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Abstract. CSLTA is a stochastic logic which is able to express prop-
erties on the behavior of a CTMC, in particular in terms of the possi-
ble executions of the CTMC (like the probability that the set of paths
that exhibits a certain behavior is above/below a certain threshold).
This paper presents the new version of the the stochastic model checker
MC4CSLTA, which verifies CSLTA formulas against a Continuous Time
Markov Chain, possibly expressed as a Generalized Stochastic Petri Net.
With respect to the first version of the model checker presented in [1],
version 2 features a totally new solution algorithm, which is able to verify
complex, nested formulas based on the timed automaton, while, at the
same time, is capable of reaching a time and space complexity similar to
that of the CSL model checkers when the automaton specifies a neXt or
an Until formulas. In particular, the goal of this paper is to present a new
way of generating the MRP, which, together with the new MRP solution
method presented in [2] provides the two cornerstone results which are
at the basis of the current version. The model checker has been evaluated
and validated against PRISM [3] (for whose CSLTA formulas which can
be expressed in CSL) and against the statistical model checker Cosmos[4]
(for all types of formulas).

1 Introduction

System verification is a topic whose relevance increases with the increase of the
dependency of everyday life from software systems. The more our society relies
on computer-based systems, more critical is the demand for system reliability.
Model checking of temporal logics has represented an important milestone in the
computer science approach to verification, allowing the exhaustive check of sys-
tems with billions of states and more. Temporal logics allows to express invariant
properties, like ”in all states variable x is positive”, as well as path-dependent
properties, like ”it exists a system execution (a path) in which variable x is al-
ways incremented after a decrement of variable y”. When the system at hand
includes timing aspects, temporal logic can be extended to include constraints
over time intervals, like ”on all paths the lift door will open within 2 seconds
after the lift reaches the target floor”. Finally, when the system description in-
cludes also probabilistic aspects, its evaluation and verification can be based on
stochastic logics that allows properties like: ”with probability greater than α the
lift door will open within 2 seconds after the lift reaches the target floor”.



The most well known stochastic logic is CSL [5], for which various verifica-
tion engines (model-checkers) exists, like Prism [3], MRMC [6] and Marcie [7],
to verify behaviour of DTMC or CTMC, possibly generated from higher level
languages, like the guarded command language of Prism or the stochastic Petri
nets of Marcie. CSL has a predefined set of operators to specify the paths of
interest (called neXt and Until), and this might constitute a limitation. This re-
striction is nevertheless well motivated by the fact that the verification of these
formulas only requires transient and steady-state solution of the chain.

CSLTA [8] represents a step forward, as it allows to specify the paths of in-
terest as the set of paths accepted by a single clock timed automaton [9], where
the restriction to single clock is the key to allow the verification of CSLTA for-
mulas in terms of the steady-state solution of a Markov Regenerative Process
(MRP). A multi clock CSLTA has been defined in [10], but the gain in formula
expressiveness is paid in solution terms, as the underlying process becomes a
piece-wise deterministic process (PDP). In terms of model checkers, single clock
CSLTA formulas can be verified using MC4CSLTA [1], and single and multiple
clock formulas using Codemoc [11]. More recently the statistical model checker
Cosmos [4] has been delivered. The tool uses simulation to verify formulas speci-
fied through timed (and even hybrid) automata [12], for a stochastic model that
is a Stochastic Petri Net extended to arbitrary distributions for the transition
firing.

This paper concentrates on CSLTA and presents the new version of the model
checker MC4CSLTA. Version 2 solves a few inefficiencies of the first version, as
will be explained in the next section, and introduces a totally new solution en-
gine. As we shall see, the translation into Deterministic Stochastic Petri Net
(DSPN) has been removed; to allow the evaluation of nested formulas the imple-
mentation now includes forward and backward solution; different MRP solution
methods can now be employed (in particular the efficient component-based ap-
proach described in [2]), and non useful computations are removed thanks to
a pre-analysis of the timed automata of the formula. This theory behind the
pre-analysis and an assessment of the correctness and efficiency of MC4CSLTA

version 2 are the main contributions of this paper. Most of the work presented
in this paper is the result of the PhD work of the first author [13].

