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Abstract 24 

Study question: Can endometrial mesenchymal stromal cells (E-MSCs) differentiate into 25 

endothelial cells in an in vitro co-culture system with HUVECs? 26 

Summary answer: E-MSCs can acquire endothelial markers and function in a direct co-culture 27 

system with HUVECs.  28 

What is known already: E-MSCs have been identified in the human endometrium as well as in 29 

endometriotic lesions. E-MSCs appear to be involved in the formation of the endometrial stromal 30 

vascular tissue and the support of tissue growth and vascularization. The use of anti-angiogenic 31 

drugs appears as a possible therapeutic strategy against endometriosis.  32 

Study design, size, duration: This is an in vitro study comprising patients receiving surgical 33 

treatment of ovarian endometriosis (n=9). 34 

Participants/materials, setting, methods: E-MSCs were isolated from eutopic and ectopic 35 

endometrial tissue and were characterized for the expression of mesenchymal and endothelial 36 

markers by FACS analysis and Real-Time PCR. CD31 acquisition was evaluated by FACS analysis 37 

and immunofluorescence after a 48h-direct co-culture with GFP+-HUVECs. A tube-forming assay 38 

was set up in order to analyze the functional potential of their interaction. Finally co-cultures were 39 

treated with the anti-angiogenic agent Cabergoline.  40 

Main results and the role of chance: A subpopulation of E-MSCs acquired CD31 expression and 41 

integrated into tube-like structures when directly in contact with HUVECs, as observed by both 42 

FACS analysis and immunofluorescence. The isolation of CD31+ E-MSCs revealed significant 43 

increase of CD31, VEGFR2, Tie2 and Ve-Cadherin gene expression. On the other hand, the 44 

expression of mesenchymal genes such as c-Myc, Vimentin, N-Cadherin and SUSD2 remained 45 

unchanged. Cabergoline treatment induced a significant reduction of the E-MSC angiogenic 46 

potential. 47 
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Limitations, reasons for caution: Further studies are necessary to investigate the cellular and 48 

molecular mechanisms underlying the endothelial differentiation. 49 

Wider implications of the findings: E-MSCs may undergo endothelial differentiation, and be 50 

potentially involved during the development of endometriotic implants. Cell culture systems that 51 

more closely mimic the cellular complexity typical of in vivo endometriotic tissues are required to 52 

develop novel strategies for treatment. 53 

Study funding and competing interest(s): All authors declare that their participation in the study 54 

did not involve actual or potential conflicts of interests.  55 

Large scale data: Not applicable 56 
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Introduction 69 

Endometriosis is a chronic and oestrogen-dependent disease characterized by the presence of 70 

ectopic endometrial tissue, composed by glands and stroma, outside the uterine cavity (Giudice, 71 

2010; Bulun, 2009). A number of studies supported the presence of rare clonogenic epithelial and 72 

stromal cells with stem cell characteristics in the human endometrium (Chan et al., 2004; Chan and 73 

Gargett, 2006; Gargett, 2006; Gargett et al., 2009), thought to be physiologically involved in the 74 

cyclic endometrial regeneration after menstruation (Schwab et al., 2005; Masuda et al., 2010; 75 

Gargett et al., 2016). Endometrial mesenchymal stromal cells (E-MSCs), in particular, are 76 

clonogenic mesenchymal like cells (Gargett et al., 2009) expressing pericyte markers (Berger et al., 77 

2005; Spitzer et al., 2012), and localized in the perivascular space of endometrial small vessels 78 

(Schwab and Gargett, 2007).  79 

Clonogenic E-MSCs have been also identified in cultures derived from ovarian endometriotic 80 

lesions (Chan et al., 2011; Kao et al., 2011). Ectopic E-MSCs showed a higher proliferation, 81 

migration and angiogenic ability than eutopic E-MSCs (Kao et al., 2011). It is possible that E-82 

MSCs abnormally shed during menstruation migrate into the peritoneal cavity and consequently 83 

proliferate, invade and generate endometriotic implants (Starzinski-Powitz et al., 2001; 84 

Leyendecker et al., 2002; Sasson and Taylor, 2008). In this context, the role of E-MSCs mainly 85 

appears to be the formation of the endometrial stromal vascular tissue and the support of tissue 86 

growth and vascularization through secretion of pro-angiogenic and growth supporting factors 87 

