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Abstract: The document reports back on the experience of linking the IOSONO Wave field synthesis system for virtual sound

spatialization and the SuperCollider environment for algorithmic music composition and audio synthesis. Development of the
discussed project happened on October 18th-26th 2016 at Erich-Thienhaus-Institut (ETI), Hochschule fiir Musik Detmold,

in the framework of the Guestprofessorship “Detmold Residence for Sound, Image & Space Design”, and was presented on

October 26th at Konzerthaus Detmold, in the workshop Algorithmic spatialization. Interfacing SuperCollider to the Wave field system,

with live usage of the IOSONO system.
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1 The IOSONO Wave field synthesis

The IOSONO wave field system for 3D audio’
implements a methodology to use secondary
audio sources to recreate primary wave fields,

! http://www.iosono-sound.com/

that is, to create an audio hologram that simu-
lates the original radiation pattern of a cer-
tain source in a certain position [1]. Wave
field systems feature many loudspeakers that
have to contribute to the composition of the
wave front, but they are not intended to be ac-
cessed directly (as in multichannel setups like
e.g. Acousmonium), rather through a dedicated
software, the user defining various control pa-
rameters, the most important being the position
of the virtual source. In this sense, wave field
can be compared to Ambisonic [2] or VBAP [3]
techniques. The system taken into account in
this report is the one in use at the Erich-Thien-
haus-Institut (ETI), Hochschule fiir Musik Det-
mold. Actually, two systems are available, a
large one included into the Konzerthaus, that
features real 3D spatialization by including
loudspeakers on the ceiling, and a reduced im-
plementation in a dedicated Studio, that allows
to control source placement only on the hori-
zontal plane.

The standard hw/sw configuration in IOSONO



includes:

e audio channels (32 available in the stu-
dio, 64 in the Konzerthaus) are address-
able, typically by means of a MADI sound-
card;

e the soundcard can be interfaced to the
[OSONO system running under Linux (di-
rect connection, available in the Konz-
erthaus) or via a plug-in for Steinberg Nu-
endo workstation (running under the Win-
dows operating system, required in the
studio), that in turn routes the audio to
IOSONO (indirect connection);

The Steinberg Nuendo plug-in is the stan-
dard editing user interface to the system.
It allows to graphically define source place-
ment by linking audio streams to space by
drawing trajectories into a graphic space.
While the I0SONO system works in real
time, Nuendo-based editing is conceptually in-
trinsically related to non-real-time, as audio
streams are thought of as tracks into a multi-
track environment, and source position drawing
in the plug-in precedes position setting (“draw,
then set” mode). In short, the multitrack en-
vironment provides some GUI-based facilities
by endorsing a typical audiovisual sound de-
sign/musique concréte interface configuration, as
in these operational domains the typical work-
ing mode is editing intended as “montage” (see
[4] for the term).

2 OSC interface

The IOSONO system features a second con-
trol layer that can bypass the Nuendo plug-in
to address directly the system by means
of OSC messages [5]. Only one type of
OSC message has a specific semantics in the
IOSONO system (/iosono/renderer/ver—
ticalpan/v1/src). Every UDP packet trans-
mits 96 bytes of data, that set the many avail-
able parameters [6]. In this report only the
most relevant ones (source identification and

position) will be taken into account.
As

1. audio channels can act as placeholders for
real-time audio streams as provided by the
sound card;

2. OSC messages can be sent on-the-fly,

the OSC implementation provides a full real-time,
interactive control over the IOSONO system.
In this way, the Nuendo plug-in can be by-
passed, as the system can be controlled by
any software application capable of sending
OSC-compliant messages.

The OSC message addresses audio channels
(accessed by means of direct or indirect con-
nection, see before) with a progressive numer-
ical identifier (starting from 0). To sum up in
plain English, a message asks the IOSONO
system to create a sound source event from a cer-
tain audio channel in a certain position, with
certain optional parameters. The situation is
shown in Figure 1.
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Figure 1 An OSC message in IOSONO.

The OSC message refers to a channel ID that
is then streamed to the IOSONO system and
placed in the virtual space according to the
desired position, expressed in polar coordi-
nates (azimuth angle and radius in meter). The
[OSONO system calculates a sound source event
by computing for a certain audio stream from a
channel the opportune set of signals then dri-
ven to the loudspeaker set. It can be termed
“event” because computation starts upon re-
ceiving a message and ends after a certain du-
ration (default value: 1 s), the system applying
a steep amplitude fadeout envelope (see Fig-
ure 2). Due to this time-based behaviour, in
order to simulate a stationary sound source, a
stream of OSC messages with e.g. a default



rate of 1 msg/s has to be sent for the desired
source duration.
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Figure 2 Sound source envelope.

OSC specification is described in the IOSONO
Scene Data Protocol V2.3.1. [6]. Previous
work has also been taken into account in
order to understand typical/useful values for
other parameters. In particular, composer Or-
jan Sandred previously worked on the same
topic —OSC control of the IOSONO system—
by interfacing Cycling'74 Max/MSP (see [7]).