2 Background and motivations

In this section we review the basic literature in CSL and CSLTA and related
tools and discuss the status of the MC4CSLTA model checker, version 1 and the
limits that the tool has shown in verifying ”large” systems. The focus will be on
the solution algorithms employed. It is important to recall that ”large” in the
stochastic context is never as large as in the qualitative model checking, since,
unless approximate techniques are applied, the limit in size is given by the size
and the number of vectors required by the solution process. In this paper we
have considered systems with up to 10 millions states.



CSL and Prism. Prism allows to model check CSL formula in a very efficient
way. The most complex operator, apart from steady state, is the evaluation
of the probability of the set of paths that verify an Until formula of the type
P./λ(Φ U [t,t′]Ψ) for a CTMC M, where Φ and Ψ are boolean functions over the
set AP of atomic propositions associated to the states ofM, ./ ∈ {<,≤,≥, >} is
a comparison operator, λ ∈ R[0,1] is interpreted as a probability, and 0 ≤ t ≤ t′

is a time interval. The probability of the paths that satisfy the Until formula can
be computed by the (transient) solution of one or two CTMCs (depending on the
time interval [t, t′]). These CTMCs are derived from the original model M by
making certain states absorbing, and we shall term M[Φ] the CTMC obtained
from M by making all the states that satisfy Φ in M absorbing. When t 6= t′

the model checking algorithm requires the transient solution of two modified
CTMCs: the chain πM[¬Φ] is solved for time t, assuming we start in s at time 0,
the resulting probability vector is then used as initial probability for the solution
at time t′ − t of the chain πM[¬Φ∨Ψ ], where the result of the first computation
are filtered out to put to zero the probability of all states which are not Φ states.
The elements of the second transient solution vector that satisfy Ψ are then
summed-up to obtain the probability of the set of paths starting from the initial
state s and that satisfy the Until. A comparison with λ allows to define whether
s satisfies the formula or not.

Prism allows also an hybrid solution engine, in which the CTMC, and the
modified CTMCs required in the computation, are stored efficiently using deci-
sion diagrams, while the solution vector is stored in full. Moreover, although the
above description is fully forward, from time 0 to time t′, the model checking
works backward (as explained later) from the states that satisfy Ψ to the set of
states that satisfies the full formula. This allows to compute, through two tran-
sient solutions only, the full set of states that satisfy the formula. Other model
checkers like Marcie and MRMC apply the same solution approach.

CSLTA and MC4 CSLTA, version 1 CSLTA (single clock) uses timed automata
(TA) to specify (timed) accepted path and the model checker goal is to compute
the probability of the set of accepted paths. To avoid the introduction of non-
determinism the TA is required to be ”deterministic” (DTA): for each path in
the automaton there is at most one path in the TA that accepts it. A DTA A
is made of a set of locations and a set of edges. Each DTA is equipped with a
clock, usually named x, that runs constantly and whose value increases linearly
over time. Edges describe the transition relation and can be labeled with a clock
constraint. The DTA of Figure 1(A) has three locations l0, l1, l2. Location l0
is initial, and l2 is final. An edge with a constraint in the form x = c1 is a
Boundary edge (marked with a ]), and is triggered by the elapse of time. An
edge with a constraint c1 < x < c2 is an Inner edge (as the l0, l1) edge) and is
triggered by a transition firing in the GSPN (or by a transition in the CTMC).
Each edge can have an associated reset of the clock x. Inner edges can have
an associated set of actions (transition names of a GSPN or action names of a
decorated CTMC), and locations can have an associated boolean formula (the
atomic propositions Φ and Ψ in the example). With reference to GSPN, we can



Fig. 1. An example of DTA.
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(A) A simple DTA that describes which CTMC paths are accepted.

(B) State space of the cross product of any CTMC with the DTA (A).
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say that a transition in the underlying CTMC from marking m to marking m′

due to the firing of transition a is accepted by the DTA in location l through the
edge (l, l′) if, assuming that m satisfies the boolean condition associated to l,
the transition a is in the set of actions associated to the (l, l′) edge, the current
value of x satisfies the edge constraint, and m′ satisfies the boolean condition of
l′. The DTA of the example accepts CTMC paths that stay in a Φ state for at
least 10 unit time, then moves to a Ψ state at any time between 10 and 20, with
any CTMC move in the Act set, and at time 20 is found in a state that satisfies
Φ. Note that all edges in the DTA are Inner edges, but the one between l1 and
l2. For each DTA is possible to define C = {ci}, the ordered set of clock values
that label A clock constraints, with the addition of 0 and ∞. For the example
in Figure 1(A), C = {0, 10, 20,∞} A state of a (D)TA is then given by a pair
(l, c) where l is a location and c is a clock value in C.