(Gargett et al., 2014). In addition, clonally purified SUSD2+ E-MSCs were shown to acquire 88 

endothelial marker expression and to integrate into renal blood vessels after xenograft under the 89 

kidney capsule, underlying an endothelial differentiative ability (Masuda et al., 2012). In addition, 90 

circulating endothelial progenitor cells may contribute to the de novo vessel formation in 91 

endometriosis (Du and Taylor, 2007; Laschke et al., 2011). However, the endometrial angiogenic 92 

process is mainly driven by recruitment of endothelial cells by surrounding tissues (Nisolle et al., 93 
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1993; Maas et al., 2001; Laschke and Menger, 2007). The interaction of stromal and endothelial 94 

cells within endometrial angiogenesis has not been investigated yet. 95 

Vascular endothelial growth factor (VEGF) appears to be the main regulator of endometrial 96 

angiogenesis. Indeed, VEGF polymorphisms seem to be associated to the risk of endometriosis (Li  97 

et al., 2013). In addition, increased levels of VEGF were found in the peritoneal fluid of women 98 

with endometriosis and in ectopic endometrial tissue, suggesting the relevance of a pro-angiogenic 99 

microenvironment in the development of the endometriotic implant (Donnez et al., 1998; McLaren, 100 

2000; Bourlev et al., 2006). The use of anti-angiogenic drugs therefore appears as a possible 101 

therapeutic strategy against endometriosis (Hull et al., 2003; Taylor et al., 2009; Pittatore et al., 102 

2014). VEGF targeting using VEGF neutralizing antibodies or tyrosine kinase inhibitors effectively 103 

reduced growth of endometriotic implants, microvessel density and VEGF expression in models of 104 

endometriosis in mice, rats and monkeys (Park et al., 2004; Van Langendonckt et al., 2008; Ozer et 105 

al., 2013). Similarly, interfering with VEGF-VEGFR-2 signalling using a dopamine agonist 106 

displayed an anti-angiogenic effects in experimental endometriosis. Furthermore, we previously 107 

demonstrated that the tyrosine kinase inhibitor Sorafenib affected the angiogenic potential of 108 

ectopic E-MSCs in vitro and reverted their increased VEGF release (Moggio et al., 2012). 109 

In the present study, we aimed to investigate the angiogenic process and to set up an in vitro model 110 

of endometriosis using stromal mesenchymal cells isolated from ovarian endometrial tissue. We 111 

found that E-MSCs acquired endothelial markers and contributed to in vitro tubulogenesis during 112 

co-culture with HUVEC cells. Finally, we evaluated the effect of the dopamine antagonist 113 

Cabergoline, also reported to affect VEGF signaling (Novella-Maestre et al., 2009, 2012) in this 114 

model. 115 

 116 
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Materials and methods 117 

Patients 118 

The cell lines were obtained from nine patients receiving surgery for treatment of ovarian 119 

endometriosis in the Department of Surgical Sciences, University of Torino, between November 120 

2013 and April 2015 after approval by the Ethics Review Board. Preoperative informed consent 121 

was obtained from each patient. 122 

E-MSC isolation and culture 123 

Two samples were collected from the same patient with endometriosis, one of eutopic tissue by 124 

gently scraping the endometrium and one of ectopic implant by surgical biopsy of the inner wall of 125 

the ovarian endometrial tissue. The tissues were immediately placed in a sterile tissue culture dish 126 

and dissected into small fragments using a scalpel blade in a sterile laminar flow. The obtained 127 

fragments were then enzimatically processed with 0.1% type I Collagenase (Sigma-Aldrich) for 30 128 

minutes in a 37°C incubator. Later, cell aggregates were filtered through 60-mm and 120-mm 129 

meshes. Cells were seeded at a density of 1x104/cm2 viable cells (80% viable cells determined by 130 

trypan blue) in EBM: medium plus supplement kit without serum addition (Lonza) previously 131 

described for E-MSC isolation (Moggio et al., 2012). Dead cells were poured off 72 hours later and, 132 

after 5-7 days, cell clones were typically observed. Confluence was achieved 10-14 days after 133 

plating. Cells were passaged at confluence and after 2–3 days in the subsequent passages. The E-134 

MSCs obtained (eutopic E-MSCs, n=9; ectopic E-MSCs, n=9) were cultured for 12 passages as 135 

maximum to test the proliferative capacity typical of MSCs. All the experiments were performed 136 

between passages 3 and 8. Eutopic and ectopic E-MSCs were used at the same cell passage. 137 

 138 

 139 
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Flow cytometric analysis 140 

Cytometric analysis was performed using FACScan (Becton Dickinson) as previously described 141 

(Bruno et al., 2009). The cells suspensions were incubated with antibodies for 25 minutes at 4°C in 142 

100 µl of phosphate-buffered saline with addition of 0.1% bovine serum albumin (Sigma). The 143 

following monoclonal antibodies, all fluorescein isothiocyanate or phycoerythrin conjugated, were 144 

used at 1:50 dilution: anti-CD29, -CD73, -CD90, -CD133, -CD140, -CD146 (Becton Dickinson), -145 

SSEA-4, vascular endothelial growth factor receptor (VEGFR) 1, 2 and 3, Tie2, Ve-Cadherin (R&D 146 

