns 

at micro (and nano) scale has allowed to successfully activate adhesion based 

on Van Der Waals interactions. The first artificial “mushroom-tape” or “gecko 

tape” are based on a punch-like structure [12,13], which is designed to provide 

an adhesive force normal to the substrate. The optimization of these structures 

in terms of adhesive strength has been attempted using contact mechanics 

models [14]. As the size of the contact tip decreases, the models predict an 

unlimited increase in adhesive strength. Using nanoscale contact units, the 

adhesive strength tends to the theoretical strength of the Van der Waals 

interaction. On the other hand, most natural designs are based on a tape-like 

geometry, which can be described using Kendall’s “single peeling” theory 

[15] developed in the 1970ies, and recently extended to “multiple peeling” 

cases [16,17] and applied to complex geometries [18]. Tape-like structures 

were also introduced in artificial adhesives in order to optimize the shear mode 

adhesion of bioinspired tapes [19,20]. The study of how nature organizes these 
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basic constitutive units could lead to further optimization in the field of 

bioinspired adhesives. In this respect, introducing hierarchical structures 

instead of using regular patterns is the new challenge [21,22]. To design 

optimal solutions, adequate modelling of all mechanical mechanisms is 

required, and thus reliable analytical/numerical approaches need to be 

developed [23,24]. 

In this work, we analytically and numerically analyse various mechanisms 

that can contribute to improvement of adhesion at different scale levels, at 

present observed experimentally in the literature but not fully explained 

theoretically. These include the creation of favourable delamination stress 

distributions thanks to spatial stiffness variation of the fibrillar elements and 

increasing the peeling line and adhesion force through contact tapering, i.e. 

width or thickness variations along the pad length, and hierarchical 

organization of multiple peeling geometries. The study is performed through 

energy-based analytic calculations and stress distributions analysis. Finite 

Element Method (FEM) numerical simulations and their multiscale 

interaction in complex hierarchical multiple peeling geometries are finally 

discussed. 

 

 

Figure 7-1: Multiscale mechanisms contributing to fibrillar adhesion: contact splitting, 

hierarchical branching, contact unit properties (i.e. tapering or grading of mechanical 

properties) (from [25,26] ). 
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2. SINGLE AND MULTIPLE PEELING THEORIES 

APPLIED TO ATTACHMENT STRUCTURES 

Adhesion problems in biological structures can usually be investigated by 

resorting to thin film peeling theories [15,16], due to the typical tape-like 

shape of the terminal contact units observed in systems such as gecko spatulae, 

insect setae, spider attachment discs, mussel adhesive plaques, etc. These 

typically involve multiple contact units, so that the detachment of adhesive 

biological structures must be treated as a multiple peeling problem. In this 

type of formulation, Griffith energy balance is used to determine whether 

the k-th tape of a structure delaminates or not: 

 

−𝜕𝛱/𝜕𝑙𝑘 = 2𝛾𝑘𝑤𝑘           (1) 

 

where Π is the potential energy, given as the difference between the elastic 

energy E and the external work W, i.e. Π = E - W, γ is the surface energy 

between tape and surface, wk the tape width and lk its length. For a thin film 

(i.e., neglecting the bending stiffness), the variation of external work ∆𝑊 can 

be expressed as: 

 

∆𝑊 = 𝐹∆𝜂             (2) 

 

Where F is the applied force and ∆𝜂 the increment in displacement. The 

elastic energy variation can be calculated as: 

 

∆𝐸 =
1

2
∑ 𝑌𝑘𝑏𝑘

𝑁
𝑘=1 𝑤𝑘(𝑙𝑘′𝜀′𝑘

2 − 𝑙𝑘𝜀𝑘²)       (3) 

 

where Yk is the k-th tape elastic modulus, bk its thickness, wk its width and 

εk\ its strain. lk’ and εk’ correspond to the length and the strain in the 

delaminated configuration (see Fig. 2a) . For a single tape (Fig. 2b), the force 

necessary to peel the film from a substrate can be analytically obtained[15]: 

 

𝑇(1 − 𝑐𝑜𝑠 𝜃) +
𝑇2

2𝑏𝑤𝑌
− 2𝛾𝑤 = 0         (4) 

 

where T is the tape tension, θ is the tape angle with respect to the substrate, 

and the subscript k has been dropped for simplicity. This leads to: 

 

𝑇 = 𝑤𝑏𝑌 (cos 𝜃 − 1 + √(1 − cos 𝜃)2 +
4𝛾

𝑏𝑌
)     (5) 
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which highlights the proportionality of the peeling force with the tape width 

w. This geometrical parameter is linked to the width of the peeling line, i.e. 

the line along which delamination occurs. As discussed in [7], a well-known 

strategy adopted by biological attachments systems consists in increasing the 

length of peeling line by simply splitting the contacts. This result is illustrated 

by the log relationship between the body mass and the sum of the peeling lines 

in animal fibrillar attachment structures [7]. 