CSLTA is a variation of CSL in which the P./λ(ϕ) operator (with ϕ being
either a timed neXt or a a timed Until operator) is substituted by a P./λ(A).
CSLTA is more expressive than CSL [8], and this comes at the price of a more
complex model checking algorithm: verifying a formula requires the steady state
solution of an (absorbing) Markov Regenerative Process (MRP) obtained as the
cross-product of the Markov chain with the DTA. If s is the state of a CTMC
and (l, c) is the state of the DTA, a state in the cross-product is the triple (s, l, c),
or one of the two states > or ⊥ The cross-product is built in such a way that
all and only the paths of the CTMC that take the DTA to a final location end
up in a > state. A state s of a CTMC M satisfies the formula P./λ(A) if in
the cross-product MRP M×A the probability of reaching > from (s, l0, c0) is



./ λ. Fig. 1(B) shows the general cross-product induced by the DTA (A) on any
CTMC, where the rectangles are set of CTMC states that satisfies the DTA’s
state propositions.

As depicted in the upper part of Figure 2, model checking of CSLTA requires
two steps: building the MRP M×A and then solving it. In the first version of
MC4CSLTA the cross product algorithm produces a DSPN whose underlying
process is isomorphic to the M×A, so that the solution step can be left to
existing DSPN tools. This approach is inspired by software reuse, but it is highly
inefficient, since even the starting CTMC has to be translated into a DSPN,
moreover the use of existing tools, not specifically designed for model-checking,
allows to use only the much less efficient forward approach.

Fig. 2. Working structures of the MC4CSLTA and Codemoc model checkers.
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DTA A in
textual form.

Cross product M×A
produces a DSPN with
a single initial state.
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and then computes the probability
of reaching the � state from the
initial state s0 of M.

Model checking procedure of MC4CSLTA ver. 1.

Model checking procedure of CoDeMoC:

DTA A in
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×
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Deterministic Process.

Multiclock case: Approximate solution
of a set of partial differential equations
obtained by the PDP G(C×A).

Single clock case: An embedded Markov
chain P is derived from the PDP G(C×A)
and solved iteratively in steady state.

MRP solution methods There is a large degree of variation in the solution ap-
proaches for MRP. When applied to CSLTA the classical approach builds the
embedded Markov chain P and solves it to compute the probability of the re-
newal state >. This approach suffers from the fill-in approach: P is usually a
very dense matrix and only small states spaces can be solved. A matrix-free
approach has been defined in [14], which computes the probability of renewal
states without ever building and storing P . This approach has been extended
in [15] to deal with non ergodic MRPs, as required by CSLTA. More recently a
component-based approach [2] has been defined for non-ergodic MRPs, which
can significantly reduce the space and time complexity of model-checking CSLTA.
In particular it was shown in the same paper that the algorithm, when applied
for DTAs that are Until formulas, reduces to the computation of the transient
solution of two CTMC, although the space complexity is not the same since the
M×A includes both the two CTMCs that have to be solved, while a CSL model
checker can build and solve the one at a time.



CSLTA and Codemoc The work in [10] considers the model checking of paths
specified by DTAs with multiple clocks. It actually changes also the semantics
of how the DTA reads a path in the CTMC, so, even for the single clock case
it might not be trivial to specify a CSLTA properties using the DTAs in [10].
The lower part of Figure 2 shows the algorithm used in the Codemoc tool [11] to
model check CSLTA with multiple clocks: the cross product is built and then a re-
gion graph (a classical construction in multi-clock timed automata) is computed,
which identifies a Piece-wise Deterministic process, that is then solved through
the numerical solution of a set of differential partial equations. Codemoc has
a specific procedure for the case of single clock DTAs (since in this case the
stochastic process reduces to an MRP) , which builds and solves the embedded
DTMC of the MRP. This last solution does not work very well and we could not
use it in our comparison part.

Fig. 3. Forward and backward model checking.