Systems), -CD44, EPCAM (BioLegend), -CD31, -CD105, SUSD2 (Miltenyi Biotec), -CD45 (AbD 147 

Serotec). Fluorescein isothiocyanate or phycoerythrin mouse nonimmune isotypic IgG (R&D 148 

Systems) are used as control at the same dilution. At each experimental point, 10.000 cells were 149 

analyzed on a FACScan (Becton Dickinson).  150 

Real-Time PCR analysis 151 

Gene expression was performed by quantitative real time reverse transcription-polymerase chain 152 

reaction (RT-PCR) with Applied Biosystems StepOne, as previously described (Bussolati et al., 153 

2012). Total RNA was extracted using the mirVana RNA isolation kit (Ambion) according to the 154 

manufacturer’s protocol. RNA was then quantified with Nanodrop 2000 (Thermo Scientific). Gene 155 

expression analysis and quantitative real-time PCR (qRT-PCR) were performed as follows: first-156 

strand cDNA was produced from 200 ng of total RNA using the High Capacity cDNA Reverse 157 

Transcription Kit (Applied Biosystems, Foster City, CA). Real-time PCR experiments were 158 

performed in 20 µl reaction mixture containing 5 ng of cDNA template, the sequence-specific 159 

oligonucleotide primers purchased from MWG-Biotech, and the Power SYBR Green PCR Master 160 

Mix (Applied Biosystems). Relative quantization of the products was performed using the 48-well 161 

StepOne Real-Time PCR System (Applied Biosystems). Thermal cycling conditions were as 162 

follows: activation of AmpliTaq Gold DNA Polymerase LD at 95°C for 10 minutes, followed by 45 163 

cycles of amplification at 95°C for 15 seconds and 60°C for 1 minute, and a final incubation at 164 
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95°C for 15 seconds. TATA binding protein (TBP) messenger RNA was used to normalize RNA 165 

inputs. Sequence-specific oligonucleotide primers are listed in Supplementary Table I. Fold change 166 

was calculated respect to control for all samples using the comparative ΔΔCT method, following the 167 

formula provided by the software (StepOne 2.3, Applied Biosystems): 168 

 169 

HUVEC culture and generation of GFP-positive cells 170 

HUVECs isolated from umbilical vein vascular wall were seeded on fibronectin-coated plates and 171 

cultured in endothelial cell basal medium with an EGM-MV kit (Lonza; containing epidermal 172 

growth factor, hydrocortisone, bovine brain extract) and 10% fetal calf serum (FCS) in a incubator 173 

(37°C, 5% CO2 atmosphere). Cell confluence was monitored by phase-contrast microscopy. For 174 

GFP insertion a pGIPZ lentiviral vector (Open Biosystems) was used. The 293T cell line was 175 

transfected with the construct using the ViraPower Packaging Mix (Life Technologies) for 176 

lentiviruses production. After titering the lentiviral stock, HUVECs were transduced with lentiviral 177 

particles following the manufacturer’s instructions. Cells were selected by Puromycin (Gibco) 178 

(1000 ng/ml) and antibiotic-resistant cells were expanded. Cell infection was evaluated by GFP+ > 179 

98%, as assessed by FACS analysis.  180 

Co-culture systems 181 

Co-culture system was established in direct contact or by using transwells (1 µm pore, Falcon, 182 

Becton Dickinson) in T75 flasks or 6-well plates (Corning Incorporated, NY, USA) respectively. 183 

HUVECs and E-MSCs were seeded into the two compartments of the culture wells at a ratio of 1:1 184 

(75x103/cell line). For direct co-culture, a mix of HUVEC-E-MSC suspension at a ratio of 1:1 185 

(3×105 cells/line) was seeded in T75 flask and in EBM in a humidified incubator (5% CO2, 37°C) 186 

for 48 hours. HUVECs and E-E-s were also cultured alone and used as control.  187 
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 188 

Tubulogenic assay 189 

In vitro formation of capillary-like structures was studied on growth factor-reduced Matrigel (BD 190 

Biosciences, Franklin Lakes, NJ, USA) in 24-well plates. Eutopic and ectopic E-MSCs were stained 191 

with Dil (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate) (Life Technologies) 192 

according to manufacturer's instructions, and plated 1:1 with HUVEC-GFP on growth factor–193 

reduced Matrigel (BD Biosciences) for in vitro formation of capillary-like structures. DIL staining 194 

was assessed by flow cytometry at 0, 24 and 48h (not shown). Cells (6×104 cells per well) were 195 

mixed and seeded onto Matrigel-coated wells in endothelial cell basal medium plus VEGF 10 196 

ng/ml. Cell organization onto Matrigel was imaged after 24-48 hours with a Nikon Eclipse Ti 197 

inverted microscope using a Nikon Plan 10X/0.10 objective and cells were kept on incubator at 198 