In the case of multiple peeling problems, we first consider symmetrical 

double peeling, as shown in Fig. 2c, since asymmetrical cases can be treated 

as combined single peeling problems [18]. The applied force is the 

decomposition of the tape tensions, which leads to: 

 

𝐹 = 2 𝑇 𝑠𝑖𝑛 𝜃            (6) 

 

so that at delamination (F = F*, : 
 

𝐹∗ = 2𝑤𝑏𝑌 𝑠𝑖𝑛 𝜃∗ [𝑐𝑜𝑠 𝜃∗ − 1 + √(1 − 𝑐𝑜𝑠 𝜃∗)2 +
4𝛾

𝑏𝑌
]    (7) 

 

In this case, the angle between the tapes and the substrate changes with the 

tape elastic deformation. Solving Eq. (7), one finds that an optimal peeling 

angle exists at which the peeling force is maximal. For angles below and above 

this value, the peeling force decreases. However, in Eq. (7) the peeling force 

is expressed as a function of the delamination (or “peeling”) angle 𝜃∗, so that 

peeling angle values below the optimal value correspond to negative 

“undeformed” initial angles θ0, which is physically meaningless. The tape 

tension can be expressed from the tape strain as 𝑙(1 + 𝜀) cos 𝜃 = 𝑙 cos 𝜃0, so 

that: 

 

𝑇 = 𝑏𝑤𝑌𝜀 = 𝑏𝑤𝑌 (
cos 𝜃0

cos 𝜃
− 1)         (8) 

 

while the external load applied to the system is given by Eq. (6). 

Considering as an example a tape with properties Yk = 1000 MPa, bk = 1 µm, 

wk = 2 µm, γk = 0.01 MPa.µm or γk = 0.001 MPa.µm, calculations shown in 

Fig. 3a demonstrate that the peeling force F reaches a maximum when its 

intersects the peeling force F* calculated as a function of angle variation when 

the initial tape angle is 𝜃0 = 0 [18]. Indeed, the peeling force cannot be greater 

than the external load applied to the system for a given tape deformation. An 

initial undeformed angle of 𝜃0=0 degrees is therefore the optimal peeling 

angle for maximized adhesion force.  
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Figure 7-2: a) Tape angle before deformation () and at delamination () due to a 

tape tension T. b) Single peeling configuration with an applied force F (in which case . 

c) Symmetrical double peeling configuration with a vertically applied Force F: undeformed () 

and deformed (tape angle. 

 
The optimal peeling angle is a function of the global deformability of the 

system, i.e. the deformation that the system can sustain before delamination 

occurs. This property can be quantified using the non-dimensional parameter 

λ = 
4𝛾

𝑏𝑌
 representing the ratio between adhesion energy and elasticity [16]. 

From Eq. (7) and Eq. (8), it is possible to determine the optimal peeling angle 

𝜃𝑜𝑝𝑡 = 𝜃∗|𝜃0=0 at which the structure delaminates for an optimal geometry 

(𝜃0 = 0): 

 

2 cos3 𝜃𝑜𝑝𝑡 − (3 + 𝜆) cos2 𝜃𝑜𝑝𝑡 + 1 = 0      (9) 

 

The corresponding 𝜃𝑜𝑝𝑡vs. λ curve is shown in Fig 3b, showing a 

monotonically increasing nonlinear behaviour. More in general, we have: 

 

cos 𝜃0 = cos2 𝜃∗ + cos 𝜃∗ √(1 − cos 𝜃∗)2 + 𝜆     (10) 

 

Using this relation, it is possible to plot the peeling force as a function of 

the undeformed angle 𝜃0 (Fig. 3c). These results highlight the fact that in 

multiple peeling cases, delamination is dependent from the deformability of 

the system, and therefore from the type of structure and the mechanical 

properties of the attachment. 
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Figure 7-3: a) Peeling force F* as a function of deformed tape angle 𝜃, calculated with Multiple 

Peeling Theory (MPT, Eq.7), compared to the external load F applied to the system as a 

function of 𝜃 (Eq.8) for various initial angles. The 𝜃0 = 0 curve is the one that intersects the 

MPT curve for maximal peeling force values. b) Optimal peeling angle 𝜃𝑜𝑝𝑡 for symmetric 

double peeling as a function of the ratio between adhesion energy and elasticity of the system. 

