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The complex Goldberg-Sachs theorem in higher dimensions
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Abstract

We study the geometric properties of holomorphic distributions of totally null m-planes on a (2m+ǫ)-
dimensional complex Riemannian manifold (M,g), where ǫ ∈ {0, 1} and m ≥ 2. In particular, given such
a distribution N , say, we obtain algebraic conditions on the Weyl tensor and the Cotton-York tensor
which guarrantee the integrability of N , and in odd dimensions, of its orthogonal complement. These
results generalise the Petrov classification of the (anti-)self-dual part of the complex Weyl tensor, and
the complex Goldberg-Sachs theorem from four to higher dimensions.

Higher-dimensional analogues of the Petrov type D condition are defined, and we show that these
lead to the integrability of up to 2m holomorphic distributions of totally null m-planes. Finally, we adapt
these findings to the category of real smooth pseudo-Riemannian manifolds, commenting notably on the
applications to Hermitian geometry and Robinson (or optical) geometry.

1 Introduction and motivation

One of the milestones in the development of general relativity, the Goldberg-Sachs theorem, first formulated
in 1962, states [GS09] that a four-dimensional Einstein Lorentzian manifold admits a shearfree congruence of
null geodesics if and only if its Weyl tensor is algebraically special. It has proved invaluable in the discovery
of solutions to Einstein’s field equations, and the Kerr metric is a prime example of its application [Ker63].

A number of versions of the Goldberg-Sachs theorem subsequently appeared, and revealed a far deeper
insight into the geometry of pseudo-Riemannian manifolds. To start with, the Einstein condition can be
weakened to a condition on the Cotton-York tensor [KT62, RS63], whereby the conformal invariance of
the theorem is made manifest. Further, the theorem turns out to admit a complex holomorphic counterpart
[PH75,PR86], and other variants on real pseudo-Riemannian manifolds of arbitrary metric signatures [PB83,
Apo98, AG97, IZ05, GHN10]. In all these versions, real or complex, the underlying geometric structure is
a null structure, i.e. an integrable distribution of totally null complex 2-planes. In the real category, the
metric signature induces an additional reality structure on the complexified tangent bundle, which adds a
particular ‘flavour’ to this null geometry. Thus, in Lorentzian signature, a null structure is equivalent to a
Robinson structure (also known as an optical structure), i.e. a congruence of null geodesics along each of
which a complex structure on its screenspace is preserved [NT02,Tra02a]. In particular, such a congruence
is shearfree. Similarly, a Hermitian structure on a proper Riemannian manifold can be identified with a null
structure.

That distributions of totally null complex 2-planes on pseudo-Riemannian manifolds represent funda-
mental geometric objects forms the backbone of twistor theory, or more generally spinor geometry, and a
number of geometric properties of spacetimes can be nicely formulated in this setting [Pen67,PR86]. These
ideas generalise to higher dimensions: in even dimensions, a null structure is now an integrable distribution
of maximal totally null planes; in odd dimensions, the definition is identical except that the orthogonal
complement to the null distribution is also required to be integrable. Applications of higher-dimensional
twistor geometry can be seen in the work of Hughston and Mason [HM88], who give an even-dimensional
generalisation of the Kerr theorem as a means to generating null structures on open subsets of the conformal
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complex sphere. More recently, it was noted by Mason and the present author [MT10] that the higher-
dimensional Kerr-NUT-AdS metric [CLP06] is characterised by a discrete set of Hermitian structures, and
its Weyl tensor satisfies an algebraic condition generalising the four-dimensional Petrov type D condition. As
in four dimensions [WP70], these results were shown to arise from the existence of a conformal Killing-Yano
2-form.

Such findings suggest that a higher-dimensional Goldberg-Sachs theorem should be formulated in the
context of null structures, and to this end, an invariant classication of the curvature tensors with respect to
an almost null structure appears to be the most natural framework. Such a classification already exists in
almost Hermitian geometry [FFS94,TV81], but curvature prescriptions that are sufficient for the integrability
of an almost Hermitian structure do not appear to have been investigated. In Lorentzian geometry, the Weyl
tensor has also been subject to a classification [CMPP04a,CMPP04b,MCPP05,PPCM04,PPO07,OPP07]
which has mostly focused on the properties of null geodesics. In fact, according to this approach, the geodesic
part of the Goldberg-Sachs theorem admits a generalisation to higher dimensions [DR09], but its shearfree
part does not. In fact, shearfree congruences of null geodesics in more than four dimensions, which, as
remarked in [Tra02b], are no longer equivalent to Robinson structures, have not featured so prominently in
the solutions to Einstein’s field equations [FS03,PPCM04].

On the other hand, the present author [TC11] put forward a higher-dimensional generalisation of the
Petrov type II condition, which, together with a genericity assumption on the Weyl tensor and a degeneracy
condition on the Cotton-York tensor, guarantees the existence of a Robinson structure on a five-dimensional
Lorentzian manifold. A counterexample to the converse is given: the black ring solution [ER02] admits pairs
of null structures, but the Weyl tensor fails to be ‘algebraically special relative to it’ in the sense of Theorem
1.1 below. In the same reference, it is also conjectured that these results are also true in arbitrary dimensions,
and in the holomorphic category. It is the aim of the paper to turn this conjecture into a theorem. To be
precise, we shall prove

Theorem 1.1 Let N be a holomorphic distribution of totally null m-planes on a (2m + ǫ)-dimensional
complex Riemannian manifold (M, g), where ǫ ∈ {0, 1} and 2m+ ǫ ≥ 5, and let N⊥ denote its orthogonal
complement with respect to g. Suppose the Weyl tensor and the Cotton-York tensor (locally) satisfy

C(X,Y ,Z, ·) = 0 , A(Z,X,Y ) = 0 ,

respectively, for all vector fields X,Y ∈ Γ(N⊥), and Z ∈ Γ(N ). Suppose further that the Weyl tensor is
otherwise generic. Then, the distributions N and N⊥ are (locally) integrable.

In fact, we shall demonstrate more than this. We shall define further degeneracy classes of the Weyl tensor
and Cotton-York tensor with respect to N , and show that these also imply the integrability of N and N⊥.
We shall also be able to weaken the genericity assumption on the Weyl tensor in Theorem 1.1 to such
an extent as to guarantee the integrability of up to 2m canonical null distributions and their orthogonal
complements. Consequently, Theorem 1.1 will be generalised to the category of smooth pseudo-Riemannian
manifolds of arbitrary metric signature.

The structure of the paper is as follows. In section 2, we lay bare the algebraic properties of null structures
by means of their stabiliser p, say, which is well-known to be a parabolic Lie subalgebra of the complex special
orthogonal group. Their properties are already well-documented in [BE89, ČS09], and we use these sources
to set up the algebraic background and the notation used throughout the paper.

These algebraic considerations are then translated into the language of vector bundles in section 3. In
particular, algebraic classes of Weyl tensors and Cotton-York tensors are defined in terms of p-invariant
filtered vector bundles. We also examine the geometric characteristics of almost null structures such as
integrability conditions and geodetic property.

In section 4, we present the main results of this paper. It begins with a restatement of the complex four-
dimensional Goldberg-Sachs theorem in the notation introduced in section 3. We discuss to which extent it
may be generalised to higher dimensions. Buildling on [TC11], we argue that the existence of a null structure
together with a degenerate Cotton-York tensor does not necessarily lead to further, i.e. ‘special’, degeneracy
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of the Weyl tensor, in the sense of Theorem 1.1. On the other hand, we show that certain algebraic classes of
the Weyl tensor, which generalise the Petrov type II and more degenerate, guarrantee the integrability of an
almost null structure, provided that the Weyl tensor satisfies a genericity assumption, and the Cotton-York
tensor is sufficiently degenerate. We then prove the conformal invariance of these results.

In section 5, after a heuristic discussion on the genericity assumption on the Weyl tensor, we extend
Theorem 1.1 to the case of multiple null structures, which may be viewed as a generalisation of the Petrov
type D condition. This allows us to show how it also applies to real pseudo-Riemannian smooth manifolds
of arbitrary metric signature, giving special attention to proper Riemannian, split signature and Lorentzian
manifolds.

We end the paper with some remarks on the relation between the Goldberg-Sachs theorem and parabolic
geometry.

We have collected the complex Bianchi identity in component form in an appendix.

Acknowlegments The author would like to thank Jan Slovak for useful discussions. This work is funded
by a SoMoPro (South Moravian Programme) Fellowship: it has received a financial contribution from the
European Union within the Seventh Framework Programme (FP/2007-2013) under Grant Agreement No.
229603, and is also co-financed by the South Moravian Region.

2 Algebraic preliminaries

This section is largely a down-to-earth application of the theory of parabolic Lie algebras given in [ČS09].
Other useful references on parabolic geometry and representation theory are [BE89,FH91].

Let (V, g) be a (2m + ǫ)-dimensional complex vector space, where ǫ ∈ {0, 1}, equipped with a non-
degenerate symmetric bilinear form g : V × V → C. If U is a vector subspace of V , we shall denote its
orthogonal complement with respect to g by U⊥, and its dual by U∗. Fix an orientation for (V, g), and denote
by ∗ the Hodge duality operator on the exterior algebras

∧•
V and

∧•
V ∗. The group of automorphisms of

V preserving g of determinant 1 is the complex special orthogonal group SO(2m+ ǫ,C). It will be denoted
G for short, and its Lie algebra so(2m+ ǫ,C) by g.