3 The SuperCollider environment

SuperCollider? is an environment for real-time,
interactive audio programming and music com-
position. It also features extended possibil-
ittes in GUI creation/manipulation and com-
munication with other software/hardware by
means of various options (OSC, ethernet, se-
rial port, MIDI, Unix terminal). SuperCollider
features an audio engine (scsynth) that works
as a server, natively interfaced to a client ap-
plication (sclang), that is also the interpreter
of an Object-Oriented language. Connection
to the IOSONO system is shown in Figure 3.
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Figure 3 Information flow from SuperCollider
to IOSONO.

Two layers of communication are required. Au-
dio communication (audio streams generated in
real-time by scsynth upon request by sclang)
is operated by directly connecting the software
to the RME MADIFaceXT audio card. Thence,
streams are routed into Nuendo plug-in and/or
to IOSONO. OSC communication is addressed
directly by sclang to IOSONO on the local
ethernet network: while addresses change be-
tween studio and Konzerthaus, the port value
is typically set to 4243. Caution must be made
in studio system, as there the IOSONO setup
requires the client to send to 192.168.0.255,
where 255 indicates broadcast communication.
The latter is possible from sclang only if a spe-
cific broadcast flag is set as true (see the class
NetAddr). Also, IOSONO strictly adheres to
OSC implementation that requires to declare
data types for all data to be sent: data types
in OSC message from sclang must be set prop-
erly in order to have it received and acted upon
by IOSONO. As already said, the source ID in
the OSC command identifies the audio channel
(counting from 0) streamed to the source event
in [IOSONO.

4 Software infrastructure development

In order to operatively work with IOSONO
from SuperCollider, it has been mandatory to
provide a software infrastructure on which a
more abstract, higher level approach could be
pursued. Three classes have been developed
that encapsulate basic functionalities in an
efficient way (Figure 4). Class WFSrc repre-
sents a generic sound source. It includes a
position attribute that can be set by the xy
method. Cartesian coordinates have been cho-
sen as a typically easier way to handle the
virtual space (that in this first approach is in-
tended as a surface, elevation still not being
considered). A WFSrc acts as an audio place-
holder that receives an audio stream exter-
nally (by other SuperCollider components), to
be routed into by the bus attribute. From WF-

2 http://supercollider.github.io. For general introductions, see [8] and [9].



Src, the audio stream is then routed almost
transparently to an out bus (via the out at-
tribute), in turn connected to the sound card.
A basic control interface is added (play/pause,
mute/unmute) to the streaming component.
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Figure 4 Classes and their relations.

GUI elements are crucial to verify the in-
tended behaviour of sound sources and to
monitor them in real-time. Class WFSrc-
Plotter is a basic visualization that shows
sources as circles in a 2D space, and up-
date their positions each time a source position
is changed. In order to uncouple GUI (WFS-
rcPlotter) from data generation (WFSrc), a
notification mechanism has been implemented
(the so-called “Observer behavioural pattern”
in OOP parlance [10], also implemented in the
Model-View-Controller schema). In short, the
xy method in WFSrc notifies a list of “depen-
dants” at every call (i.e. a source has changed
position). At instantiation, the WFSrcPlot-
ter registers as a dependant of all WFSrc in-
stances, and it is then notified about every WF-
Src's position change (i.e. at every xy call).
Uncoupling happens as a WFSrc may have an
empty list of dependants, so its working mode
is not affected by the presence of dependants
(it is up to the dependants to register to their
so-called “model”, that is, the WFSrc). An in-
stance of WFSrcPlotter receives a list (tech-
nically, an array) of WFSrc and registers to
all, mapping their ID by scaling the hue of

the color wheel by the total number of WF-
Src (Figure 5). If needed ID number can be
easily plotted inside the circle marker. A rel-
evant issue in working with source positions
emerges in relation to absolute metrics, as the
latter is different in Studio and Konzerthaus.
As a design decision, source positions have
been normalized in the range [—1.0,1.0] on
both axes. This facilitates to understand the
positions of sources and, moreover, the latter
can be always plotted in the same (squared)
GUI. The GUI component is intended exclu-
sively as a data visualizer, not as a graphical
controller receving input e.g. from mouse. Al-
though possible, such an approach is outside
the scope of this work, that rather focuses on
algorithmic spatialization. A third class has
been developed, WFSrcDispatcher that man-
ages OSC dispatching and basic geometric op-
erations. While these two functions are logi-
cally autonomous (and heterogeneous), as geo-
metric operations are minimal, a single class
has been developed for sake of simplicity. The
WFSrcDispatcher communicates with WFSrc
following the same notification mechanism as
WFSrcPlotter, so that its instantiation can be
avoided while the IOSONO system is not con-
nected: as an example, while composing, plot-
ting is still needed but audio can be mapped
to e.g. mono out for purely sound testing, thus
dispatching can be avoided. On instantiation,
WFSrcDispatcher receivess a list of WFSrc to
which registers (again, reacting to the xy mes-
sage), and the ip address and the port where
to dispatch messages (the IOSONO address)
(Figure 4). Basic geometric setting includes
a metric factor (meterFactor) that multiplies
the normalized space values in order to ob-
tain actual measures in meters, and a ratio of
the axes (ratioXY), that becomes necessary as
the actual space is not squared. On a call to
xy in a WFSrc, the WFSrcDispatcher applies
factor and ratio to the received new coordi-
nates, converts them into polar coordinates (as
required by the IOSONO system), pack the
correct OSC message and dispatch it to the
passed address®.
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The following code shows basic usage. First,
two WFSrc instances are created (variables
~srcl and ~src2, 1) and their xy attribute
is set in the normalized range (2, 3). Variable
~pl is assigned a WFSrcPlotter that is given
an array with the sources (4). Two other vari-
able store the ip address and the port, and are
passed as parameters (together with the same
array of sources) to an instance of WFSrcDis-
patcher (~disp, 6). After all has been set up,
every time the attribute xy is set (7), the plot-
ter updates the GUI and the dispatcher sends
a message.