37°C and 5% CO2 during the experiment (OKOLab, Italy). 199 

Immunofluorescence 200 

Immunofluorescence was performed on chamber slides (Sigma) on which cells were fixed in 4% 201 

paraformaldehyde containing 2% sucrose for 15 minutes at 4°C, permeabilized with 0.1% Triton X-202 

100 (Sigma) for 8 minutes at 4°C, and then incubated overnight at 4°C with the appropriate 203 

antibodies. Anti-CD31 antibody (Biomeda, 1:200) was used. Primary antibody was detected using 204 

anti-mouse secondary antibody conjugated with Texas Red (Molecular Probes, 1:5000). DAPI dye 205 

(Sigma) was added for nuclear staining, and imaging was performed using anLSM5 Pascal confocal 206 

microscope (Carl Zeiss International). Substitution with an unrelated rabbit serum or mouse IgG 207 

served as negative control.  208 

Cell sorting 209 

Cells were stained with anti-CD31 antibody (Miltenyi Biotec) and sorted using a BD FACSAria III, 210 

equipped with the BD FACSDiva software v. 7.0. At least 10.000 events per sample were acquired, 211 
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obtaining three populations from each co-colture (GFP+ HUVECs, eutopic/ectopic GFPneg/CD31+ 212 

E-MSCs and eutopic/ectopic GFPneg/CD31neg E-MSCs) and analyzed separately by Real-Time 213 

PCR.  214 

Drugs and Reagents 215 

Sunitinib malate (Sigma-Aldrich, St Louis, MO, USA), was resuspended in DMSO to a final 216 

concentration of 10 mM and stored at 4°C. Sorafenib (Bayer Pharmaceuticals, Leverkusen, 217 

Germany) was resuspended in DMSO to a stock concentration of 10 mM and stored at -20°C.  218 

Bevacizumab, 25 mg/ml (Genentech) was stored at 4°C. Cabergoline powder 10 mg (Sigma) was 219 

dissolved in 885 µl of DMSO to a stock concentration of 25 mM and stored at -20°C. Sunitinib and 220 

Sorafenib were diluted 1:100.000 in the culture medium (final concentration 0.1 µM), Bevacizumab 221 

was diluted 1:1000 (final concentration 25 µg/ml) and Cabergoline was diluted 1:1000 (final 222 

concentration 25 µM). All the drugs were administered for 24 hours during cell cultures.  223 

Statistical analysis 224 

Results were expressed as means ± SD and analysed with GraphPad Prism V5. Differences in gene 225 

expression among groups were investigated by analysis of variance using non-parametric analysis 226 

by Kruskal-Wallis test with Dunn’s post test. Eutopic and ectopic cell lines of the same patient were 227 

compared using a Wilcoxon test where indicated. Significance was set at p <0.05. 228 

229 
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Results 230 

Eutopic and ectopic E-MSC characterization 231 

In order to study the angiogenic potential of the mesenchymal like population present in eutopic and 232 

ectopic endometrial tissue, we cultured stromal cells from eutopic and ectopic tissues derived from 233 

patients affected by ovarian endometriosis (n=9). The clinical characteristics of the patient 234 

population enrolled for this study are listed in Table I. The obtained cell lines were characterized for 235 

their fibroblastic phenotype, adherence to plastic and expression of mesenchymal markers (Table II 236 

and Figure 1). As shown by Figure 1, E-MSCs expressed CD44, CD73, CD105, CD29 and CD90. 237 

Eutopic and ectopic E-MSCs showed a similar expression of mesenchymal markers. PDGFRb and 238 

SUSD2, considered more specific markers for endometriotic mesenchymal stem cell (Gargett et al., 239 

2016) were expressed by a large fraction of cells. These characteristics suggest that, as reported 240 

(Bianco et al., 2013; Gargett et al., 2016), E-MSCs represent a heterogenic population of 241 

mesenchymal stem cells and stromal fibroblast, sharing a number of markers and functions. CD146, 242 

a marker of both mesenchymal and endothelial cells (Wang and Yan, 2013) resulted significantly 243 

higher in the ectopic cell line. As shown in Table II, both eutopic and ectopic E-MSCs did not 244 

express markers of endothelial/hemopoietic cells such as CD34 and CD45, CD31, VEGFR2, Tie2 245 

and Ve-Cadherin. The presence of epithelial cell contamination was excluded by lack of the 246 

epithelial marker EPCAM in both cell lines. These data indicate that Ectopic E-MSCs isolated from 247 

ovarian endometrial tissue have a mesenchymal phenotype similar to that isolated from peritoneal 248 

endometriosis (Moggio et al., 2012).  249 

Endothelial potential of eutopic and ectopic E-MSCs 250 

We subsequently evaluated the endothelial angiogenic ability of eutopic and ectopic E-MSCs by an 251 

endothelial in vitro differentiation. We first characterized E-MSCs for the expression of endothelial 252 

markers. At the basal level, the cells expressed minimal levels of CD31 (Figure 2 and Table II). 253 
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Endothelial cells (HUVECs) were used as positive control (Table II). For the in vitro differentiation, 254 

the cells were seeded on attachment factor coated dishes and cultured in ENDO-GRO media plus 255 

