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Abstract. Uncertainty evaluation for spatial prediction of curves remains an open issue in the func-
tional data literature. We consider three different approaches that rely on semi-parametric bootstrap-
ping, principal component analysis and classical inference for additive models respectively.
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1 Introduction

Environmental data collected over time at various locations of a monitoring network can be considered
as spatially dependent functional data (see e.g. the last two chapters of the book by Horvath-Kokozsca
[8] or [5]). These kind of data has lead to the development of geostatistical techniques in a functional
framework, i.e. ordinary [5, 7, 12] and universal [1, 11] kriging models to predict a curve at an unmon-
itored site, and more recently kriging with external drift [9]. The latter allows to introduce exogenous
variables (both scalar and functional) in the mean function of the spatial functional process. However,
uncertainty evaluation remains an open issue and we face it by considering three different approaches
and illustrating their performance for spatial prediction of particulate matter (PM10) in the Piemonte
region (Italy).

2 Functional Kriging with External Drift (FKED)

Assume that we observe a sample of curves ϒsi , i = 1, . . . ,n taken as realizations of a functional random
field

{
ϒs,s ∈ D⊆ Rd

}
taking values in a separable Hilbert space of square integrable functions [5] and
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consider the model
ϒs = µs + εs. (1)

The term µs is interpreted as a drift describing a spatial trend while εs represents a residual random field
that is zero-mean, second-order stationary and isotropic. The drift can be expressed as

µsi(t) = α(t)+∑
p

γp(t)Cp,i +∑
q

βq(t)Xq,i(t) (2)

where α(t) is a functional intercept, Cp,i and Xq,i are scalar and functional covariates at site si, γp(t) and
βq(t) are the covariate coefficients and εsi(t) represents the residual spatial functional process {εs(t), t ∈
T,s ∈ D} at the site si. Once the functional regression model (2) has been fitted by means of a GAM
representation (for details see [9]), the functional residuals esi(t) = Ysi(t)− µ̂si(t) can be used to predict
the residual curve at an unmonitored site s0 via ordinary kriging for functional data [7], according to
which ês0(t) = ∑

n
i=1 λiesi(t), with kriging coefficients λi ∈ R. More complex alternatives, where the krig-

ing coefficients are not constant are available [9]. The prediction at the unmonitored site s0 is obtained
by adding up, as in the classical regression kriging, the two terms, i.e. Ŷs0(t) = µ̂s0(t)+ ês0(t).

3 Uncertainty evaluation

To evaluate the uncertainty of a predicted curve Ŷs0(t) at an unmonitored site s0, we compare three differ-
ent approaches. For curves predicted via the FKED model, we consider a semiparametric bootstrap for
spatially dependent functional data and a principal components analysis (PCA) based bootstrap method.
As an alternative, we also consider a generalized additive model to predict the curve Ŷs0(t), in which case
standard inference results apply.

3.1 Semiparametric bootstrap for spatially dependent functional data

This bootstrapping method has been extended to the functional context following [10]. To obtain a
bootstrap sample, we estimate and remove the drift µs following Model (2), then estimate the residuals
covariance matrix through the trace-semivariogram [7] and use its Cholesky decomposition to uncorrelate
the functional residuals. The B bootstrap samples are generated from the uncorrelated residuals using
the smoothed bootstrap as suggested in [4], replacing the empirical distribution function by a smooth
version of it to avoid appearance of repeated measures. The bootstrap samples are then fed into the
FKED method to obtain B prediction curves at the unknown location. These are ordered based on their
band depth [14], where the sample band depth (BD) of a curve y(t) can be calculated as

BDn,2(y) =
(

n
2

)−1

∑
1≤i1<i2≤n

I {G(y)⊆ B(yi1 ,yi2)}

i.e. the proportion of bands delimited by 2 curves containing the whole graph G(y) of y(t). Band
depth can be modified to take into account whether a portion of the curve is in the band (see [14] for
details). The lower/upper limits of a 95% prediction band are obtained by taking the pointwise (w.r.t. t)
minimum/maximum of the 95% deepest curves (i.e. those closest to the center of the distribution).
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3.2 PCA bootstrap

Once the drift has been estimated and removed following Model (2), a PCA analysis of the functional
residuals esi(t) is carried out to rewrite esi = ci

1V1 + . . .+ ci
kVk. Then B bootstrap samples are generated

for each coordinate cl , l = 1, . . . ,k with empirical distribution function Fcl
n and the bootstrap residuals

are constructed as e∗si
= c∗1V1 + . . .+ c∗kVk [6]. These bootstrap replications are then used to obtain B

predictions at the unknown location using the KFED. Prediction bands are obtained as in Section 3.1.

3.3 Inference based confidence intervals for a GAM model

In order to compare the bootstrapping approaches with classical inference for uncertainty evaluation, we
consider a modelling strategy different from the FKED model introduced in Section 2. In this case, a
smooth function of longitude, latitude and time is included in Model (2). By setting a penalized bivariate
spline basis for longitude and latitude a spatial covariance structure is implicit in the model [13], allowing
for spatial prediction. The model can be written in matrix form as Ŷ = SY where S =X(X ′X +ηP)−1X ′ is
the smoothing matrix, X is the design matrix, P is the penalty matrix and η is the smoothing parameter.
At a new location s0, the predicted value is given by Ŷs0(t) = Ss0y, where Ss0 = Xs0(X

′X +ηP)−1X ′.
Approximate 95% predictions bands can be calculated as [15]:

Ŷs0(t)±1.96σ̂ε

√
1+ ||Ss0 ||2. (3)

4 Case Study

We consider the same case study as in [2, 3] and [9]. The data set consists of daily PM10 concentra-
tions (in µg/m3) measured from October 2005 to March 2006 by the monitoring network of Piemonte
region (Italy) in 34 sites, 24 of which will be used to fit the model and the remaining 10 as validation
sites. Covariates available include coordinates and altitude (scalar), daily maximum mixing height, daily
total precipitation, daily mean wind speed, daily mean temperature and daily emission rates of primary
aerosols (functional). The FKED model (Section 2) and the fully additive model (Section 3.3) will be
fitted to these data and the three methods for uncertainty evaluation introduced here compared.
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