1| ~srcl = WFSrc(0) ; ~src2 = WFSrc(l) ;

2| ~srcl.xy (0.10, 0.20) ;

3| ~src2.xy (0.50,0.10) ;

4| ~pl = WFSrcPlotter([~srcl, ~src2]) ;

5|~ip = "192.168.0.255" ; ~port = 4243 ;

6| ~disp = WFSrcDispatcher ([~srcl, ~src2], ~ip, ~port) ;
7| ~sxecl.xy (0.3, -0.5) ;

Figure 5 The WFSrcPlotter window for 40
sources.

Figure 5 shows a GUI for 40 sources. It can be
created by means of the following code:

~arr = Array.fill (40, {|i|

WFSrc (i)

.xy_ (rrand(-1.0, 1.0), rrand(-1.0, 1.0))}) ;
~pl = WFSrcPlotter (~arr) ;

S W N R

In the previous example, there is still not au-
dio streamed to the WFSrc instances. Audio
streams can be routed into the latter by means
of the bus method, as shown in the following
code.

SynthDef (\sine , {|out, amp = 1, freq = 440]

1
2 Out.ar (out,
3 SinOsc.ar (freq, mul: amp))
4]}) .add ;
~arr = Array.fill(10, {|i|
WFSrc (i) })
.collect{|i]
i.xy (rrand(-1.0,1), rrand(-1.0,1))
1001}

12| ~synths = Array.f£fill (10, {|i|
13 Synth (\sine , [\out ,
41

~arr[i] .bus])

16| ~arr.do{|i| i.mute} ;
17| ~arr.do{|i| i.unmute} ;
18| ~arr.do{|i| i.vol (-6)} ;

Code block 1-4 shows the typical SuperCol-
lider way to encode a definition of an audio
generator (a synth) by means of a so-called
SynthDef. Every resulting actual generator
built from such a definition simply generates
a sinusoidal signal with a default 440 Hz fre-
quency. The block 6-10 creates procedurally
an array (~arr) of 10 WFSrc instances and sets
for each a position as a random value in the
normalized space. The block 12-14 creates,
again procedurally, an array (~synth) of 10
audio generators that are routed to the relative
WFSrc instances by setting the bus argument.
Finally, lines 16-19 show some controls that
mute/unmute and set the volume to —6 dB for
all the elements of ~arr.

Such a simple infrastructure allows to work

A third class -WFSrcLogger-— is not shown in Figure 4, as it is not relevant for real-time usage. It follows the same mechanism,
i.e. registers as a dependant of WFSrc. Once instantianted and registered, a WFSrcLogger object reacts to each xy message
from WFSrc by writing to a file a time-stamped array of coordinates. Logged data can then be used to inspects positions over

time, e.g. for plotting usage, as it happens in the figures of the Applications sections, that have been created automatically by
parsing logged data with the Python-based Nodebox package, http://nodebox.net.



with SuperCollider interfaced to the IOSONO
system from a musical point of view.

5 Applications

Composition work can take into account two
different levels (Figure 6). A first level con-
cerns synthesis techniques for the generation
of audio signals. A second level is directly re-
lated to the control of sources in the space, that
is, by setting the xy argument in WFSrc. While
synthesis techniques are indeed autonomous
from their position in the space, they can be
coupled to the latter by taking into account
as synthesis parameter the same space coordi-
nates related to the sources (as shown in Fig-
ure 6 by the arrows from xy).

Algorithmic time/space

@ organisation
© :
bus

Synthesis techniques

| Wrsrc
bus Lol wrsre
-«
Xy
bus Synth 1 WFSrc

Figure 6 Composing with WFS.

5.1 Brownian motion

The first application was aimed, on one side, to
test spatialization, on the other one to exploit
a feature introduced before, that is, “parameter
linking” [11] between spatialization and spec-
tral elements in synthesis. The aesthetic as-
sumption is that in this way the control space
acts both as a controller for synthesis and spa-
tialization, in this way providing a unique and
integrated composition environment. The same
approach was previously implemented in the
GeoGraphy system [12 and 13].  Moreover,
such an approach can be thought as a sort of

reversible “parameter-based sonification” [14],
where spatial data are represented by sound
features, and vice versa.

As a first attempt concerning spatialization,
Brownian motion has been considered (for ap-
plications to musical composition see [11] and
[15])). In this case, each source’s position
changes at a specified rate by a certain in-
terval.

Figure 7 Brownian motion, 20 sources, 39
states from random position.