VEGF (10 ng/ml), previously reported to induce endothelial differentiation of mesenchymal cells 256 

(Brossa et al., 2015). After 14 days of differentiation, we observed the acquirement of CD31 257 

expression (Figure 2 A), as previously reported (Masuda et al., 2012), confirming that E-MSCs may 258 

differentiate into endothelial cells. 259 

To mimic the pericyte-endothelial interaction in endometriosis, we analyzed the endothelial 260 

differentiative ability of both eutopic and ectopic E-MSCs in a co-culture model with endothelial 261 

cells. Two different types of co-culture were prepared: an indirect stimulation, where HUVEC cells 262 

were plated on a trans-well, which does not allow a direct contact with E-MSCs (cell ratio of 1:1) or 263 

a direct co-plating of HUVECs and E-MSCs (cell ratio of 1:1). The HUVEC cells were marked by 264 

GFP expression obtained with a stable infection with lentiviral vector, (>98% expression in all 265 

experiments). In the indirect setting, the presence of HUVECs did not affect the expression of the 266 

endothelial marker CD31 in both eutopic and ectopic E-MSCs up to 7 days co-culture (Fig. 2 B). At 267 

variance, the direct co-culture of E-MSCs and HUVECs induced the presence of a population 268 

acquiring high CD31 expression by GFP negative E-MSCs, as observed by FACS analysis using a 269 

selective gating strategy and by immunofluorescence images (Figure 2 B and C and Figure 3 A). 270 

This effect was observed as early as 48 hours. No further increase was observed at longer co-culture 271 

times (4 and 7 days, not shown). Furthermore, in order to analyze the functional potential of E-272 

MSC-HUVEC interaction, we set up a tube-forming assay onto Matrigel. As shown by Figure 3 B, 273 

E-MSCs could not organize in elongates tubular-like structures as HUVEC cells. When E-MSCs 274 

were plated together with HUVECs onto Matrigel, both cells contributed to the formation of tube-275 

like structures (Figure 3 B). These data indicate that the direct contact between E-MSCs and 276 

HUVECs may influence the differentiating potential of E-MSCs into endothelial cells and their 277 

functional involvement. 278 
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Isolation and analysis of the CD31+ E-MSC population 279 

In order to analyze the nature of the E-MSC population expressing CD31 after HUVEC co-culture, 280 

we isolated GFPneg/CD31+ cells using a cell-sorter and we analyzed their gene expression compared 281 

to GFP+ HUVECs (positive control), to the basal cells (not in co-culture) and to GFPneg/CD31neg E-282 

MSCs after co-culture (Figure 4 A and B and Supplementary Fig. 1). Real Time PCR confirmed the 283 

increase in the expression of CD31 mRNA in the sorted CD31+ E-MSCs compared to the basal and 284 

to CD31neg E-MSCs after co-culture (p<0.05). In parallel, we observed a significant increase in 285 

VEGFR2 and Ve-Cadherin expression in both eutopic and ectopic CD31+ E-MSC lines. Differently, 286 

Tie-2 expression was increased only in the ectopic CD31+ E-MSCs in respect to basal and to 287 

CD31neg cells. No significant differences were observed in the expression of VEGF in the different 288 

cell fractions (Figure 4 B). Moreover, the expression of the mesenchymal genes c-Myc and 289 

Vimentin, also expressed by HUVEC cells, was unchanged (Supplementary Figure 1). N-Cadherin 290 

and SUSD2, E-MSC markers, were expressed at higher levels in E-MSCs than in HUVECs, but 291 

they did not show significant variations comparing CD31+ and CD31neg cells (Supplementary 292 

Figure 1). Comparing the expression levels of endothelial markers in the GFPneg/CD31+ cells from 293 

eutopic and ectopic E-MSCs, whereas Tie2 was significantly increased in the ectopic cell line 294 

(p<0.05) whereas no difference was observed for CD31, VEGFR2 and Ve-Cadherin. Altogether 295 

these data reveal that a subpopulation of E-MSC may acquire an endothelial-like gene expression, 296 

implying a progressive endothelial differentiation.  297 

Effect of Cabergoline treatment on the endothelial potential of E-MSCs 298 

In order to evaluate the efficacy of anti-angiogenic drugs in limiting the endothelial differentiation 299 

of E-MSCs during the direct co-culture with HUVECs we tested the effect of Sorafenib, Sunitinib, 300 

Bevacizumab treatment, used at not toxic concentrations as previously described (Fiorio Pla et al., 301 