Definition 2.1 A null structure on (V, g) is a maximal totally null subspace N of V , i.e.

{0} ⊂ N ⊂ N⊥ ⊂ V , (2.1)

where dimN = m.

There are notable differences between the even- and odd-dimensional cases, which we state as a lemma.

Lemma 2.2 Let N be a null structure. Then

1. when ǫ = 0, N = N⊥, and N is either self-dual or anti-self-dual, i.e. for any ω ∈
∧mN , either

∗ω = ω or ∗ω = −ω;

2. when ǫ = 1, N is a proper subspace of N⊥, and N⊥/N is one-dimensional.

In what follows, we describe the Lie algebra of the stabiliser of the null structure.

2.1 Graded Lie algebras and parabolic subalgebras

Even dimensions greater than four (ǫ = 0, m > 2) By Lemma 2.2, we can rewrite filtration (2.1) in
the form

V
3
2 ⊂ V

1
2 ⊂ V −

1
2 . (2.2)
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By convention, one take V
k
2 = {0} for all k ≥ 3, and V

k
2 = V for all k ≤ −1. The meaning of this notation

will become apparent in a moment. For definiteness, we also assume, with no loss of generality, that N is

self-dual. Choose a subspace V
−

1
2
⊂ V −

1
2 complementary to V

1
2 , so that setting V1

2
:= V

1
2 , the vector space

V can be expressed as the direct sum

V = V1
2
⊕ V

−
1
2
. (2.3)

We can then adopt the following arrangement of basis for V and of symmetric bilinear form g

V1
2
=

{(
u
0

)
: u ∈ C

m

}
, V

−
1
2
=

{(
0
w

)
: w ∈ C

m

}
, g =

(
0 1
1 0

)
.

Assuming m > 2, the Lie algebra g = so(2m,C) can now be expressed as the graded Lie algebra

g = g−1 ⊕ g0 ⊕ g1 , (2.4)

where

g−1 =

{(
0 0
Z 0

)
: Z ∈ Mat(m,C) , Z = −Zt

}
, g1 =

{(
0 Y
0 0

)
: Y ∈ Mat(m,C) , Y = −Yt

}
,

g0 =

{(
X 0
0 −Xt

)
: X ∈ gl(m,C)

}
.

Here, gl(m,C) denotes the Lie algebra of the complex general linear group GL(m,C), Mat(m,C) the ring of
all m×m matrices over C, and ·t matrix transposition. The Lie bracket is compatible with the grading of
g, i.e. [gi, gj ] ⊂ gi+j for all i, j, with the convention that gi = {0} for all i > |1|. Further, being a reductive
Lie algebra, g0 decomposes as g0 = gss0 ⊕ z(g0), where gss0 is semi-simple and isomorphic to sl(m,C), and
z(g0) is the centre of g0 and is one-dimensional. In particular, z(g0) contains the element

E :=
1

2

(
1m 0
0 −1m

)
,

and we see that the adjoint action of E on g is given by Ad(E)(X) = iX for all X ∈ gi, and any i ∈ {−1, 0, 1}.
For this reason, E is referred to as the grading element of g. The grading on g induces a filtration g1 ⊂ g0 ⊂
g−1 = g on g, where gi := gi ⊕ . . . ⊕ g1. Setting p := g0, we see that p preserves the filtered Lie algebra
(g, {gi}). The Lie algebra p is an example of a parabolic Lie subalgebra of so(2m,C). The above description
is also referred to as a standard parabolic Lie subalgebra, and any parabolic Lie subalgebra preserving a
self-dual null structure must be SO(2m,C)-conjugate to it.1

It is now apparent that our choice of notation for the filtration (2.1) is justified by the fact that E also
induces the grading (2.3) on V , since for any element v ∈ Vi, one has E ·v = iv. In particular, the filtration
(2.1) is p-invariant.

On the other hand the grading (2.3) is only invariant under g0, not p. We can nonetheless define the
associated graded vector space gr(V ) to (V, {V i}) by gr(V ) :=

⊕
i(gri(V )) where gri(V ) := V i/V i+1, which is

clearly p-invariant. Restricting the natural projections πi : V
i → gri(V ) to Vi, one then obtains isomorphisms

Vi
∼= gri(V ), and thus an isomorphism gr(V ) ∼= V .

Remark 2.3 The stabiliser of an anti-self-dual null structure can also be described in terms of a standard
parabolic Lie subalgebra of so(2m,C). It is however not SO(2m,C)-conjugate to the parabolic Lie subalgebra
preserving a self-dual null structure as given above. Nonetheless, they enjoy the same properties, and the
distinction between these two Lie algebras will not be crucial to the applications covered in this paper – the
notation in the anti-self-dual case mirrors that introduced above for the self-dual case. The situation in four
dimensions is slightly different as we shall see presently.

1These definitions are usually given in terms of the root system of a semi-simple Lie algebra. This is not needed for the
purpose of the present article, and we refer the reader to [BE89, ČS09] for a more thorough treatment.
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Four dimensions (ǫ = 0, m = 2) The Lie algebra so(4,C) can also be described in terms of the grading
(2.4). However, unlike so(2m,C) for m > 2, so(4,C) is not simple, but splits into a self-dual part and an
anti-dual part, each isomorphic to sl(2,C), and which we shall denote by +g and −g respectively2. The
stabiliser of a self-dual, respectively, anti-self-dual null structure will then be a parabolic subalgebra of +g,
respectively, −g. Assuming that N is self-dual as above, and using the setting of the previous section, the
Lie algebras +g and −g are given by +g = +g−1 ⊕ +g0 ⊕ +g1 and −g = gss0 respectively. Here, we have set
+g1 := g1,

+g−1 := g−1 and +g0 := z(g0). Setting +gi := +gi ⊕ . . .⊕ +g1 for each i, we obtain the induced
filtration +g1 ⊂ +g0 ⊂ +g−1. Then, we see that both (+g, {+gi}) and the filtration (2.1) are preserved by the
parabolic Lie subalgebra p := +g0. A similar filtration can be derived on −g with respect to the parabolic
Lie algebra preserving an anti-self-dual null structure.

Odd dimensions (ǫ = 1) By Lemma 2.2, the filtration (2.1) can be rewritten in the form

V 2 ⊂ V 1 ⊂ V 0 ⊂ V −1 , (2.5)

and we set V k = {0} for all k ≥ 2, and V k = V for all k ≤ −1 for convenience. This notation will be
justified in the same way as in the even-dimensional case. As before, to describe the Lie algebra preserving
this filtration, we introduce subspaces Vi ⊂ V i complementary to Vi+1, for i = −1, 0, with V1 = V 1, so that

V = V1 ⊕ V0 ⊕ V−1 . (2.6)

If one adopts the following arrangement of basis for V and of symmetric bilinear form g, adapted to this
direct sum

V1 =







u
0
0


 : u ∈ C

m



 , V0 =







0
0
v


 : v ∈ C



 , V−1 =








0
w
0


 : w ∈ C

m



 , g =



0 1 0
1 0 0
0 0 1


 ,

the Lie algebra g = so(2m+ 1,C) can be expressed as the graded Lie algebra

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ,

where

g2 =







0 Y 0
0 0 0
0 0 0


 : Y ∈ Mat(m,C) , Y = −Yt



 , g1 =







0 0 U
0 0 0
0 −Ut 0


 : U ∈ C

m



 ,

g0 =







X 0 0
0 −Xt 0
0 0 0


 : X ∈ gl(m,C)



 ,

g−2 =







0 0 0
Z 0 0
0 0 0


 : Z ∈ Mat(m,C) , Z = −Zt



 , g−1 =








0 0 0
0 0 V

−Vt 0 0


 : V ∈ C

m



 .

The Lie bracket is compatible with the grading of g, with the convention that gi = {0} for all i > |2|. Again,
g0 decomposes as g0 = gss0 ⊕ z(g0), where gss0 is semi-simple and isomorphic to sl(m,C), and z(g0) is the
centre of g0 and is one-dimensional. In particular, z(g0) contains the grading element

E :=



1m 0 0
0 −1m 0
0 0 0




2Here, self-duality is defined via the standard identification so(2m,C) ∼=
∧

2 V .
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of g since Ad(E)(X) = iX for all X ∈ gi, and any i. The grading on g induces a filtration of Lie algebra
g2 ⊂ g1 ⊂ g0 ⊂ g−1 ⊂ g−2 = g, where gi := gi ⊕ . . .⊕ g1. Again, setting p := g0, we see that p preserves the
filtered Lie algebra (g, {gi}). It is a standard parabolic Lie subalgebra of so(2m + 1,C), and the stabiliser
of any null structure is SO(2m + 1,C)-conjugate to it. We also note that our choice of notation for the
filtration (2.5) reflects the grading (2.6) of E on V . It is then straightforward to show that the filtration
(2.5) is invariant under p.