Figure 7 plots 20 sources during 39 states with
a random variation in the range [—0.1,0.1] for
each coordinate. Sequences of points repre-
sents paths in the control space of a certain
source, its position being connected by a line
while point grey value represents time (from
white to black). Interactive control allows to
vary the update interval to the next state and
the variation range. Also, position of all source
can be assigned on-the-fly, thus moving all
the sources to a certain point or inside a de-
sired region. Figure 8 shows a radiation pat-
tern with the same update date and variation
range for 73 states where all sources are ini-
tially placed in the origin of the control space.
In order to couple spatialization with spectral
behaviour, a specific mapping has been de-
fined. The synthesis technique is simply based
on sinusoidal generation. A basic SynthDef



is shown below, its structure is automatically
plotted (via the GraphViz package, [16]) in Fig-
ure 20:

// simplified version
// only one sinusoid without dephasing
SynthDef (\pulsexy , { arg out, amp = 0.1, freq = 50,
x=1, y=1;
var sin =
SinOsc.ar(
freq: (freq *
y.linlin(-1.0,1.0, 1.0, 12).round),
phase:2pi.rand);
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var sig = EnvGen.kr (Env.perc,
Impulse.kr(x.linlin(-1,1, 0.5, 4)))*sin;
Out.ar (out, sig*amp) ;
}).add ;
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Figure 8 Brownian motion, 20 sources, 73
states from origin.

A sinusoidal generator receives a base fre-
quency as input (default is 50) and it is then
enveloped by a unipolar signal with a percus-
sive shape. Control space is taken into account
as the frequency is multiplied by the y parame-
ter that maps the normalized space ([—1.0, 1.0])
into a multiplier range ([—1.0,12.0]), rounded
to integer. In this way frequency is always
an integer of the base frequency: vertical po-
sition of the source is thus related to a har-
monic component of the base frequency. The
x parameter (that is, abscissa in the space)
is mapped to the envelope retriggering in the

range [0.5, 4], to be interpreted as Herz (retrig-
gering per second), thus resulting in a variable
temporal density. Input, clipping and mapping
of x and y data is shown on top of Figure
20. The technique can be seen as a form of
granular synthesis. The actual SynthDef used
in the implemented examples is slightly more
complicated, as it adds for each sinusoid 20
components with the same frequency but with
randomized phases, in order to give a richer
microtemporality, as shown below:

1|// freq is a base freq, all synth should have

2|// the same base freq in order to explore space

3| synthDef (\pulsexy , { arg out, amp = 0.1, freq = 50,
4 x=1, y=1;

5 var sin = Mix.f£fill (20, {|i]

6 SinOsc.ar(

7 freq: (freq *

8 y.linlin(-1.0,1.0, 1.0, 12).round),
9 phase:2pi.rand,

10 mul: (-3%*(i+l)) .dbamp

11 h

12 var sig = EnvGen.kr (Env.perc,

13 Impulse.kr(x.linlin(-1,1, 0.5, 4)))*sin;

14 Out.ar (out, sig*amp) ;

15| 1}) .add ;

When various sources are moving in the space,
a relative number of harmonics of the base fre-
quency is excited as a result of the y place-
ment (low/high in relation to back/front), with
a density depending for each on their left/right
placement (respectively lower/higher density
in relation to x).

48.5389413

Frequency (Hz)

i
e ot o o
At RIS 0 ¢ BRI ~
] -
iirig s 1 s o SOl oy O ]
i Aprblvgs g < i - craiac s !
- stop s 2500 AR
17.46 77.46

Time (s)

Figure 9 Brownian motion mapped into har-
monic explorations: sonogram of the resulting
signal.

Figure 9 shows a sonogram of 6 brownian ex-



plorations, all starting from a certain (vari-
able) point in the space. The first two explo-
rations show a greater amount of variation in
the brownian parameter: this results in many
harmonics to be excited. The last fours (see
the temporal marker in Figure 9) show a much
slower explosion (almost a spectral freezing)
depending on the small amount of variation in-
troduced in the brownian motion (this means
that sources are slowly diffusing from a certain
point in the space).

Control of spatialization and audio synthe-
sis over time is obtained via SuperCollider’s
native scheduling constructs (e.g. “routines”
and “tasks”). The following code shows how
Brownian motion in the control space is im-
plemented and linked both to IOSONO control
and sound synthesis.

1| ~num = 20 ; // num of sources

2| ~arr = Array.fill(~num, {|i]

3 WFSrc(i) .xy_ (rrand(-1.0,1), rrand(-1.0,1))
411

5| ~synths = Array.fill(~num, {|i]

6 Synth (\pulsexy , [

7 \out , ~arr[i] .bus,

8 \x , ~arr[i].xy[0], \y , ~arr[i].xy[1]
9 1)

10]hH

12| ~vr = 0.1; ~time = 0.1 ; // variation and rate
13| ~brownian = {

14 inf.do{

15 var x, y;

16 ~arr.do{|i,id|

17 x = (i.xy[0]+rrand(~vr.neg, ~vr)) ;
18 y = (i.xy[l]+rrand(~vr.neg, ~vr)) ;
19 case { x > 1 }{

20 x = l-x.frac;

21 }

22 {x < -1}

23 x = x.frac.neg;

24 15

25 case { y > 1 }{

26 y = l-y.frac;

27 }

28 {y < -1}

29 y = y.frac.neg;

30 b

31 ixy (x, y);

32 ~synths[id] .set (\x , x, \y , y)
33 Y

34 ~time.wait

35 }

36| } . fork (AppClock)