Forward model checking: Backward model checking:

initial
state

s0 M × A process

�

⊥
α(0) = 1

π(�) = ?
S0

all possible
initial states

M × A process

�

⊥
ρ(�) = 1

ξ(s) = ?, ∀ s ∈ S0

Forward solution: π = α · lim
n→∞

Pn Backward solution: ξ = lim
n→∞
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Forward vs, backward approaches. Forward and backward model checking refers
to the two different ways of formulating the system of linear equations to com-
pute the P() operator. Figure 3 shows the different approaches and the solution
equations. The forward method starts with the probability vector α at time 0,
and computes the limiting probability π of reaching the > state. Backward prob-
ability instead starts with a reward ρ of 1 in the > state in the long run, and
computes, for each state, the probability of reaching the > state, at the same
cost as the computation of the forward probability from a single initial state.
Note that, despite its name, even in the backward approach the M×A state
space is built forward, starting from one or more initial states, and it is only the
numerical solution that works backward.
Overdimensioning of the state space In some cases, the M×A process contains
more states than it is needed. This is very clearly indicated by considering the
cross-product between a generic CTMCM and the DTA of Figure 1(A) depicted
in (B). The M×A is represented in compact form (putting together all states
with the same (l, c) pair. It is clear from the picture that the two sets of states
in the rightmost zone (20,∞) are useless, since the objective is to compute the
probability of reaching >, a computation that can be correctly performed even
if the two sets are substituted by a single ⊥ state. Since any of the two sets can



be as big as the whole state space, the substitution with a single state can be
particularly interesting.

3 The zoned-DTA technique

To avoid the construction of non useful states in the cross-product we propose to
expand the DTA automaton A into its zoned transition system (ZDTA) Z(A),
where each state is a pair (location, clock zone). This new structure is then
analyzed to collapse into a single ⊥ state each pair for which there is no path
that leads to an accepting location, before building the cross-productM×Z(A).

Zoned DTA. Let us recall that C is the ordered set of clock values that la-
bel the A clock constraints, with the addition of 0 and ∞, and we write C =
{c0, c1, . . . , cm}, with c0 = 0, ci+1 > ci ∀i ∈ [0,m) and cm = ∞. Then two
clock values a, b ∈ R≥0 are in the same equivalence class if, for all edges e, the
evaluation of the clock constraint of e is unchanged. A zone automaton R(A)
records the smallest set of equivalence classes of clock values, denoted as zones.
Since A has a single clock x, classes in R(A) have form [x = c] or (c < x < c′),
for all the values c ∈ C. Therefore, the construction of R(A) is a straightforward
partitioning of R≥0, as in [9]. From the above we can build a Zoned DTA Z(A)
for any DTA A, in which the locations of A are paired with the clock zones. We
first define the set of immediate zones Ċ and the set of timed zones C.

Ċ
def
=
{

[c] | c ∈ C
}

and C
def
=
{(
c, next(c)

)
| c ∈ C

}

Starting from the initial location (l0, [c0]) we can generate all possible reachable
pairs (l0, [c]), or

(
l, (c, next(c))

)
through a set of rules that can be found in [13].

Figure 4 illustrates the zoned DTAs of two sample DTAs. Each location in
(c) and (d) reports the location z ∈ Z, the state proposition of l (that holds
also in each z = 〈l, c〉), and, on the second line, the DTA location and the clock
zone. Immediate and timed locations are drawn with a dotted and a solid border,
respectively, while final locations have a double border. The set of locations that
cannot reach a final location are colored in gray. Edges are marked as χ if they
are generated from a Boundary edge of the DTA, δ (let time elapse) otherwise.
The timed reachability of some locations (for instance z8 and z9 in (d)) repre-
sents an information that is not directly available in the DTA A. These locations
are irrelevant for the computation of the path probability, and can be discarded,
since they will never reach a final location. Observe also that the construction
of (d) could be modified to avoid the construction of the edge z2

δ↪−→ z3: indeed
the Boundary edges  and ® in the DTA have priority over the ¬ edge and the
process will take for sure one of the first two edges, since the logic condition for
remaining in l0 in [α] is: Φ1∧¬

(
Φ2∨ (Φ1∧¬Φ2)

)
which always evaluates to false,

for any CTMC. If z3 is unreachable, also z4 and z5 are so they could be removed.
This condition can be evaluated for any χ edge, to remove those locations that



Fig. 4. Two sample DTAs with their associated zoned DTAs.
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(a) Example DTA with loops of resets.

(c) Zoned DTA of the DTA (a).

(b) The Until[α,β] DTA.