As in the even-dimensional case, one can define associated graded vector space gr(V ) to (V, {V i}) by
gr(V ) :=

⊕
i(gri(V )) where gri(V ) := V i/V i+1. A choice of grading on V then allows one to establish an

isomorphism gr(V ) ∼= V .

2.2 Induced filtered vector spaces

Any filtration {V i} on a vector space V induces a filtration {(V ∗)i} on its dual V ∗, whereby each vector
subspace (V ∗)i is the annihilator of V 1−i. Further, the associated graded vector space gr(V ∗) is then such
that gri(V

∗) = (gr−i(V ))∗. Thus, the filtrations dual to filtrations (2.2) and (2.5) are

(V ∗)
3
2 ⊂ (V ∗)

1
2 ⊂ (V ∗)−

1
2 = V ∗ , (V ∗)2 ⊂ (V ∗)1 ⊂ (V ∗)0 ⊂ (V ∗)−1 = V ∗ ,

in even and odd dimensions respectively, and V i ∼= (V ∗)i for each i, by means of g.
Similarly, given two filtered vector spaces (V, {V i}) and (W, {W i}), one can naturally define a filtration

{(V ⊗W )k} on their tensor product V ⊗W by setting

(V ⊗W )k :=
⊕

i+j=k

V i ⊗W j ,

and the associated graded vector space gr(V ⊗W ) is such that grk(V ⊗W ) =
⊕

i+j=k gri(V )⊗ grj(W ).
Another useful property of filtered vector spaces is that if U is a vector subspace of a filtered vector space

(V, {V i}), then U inherits the filtration {V i} of V by setting U i := U ∩ V i.
In all of these constructions, the filtrations and the associated graded vector spaces induced from a

given p-invariant filtered vector space (V, {V i}) are also p-invariant. Further, the choice of a grading on V
compatible with its filtration will also induce gradings on the dual vector space and tensor products.

Remark 2.4 It is often more convenient to view the filtrations (2.2) and (2.5) as representations of p in
even and odd dimensions respectively. Typically, one starts with a representation V of g, which for simplicity
we may assume to be irreducible. In the case at hand, V is simply the standard representation of g. Then,
one can obtain a filtration {V i} on V where each subspace V i is a p-invariant subspace of V . It turns
out that the associated graded vector space gr(V ) can be viewed as a refinement of the filtration {V i} in
the sense that each gri(V ) := V i/V i+1 is a completely reducible p-module, and each irreducible component
can be described in terms of an irreducible gss0 -module. This analysis clearly extends to dual and tensor
representations.

2.3 Parabolic subgroups

The passage from the Lie algebra g and its parabolic Lie algebra p to their respective Lie groups G and P is
explained in details in [ČS09]. In general, having fixed a complex Lie algebra g and a parabolic Lie subalgebra
p, there will be some choice of possible Lie groups with Lie algebras g and p. For our purpose, it suffices to
choose G to be the connected Lie group SO(2m + ǫ,C), in which case there is only one possible choice for
P obtained by exponentiating p. It can also be described as follows. We first conveniently define a group
G0 with Lie algebra g0, which will be GL(m,C) in the case at hand. Then, writing p+ := g1, respectively,
p+ := g1⊕g2, when ǫ = 0, respectively, ǫ = 1, one has a diffeomorphism G0×p+ → P : (g0,Z) 7→ g0 exp(Z).
The Lie subgroup P is appropriately called a parabolic subgroup of G, and the Lie subgroup G0 is referred
to as the Levy subgroup of P .
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Finally, in our case, the p-invariant filtrations and associated graded vector spaces will all give rise to
P -modules, i.e. irreducible representations of p will exponentiate3 to irreducible representations of P .

3 The geometry of almost null structures

Throughout M will denote a (2m+ ǫ)-dimensional complex manifold M, where ǫ ∈ {0, 1} and m ≥ 2. We
shall essentially be working in the holomorphic category. Thus, TM and T∗M will denote the holomorphic
tangent bundle and the holomorphic cotangent bundle of M respectively. If E → M is a vector bundle over
M, the sheaf of holomorphic sections of E will be denoted Γ(E). If E and F are vector bundles, E ⊗ F

will denote the tensor product of E and F ,
∧k

E, the k-th exterior power of E,
⊙k

E, the k-th symmetric
power of E. The Lie bracket of (holomorphic) vector fields will be denoted by [·, ·]. We shall also assume
that M is orientable, and the Hodge operator on differential forms will be denoted by ∗. When ǫ = 0, its
restriction to Γ(

∧m
T∗M) is an involution, i.e. ∗2 = 1, and the +1- and −1-eigenforms of ∗ will be referred

to as self-dual and anti-self-dual respectively.4

We shall equip M with a holomorphic metric g, i.e. a non-degenerate global holomorphic section of⊙2
T∗M, and the pair (M, g) will be referred to as a complex Riemannian manifold. Equivalently, the

structure group of the frame bundle F over M is reduced to G := SO(2m + ǫ,C), and the tangent bundle
can be constructed as the standard representation of G, i.e. TM := F ×G V where V is the standard
representation of G. The k-th tracefree symmetric power of the tangent bundle and the cotangent bundle
will be denoted by

⊙k
◦ TM and

⊙k
◦ T

∗M respectively.
The holomorphic tangent bundle admits a unique torsion-free connection, the (holomorphic) Levi-Civita

connection, which preserves the holomorphic metric; it will be identified with its associated covariant deriva-
tive ∇ : Γ(TM)⊗ Γ(TM) → Γ(TM), and it extends to a connection on sheaves of holomorphic sections of
tensor products of TM and T∗M.

The (holomorphic) Riemann curvature tensor R : Γ(
∧2 TM) ⊗ Γ(TM) → Γ(TM) associated to ∇ is

given by

RX∧Y ·Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z ,

for all X,Y ,Z ∈ Γ(TM), and extends to sheaves of holomorphic sections of tensor products of TM and

T∗M. This induces a section of Γ(
⊙2

(
∧2

T∗M)), also denoted R, via

R(X,Y ,Z,W ) = g(RX∧Y ·Z,W ) ,

for all X,Y ,Z,W ∈ Γ(TM), which satisfies the Riemann symmetry

R(X,Y ,Z,W ) +R(Y ,Z,X,W ) +R(Z,X,Y ,W ) = 0 .

The Riemann tensor naturally splits as

R(X,Y ,Z,W ) = C(X,Y ,Z,W )

− g(X,Z)P(Y ,W ) + g(X,W )P(Y ,Z) + g(Y ,Z)P(X,W )− g(Y ,W )P(X,Z) , (3.1)

where the Weyl tensor C is the tracefree part of R, and the Rho tensor P is a trace-adjusted Ricci tensor.
The Cotton-York tensor is the 2-form valued 1-form A defined by

A(X,Y ,Z) := ∇Y P(Z,X)−∇ZP(Y ,X) (3.2)

for all X,Y ,Z ∈ Γ(TM). Since P is symmetric, A is in the kernel of ∧ : T∗M⊗
∧2

T∗M →
∧3

T∗M.

3This is not true in general: there is a condition on the coefficients of the highest weight vector of an irreducible representation
of a parabolic subalgebra to be satisfied [BE89].

4This choice of eigenvalues is always possible in the complex category.
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Finally, we shall express the Bianchi identity in terms of the covariant derivative of the Weyl tensor and
the Cotton-York tensor as

(∇XC)(Y ,Z,S,T ) + (∇Y C)(Z,X,S,T ) + (∇ZC)(X,Y ,S,T ) =

− g(X,S)A(T ,Y ,Z)− g(Y ,S)A(T ,Z,X) − g(Z,S)A(T ,X,Y )

+ g(X,T )A(S,Y ,Z) + g(Y ,T )A(S,Z,X) + g(Z,T )A(S,X,Y ) , (3.3)

for all X,Y ,Z,S,T ∈ Γ(TM). Taking the trace of equation (3.3) yields the contracted Bianchi identity,
from which one can deduce that the Cotton-York is the divergence of the Weyl tensor, and thus must be
tracefree.

It will be convenient to view the Weyl tensor and the Cotton-York tensor as sections of the bundles

C :=
⊙2

◦
(
∧2

T∗M) , A := T∗M⊙◦

∧2
T∗M , (3.4)

where ⊙◦ should be understood as reflecting the symmetry properties of the Weyl tensor and Cotton-York
tensor. For this reason we may refer to C and A as the bundles of tensors with Weyl symmetries and
Cotton-York symmetries respectively. When 2m + ǫ ≥ 5, these bundles are irreducible G-modules, i.e.
C = F ×G C and A = F ×G A, where C and A are irreducible G-modules. When m = 2, ǫ = 0, under
so(4,C) ∼= sl(2,C)× sl(2,C), the bundle of 2-forms splits into a self-dual part and an anti-self-dual part, and
accordingly the bundles C and A split into self-dual parts +C and +A, respectively, and anti-self-dual parts
−C and −A, respectively.

3.1 Almost null structures and classifications of the Weyl tensor and Cotton-

York tensor

This section is a translation of the algebraic setup of section 2 into the language of vector bundles. More
detailed background information can be found in [ČS09] although their approach focuses essentially on
Cartan geometries.