It can be seen as a general way to define
composition (i.e. a high-level process) within
the low-level infrastructure. The variable ~num

stores the number of desired sources (1). An
array ~arr is assigned a number ~num of WF-
Src instances, each with a random position
(2-4). The array ~synths is assigned a number
~num of Synth instances, that is, real-time au-
dio generators, intended to be associated each
with a WFSrc (5-10). As a consequence, the
position parameters for each WFSrc are used
to set the related arguments in the associated
synth (8). The block 12-36 is the scheduling
process. For each WFSrc in ~arr a new po-
sition is calculated by choosing a random in-
terval in the [-~vr, ~vr] as a variation of
the two coordinates (17-18). Lines 18-30 im-
plements boundary reflection (billiard-like) in
case new coordinates are outside the control
space. Then, position of WFSrc is set (31) and
the arguments of the relative synth are set (32).
The process is repeated for an infinite number
of times (14) after an interval set by the ~time
variable (34). The process can be stopped/re-
set interactively via code, and all the so-called
environment variables (the ones precede by ~)
can be set on-the-fly.

Extensions of the technique has included the
change of the basic pitch according to certain
chordal structures. In this way, the exploration
of the virtual space becomes the exploration of
the overall harmonic space of a certain chord.

5.2 Trajectories and radial patterns

The harmonic space mapping has been in-
tended as a general test bed for a unified space
semantics. The following two applications fol-
low the same schema by changing synthesis
technique and space exploration. Brownian
motion is a non-deterministic strateqy, even if
it can be parameterized in a controllable way
(e.g. by resetting positions to a specific loca-
tion). A second mapping address the concept
of trajectory.

Figure 10 shows 6 trajectories generated in the
control space having the same start and end
points, but exploiting SuperCollider integrated
envelope geometric constructors that allow to



specify a curvature parameter for a segment.
Linear trajectory crosses indeed the centre of
the space, as also the sinusoid curvature does.
The other four trajectories are created by ma-
nipulating the curvature parameter.

Figure 10 Curvature options for the same
trajectory.

In the examples that have been generate the
basic synthesis technique makes use of a set
of 17 samples, chosen from a set of percussive
ones. The basic SynthDef for a sample player
is shown below:

1| synthDef (\play2 , {|out, buf, rate = 1, amp = 1|
2 var del = Rand(0.1, 0.7) ;

3 var sig = DelayC.ar(

4 PlayBuf.ar(l, buf,

5 rate: BufRateScale.kr (buf) *rate,

6 loop:1),

7 del, del) ;

8 Out.ar (out,

9 sig*amp)

0|1}).add ;

The SynthDef uses the basic generator Play-
Buf (4) that reads a sample previously loaded
in RAM (into a buffer in the SuperCollider
parlance). Apart from the buffer itself, the only
parameter passed to the actual synthesizer are
rate and amp, that is, the rate at which the
sample is played back (with 2 meaning dou-
ble speed, 0.5 half speed, and so on) and am-

plitude (scaled with inverse proportion to dis-
tance). The 17 sources are assigned a certain
sample that is continuously retriggered when
it reaches its end. The SynthDef also includes
a randomized delay so that sample playbacks
do not start synchronously (3). As before, the
position of the sources affects synthesis, sim-
ply by varying the rate argument. In this case,
what is taken into account is not the position
but the distance of each source from the ori-
gin. The greatest the distance (the more pe-
ripheral a source is in the space) the lower the
playback rate. Also, amplitude is scaled ac-
cordingly to distance. This implements a very
crude but perceptually not ineffective Doppler
effect (physical simulation was not the aim of
the mapping). By this mapping, a substantially
clear perception of spatial distribution rever-
berates in the spectrum domain (and not only,
as rate indeed affects sound duration).

Figure 11 Trajectories in the space for 17
samples, from origin.

Figure 11 shows a diffusion pattern where all
sources are placed initially in the middle of the
space (thus, as distance is 0, the samples are
played at their maximum rate), then reaching
random positions by means of various curva-
tures. As before, point grey value represents
time (from white to black).



Figure 12 Trajectories in the space for 17
samples, double path.

/”
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Figure 13 Trajectories in the space for 17
samples, complex movement.

Figure 12 shows a diffusion pattern where all
sources are placed initially in the ending po-
sitions shown in Figure 11. They are first
realigned randomly along the central vertical
axis, and then collapsed again int the origin.
Figure 13 shows a more complex movement of
sources. They all start from position [1, 0], then
redistributed along the back line of the space
with a specific curvature. Sources then reach

linearly the top frontal line, and finally are
again redistributed randomly.

The implementation of a “trajectory follower”
process is shown in the following block of code:

1| ~trajectory = {arg wfsrc, x1, yl, x2, y2, dur, synth,
2 sr = 0.1, curve = ’'lin’ ;

3 // curve: lin, sine, squared, cubed, floats

4 var xLenght = x2-x1 ;

5 var numPoints = (dur/sr).asInteger ;

6 var xStep = xLenght/numPoints ;

7 var env = Env([yl, y2], [1l], curve)

8 .asSignal (numPoints) .asArray ;

9 {

10 var x, dist ;

11 env.do{|i, ]|

12 x = xStep*j+xl ;

13 wEsrc.xy (x, i) ;

14 dist = sqrt(x.squared+i.squared) ;

15 synth.set (

16 \rate , dist.linlin(0,1.4, 1.5,0.5),

17 \amp , dist.linlin(0,1.4, 0,-6).dbamp
18 ) i

19 sr.wait ;

20 };

21 } . fork (AppClock)

In this case, a function is passed a WFSrc and
a synth. Start and ending points are repre-
sented by x1, y1, x, y2, while the argument
curve allows to specify the type of curve. The
argument dur is the overall duration. The ob-
tained trajectory is sampled over the duration
dur at the sampling rate sr. Line 7 shows
the usage of the Env class in SuperCollider,
that allows to generate generic segments and
includes the curvature specification. The en-
velope is sampled according to duration and
sampling rate, then the temporal process can
be started (9-21). For each sample point, the
position of WFSrc is set, distance from ori-
gin is calculated (14) and passed to the synth
(15-18), to be used (after scaling) to control
rate and amplitude. The sampling rate is the
update rate of the process (19).