(d) Zoned DTA of the DTA (b).
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are logically unreachable. Each location 〈l, c〉 of Fig. 4(c,d) is labeled with the
state proposition expressions of l. The presence of immediate zones can make the
construction of theM×Z(A) process more complex and we prefer to define the
concept of tangible zoned DTA, where only timed locations are kept, and bound-



ary locations are collapsed with a transitive closure. The firing of a sequence of
DTA Boundary edges l0

γ1, ], r1−−−−−→ l1
γ2, ], r2−−−−−→ . . . γn, ], rn−−−−−→ ln may happen only if

all the state proposition expressions Λ(l0), Λ(l1), . . . , Λ(ln) are satisfied by the
destination CTMC state s′. A transitive closure of Boundary firings is more eas-
ily expressed by moving the state proposition onto the edge, which give rise to
the Tangible Zoned DTA T (A) of A.

A TZDTA edge (z, z′) has a logical condition λ which is the logical and of
satisfying the destination location condition Λ(z′), as well as all the intermediate
location conditions Λ(żi), 1 ≤ i ≤ n, and in the last immediate location every
other Boundary edge must not be satisfied. Given Z(A), the corresponding T (A)
is constructed by taking all the timed locations and Inner edges, and by applying
the closure rule on all Boundary edges. The ZDTA edges are not marked as
either δ or χ since all edges are from tangible to tangible locations. Figure 5

Fig. 5. Tangible zoned DTA of the two DTAs of Fig. 4.
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(b) Tangible zoned DTA of the Until[α,β] DTA.
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(a) Tangible zoned DTA of the DTA with reset loop.

shows the tangible closure of the two ZDTA of Fig. 4. Boundary edges are all
collapsed into δ edges, which are labeled with a state proposition expression
that is the transitive closure of all the s.p.e. that must be satisfied to follow
that edge. In the tangible ZDTA of the Until [t, t′], location z1 is unreachable
because the condition associated to the edge is false. Location z4 is irrelevant for
the computation of the probability of reaching a final state, since any path that
reaches this location will certainly be rejected. The advantage of collapsing the
state proposition expression of the closure of Boundary edges is that it becomes
clear whether an edge has an unsatisfiable condition. Each edge is also labelled
with the sequence of DTA edges that represents (with circled numbers), and



which DTA edges are not satified by the transitive closure (written after a ’/’).
The structure of Fig. 5(b) shows that there are at most three tangible zones
for an Until [α, β], while the other two zones can be discarded. This allows to
optimize the M×A cross product, by removing irrelevant states in advance.

4 The MC4CSLTA tool, version 2: features and assessment

The MC4CSLTA tool, version 1, presented in [1], based on the theoretical results
defined in [16], was meant as a prototype implementation to show the feasibility
of model-checking CSLTA, but it had many drawbacks that make it an unprac-
tical tool to use even on small to medium size examples (around ten thousand
states). The main problem was the use of DSPN, as explained above, and the
limited set of numerical methods available for matrix-free solution of DSPN
solver (as the explicit MRP solution method is never a realistic option). The
dependency from DSPN has been solved by implementing directly the M×A
construction, which leads to an MRP for which several solution techniques can
then be applied, techniques that implement the theoretical advancements in [15]
and [2]. The backward solution approach has been implemented for both the
matrix-free approach (which is rather straightforward despite the fact that the
embedded DTMC P is never built or stored) and the component-based method
(which can be less intuitive). A full discussion of the topic and the precise for-
mulation of the backward solution process can be found in [13], and it is im-
plemented in version 2. Another issue that has been solved in version 2 is the
presence of significant number of states in the M×A process that never lead to
the > state, since the implementation now is based on a cross product of the
Markov chain with the tangible zoned DTA.

Fig. 6. Structure of MC4CSLTA version 2.

Model checking procedure of MC4CSLTA ver. 2.
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Figure 6 shows the structure of MC4CSLTA version 2, available through [17].
The tool takes in input a model, which can be either a Generalized Stochastic
Petri Net in GreatSPN [18] format, or a CTMC in MRMC/Prism format, and
a formula specification, which consists of a single clock DTA in textual form.



When the input language is a Petri net, the atomic proposition associated with
the locations of the timed automaton are expressions over the Petri net marking,
while the actions associated to the edges are sets of transitions’ names. There
are two ways of generating the underlying MRP, according to the two different
ways of computing the cross-product: either as M×A or as M×Z(A). We now
evaluate the tool correctness and efficiency against Prism and Cosmos. No com-
parison with version 1 is reported since it would hardly solve the first instances
of the proposed models.