Definition 3.1 An almost null structure on (M, g) is a holomorphic distribution N of maximal totally
null planes on M, i.e. a holomorphic subbundle of TM such that at every point p of M, the fiber Np is
a maximal totally null subspace of the tangent space TpM of M at p, and Np is spanned by holomorphic
vector fields in a neighbourhood of p.

We say that the almost null structure N is integrable in an open subset U of M if the distribution N , and
in odd dimensions, its orthogonal complement N⊥ are integrable in U , i.e. at every point p ∈ U , the fibers
Np, and in odd dimensions, N⊥

p are tangent to leaves of foliations of dimensions m and m+ 1 respectively.
An integrable almost null structure will be referred to as a null structure.

From the above definition, we shall essentially regard an almost null structure as a filtration of holomor-
phic vector subbundles

M ⊂ N ⊂ N⊥ ⊂ TM , (3.5)

where M should be regarded as the zero vector bundle. The structure group of the frame bundle F → M
is then reduced to P , the parabolic subgroup preserving the filtration (3.5), as described in section 2.2. One
can in fact think of the almost null structure as being modeled on the filtration of vector spaces (2.1). For
this reason, we can apply the notation of section 2 to vector bundles. In particular, using the constructions
of section 2.2, this time in terms of vector bundles, we will give P -invariant classifications of the Weyl tensor
and the Cotton-York tensor, generalising the four-dimensional Petrov classification.

Before delving into this, we restate Lemma 2.2 in the vector bundle format.

Lemma 3.2 Let N be an almost null structure on (M, g). Then

8



1. when ǫ = 0, N = N⊥, and N is either self-dual or anti-self-dual;

2. when ǫ = 1, N is a proper subbundle of N⊥, and N⊥/N is a rank-one vector bundle.

Remark 3.3 As already noted in Remark 2.3, whether an almost null structure is self-dual or anti-self-dual
will not be of major significance except in four dimensions, and for the remainder of the article, we shall in
general make no assumption regarding the self- or anti-self-duality of the almost null structure.

Even dimensions greater than four (ǫ = 0, m > 2) By Lemma 3.2, N = N⊥, and one can rewrite the
filtration (3.5) as

V
3
2 ⊂ V

1
2 ⊂ V−

1
2 , (3.6)

and we set V
k
2 = M for k ≥ 3, and V

k
2 = TM for k ≤ −1 for convenience. The associated graded vector

bundle is gr(TM) = gr1
2
(TM)⊕ gr

−
1
2
(TM) where gri(TM) := V i/V i+1. One can assign a grading on TM

adapted to N ,

TM = V 1
2
⊕ V

−
1
2
, (3.7)

by choosing a vector subbundle V
−

1
2
⊂ V−

1
2 complementary to V 1

2
:= V

1
2 . This can be viewed as making

a choice of frame adapted to the almost null structure. The natural projection V i → gri(TM) establishes
isomorphisms Vi

∼= gri(TM), and thus TM ∼= gr(TM).
It is now a simple matter to apply the discussion of section 2.2 in the context of the filtration (3.6),

based on the remark that the bundles C and A defined in (3.4) are subbundles of
⊗4

T∗M and
⊗3

T∗M
respectively. Thus, when m > 2, they admit the respective filtrations,

M = C3 ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C−1 ⊂ C−2 = C , (3.8)

M = A
5
2 ⊂ A

3
2 ⊂ A

1
2 ⊂ A−

1
2 ⊂ A−

3
2 = A , (3.9)

with respective associated graded vector bundles

gr(C) = gr2(C)⊕ gr1(C)⊕ gr0(C)⊕ gr−1(C)⊕ gr−2(C) , (3.10)

gr(A) := gr3
2
(A)⊕ gr1

2
(A) ⊕ gr

−
1
2
(A)⊕ gr

−
3
2
(A) , (3.11)

where gri(C) := Ci/Ci+1, grj(A) := Aj/Aj+1 for each i, j. A choice of frame adapted to N induces gradings
on C and A,

C = C2 ⊕ C1 ⊕ C0 ⊕ C−1 ⊕ C−2 , (3.12)

A = A3
2
⊕A1

2
⊕A

−
1
2
⊕A

−
3
2
, (3.13)

respectively. With this choice, the natural projections Ci → Ci/Ci+1 and Ai → Ai/Ai+1 establish isomor-
phisms Ci ∼= gri(C) and Ai

∼= gri(A) for each i, and thus C ∼= gr(C) and A ∼= gr(A).

Four dimensions (ǫ = 0, m = 2) In four dimensions, and assuming the almost null structure to be
self-dual, one obtains filtrations on +C and +A

M = +C3 ⊂ +C2 ⊂ +C1 ⊂ +C0 ⊂ +C−1 ⊂ +C−2 = +C , (3.14)

M = +A
5
2 ⊂ +A

3
2 ⊂ +A

1
2 ⊂ +A−

1
2 ⊂ +A−

3
2 = +A , (3.15)
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respectively.5 As in the higher dimensions, one also defines associated graded vector bundles gr(+C) and
gr(+A), which, on choosing a particular grading (3.7), become isomorphic to +C and +A respectively. Similar
results can be obtained on C− and A−, when the almost null structure is taken to be anti-self-dual.

Remark 3.4 In four dimensions, it is well-known that at every point p of M, one can always find a maximal
totally null subspace Np of TpM such that the self-dual part of the Weyl tensor at that point degenerates to
+C−1, and this maximal totally null subspace can be extended to an almost null structure in a neighbourhood
of p. For this reason, if the self-dual part of the Weyl tensor degenerates further to a section of +C0, it is
referred6 to as algebraically special with respect to N . In fact, the (complex self-dual) Petrov types I, II, III
and N can easily be defined in terms of the bundles +C−1, +C0, +C1 and +C2 respectively, and similarly for
the anti-self-dual case.

Odd dimensions (ǫ = 1) This is very similar to the previous case except that now, N is a proper
holomorphic subbundle of N⊥. Thus the filtration (3.5) can be rewritten as

V2 ⊂ V1 ⊂ V0 ⊂ V−1 , (3.16)

and we set Vk = M for k ≥ 2, and Vk = TM for k ≤ −1 for convenience. The associated graded vector
bundle is gr(TM) = gr1(TM) ⊕ gr0(TM) ⊕ gr−1(TM) where gri(TM) := V i/V i+1. One can assign a
grading on TM adapted to N ,

TM = V1 ⊕ V0 ⊕ V−1 , (3.17)

by choosing vector subbundles Vi ⊂ V i complementary to Vi+1 with V1 := V1. This can be viewed as making
a choice of frame adapted to the almost null structure. The natural projection V i → gri(TM) establishes
isomorphisms Vi

∼= gri(TM), and thus TM ∼= gr(TM).
Again, from section 2.2, the filtration (3.6) induces filtrations on the vector bundles C and A,

M = C5 ⊂ C4 ⊂ C3 ⊂ . . . ⊂ C−3 ⊂ C−4 = C , (3.18)

M = A4 ⊂ A3 ⊂ A2 ⊂ . . . ⊂ A−2 ⊂ A−3 = A , (3.19)

respectively, with associated graded vector bundles

gr(C) = gr4(C)⊕ gr3(C) . . .⊕ gr−3(C)⊕ gr−4(C) , (3.20)

gr(A) = gr3(A)⊕ gr2(A)⊕ . . .⊕ gr−2(A)⊕ gr−3(A) , (3.21)

respectively, where gri(C) := Ci/Ci+1, grj(A) := Aj/Aj+1 for each i, j. A choice of frame adapted to N
induces gradings on C and A,

C = C4 ⊕ C3 ⊕ . . .⊕ C−3 ⊕ C−4 , (3.22)

A = A3 ⊕A2 ⊕ . . .⊕A−2 ⊕A−3 , (3.23)

respectively, which allow one to establish isomorphisms Ci ∼= gri(C) and Ai
∼= gri(A) for each i, and thus

C ∼= gr(C) and A ∼= gr(A).

Remark 3.5 In even and odd dimensions greater than four, the (pointwise) existence of an almost null
structure with respect to which the Weyl tensor degenerates to a section of C−1 and C−3 respectively, is
not guarranteed in general. While the use of the terms ‘algebraically special’ to describe a Weyl tensor
degenerating to a section of C0 may then not be entirely appropriate, such a Weyl tensor nonetheless enjoys
some ‘special’ status regarding the geometric property of the almost null structure N as will be seen in
section 4.

5One also gets a filtration M = −A
3

2 ⊂ −A
1

2 ⊂ −A−
1

2 = −A on −A, which we shall not need however.
6This is usually formulated in terms of a spinor field ξ, say, which defines N , and the terminology ‘with respect to N ’ is

then replaced by ‘along ξ’.
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Remark 3.6 Referring back to Remark 2.4, we can view each of the vector bundles Ci and Ai as p-modules
(or P -modules at the Lie group level), and one way to refine the classification is by considering the irreducible
p-modules in each of the quotient bundles gri(C) and gri(A). This will not be needed in this paper, but will
be covered in a future publication.

Tensorial characterisation of sections of C and A When it comes to explicit computations, it is
somewhat more convenient to describe sections of the bundles Ci and Ai by means of the following lemma.