Geometric construction of position has prompted
to explore radial patterns. Interestingly, in this
case polar coordinates are indeed more apt to
represent positions. The following SuperCol-
lider code example show how to encode ra-
dial patterns and their higher-level organiza-
tion into diffusion processes by means of two
functions.
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1| ~radial = {|radius, offX = 0, offY = 0]

2 var point, dist, x, y ;

3 ~arr.do{ |wfsrc, j|

4 point = Polar (radius, 2pi/~arr.size*j).asPoint|

5 x = point.x; y = point.y ;

6 wfsrc.xy (x+offX, y+offY) ;

7 dist = sqrt (x.squared+y.squared) ;

8 ~synths[j] .set (

9 \rate , dist.linlin(0,1.4, 1.5,0.25),
10 \amp , dist.linlin(0,1.4, 0,-6).dbamp
11 DB
12 }

1311

15| ~diffusion = {|radius, x, y, dur, rate = 0.1]
16 var howMany = (dur/rate).asInteger ;
17 var step = radius/howMany ;

18 {

19 howMany.do{ |i]

20 ~radial. (step*i, x, y) ;

21 rate.wait

22 Y

23 } . fork (AppClock)

24|}

The ~radial function is to be passed a radius
and the center coordinates (1). For each ele-
ment of ~arr (containing WFSrc) the position
is calculated in polar coordinates: the azimuth
is assigned by dividing 27 by the dimension of
the array and selecting the angle multiplier in
relation to the index of the source (4). Polar
coordinates are converted into cartesian ones
(5) and assigned to the source (6). The dis-
tance from origin is calculated (7) and used to
set the source-related synth, after being prop-
erly scaled (8-11). The ~diffusion function
is simply built upon ~radial. A certain dura-
tion of the process is passed, and a diffusion
rate (15). The number of iterations of ~radial
is then calculated and an internal scheduling
process —iterating over ~radial- is set.

Figure 14 shows various radial pattern as ba-
sic construction for more complex movements.
Radius and centre can be set by passing the
opportune parameters to the ~radial function.
Figure 15 shows an application of ~diffusion
that creates diffusion patterns by progressively
expanding the radius for a given centre. Five
diffusion patterns are progressively expanding
their radius and moving from top left towards
the centre of the space. A figurative sound
model for the pattern is indeed explosion, that

radially expands from a centre, like e.g. in fire-
works.
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Figure 14 Radial distributions for 17

sources.

Figure 15 Diffusion patterns for 17 sources,
varying radius and centre.

5.3 A Game of Life

The third application has been inspired by two
wrong assumptions concerning the IOSONO
system while drafting the code:

1"
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1. available channels are 192, that is, the
number of channels provided by the RME
MADIFace XT sound card. Instead, avail-
able channels are a maximum of 64 in the
Konzerthaus;

2. sources, once placed in the virtual space,
keeps on delivering audio. Instead, a
source is properly a source event with a
default duration of 1 second (Figure 2).

These assumptions have prompted the idea of
conceiving spatialization not in terms of moving
sources (as in the previous applications), rather
as a set of fixed diffusion points in the space
where at certain conditions an audio stream
may be routed. Hence the idea of considering
the control space as a grid of sources to which
Conway's notorious Game of Life can act as a
requlating mechanism®. In the Game of Life
—a specification of cellular automata- a pos-
sibly infinite grid space is filled by live cells.
Three rules have been designed in order to de-
termine if in the next state of the system the
cells are still live or they die, and if new cells
can becomes live. Rules are applied by tak-
ing into account the number of live/dead in the
8 neighbour cells of a given cell. Life’s rule
set has been carefully to deals with both over-
and underpopulation, and has sprouted a vast
literature that has researched specific cell con-
figurations with an interesting behaviour, e.qg.
leading to an immutable state during the gen-
eration process (“still life”) or to the periodic
reappearance of the same starting configura-
tions (“oscillators”). The chosen grid for Wave
field application has a dimension 13 x 13, so
that each grid element (for a total of 169) can
be mapped to a source in the space (based on
the wrong assumption of 192 available chan-
nels). Such a dimension is still limited for the
development of Life’s cycles, thus —again with
a classic solution in literature— the space has
been folded on both its sides, resulting in a lat-
tice. This means that positions on the bound-

aries that would have their neighbours outside
the space always have neighbours on the op-
posite side.