2014; Brossa et al., 2015). No significant reduction in the percentage of CD31 expressing E-MSCs 302 

as evaluated by FACS analysis after Sorafenib, Sunitinib or Bevacizumab treatment was obtained 303 
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(data not shown). We subsequently focused on Cabergoline, a dopamine receptor2 agonist also 304 

shown to impact neo-angiogenesis and endometrial lesions (Novella-Maestre et al., 2009, 2010). 305 

Cabergoline was administered after 24 hour co-culture. We observed that the increase in CD31 306 

expression obtained after co-culture was significantly reduced by 24 hour treatment with 307 

Cabergoline 25 µM in both eutopic and ectopic cell line (Figure 5 A and B). Differently, 308 

Cabergoline did not affect the incorporation of E-MSCs in HUVEC tubular structures (Figure 5 C). 309 

It could be speculated that VEGF signalling is only partly involved in the early endothelial 310 

differentiation observed and that this is largely dependent on endothelial-stromal contact.  311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

  323 
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Discussion 324 

In the present study we focused our attention on the angiogenic potential of E-MSCs isolated from 325 

eutopic and ectopic endometrial tissue. We found that endothelial co-culture promoted the 326 

acquirement of endothelial markers and function, and that this required a direct cell-to-cell contact. 327 

In addition, Cabergoline treatment partly inhibited this process. 328 

E-MSCs are mesenchymal like cells localized in the perivascular space of endometrial small vessels 329 

(Schwab and Gargett, 2007), and possibly involved in support of angiogenesis and endothelial 330 

integrity. We also previously found that stromal cells isolated from ectopic endometrial lesions 331 

expressed higher levels of VEGF and HIF in respect to those isolated from eutopic endometrial 332 

tissue which may in turn promote angiogenesis (Moggio et al., 2012). This result was confirmed in 333 

the present study using ectopic E-MSCs from ovarian endometrial tissue. E-MSCs were previously 334 

shown to differentiate into endothelial cells when cultured within endothelial growth factors 335 

(Oswald et al., 2004; Masuda et al., 2012). We also found in the present study the acquisition of 336 

CD31 by a fraction of the cells after 14 days of culture with endothelial differentiating medium. 337 

Moreover, it was recently shown that E-MSCs are able to acquire endothelial markers (CD31, Ve-338 

cadherin and KDR) when plated onto nanofibrous scaffold in the presence of angiogenic factors, 339 

suggesting their potential angiogenic property in selected culture conditions (Shamosi et al., 2016).  340 

To understand if the interaction with endothelium could cause an activation of the differentiative 341 

program of E-MSCs, we co-cultured them with HUVECs. As proved by both FACS and 342 

immunofluorescence images, we demonstrated that E-MSCs could acquire an endothelial 343 

phenotype as soon as after 48 hours and participate into vessel organization in vitro together with 344 

endothelial cells. Eutopic and ectopic E-MSCs showed a similar behaviour and acquisition of 345 

endothelial markers. However, the ectopic E-MSCs specifically increased Tie2, the angiopoietin-2 346 

receptor that could possibly represent a specific ectopic E-MSC marker. The identification of a 347 

subpopulation, around 10% of cells, acquiring high levels of CD31 and expressing endothelial 348 
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markers could be dependent on the heterogeneity of E-MSCs, possibly comprising both 349 

mesenchymal stem cells and stromal fibroblasts. The basal characterization and the expression of 350 

SUSD2 indicated a fraction of mesenchymal stem cell population larger than 10% in our culture. 351 

Indeed, these populations represent a continuum, as the mesenchymal stem population may 352 

spontaneously differentiate into fibroblasts, and they share several functions (Barragan et al., 2016). 353 

The absence of a pure mesenchymal stem population could limit the entity of the endothelial 354 

differentiation.  355 

Of interest, this rapid acquirement of the endothelial phenotype appears to be due to cell-to-cell 356 

interactions, possibly involving adhesion related mechanisms, rather than on growth factor release, 357 

as no differentiation was observed with an indirect co-culture. In addition, the use of a VEGF 358 

specific inhibitor was unable to reduce the acquisition of endothelial markers.  These data suggest 359 

that E-MSCs might be involved in the vessels formation, by an interaction with endothelial cells. 360 

Further studies are required to identify the contact-activated pathways involved. These evidences 361 

confirm the direct functional contribution of E-MSCs to the endothelial microenvironment and 362 

suggest that these cells may play a role in the pathogenesis of gynaecological diseases, such as 363 

endometriosis and adenomyosis, due to inappropriate shedding of stem cells or alterations in the 364 

stem cell niche (Gargett, 2006). It is also conceivable that a fraction of E-MSCs could contribute to 365 

angiogenesis and vessel formation in their pericyte/perivascular role in ectopic vessels in addition to 366 

their ability to differentiate into endothelial cells. However, more than 80% of blood vessels 367 

observed in endometriosis implants are pericyte-free (Hull et al., 2003).  368 

The angiogenesis is a fundamental process for the physiological growth of the endometrium, as well 369 

in the establishment of endometriosis (Donnez et al., 1998; McLaren et al., 2000; Laschke et al., 370 