Cell cycle control. This first test considers a probabilistic model of the cell repli-
cation control in eukaryotes. This biological model is taken from [19], and orig-
inally specified in [20]. This model describes the molecular machinery used by
eukaryotic cells in order to control their replication. The control mechanism is
made by an antagonistic interaction between two proteins, CDK and APC, the
first extinguishing the activity of the second and viceversa. The cell replication
cycle is controlled by the binding of CDK with its activator cyclin. The state
of the model is described by the quantities of the proteins involved in the bio-
chemical interaction, and transitions represent the reactions. The tool directly
imports the CTMC produced by Prism.

Table 1 shows three CSL queries asking for the probability of having all the
CDK proteins bound by their cyclin activator in a given time window - where N
is the quantity of CDK proteins in the system. For the first and second queries,
the probability is set at time 10 and in the time interval (10-20). In the third
case, the time interval is (0-5), with the condition that the initial state must
have a probability of having all the CDK molecules bounded within 1 second.

The table shows the overall model checking time of both tools. For Prism,
both the hybrid (default) engine and the sparse engine are used. For MC4CSLTA

the timings for the explicit, matrix-free and component-based (SCC) methods
are shown. The data reflect the theoretical result of [2], which ensures that the
sparse engine of Prism and the SCC method have the same asymptotical cost.
The Table also reports, for the (A) and (B) cases, the state space of the MRP
produced using the DTA A or the tangible zoned DTA T (A) introduced in this
paper, which shows the advantage of the method. The time reported are for the
tangible ZDTA case. In all the tests, Prism performs better than MC4CSLTA,
which is not surprising since the CSL model checking algorithm works with a
predefined structure of the formulas and requires fewer steps than that of CSLTA.
All tests were run on a Xeon 2.13 GHz single-core of a multicore machine with
128G bytes of available memory.

Workflow model. In this second sample we compare the MC4CSLTA tool against
the simulator Cosmos [4], which has an input modeling language that is a su-
perset of CSLTA DTAs [12]. Figure 7 shows the (Generalized Stochastic) Petri
net of the model [21] which describes an order-handling company. The net il-
lustrates the flow of an order, which involves two separate tasks: preparing and
sending the bill to the client, and to ship the requested goods. The company
reckons on three types of employees: those who manage accounting (F), logis-
tics (L) and generic employees (E). Different tasks are carried out by different



 
 
 

(A) CSL Until with a single time interval. Durations are expressed in seconds.  
   Prism 4.1 MC4CSLTA 

N States Trns. hybrid sparse explicit 
(1 smc) 

matrix- 
free 

SCC 
(1 comp) 

M!A 
(no zdta) 

M!T(A) 
(zdta) 

2 4666 18342 0.1 0.1 0.1 0.2 0.1 8524 4668 
3 57667 305502 1.5 0.7 3.2 11.6 2.8 109148 57667 
4 431101 2742012 37.3 14.0 39.7 157.9 38.0 830119 431103 
5 2326666 16778785 277.8 144.6 306.3 1277.3 307.7 4525426 2326668 
6 9960861 78768799 nc nc 2267.5 9108.0 2050.9 19495025 9960863 

CSL: P=? [ true U[10,10] cyclin_bound=N ] 
CSLTA: PROB=? until_AA (10 | | True, (#cyclin_bound=N)) 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
(B) CSL Until with (t, t’) time interval.  

   Prism 4.1 MC4CSLTA 
N States Trns. hybrid sparse explicit smc matrix- 

free 
SCC 

(2 comp) 
M!A 

(no zdta) 
M!T(A) 

(zdta) 
2 4666 18342 0.5 0.1 78.61 3827 0.6 0.1 12380 8524 
3 57667 305502 2.8 1.5 !29 hours 51394 26.0 5.7 160627 109148 
4 431101 2742012 54.3 26.0 - - 354.3 73.0 1229135 830119 
5 2326666 16778785 502.2 234.5 - - 3814.4 690.6 6724184 4525426 
6 9960861 78768799 nc nc - - 21004.2 4646.8 29029187 19495025 

CSL: P=? [ true U[10,20] cyclin_bound=N ] 
CSLTA: PROB=? until_AB (10, 20 | | True, (#cyclin_bound=N)) 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