As the rule set is very simple, a complete Su-
perCollider implementation of Conway’s Game
of Life on a generic m x n lattice is shown
below?:

1|// A simulation for Conway’s Game of Life

N

// over a generic m x n lattice

4| // Get the neighbours of a cell

5| ~getNeighbours = {|a, x,y|

6 var row, col, nw, n, ne, w, e, se, S, SW ;
7 row = a.size ;

8 col = a[0].size ;

9 nw = a[(y-1)%row] [ (x-1) %col] ;
10 n = a[(y-1)%row] [ (x) $col] ;

11 ne = a[(y-1)%row] [ (x+1)%col] ;
12 w = a[(y)%row] [ (x-1) %col] ;

13 e = a[(y)%row] [ (x+1) %col] ;

14 se = a[ (y+1)%row] [ (x+1) %col] ;
15 s = a[ (y+1)%row] [ (x)%col] ;
16 sw = a[ (y+1)%row] [ (x-1) %col] ;
17 [nw, n, ne, w, e, se, s, sw]
18|}

20| // live or dead? Return next state for a cell

21| ~evaluateCell = {|a, %, y|

22 var cell = a[y][x] ;

23 var state = ~getNeighbours. (a,x,y).sum ;
24 var next = if (cell == 1) { // live
25 case { state < 2 }{0}

26 { [2,3].includes (state) }{1}
27 { state > 3 }{0}

28 }{ // dead

29 if( state == 3){1}{0}

30 }o

31 next ;

321}

34| // Compute next state, input acutal, returns a state

35| ~nextState = {|current|

36 var next = Array.fill2D (current.size,

37 current [0] .size, {|n,i| nil}) ;

38 current.do{|row, i|

39 row.do{|col, j|

40 next[i] [j] = ~evaluateCell. (current, j, i)
41 }

42 }

43 next

44|}

While many applications of Life to music have
been proposed, in this case the basic mu-
sical assumption is to directly correlate the
grid space to positions in the IOSONO virtual
space. Cell configurations are thus activations

The most up-to-date resource is http://www.conwaylife.com/. See [17] for an introduction.
As a side note, it is interesting to observe that the implementation, by means of three functions, is almost purely functional, as

it uses a substantially stateless mechanism.
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of sources in the discretized sound space.
Due to the specific set of rules implemented
in Life, random distribution of live cells does
not lead to significant processes, as all the
cells typically become rapidly dead. As al-
ready said, many specific configurations, on
the other side, have been discovered that trig-
ger complex behaviours. Hand coding of such
configurations is particularly time-consuming
and thus prone to error. In order to facili-
tate the exploration of specific configurations,
a GUI tool —LifeDesigner— has been developed
that allows to interactively encode configura-
tions on the 13 x 13 space, save them to disk
and load them back when needed. Figure 16
shows the LifeDesigner GUI with a configura-
tion known as the “Unix oscillator”.

13|14 15|16 |17 |18 |19 |20 |21 |22 |23 | 24 | 25
26 |27 |28 |29 |30 |31|32|33|34|35|36|37|38
39|40 |41 |42 |43 |44 | 45|46 | 47 | 48 | 49 | 50 | 51

52 |53 |54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64

65 | 66 | 67 | 68 .. 71|72 |73 |74 |75 |76 |77
78 | 79 | 80 | 81 .. 84 | 85|86 |87 |88 |89 |90

91|92 |93 |94 |95 |96 |97 |98 |99 [100/101|102|103
104 (105|106 107.109 110{111|112|113|114|115|116

117|118 119.121 .123 124|125|126|127 (128|129
130(131|132 134 135.137 138 .141 142
143(144|145|146|147|148 149.151 ..154 155

156157 |158(159|160 ..163 164165166 (167|168
Figure 16 LifeDesigner GUI interface.

Figure 17 shows a rendering of the first 65
states of a very long process, that is initial-
ized by placing some know patterns, a “toad”
(bottom left), a “beacon” (the two four-ele-
ment blocks) and a “pi-heptomino” (the arc-like
structure). Toads and beacons are oscillators,
but are disturbed by the interaction with the
pi-heptomino. Complex interactions depend in-
deed also on the lattice structure.
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Figure 17 A very long process.
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Under each state, the state index (starting from
0 as in Life's convention) and the number of live
cell are listed. It can be seen that live cells
are typically under the 64 threshold. Figure
18 shows 25 states of the Unix oscillator.
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Figure 18 Iterations of the Unix Oscillator.

Periodic states can be easily observed by look-
ing at the diagonal of the states, as the period
is 6 generations. The lattice folding becomes
evident by looking at states 3 and 4, where
bottom cells are folded on top. State plot-
ting is realised in Nodebox by directly export-
ing the data obtained from the functional Su-
perCollider implementation shown above (this
means that states are those passed to WFSrc
instances during audio generation).

The two starting wrong assumptions have
proven significant in prompting a solution
to their implementation that traced a differ-
ent path from previous examples. Previously,
sources were moved in the space by setting
the xy method, while each WFSrc instance re-
tained a specific audio stream routed into.
Moreover, the number of WFSrc instances was
directly correlated to the number of addressed
audio channels, with each WFSrc instance be-
ing “locked” to a certain channel through its

relative synth. In the implemented Life appli-
cation, empirical observation showed that in
general the number of active cells on the cho-
sen grid is inferior to 64, the number of avail-
able channels in IOSONO. Thus, an effective
dynamic mechanism has been implemented.
For each active cell in the current state the
next available WFSrc is selected, and its posi-
tion is set according to the position of the cell
in the grid. Then, the audio stream relative
to the same cell in the grid is routed into the
WFSrc instance. In this sense, differently from
previous applications, WFSrc instances are un-
coupled from audio streams. As a safety mech-
anism, the selected WFSrc is obtained by iter-
ating on the cell index modulo 64. The worst
case scenario is thus that there is not an avail-
able WFSrc for a cell, and thus the first one is
overwritten. But this has never occurred em-
pirically, as 64 channels typically provide room
for allocating all the active cells in the selected
grid.