Lemma 3.7 Fix k ∈ Z, k > − 4
2−ǫ

, ℓ ∈ Z+ 1−ǫ
2 , ℓ > − 3

2−ǫ
. When m = 2, ǫ = 0, assume that N is self-dual,

and write C and A for +C and +A respectively. Let C ∈ Γ(C) and A ∈ Γ(A). Then,

C ∈ Γ(Ck) ⇔ C(Xi1 ,Xi2 ,Xi3 ,Xi4) = 0 , for all Xij ∈ Γ(V ij ) such that
∑

j ij = 1− k,

A ∈ Γ(Aℓ) ⇔ A(Xi1 ,Xi2 ,Xi3) = 0 , for all Xij ∈ Γ(V ij ) such that
∑

j ij = 1− ℓ,

where ij ∈ Z, |ij | ≤
1+ǫ
2 for all j = 1, . . . , 4.

The above characterisation can be proved immediately from the fact that the bundles C and A are subbundles
of
⊗4

T∗M and
⊗3

T∗M respectively, and (V∗)i is the annihilator of V1−i for each i.

3.2 Geometric properties

Let (M, g) be a (2m+ ǫ)-dimensional complex Riemannian manifold, where ǫ ∈ {0, 1} and m ≥ 2, endowed
with an almost null structure N . In the following discussion, we shall generally treat both the even- and
odd-dimensional cases at once, bearing in mind that in the former case N⊥ = N , so that there will be some
redundancy in the properties presented. When some distinction needs to be made, the notation of section 3
together with ǫ will be used.

Theorem 3.8 (Frobenius) A necessary and sufficient condition for an almost null structure N to be in-
tegrable is that it is involutive, i.e.

[X,Y ] ∈ Γ(N ) , [S,T ] ∈ Γ(N⊥) ,

or equivalently,

g(S, [X,Y ]) = 0 , g(X, [S,T ]) = 0 , (3.24)

for all X,Y ∈ Γ(N ) and S,T ∈ Γ(N⊥).

The integrability of N in some open subset U gives rise to a foliation of U by maximal totally null leaves.
In odd dimensions, U is also foliated by leaves of dimension m + 1. In both cases, these leaves are totally
geodetic, in the sense given by the next lemma.

Lemma 3.9 The almost null structure N is integrable if and only if

g(X,∇Y Z) = 0 , g(Y ,∇XZ) = 0 , (3.25)

for all X ∈ Γ(N⊥), Y ,Z ∈ Γ(N ).

Proof. Let X ∈ Γ(N⊥), Y ,Z ∈ Γ(N ), and suppose that the distributions N and N⊥ are integrable. Then,
using the defining properties of the Levi-Civita connection,

g(X,∇Y Z) =
1

2
(g(X,∇Y Z)− g(X,∇ZY )− g(Z,∇Y X) + g(Z,∇XY )− g(Y ,∇XZ) + g(Z,∇ZX))

=
1

2
(g(X, [Y ,Z]) + g(Z, [X,Y ]) + g(Y , [Z,X])) = 0 ,

by equations (3.24), and similarly for g(Y ,∇XZ). The converse is obvious. �
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Remark 3.10 There is an alternative way of characterising the integrability of the almost null structure,
which mirrors a procedure introduced in [GH80, FFS94] in almost Hermitian geometry. We note that the
almost null structure N can be represented7 by a single, up to scale, tensorial object ω ∈ Γ(

∧m N ∗). It
thus makes sense to measure the failure of the Levi-Civita connection to preserve ω, or equivalently, to be
a p-valued 1-form on M. In even dimensions, the geometric properties of N can then be encoded by the
P -invariant differential equations

∇Xω = α(X)ω , (3.26)

for some 1-form α, and for all X ∈ Γ(V i) for some i ∈ {− 1
2 ,

1
2}. In particular, taking i = 1

2 gives the
integrability of N . In odd dimensions, the geometric properties of N can be encoded by the P -invariant
differential equations

∇Xω = α(X)ω , ∇Y (∗ω) = β(Y )ω ∧ γ , (3.27)

for some 1-forms α, β and γ, and for all X ∈ Γ(V i), Y ∈ Γ(Vj) for some i, j ∈ {−1, 0, 1}. In this case, the
integrability of N (and N⊥) is given by taking i = 1 and j = 0.

Integrability condition The existence of a null structure N on M is subject to an integrability condition
on the Weyl tensor as given by the next proposition.

Proposition 3.11 Suppose N is a null structure. Then, in dimensions greater than four, the Weyl tensor
is a section of C−1−ǫ. In four dimensions, assuming N is self-dual, the self-dual part of the Weyl tensor is
a section of +C−1.

Proof. Let X ∈ Γ(N⊥), Y ,Z,W ∈ Γ(N ). We shall show that

C(W ,X,Y ,Z) = 0 , (3.28)

which, by Lemma 3.7, is equivalent to the claim of the proposition. We start by differentiating either of
relations (3.25), so for definiteness, we have

0 = ∇W (g(Y ,∇XZ)) = g(∇WY ,∇XZ) + g(Y ,∇W∇XZ) = g(Y ,∇W∇XZ) , (3.29)

by equation (3.25) again. Now, from the definition of the Riemann tensor, we have

R(W ,X,Y ,Z) = g(Y ,∇W∇XZ −∇X∇WZ −∇[W ,X]Y ) = 0 ,

by equations (3.29) and (3.25) together with Lemma 3.9. The splitting of the Riemann tensor (3.1) now
establishes equation (3.28). Further, when 2m + ǫ = 4 and N is assumed to be self-dual, equation (3.28)
is always trivially satisfied on restriction to the anti-self-dual part of the Weyl tensor, and so must be a
condition on the self-dual part of the Weyl tensor �

3.3 Null basis and its associated canonical almost null structures

So far the discussion has been expressed invariantly, with no reference to any particular frame, but at this
stage, it is convenient to introduce some notation tied up to a choice of frame adapted to a null structure. As
before (M, g) will denote a (2m+ǫ)-dimensional complex Riemannian manifold where ǫ ∈ {0, 1}, and m ≥ 2,
and N an almost null structure on M. We first note that choosing a (local) grading (3.7), respectively (3.17)
of the tangent bundle, when ǫ = 0, respectively ǫ = 1, is really tantamount to choosing a frame adapted to
N . When ǫ = 0, this (local) frame will be denoted

{
ξµ, ξ̃ν̃ |µ, ν̃ = 1, . . . ,m

}
,

7This can also be formulated spinorially.
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where {ξµ} and {ξ̃µ̃} span V 1
2
and V

−
1
2
respectively. When ǫ = 1, it will be denoted

{
ξµ, ξ̃ν̃ , ξ0|µ, ν̃ = 1, . . . ,m

}
,

where {ξµ}, {ξ0} and {ξ̃µ̃} span V1, V0, and V−1 respectively. In both cases, the frame vector fields will be
taken to satisfy the normalisation conditions

g(ξµ, ξ̃ν̃) = δµν̃ , g(ξ0, ξ0) = 1 .

The corresponding coframes will be denoted

{
θµ, θ̃ν̃|µ, ν̃ = 1, . . . ,m

}
,

{
θµ, θ̃ν̃, θ0|µ, ν̃ = 1, . . . ,m

}
,

when ǫ = 0 and ǫ = 1 respectively, and where ξµyθ
ν = δνµ, ξ̃µ̃yθ̃

ν̃ = δν̃µ̃, ξ0yθ
0 = 1, and all other pairings

vanish. In particular, the metric takes the canonical form

g = 2
m∑

µ=1

θµ ⊙ θ̃µ̃ + ǫθ0 ⊗ θ0 . (3.30)

With this convention, we shall denote the components of the tensors with respect to these frame and co-frame
in the usual way, i.e. if A is a tensor field, then its components are given by, e.g.

Aµ0ν̃...κ̃
λρ̃...0τ := A(θµ, θ0, θ̃ν̃, . . . , θ̃κ̃, ξλ, ξ̃ρ̃, . . . , ξ0, ξτ ) ,

and so on.
For future use, we introduce the following notation for the components of the connection 1-form

Γκµν := g(∇ξκ
ξµ, ξν) , Γκµν̃ := g(∇ξκ

ξµ, ξ̃ν̃) , Γκµ̃ν̃ := g(∇ξκ
ξ̃µ̃, ξ̃ν̃) ,

Γ0µν := g(∇ξ0
ξµ, ξν) , Γ0µν̃ := g(∇ξ0

ξµ, ξ̃ν̃) , Γ0µ̃ν̃ := g(∇ξ0
ξ̃µ̃, ξ̃ν̃) ,

and so on, in the obvious way. Since the Levi-Civita connection preserves the metric, these components are
skew-symmetric in their last two indices.

Canonical almost null structures For convenience, let S := {1, 2, . . . ,m}, M ⊂ S, and M̃ := S \M .
Then, having chosen a null frame as above, for every 2m choice of M , one can canonically define almost null
structures

NM := span
{
ξµ, ξ̃ν̃ : for all µ ∈ M , ν̃ ∈ M̃

}
.

That these are maximal totally null is clear from the form of the metric (3.30). In particular, N = N1...m.
For future use, we shall denote

BS := {NM : for all M ⊂ S} ,

the set of all canonical almost null structures on (an open subset of) M.