c) Peeling force F* as a function of the initial angle 𝜃0. 
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The adhesion force of attachment structures can be deduced from planar 

multiple peeling models such as those discussed above. One example are so-

called “dendritic” geometries in spider web anchorages, which can be 

described as radial branching structures where the pyriform silk fibres 

converge to a single point at a distance from the substrate. This results in a 

cone-like morphology (Fig. 1) which is involved in spider prey capture. It has 

been shown that in order to fulfil its function, the dendritic anchorage must 

exhibit a reduced pull off force [4,27]. Due to its conical symmetry, the 

relationship between force and extension can be directly obtained from the 

symmetric double peeling configuration described above, modified by 

multiplying results by the appropriate number of tapes. Fig. 4a shows 

simulations results for dendritic attachments when varying the initial contact 

angle 𝜃0. For 𝜃0 = 𝜋/4, the system is firstly deformed without delamination, 

with a linear force-displacement relationship (Hooke’s law). Then, the tapes 

begin to delaminate and the peeling angle starts to vary, which results in an 

increase of the peeling force. This explains the elasto-plastic-like behaviour 

obtained in experimental [5] and in numerical results. The peeling force 

saturates when the peeling angle is optimal. In the case of a limited available 

delamination length, however, full delamination could be achieved before the 

optimal peeling angle, and thus before the load plateau, is reached. This would 

allow to tune the adhesive strength of the structure. For a small peeling angle 

(𝜃0 = 𝜋/16), the initial elastic deformation displays hyperelastic behaviour 

due to the geometrical non linearity of the system, but then saturates to the 

maximum peeling force as soon as delamination begins. These two cases 

illustrate how by varying the peeling angle and attached tape lengths, it is 

possible to control the properties of the anchorage, inducing linear/nonlinear 

deformation and varying detachment loads. The possibility of tuning load 

response by selecting suitable multiple peeling structures has been observed 

experimentally, e.g. in spider web anchorages [5]. In more complex loading 

scenarios, such as when applied loads are not normal to the surface, 

asymmetric deformation states are induced (as shown in Fig. 4b), and FEM 

approaches are necessary to evaluate the performance of these structures.  
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Figure 7-4: a) Force-extension curves for a dendritic anchorage, varying peeling 0 of the 

anchorage. b) Model of dendritic anchorage in an asymmetric loading scenario. 

3. HIERARCHICAL BRANCHING IN ADHESIVE 

STRUCTURES 

Adhesive fibrillar structures found in Nature display much more complex 

geometries than the double peeling problem discussed above. One example is 

the branched structure found in spider attachment discs, where a high number 

of contacts with the substrate are obtained thanks to hierarchical structure and 

branching at several levels [5,28], as illustrated in Fig. 1. To evaluate 2-D 

branched hierarchical multiple peeling configurations, FEM simulations have 

been carried out using the Structural Mechanics module of COMSOL 



7.  11 

 

Multiphysics 4.3. The interface between the tape and substrate is modelled 

adopting a Cohesive Zone Model (CZM) [29], based on a stress-softening 

constitutive law before delamination [24]. Simulation parameters are b = 10-2 

m, t = 10-3 m, Y = 3 MPa,  = 0.45 (where is the Poisson’s ratio). The 

hierarchical configurations are compared to the symmetrical double peeling 

case. A second-level hierarchical geometry is considered (“2”), where the two 

tapes branch out in a self-similar manner into two further tapes at equal 

distances from the centre. The third-level hierarchical geometry (“3”) 

replicates this to a further level. These structures are shown in Fig. 5a, with 

the corresponding calculated load-displacement curves in Fig. 5b. The three 

configurations are compared for the same peeling line, length, and thickness, 

and all three start from a fully adhered tape. It is apparent that increasing 

hierarchical branching increases contact splitting and the number of 

delamination points in the tape, thus distributing and reducing the stresses at 

the interface. This helps in avoiding stress concentrations and an early onset 

of tape delamination. On the other hand, tape deformation and internal stresses 

are generally greater. The variation in normalized adhesive properties of the 

three structures is reported in Fig 5c. There is an increase in adhesive stresses 

with hierarchy, i.e. the geometry with the highest hierarchical level achieves 

the best adhesive strength. Also, dissipated energy, which can be obtained as 

the area underlying the load-displacement curves, also increases for 2 and 3, 

showing how hierarchy favours an increase in both the strength and toughness 

of the adhesive interface. 
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Figure 7-5: Hierarchical peeling configurations: a) FEM simulation results, pictured for 

different imposed displacement δ values. 1: first level (non-hierarchical) configuration; 2: 

second-level hierarchy; 3: third-level hierarchy. Colour scale represents Von Mises stresses 

during delamination (scale bar shown on the left). b) Corresponding Load vs. displacement 

curves: the peaks in the curves correspond to full delamination of single tapes; c) Comparison 

between the normalized delamination stress and dissipated energy at delamination for the 3 

configurations. 