Audio mapping has been conceived following
two different designs.

In the first case, a long sample is loaded,
that is, a 20-minute live improvisation®. The
file is read by moving the pointer in 169
(13 x 13, the number of cells on the chosen
grid) equi-spaced locations, so that each cell
is assigned a file chunk. Once selected, the
chunk is enveloped and given a variable du-
ration, that can be set to provide room for the
emergence of recognizable sound material or
shortened to obtain strong granulation effects.
The long-sample strateqy has been designed
with the idea of providing a fast way to obtain a
variety of sounds without loading many differ-
ent samples (169). Moreover, the percussive
and rich spectral material of the selected sam-
ple was functional to the rhythmic organization
of the resulting generation process. In fact,
a typical issue emerges from the use of Life
as a music model. There is literally nothing
between consequent states (that is, a “genera-
tion” or “tick”), and a state is updated instanta-

Institute for the Very Very Nervous (A. Valle, electromechanical setup, D. Sanfilippo, laptop feedback system, A. Secchia,
percussions, G. Pagano, prepared quitar), “A hopeful monster”, https://soundcloud.com/ivvn/live_in_milan.



neously. This necessarily results in a clear ba-
sic homogenous time organization that depend
on the duration value asssigned to the tick.
Longer durations yield a clear rhythmic struc-
ture (the “meso-temporal” level to speak with
Roads [18]), while very short durations result
in a clear granular organization (“micro-tempo-
ral” level). Longer durations provides a clearer
localization of sources in the space, while grain
effects produce sources emerging and suddenly
disappearing in the space. It should be noted
that the duration range for events is indepen-
dent from the one referring to generation. This
means that is possible both to couple and un-
couple slow/fast generation and shorter/longer
sounds. So the grain effect depends on the re-
lation between the two parameters, empirically
when two conditions are satisfied:

1. sound durations are grain-like (< 100 ms);
2. sound duration < tick duration.

Sound generation shows a variable set of re-
sults, from clearly moving percussive/rhythmic
patterns to swarm effects.

A second sound mapping has been tested (even
if not shown during the workshop) with the idea
of exploiting the resolutely discrete nature of
the process and at the same to challenge it
for obtaining a continuous audio result. Audio
code is shown below:

1| synthDef (\grainy , {arg out, buf, freq=440,
2 gain = 1,

3 dur = 0.1, amp = 1 ;

4 Out.ar (out,

5 MoogFF .ar (WhiteNoise.ar, freq, gain)
6 *

7 EnvGen.kr (Env.perc,

8 timeScale:dur,

9 doneAction:2) *amp)

10| }) .add ;

12| // usage in Life routine

13| synth(\grainy , [\out , ~arr[available].bus,

14 \dur , ~tick*~scale,

15 \freq , // according to i: cell index

16 i.1linlin(0, ~state.flat.size, 36, 90) .midicps,
17 \gain , // according to rows, i.e. back/front

18 (i % ~state.size).linlin(0, ~state.size, 1, 6),
19 \amp , 0.15

2011)

The SynthDef (1-10) simply describes a gen-
erator that outputs a grain with a percussive
envelope by filtering a white noise by means
of an emulation of a Moog VCF filter with ad-
justable frequency (freq) and gain (gain). As
a side note, it might be noted that the resulting
generator deallocates itself after the envelope
has finished (for the duration dur). This re-
sults from passing the doneAction argument a
2 value. In this sense, the synthesizer behaves
more like a sound event than as an instrument.
Lines 13-20 show an excerpt from usage in-
side a scheduling routine, where ~state is the
2D matrix encoding a Life state. Frequency
is set accordingly to the overall index of the
cell ([0,168]), that is scaling in the MIDI do-
main ([36,90]), and then converted into Hz (16).
Gain is instead scaled according to row index
([0 — 12]), in this way providing lower gain in
the back of the space and higher gain on its
front.
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Figure 19 Sonogram and waveform of the
Life continuous process.

Figure 19 shows the sonogram and the related
waveform from sound synthesis triggerd by the
process of Figure 17, where tick has been set
to 0.05 seconds. Fusion effects are apparent.

6 Conclusion

Working with the I0OSONO system is in-
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deed a rewarding experience as it grants a
very complex and fine-tuned experience of
sound spatialization. The OSC interface al-
lows to escape the limit of DAW editing
and to experiment with more complex be-
haviours, that, moreover, can be set and
controlled in real-time. The interfacing of
IOSONO with SuperCollider has shown how
complex spatialization patterns can be im-
plemented from a high-level (that is, com-
position-based) perspective. In this sense,
the IOSONO-SuperCollider environment re-
sults in a tightly integrated system that brings
together state-of-the-art algorithmic composi-
tion, audio synthesis and sound spatialization.
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Figure 20 Automated plotting of the SynthDef \pulsexy.
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