Remark 3.12 In the above notation, the spinor bundle
∧• N is locally spanned by the 2m simple m-vectors

ξM := ξµ1
∧ . . .∧ξµp

where p is the cardinality of M – when M is empty, we write ξ0 for the unit scalar field

spanning
∧0 N . In fact, each ξM is a pure spinor field, in the sense that it annihilates the corresponding

canonical null distribution NM via the Clifford action [Car81,BT89].
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4 The Goldberg-Sachs theorem

We begin by restating the Goldberg-Sachs theorem as generalised by Kundt-Thompson [KT62] and Robinson-
Schild [RS63]. The formulation, closely following [PR86], is adapted to the language of section 3 .

Theorem 4.1 (Generalised Goldberg-Sachs Theorem) Let (M, g) be a four-dimensional complex Rie-
mannian manifold. Let N be a self-dual almost null structure on (M, g), and U an open subset of M.
Consider the following statements

1. the self-dual part of the Weyl tensor is a section of +Ck over U which does not degenerate to a section
of +Ck+1 over U ;

2. the almost null structure N is integrable in U ;

3. the self-dual part of the Cotton-York tensor is a section of +Ak−
1
2 over U .

Then,

(a) for k = 0, 1, 2, (1) & (2) ⇒ (3);

(b) for k = 0, 1, 2, (1) & (3) ⇒ (2);

(c) for k = 0, (2) & (3) ⇒ (1)’ := (1) with k = 0 or 1 or 2.

Remark 4.2 An anti-self-dual version of Theorem 4.1 coexists with it.

The proof of each of the implications (a), (b), (c) of the theorem is essentially based on the (self-dual)
contracted Bianchi identity. It is usually carried out as a local computation using a local null frame adapted
to N , e.g. in the Newman-Penrose formalism, or more invariantly in terms of spinor fields. The assumption
on the Cotton-York tensor can also be replaced by an assumption on the Rho tensor in implication (c).
We also note that implication (a) is really an integrability condition on the Cotton-York tensor given some
algebraic condition on the Weyl tensor.

In higher dimensions, a putative Goldberg-Sachs theorem would take the same form as Theorem 4.1
except for the fact that self-duality has now no place there, and in odd dimensions, one has additional
degeneracy classes. Let’s examine each implication in turn.

• Implication (a) presents no difficulty, and follows directly from the definition of the Cotton-York tensor,
in terms of the contracted Bianchi identity, for which we give an invariant expression in terms of an
almost null structure below.

• To prove implication (b) in four dimensions, we first note that each summand +Ck/+Ck+1 of the graded
vector bundle associated to the filtration (3.14) is one-dimensional. This means that the property that
the Weyl tensor is a (local) section of Ck, but does not degenerate to a section of Ck+1, depends on a
single non-vanishing component of the Weyl tensor in a frame adapted to N .

In higher dimensions, the bundles Ck/Ck+1 are not one-dimensional in general, and it is no longer
enough to assume that the Weyl tensor, as a section of Ck, does not degenerate to a section of Ck+1.
For this reason, we must introduce a genericity assumption, which must be understood in the sense
that there are no additional structures imposed on M beside the almost null structure. As a result,
the components of the Weyl tensor, modulo Weyl symmetries, do not satisfy algebraic relations among
themselves. It is also worth noting that unlike in four dimensions, the full Bianchi identity is now
required in the proof of implication (b): the contracted Bianchi identity alone does not provide enough
constraints on the relevant connection components.
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• Finally, one can already assert that implication (c) fails in higher dimensions. Indeed, based on the
computations of [TC11], one can complexify a small region of the Lorentzian black ring solution [ER02],
and show that it locally admits (holomorphic) null structures.8 However, the Weyl tensor does not
degenerate to a section of C0. The author is aware of at least one other counterexample to implication
(c) in higher dimensions, the complexification of the five-dimensional Euclidean black hole metric
discovered in [LMP09].

Remark 4.3 Not covered in Theorem 4.6 is the case when (M, g) is conformally (half-)flat, i.e. the self-

dual part of the Weyl tensor and the self-dual part of the Cotton-York tensor are sections of +C3 and +A
5
3

respectively. If one is concerned in finding a null structure in this case, the appropriate alternative is to
appeal to the Kerr theorem, which states that any (local) null structure on a conformally (half-)flat complex
Riemannian manifold (M, g) can be prescribed by a holomorphic projective variety in its twistor space
[PR86]. Consequently, (M, g) admits (locally) infinitely many self-dual null structures. The same remark
applies in higher dimensions [HM88].

We treat the even- and odd-dimensional cases separately. Before we proceed, we give an expression for
the Cotton-York tensor in terms of the contracted Bianchi identity.

Lemma 4.4 Let (M, g) be a (2m + ǫ)-dimensional complex Riemannian manifold where ǫ ∈ {0, 1} and
m ≥ 2. Then the defining equation of the Cotton-York tensor (3.2) is equivalent to

(3− 2m+ ǫ)A(X,Y ,Z) =
∑

σ

(
∇ξ̃σ̃

C(ξσ,X,Y ,Z)−C(ξσ,∇ξ̃σ̃
X,Y ,Z)−C(ξσ,X,∇ξ̃σ̃

Y ,Z)−C(ξσ,X,Y ,∇ξ̃σ̃
Z)

+ ∇ξσ
C(ξ̃σ̃,X,Y ,Z)−C(ξ̃σ̃,∇ξσ

X,Y ,Z)−C(ξ̃σ̃,X,∇ξσ
Y ,Z)−C(ξ̃σ̃,X,Y ,∇ξσ

Z)
)

+ ǫ (∇ξ0
C(ξ0,X,Y ,Z)−C(ξ0,∇ξ0

X,Y ,Z)−C(ξ0,X,∇ξ0
Y ,Z)−C(ξ0,X,Y ,∇ξ0

Z)) , (4.1)

for all X,Y ,Z ∈ Γ(TM), where {ξµ, ξ̃µ̃, ǫξ0} is a null basis as described in section 3.3.

4.1 The complex Goldberg-Sachs theorem in even dimensions

We start with the even-dimensional generalisation of implication (b) of Theorem 4.1, which is an application
of Lemma 3.7 to equation (4.1) with ǫ = 0, together with the geodesy property (3.9).

Proposition 4.5 Let (M, g) be a 2m-dimensional complex Riemannian manifold, where m ≥ 3. Let N be
an almost null structure on M, and U an open subset of M. Let k ∈ {0, 1, 2}. Suppose that the Weyl tensor

is a section of Ck over U . Then the Cotton-York tensor is a section of Ak−
3
2 over U . Suppose further that

N is integrable in U . Then the Cotton-York tensor is a section of Ak−
1
2 over U .

Next, the even-dimensional generalisation of implication (b) of Theorem 4.1 can be expressed as follows.

Theorem 4.6 Let (M, g) be a 2m-dimensional complex Riemannian manifold, where m ≥ 3. Let N be an
almost null structure on M, and U an open set of M. Let k ∈ {0, 1, 2}. Suppose that the Weyl tensor is a
section of Ck over U , and is otherwise generic. Suppose further that the Cotton-York tensor is a section of

Ak−
1
2 over U . Then N is integrable in U .

8These are the complexification of the original null structures on a Lorentzian manifold, as explained in section 5.4.3.
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Proof. This is essentially a local computation. Choose a local frame {ξµ, ξ̃µ̃} over U adapted to N , as
described in section 3.3. Such a choice induces the local gradings (3.12) and (3.13) on the bundles C and A

respectively. The condition that the Weyl and Cotton-York tensor be sections of Ck and Ak−
1
2 respectively

is equivalent to their components in Ci and A
i−

1
2
vanishing for all −2 ≤ i ≤ k − 1.

To show that N is integrable, we shall make use of the equivalent geodesy condition (3.25). Locally, this
can be expressed as a condition on the 1

2m
2(m− 1) connection components

Γκµν = 0 , (4.2)

for all κ, µ, ν.
The gist of the proof is based on the fact that for each k ∈ {0, 1, 2}, in the local frame, and as a result

of the algebraic degeneracy of the Weyl tensor and Cotton-York tensor, some of the differential equations
defined by the components of the Bianchi identity (3.3) given in Appendix A become algebraic equations,
which can be viewed as a homogeneous overdetermined system of linear equations on the unknowns Γκµν .
It is however not immediately clear whether these algebraic equations are all linearly independent. Hence,
the proof will consist in singling out a subsystem of 1

2m
2(m− 1) linearly independent equations on Γκµν . In

this case, the only possible solution will be the trivial solution (4.2).
More specifically, for each k ∈ {0, 1, 2}, we shall be able to choose a subsystem of 1

2m
2(m − 1) linear

equations which takes the matrix form



K12 ∗ · · · · · · ∗

∗ K13

...

...
. . .

Kµν

. . .
Km,m−1

K123

K124

. . .

Kµνλ

...