2007; Du and Taylor, 2007). Indeed different studies suggest the therapeutic efficacy of anti-371 

angiogenic therapy targeting VEGF for endometriosis eradication (Hull et al., 2003; Nap et al., 372 

2004; Taylor et al., 2009; Pittatore et al., 2014). However, anti-angiogenic drugs currently available 373 
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on the market are quite expensive and are mainly used in oncology, being able to cause relevant 374 

undesired effects. Differently, the dopamine agonist Cabergoline, which has been used for several 375 

years to block lactation or treat hyper-prolactinemia, appears as an easier and more practical 376 

option. The mechanism responsible for the anti-angiogenic effect of Cabergoline is still unclear, 377 

possibly relaying on its ability to block the VEGF-VEGFR2 interaction (Novella-Maestre et al., 378 

2009). In our study, Cabergoline but not other anti-VEGF drugs impaired, in part, endothelial 379 

differentiation. However, it did not affect the ability of E-MSCs to organize into tubular structures. 380 

These data support a prominent role for stromal-endothelial interactions rather than for VEGF-381 

mediated signals in the early endothelial differentiation of E-MSCs (at 48 hours) and suggest a 382 

VEGF-independent effect of Cabergoline. At variance, VEGF could be important as a later signal, 383 

as VEGF addition to the culture medium promoted endothelial differentiation after 14 days. 384 

Therefore, strategies aimed to inhibit endometriosis should be considered in the context of the 385 

different cell types present in the ectopic microenvironment.  386 

In conclusion, our data suggest that E-MSCs could be driven by the surrounding endothelial cells to 387 

differentiate and to take part to the formation of endothelium and new blood vessels. Moreover, we 388 

propose a simple cell culture system that closely mimics the cellular complexity typical of in vivo 389 

endometriotic tissues. This system might be useful to test novel strategies for treatment. 390 
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Figure legends 534 

Figure 1. Expression of mesenchymal and hematopoietic markers by eutopic and ectopic E-535 

MSCs. Representative FACS analysis of eutopic and ectopic E-MSCs are shown. The filled area 536 

shows binding of the specific antibody, and the grey line shows the isotypic control. All ectopic and 537 

eutopic E-MSC lines, obtained from each patient (n=9), were characterized and showed similar 538 

marker expression.  539 

Figure 2. Characterization of CD31 acquisition after endothelial differentiating conditions. 540 

Eutopic and ectopic E-MSCs were cultured for 14 days in in vitro endothelial differentiation 541 

medium (A), or were cultured with HUVEC cells in indirect culture setting (Indirect), or in direct 542 

cell-to-cell contact (Co-culture) (B). A. Representative FACS analysis showing the acquirement of 543 

CD31 expression (red filled area) by eutopic and ectopic E-MSCs after 14 days incubation in 544 

endothelial differentiation medium. The black line is the isotypic control. B. Percentage of CD31 545 

expressing cells by E-MSCs in indirect culture with HUVECs and of GFPneg E-MSCs in co-culture 546 

conditions with HUVECs. Data are the mean ± SD of four independent experiments. *=p<0.05; 547 

**=p<0.001 vs Basal. C. Upper panels are the representative two-colour flow cytometry traces of 548 

CD31 and GFP expression by ectopic E-MSCs, (red, 99.8% GFPneg/CD31neg) and HUVECs (green, 549 

98.7% GFP+/CD31+). Lower panels show the gating strategy of cells in co-culture: gates were 550 

performed on the GFPneg cell population (red) and GFP+ population (green), and the expression of 551 

CD31 was evaluated in the GFPneg gate only to avoid contamination of the GFP+/CD31+ cell 552 

population. 553 

Figure 3. Endothelial differentiation and tubular-like organization of E-MSCs after co-culture 554 

with HUVECs. A. Representative immunofluorescence images showing CD31 expression (red) by 555 

GFP+ HUVEC cells and GFP negative E-MSCs 48 hour after direct co-culture. In merged pictures 556 

GFPneg/CD31+cells are indicated by yellow arrows. B. Representative micrographs of the tubular-557 

like networks formed by ectopic E-MSCs (red), HUVEC cells (green) or co-cultured cells. When 558 
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co-cultured with HUVECs, E-MSCs functionally organized within the elongated structures formed 559 

by HUVECs. Nuclei were stained with Hoechst dye 33258. Three experiments were performed with 560 

similar results. Original magnification: A. x400, B: x200.  561 

Figure 4. Isolation and characterization of endothelial differentiated CD31+ E-MSCs. (A) 562 