4. GEOMETRY AND MECHANICAL PROPERTIES 

OF CONTACT UNITS 

At a lower scale level, the peeling force of a single tape depends on the 

mechanical properties and the geometry of the contact unit itself. It is well 

known that the gecko spatulae or insect setae are not simple uniform tapes, 

but display gradients in the mechanical properties along both the width and 

the thickness of the attached length [10]. It has been shown that due to the 

concentration variation of a softener, the resilin protein, the elastic modulus 

in the adhesive tarsal setae of the ladybird beetle varies approximately from 1 

MPa to 6 GPa, with two gradients, one along the length of the setae, the other 

along its thickness, in the dorsal (in contact with the substrate) and ventral part 

of the setae [10]. This result cannot be justified simply using Kendall’s theory, 

which predicts that the peeling force increases with the elastic modulus. The 

softening has the function to increase adaptability to the surface, which leads 
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to a greater contact area, and an increase in adhesive energy. However, stress 

distributions on the contact area should also be considered to determine the 

possibility of early-stage onset of delamination in correspondence with stress 

concentrations. These effects can be captured using the stress distributions in 

the tape / interface system theoretically derived in [30]. The shear and normal 

stress ( and  distributions at the interface are: 

 

τ(x) = T cos(θ)
α

w
eαx          (11) 

 

and 

 

σ(x) = T sin(θ)
2β

w(1−K)
eβx(cos(βx) + K sin(βx))    (12) 

 

where x is the distance from the peeling line, α β and K are parameters that 

depend on geometry and mechanical properties:  

 

α = √
GI

Ytab
;      β = √

3YI

Ytab3

4

 ;      

K = 1 −
sin(θ)

√2YtIt(1−cos(θ))/T−βb/2 cos(θ)+sin(θ)
      (13) 

 

where GI and YI are the interface shear and elastic modulus, Gt and Yt the tape 

interface shear and elastic modulus, It its momentum of inertia, and a the 

interface thickness. Considering an interface of setae with fixed mechanical 

parameters, the shear stress distribution can be derived approximately using 

Eq. (11). Gradually reducing the interface stiffness allows to distribute the 

stress over a larger area and therefore to increase the adhesive strength of the 

attachment. This is shown in Fig.6a, where results are calculated using the 

same mechanical properties as in the first Section and the geometry shown in 

the inset. For the sake of simplicity, we only plot the shear stress distribution 

considering 𝜃 = 0 and applying a force T = 0.1 µN. We consider both the tape 

and interface to be isotropic, so that G=Y/2(1+ , with  Shear stress 

along the length of the adhesive area for various stiffness values of the soft 

interface YI compared to that of the elastic layer Yt are plotted in Fig. 6a. 

Results show how layer softening can have a considerable beneficial effect in 

reducing stress concentrations towards the tip of the pad, redistributing them 

more uniformly along the whole length of the interface area. For the same 

applied external force, in the considered case a 10-fold reduction can be 

obtained in the normal stresses, with an approximately equivalent increase in 

the adhesive strength of the layer. Another simple strategy to tune the adhesive 

strength is to generate tapered geometries. Indeed, most of the observed setal 
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elements in insects and geckos display a width variation over the length of the 

setae [9]. As predicted by Kendall’s model, these structures would increase 

the adhesive strength as the delamination proceeds, thanks to the increasing 

peeling line length (Fig. 6b) [7]. These broadened contact units are 

characteristic features observed not only in gecko adhesion systems [31], but 

also in those of spiders [32]. 

 

 

Figure 7-6: a) Geometry of the considered a thin elastic layer with a “ventral” soft interface and 

an applied horizontal force T. Shear stressdistributions are plotted along the length of the 

attached region for varying ratios between contact layer stiffness YI and tape stiffness Yt. Softer 

contact layers are shown to reduce stress concentrations with respect to stiffer layers. b) tapered 

geometry of terminal contact element width to increase peeling line (w w+dw) during 

delamination (image from [25]) 
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5. CONCLUSIONS 

In summary, we have reviewed how structural, geometric and mechanical 

features contribute on different scale levels to optimizing adhesion in 

biological adhesives. Many of these effects have been observed 

experimentally in the literature and discussed qualitatively, but we have 

demonstrated how they can also be derived analytically and numerically, 

based on Multiple Peeling Theory, its numerical implementation and FEM-

based simulations. These features can readily be applied to artificial adhesives, 

e.g. “mushroom”-like structured surfaces [12,33,34], using the developed 

numerical tools for structural, geometrical and mechanical optimization. The 

observed effects can contribute on different scale levels, with cumulative 

optimization of adhesive properties. For example, in the considered cases of 

branched hierarchical structures, tapering or contact softening in the terminal 

elements could provide additional multiplier effects in the enhancement of the 

adhesion force. Future studies can exploit the proposed approach to further 

elucidate in a multiscale scheme the observed strategies found in Nature for 

adhesion optimization and their interaction, and propose new structural 

designs for artificial adhesives. 
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