...
. . . ∗

∗ · · · · · · ∗ Km−2,m−1,m







Γ112

Γ113

...
Γµµν

...
Γm,m,m−1

u123

u124

...
uµνλ

...
um−2,m−1,m




=




0
0

...
0

...
0

03

03

...
03

...
03




,

(4.3)

or Ku = 0 for short. Here, each entry of the 1
2m

2(m−1)×1 vector u corresponds to a connection component
Γκµν . Some of these have been arranged in triples in the column vectors

uµνλ :=



Γµνλ

Γνλµ

Γλµν


 ,

for all κ < µ < ν.
On the other hand, each entry of the 1

2m
2(m − 1) × 1

2m
2(m − 1) matrix K will consist of a (constant)

linear combination of components of the Weyl tensor. Corresponding to the arrangement of the entries of
u, we have also singled out the matrices Kµν and Kµνκ of dimensions 1 × 1 and 3 × 3 respectively, each
acting on Γµµν and uκµν respectively. The remaining entries of K have been marked with an asterix ∗, the
meaning of which will be clarified in a moment. In fact, from the structure of the matrix K, we will be able
to show that K is non-singular. This is made clear by the following lemma.
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Lemma 4.7 Let A, B be two distinct index sets, i.e. A ∩ B = {∅}, and let {fα}α∈A, {gβ}β∈B be two
collections of functions over U . Consider the field of square matrices over U of the form

K :=




D1 A12 . . . . . . A1,p

A21 D2

...
...

. . .
...

... Dp−1 Ap−1,p

Ap,1 . . . . . . Ap,p−1 Dp




, (4.4)

where for each i, the entries of the block square matrix Di are polynomials in fα with constant coefficients,
and for each i 6= j, the entries of Aij are polynomials in gβ with constant coefficients. Then, the determinant
of K is given by

detK = G+D , (4.5)

where G = G(fα, gβ) is a polynomial in fα and gβ such that G(fα, 0) = 0, and D =
∏

i(detDi).
In particular, assuming that

1. for each i, Di is non-singular,

2. the collections {fα} and {gβ} are generically unrelated, in the sense that there are no algebraic relations
between the functions fα and gβ for all α ∈ A, β ∈ B,

then M is non-singular.

Proof. Clearly, by definition, the determinant of K is a polynomial in fα and gβ. Hence, we can always write
detK = G+D, where G = G(fα, gβ) is a polynomial in fα and gβ such that G(fα, 0) = 0, and D = D(fα)
is a polynomial in fα. Setting gβ = 0 for all β ∈ B yields detK = D. But K is now the block diagonal
matrix diag(D1,D2, . . . ,Dp), which has determinant

∏
i(detDi). Hence, equation (4.5) is established.

Next, from part (1), we have
∏

i(detDi) 6= 0. Further, from the genericity assumption (2), we have
G+

∏
i(detDi) 6= 0, i.e. K is non-singular. �

Thus, to prove the theorem for each k ∈ {0, 1, 2}, it suffices to check whether the matrix K of the system
of equations (4.3) satisfies the hypotheses of Lemma 4.7. But it turns out that this is precisely the case: it
will be seen that the index structure of the components of the Weyl tensor, modulo the Weyl symmetries,
may be split into two distinct sets A and B such that the hypotheses of Lemma 4.7 hold, with

D =


∏

µ6=ν

Kµν


 ·


 ∏

κ<λ<ρ

det(Kκλρ)


 . (4.6)

Moreover, one can simply invoke the genericity assumption on the Weyl tensor to deduce the additional
requirements (1) and (2) of Lemma 4.7. It will then follow that the system (4.3) is non-singular, and must
therefore have trivial solution (4.2).

Remark 4.8 By ‘components of the Weyl tensor, modulo the Weyl symmetries’, we mean that the compo-
nents of the Weyl tensor are subject to the Riemman symmetries

C(X,Y ,Z,W ) +C(Y ,Z,Y ,W ) +C(Z,X,Y ,W ) = 0 ,

together with the tracefree condition

∑

σ

(
C(ξσ,X, ξ̃σ̃,Y ) +C(ξ̃σ̃,X, ξσ,Y )

)
+ ǫC(ξ0,X, ξ0,Y ) = 0 ,
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for all vector fields X,Y ,Z,W ∈ Γ(TM). A component has an index structure in the indexing set A if
and only if any other component related to it by a Weyl symmetry also has an index structure in A. In this
case, no ambiguity9 arises in the application of Lemma 4.7. In particular, one should check that the linear
combination of the components involved in Kµν and det(Kκλρ) do not lead to the vanishing of these scalars.
This step can be carried out by inspection, and will be left to the reader.

Case k = 0: Assume that the Weyl tensor is a section of C0 so that

Cµνκλ = Cµνκλ̃ = 0 , (4.7)

for all µ, ν, κ, λ. Then equations (A.3) become

0 = 2gρ̃[κAλ]µν + 2Γ σ̃
[µν] Cρ̃σ̃κλ + 4Γ σ̃

[µ |[κ Cλ]|σ̃| ν]ρ̃ =: Bµνρ̃|κλ . (A.3)

Here B
µνρ̃|κλ is merely a short hand for this set of algebraic equations. Now, suppose that the Weyl tensor

is otherwise generic, and the Cotton-York tensor is a section of A−
1
2 . Then the set of equations (A.3)

constitutes a homogeneous system of 1
4m

3(m− 1)2 equations on 1
2m

2(m− 1) unknowns. Pick all m(m− 1)
equations B

µνµ̃|µν , and all 1
2m(m− 1)(m− 2) equations B

µνµ̃|µλ , which, dropping the Einstein summation
convention, can be written as

0 = Γµµν(Cνν̃νµ̃ + Cµµ̃νµ̃ ) + Γννµ(Cµµ̃µµ̃ + Cµ̃ν̃µν + Cνν̃µµ̃ )

+
∑

σ 6=µ,ν

(
Γµνσ(Cµ̃σ̃µν − Cµσ̃νµ̃ ) + ΓµµσCνσ̃νµ̃ − Γνµσ(Cµ̃σ̃µν + Cνσ̃µµ̃ ) + ΓννσCµσ̃µµ̃

)
,

0 = ΓµµνCλν̃νµ̃ + ΓµµλCµµ̃νµ̃ + Γννµ(Cµ̃ν̃µλ + Cλν̃µµ̃ )− ΓννλCµν̃µµ̃

+ Γµνλ(Cµ̃λ̃µλ
+ Cµν̃νµ̃ ) + Γνλµ(Cλλ̃µµ̃

+ Cµµ̃µµ̃ + C
µ̃λ̃µλ

)

+
∑

σ 6=λ,µ,ν

(
ΓµνσCµ̃σ̃µλ + ΓµµσCλσ̃νµ̃ − ΓµλσCµσ̃νµ̃ − Γνµσ(Cµ̃σ̃µλ + Cλσ̃µµ̃ ) + ΓνλσCµσ̃µµ̃

)
,

respectively. These sets of equations can be put into the matrix form (4.3), by defining, for all κ, ρ distinct,
and µ < ν < λ,

Kκρ := Cκκ̃κκ̃ + Cκ̃ρ̃κρ + Cρρ̃κκ̃ ,

Kµνλ :=




C
µ̃λ̃µλ

+ Cµν̃νµ̃ C
λλ̃µµ̃

+ Cµµ̃µµ̃ + C
µ̃λ̃µλ

0

0 Cν̃µ̃νµ + C
νλ̃λν̃

Cµµ̃νν̃ + Cνν̃νν̃ + Cν̃µ̃νµ

C
νν̃λλ̃

+ C
λλ̃λλ̃

+ C
λ̃ν̃λν

0 C
λ̃ν̃λν

+ C
λµ̃µλ̃


 ,

respectively. The latter has determinant

det(Kµνλ) = (C
µ̃λ̃µλ

+ Cµν̃νµ̃ ) · (Cν̃µ̃νµ + C
νλ̃λν̃

) · (C
λ̃ν̃λν

+ C
λµ̃µλ̃

)

+ (C
λλ̃µµ̃

+ Cµµ̃µµ̃ + C
µ̃λ̃µλ

) · (Cµµ̃νν̃ + Cνν̃νν̃ + Cν̃µ̃νµ ) · (Cνν̃λλ̃
+ C

λλ̃λλ̃
+ C

λ̃ν̃λν
) ,

which can be seen to be non-vanishing by the genericity assumption,10 and Kµν and Kµνλ are thus non-
singular. Hence, the term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have
distinct index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to
conclude that K is non-singular, thus establishing condition (4.2).

9There is one notable exception that will be encountered in the odd-dimensional version of the theorem, but the argument
there can be adapted with no major difficulty.

10It may be of concern that the tracefree property of the Weyl tensor could make det(Kµνλ) vanish in principle. But if one
notes that det(Kµνλ) depends only on three distinct indices µ, ν, λ, we see that the only dimension where this issue could arise
is six. To settle the issue, we expand the determinant and eliminate the dependency of the components of the Weyl tensor by
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Case k = 1: Assume that the Weyl tensor is a section of C1 so that conditions (4.7) hold together with

Cµν̃κλ̃ = 0 , (4.8)

for all µ, ν, κ, λ. Then equations (A.7) become

0 = −2g
[µ |λ̃

Aκ| ν]ρ̃ + gρ̃κAλ̃µν
+ 2Γ σ̃

[µν] C
ρ̃σ̃κλ̃

+ 2Γ σ̃
[µ |κ C

λ̃|σ̃|ν]ρ̃
=: Bµνρ̃|κλ̃ . (A.7)

Now, suppose that the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A
1
2 .