Representative dot plots showing flow cytometric analysis of direct co-culture experiments in which 563 

three cell populations were sorted: GFP+/CD31+ HUVECs, GFPneg/CD31+E-MSCs and 564 

GFPneg/CD31neg E-MSCs. (B) Quantitative RT-PCR analysis showing the expression of endothelial 565 

markers CD31, VEGFR2, Tie2, Ve-Cadherin and VEGF in E-MSCs (basal), and in sorted GFP 566 

neg/CD31+ and GFP neg/CD31neg E-MSCs after direct co-culture with HUVECs. HUVECs were used 567 

as positive control. Data were normalized to TBP mRNA and to 1 for HUVECs and expressed as 568 

relative quantification (RQ). Data are mean ± SD of four different cell lines. *p<0.05 Basal vs 569 

CD31+; § p<0.05 CD31+ vs CD31-. 570 

Figure 5. Effect of Cabergoline treatment on endothelial differention of E-MSCs in co-culture 571 

with HUVECs. Cabergoline was added to the 48 hour co-culture experiments of E-MSCs and 572 

HUVECs. A and B: Representative dot plots and quantification of the CD31+ cells analyzed by 573 

cytofluorimetric analysis in the GFP+ HUVECs and GFPneg E-MSCs. Data are mean ± SD of 4 574 

different cell lines. *p<0.05 Basal vs Ctr; § p<0.05 Ctr vs Cabergoline. C. Representative 575 

micrographs of the tubular-like networks formed by co-cultured ectopic E-MSCs (red) and 576 

HUVECs (green) in the absence or presence of Cabergoline. No difference was observed. Nuclei 577 

were stained with Hoechst dye 33258. Three experiments were performed with similar results. 578 

Original magnification: x200.  579 

  580 
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Table I. Patients’ clinical characteristics. 581 

Patient 
#  Samples 

Age 

(years) 
Previous pregnancies 

Average 
menstrual cycle 

length 

(days) 

Other 
diseases 

1  Eutopic/Ectopic 34  No 28  No 

2  Eutopic/Ectopic 28  No 28-30  No 

3  Eutopic/Ectopic 38   1 miscarriage at 8 weeks 
gestational age 27  No 

4  Eutopic/Ectopic 40  1 live birth 28-30  No 

5  Eutopic/Ectopic 25  No 25  No 

6  Eutopic/Ectopic 32   1 miscarriage at 7 weeks 
gestational age 28-30  No 

7  Eutopic/Ectopic 34  No 28  No 

8  Eutopic/Ectopic 29  No 28-30  No 

9  Eutopic/Ectopic 41  No 28  No 

 582 

  583 
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Table II. Cytofluorimetric evaluation of surface marker expression by eutopic  and ectopic E- 584 

MSCs and HUVECs. 585 

 586 

 Eutopic E-MSC Ectopic E- MSC HUVEC 

CD44 97.0 ± 1.9 % 97.4 ± 2.0 % 72.4± 2.3  % 

CD73 96.8 ± 3.2 % 94.9 ± 4.3 % 97.0± 0.4  % 

CD105 77.8 ± 20.5 % 87.3 ± 10.3 % 95.7± 0.7  % 

CD146 2.6 ± 3.3 % 23.0 ± 6.3 %* 98.5± 1.3  % 

CD29 99.0 ± 1.0 % 97.3 ± 2.0 % 99.7± 0.3  % 

CD90 68.2 ± 21.0 % 86.7 ± 16.7 % 0.6 ± 0.1 % 

CD34 1.1 ± 0.8 % 2.7 ± 1.0 % 0.7± 0.2  % 

CD45 0.4 ± 0.3 % 0.5 ± 0.2 % 0.2± 0.1  % 

CD31 0.2 ± 0.1 % 0.5 ± 0.3 % 98.6 ± 1.0 % 

VEGFR2 1.7 ± 0.5 % 0.8 ± 0.5 % 80.6 ± 9.6 % 

Tie2 0.9 ± 0.2 % 1.3 ± 0.3 % 9.8 ± 0.1 % 

Ve-Cadherin 0.2± 0.2  % 1.0± 0.3  % 86.9± 2.3  % 

SUSD2 56.1± 7.3  % 43.3±9.7 % 1.7± 0.2  % 

PDGFRb 71.1± 6.9  % 52.8±13.0 % 1.6± 2.3  % 

EPCAM 0.2± 0.1  % 0.5± 0.2  % 0.8± 0.2  % 

 587 

 588 

Quantitative expression of mesenchymal, hematopoietic and endothelial markers assessed by FACS 589 

analysis. Values represent the percentage of positive cells and are expressed as mean ± SD of all 590 

nine lines in study for eutopic and ectopic E-MSCs. Three cell lines of HUVECs were tested as 591 

control. *=p<0.001 ectopic vs eutopic E-MSCs.  592 