(A) Nested CSL query.  
   Prism 4.1 MC4CSLTA 

N States Trns. hybrid sparse matrix- 
free 

SCC 

2 4666 18342 0.1 0.1 0.1 0.1 
3 57667 305502 0.7 0.5 5.7 2.0 
4 431101 2742012 17.2 9.6 79.6 25.1 
5 2326666 16778785 159.1 78.3 608.9 192.0 
6 9960861 78768799 nc nc 3356.6 1123.6 

CSL: P=? [ P>0.5 [ true U<1 cdk_cat=2 ] U<5 cyclin_bound=2 ] 
CSLTA: PROB=? until_0B(5 | | PROB>0.5 until_0B (1 | | True, #cdk_cat=2), #cyclin_bound=2) 

 
 
 
  

Table 1. Performance comparison of Prism 4.1 and MC4CSLTA.

employees. The Petri net is made of some subnets consisting of an immediate
transition (thin bar), a place and an exponentially distributed timed transition
(white box). Such subnets first allocate one of these staff resources, execute the
specified task and then release the resource. The staff is represented by three
places finance, logistics and employees. Arrows from and to these three places are
drawn only for the case of the activity represented by the register E transition,
and omitted in the picture for the other subnets whose transitions have labels
with suffixes “ E”, “ F” and “ L”.



Fig. 7. Petri net of the workflow model.
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Fig. 8. Property tested in the workflow model with Cosmos and MC4CSLTA.

Skipping the initial transient, 
until initT seconds have passed.

l0 l1 l3l2

Act Act \ {new order}

{new order},
RESET

Act, x<T�, x= initT

Act, x<T

archived =0 archived �=0

The DTA of the measured property is depicted in figure 8. A path starts
in the initial state and skips initT time units, as an initial transient. Then the
DTA waits for the arrival of a new order event, which signals the beginning of
the ordering cycle. The path is accepted if the order is archived in less than
T time units. This DTA can be converted in the input language of Cosmos,
allowing for a cross validation of the MC4CSLTA tool for non-CSL queries.COSMOS: benchmarkCosmos.pdf 

 
 
 

   Cosmos MC4CSLTA 
   width=0.001 width=0.0001 matrix-free SCC 

N States Trns paths Time paths Time MC MC 
1 44 81 7000 19.95 63000 58.68 0.75 0.02 
2 1811 6408 7000 26.25 62000 177.58 330.64 2.12 
3 68942 349980 7000 45.64 67000 413.19 - 210.23 
4 2440192 15827904 8000 91.03 75000 669.82 - !5 hours 
5 81M 633M 9000 108.53 85000 1072.15 - "#

 
 
 
81131200 states, 633033600 trns 

Table 2. Performance comparison of Cosmos and MC4CSLTA.



The probabilities computed with MC4CSLTA are in accordance with that
computed with Cosmos available in [22]. The comparison with Cosmos, on this
and on other models, proved to be very useful in detecting errors in MC4CSLTA.
Table 2 shows a performance comparison of the simulator Cosmos with the
numerical solution of MC4CSLTA, with the timings set to initT = 100 and
T = 50. Simulations were run at a 99% of precision with the confidence interval
width reported in the Table. As expected, simulator scales better for large state
spaces. The chosen timings of the GSPN transitions and of the DTA queries have
been chosen so as to require very long uniformization sequences, thus putting
MC4CSLTA in its worst possible conditions, a case in which the advantage of the
component-based solution over the matrix-free one is very evident. Tests were
run on a Intel core Duo 2.4GHz with 4G bytes of memory.

5 Conclusion

This paper presents the new version of the CSLTA model checker MC4CSLTA,
which represents a total innovation with respect to the previous version, since
it includes a new solution approach which builds on some recently published
results on MRP solution and on the construction of a zoned DTA, presented in
this same paper. The tool has been evaluated for correctness and performance
against the well-known CSL model checker Prism (on the subset of the DTA
which can be equivalently expressed as a CSL property) and with the statistical
model checker Cosmos, for whose formulas that go beyond CSL. The reported
tests, as well as some other tests reported in [13], suggest that the new version
of MC4CSLTA is a mature tool, able to deal with very large state spaces, where,
again, large is intended as ”large for being a stochastic process”.

The construction of the zoned DTA will be the basis for our future work on
the tool. In particular the application of the component-based method for MRPs,
paired with the analysis of the ZDTA, can lead to an on-the-fly implementation
of the tool: the state space is built component by component, only when it is
actually needed for the computation of the probability of the success state >.
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