Then the set of equations (A.7) constitutes a homogeneous system of 1
2m

4(m− 1) equations on 1
2m

2(m− 1)
unknowns. Pick all m(m− 1) equations Bµνν̃|νν̃ , and all 1

2m(m− 1)(m− 2) equations Bµνν̃|νκ̃

0 = Γννµ(Cµ̃ν̃µµ̃ + Cµ̃ν̃µµ̃ ) + ΓµµνCµ̃ν̃νµ̃ +
∑

σ 6=µ,ν

(
ΓµνσCµ̃σ̃µµ̃ − ΓνµσCµ̃σ̃µµ̃ + ΓµµσCµ̃σ̃νµ̃ − ΓνµσCµ̃σ̃µµ̃

)
,

0 = −ΓµµνCν̃µ̃κν̃ − ΓµµκCν̃µ̃νν̃ + Γνκµ(Cν̃µ̃ν̃µ − Cν̃κ̃ν̃κ ) + ΓµνκCν̃κ̃κν̃

+
∑

σ 6=µ,ν,κ

(
ΓµνσCν̃σ̃κν̃ − ΓνµσCν̃σ̃κν̃ + ΓµκσCν̃σ̃νν̃ − ΓνκσCν̃σ̃µν̃

)
.

These sets of equations can be put into the matrix form (4.3), where, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cκ̃ρ̃ρκ̃ , Kµνκ :=




Cν̃κ̃κν̃ Cν̃µ̃ν̃µ − Cν̃κ̃ν̃κ 0
0 Cκ̃µ̃µκ̃ Cκ̃ν̃κ̃ν − Cκ̃µ̃κ̃µ

Cµ̃κ̃µ̃κ − Cµ̃ν̃µ̃ν 0 Cµ̃ν̃νµ̃


 ,

respectively. The latter has determinant

det(Kµνκ) = Cν̃κ̃κν̃ · Cκ̃µ̃µκ̃ · Cµ̃ν̃νµ̃ + (Cν̃µ̃ν̃µ − Cν̃κ̃ν̃κ ) · (Cκ̃ν̃κ̃ν − Cκ̃µ̃κ̃µ ) · (Cµ̃κ̃µ̃κ − Cµ̃ν̃µ̃ν ) ,

which can be seen to be non-vanishing by the genericity assumption,11 and Kµν and Kµνκ are thus non-
singular. Hence, the term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have
distinct index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to
conclude that K is non-singular, thus establishing conditions (4.2).

Case k = 2: Assume that the Weyl tensor is a section of C2 so that conditions (4.7) and (4.8) hold together
with

Cµ̃ν̃κλ̃ = 0 , (4.9)

for all µ, ν, κ, λ. Then equations (A.13) become

0 = −2g[µ̃ |λAκ̃| ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γ σ̃
ρλ Cκ̃σ̃µ̃ν̃ =: Bµ̃ν̃ρ|λκ̃ . (A.13)

choosing a select few. A judicious choice leads to

det(Kµνλ) =

1

8
(Cµµ̃µµ̃ + C

µµ̃λλ̃
− Cµµ̃νν̃ + 4Cµν̃νµ̃ ) · (−Cνν̃νν̃ + C

νν̃λλ̃
+ 3Cµµ̃νν̃ − 4Cµν̃νµ̃ ) · (Cνν̃νν̃ − Cµµ̃µµ̃ + C

µµ̃λλ̃
+ C

νν̃λλ̃
)

+
1

4
(3Cµµ̃µµ̃ + 5C

µµ̃λλ̃
+ Cµµ̃νν̃ ) · (Cνν̃νν̃ + 2Cµµ̃νν̃ − Cµν̃νµ̃ ) · (Cµµ̃µµ̃ + Cνν̃νν̃ + 7Cµν̃νµ̃ − 5Cµµ̃νν̃ + C

νν̃λλ̃
) .

By the genericity assumption, this has to be non-vanishing.
11If anything goes wrong because of the tracefree property of the Weyl tensor, it has to happen in six dimensions. But when

m = 3, one can check that the determinant simplifies to det(Kµνκ) = 9Cν̃κ̃κν̃ · Cκ̃µ̃µκ̃ ·Cµ̃ν̃νµ̃ , which is clearly non-vanishing.
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Now, suppose that the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A
3
2 .

Then the set of equations (A.13) constitutes a homogeneous system of 1
2m

4(m−1) equations on 1
2m

2(m−1)
unknowns. Pick all m(m− 1) equations Bµ̃ν̃ν|νν̃ , and all 1

2m(m− 1)(m− 2) equations Bµ̃ν̃ν|λν̃

0 = −ΓνµνCµ̃ν̃µ̃ν̃ −
∑

σ 6=µ,ν

ΓννσCν̃σ̃µ̃ν̃ , 0 = −ΓνµλCµ̃ν̃µ̃ν̃ −
∑

σ 6=µ,ν

ΓνλσCν̃σ̃µ̃ν̃ ,

respectively. These can be put into the matrix form (4.3), where, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cκ̃ρ̃κ̃ρ̃ , Kνλµ :=



Cµ̃ν̃µ̃ν̃ 0 0

0 C
λ̃µ̃λ̃µ̃

0

0 0 C
ν̃λ̃ν̃λ̃


 ,

respectively. The latter has determinant

det(Kµνλ) = Cµ̃ν̃µ̃ν̃ · C
λ̃µ̃λ̃µ̃

· C
ν̃λ̃ν̃λ̃

,

which can be seen to be non-vanishing by the genericity assumption, andKµν andKµνλ are thus non-singular.
Hence, the term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have
distinct index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to
conclude that K is non-singular, thus establishing conditions (4.2). �

Remark 4.9 In ‘low’ dimensions it can be checked from the Bianchi identity that the condition of Propo-
sition 3.11 cannot be sufficient for the integrability of N . It is however not clear whether this remains
true in ‘high enough’ dimensions. In this case the Cotton-York tensor would present no obstruction to the
integrability of N .

4.2 The complex Goldberg-Sachs theorem in odd dimensions

We proceed as in even dimensions. The proof of the odd-dimensional generalisation of implication (b) of
Theorem 4.1 is identical to its even-dimensional counterpart.

Proposition 4.10 Let (M, g) be a (2m+1)-dimensional complex Riemannian manifold, where m ≥ 2. Let
N be an almost null structure on M, and U an open subset of M. Let k ∈ {0, 1, 2, 3, 4}. Suppose that the
Weyl tensor is a section of Ck over U . Then the Cotton-York tensor is a section of Ak−2 over U . Suppose
further that N is integrable in U . Then the Cotton-York tensor is a section of Ak−1 over U .

Next, the odd-dimensional generalisation of implication (b) of Theorem 4.1 can be expressed as follows.

Theorem 4.11 Let (M, g) be a (2m+1)-dimensional complex Riemannian manifold, where m ≥ 2. Let N
be an almost null structure on M, and U an open subset of M. Let k ∈ {0, 1, 2, 3, 4}. Suppose that the Weyl
tensor is a section of Ck over U , and is otherwise generic. Suppose further that the Cotton-York tensor is a
section of Ak−1 over U . Then N is integrable in U .

Proof. The odd-dimensional case follows exactly the same procedure as the even-dimensional one. Choose a
local frame {ξµ, ξ̃µ̃, ξ0} over U adapted to N . Then, we have local gradings (3.22) and (3.23) on the bundles
C and A respectively. The condition that the Weyl and Cotton-York tensor be sections of Ck and Ak−1

respectively is equivalent to their components in Ci and Ai−1 vanishing for all −4 ≤ i ≤ k − 1.
The integrability of the almost null structure, by Lemma 3.9, is then equivalent to the connection com-

ponents satisfying

Γκµν = 0 , (4.2)

Γκµ0 = 0 , (4.10)

Γ0µν = 0 , (4.11)
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for all κ, µ, ν. These constitute 1
2m

2(m− 1), m2, and 1
2m(m− 1) conditions respectively.

As in the even-dimensional case, for each k ∈ {0, 1, 2, 3, 4}, the assertion of the theorem is proved by
means of the Bianchi identity, which, from the algebraic degeneracy of the Weyl and Cotton-York tensors,
gives rise to a homogeneous overdetermined system of linear equations on the unknowns Γκµν , Γκµ0 and
Γ0µν for all κ, µ, ν. In fact, for each k ∈ {0, 1, 2, 3, 4}, we shall be able to split the proof into three steps,
as it turns out that the relevant algebraic equations arising from the Bianchi identity can be arranged into
three systems. A first system consists of equations on Γκµν , a second one on Γκµν , Γκµ0, and a third one on
Γκµν , Γκµ0, Γ0µν , for all κ, µ, ν. Hence, we will be able to conclude (4.2), (4.10), and (4.11) successively, by
considering suitable subsystems of these systems.

Thus, to show conditions (4.2), we can simply recycle the setup of the proof of Theorem 4.6, in particular
matrix (4.3).

Remark 4.12 While Theorem 4.6 is stated for m ≥ 3 only, the proof can still be re-used in the case m = 2,
i.e. when M is five-dimensional. In this case, only the ‘upper half’ of the system (4.3) is relevant.

Once conditions (4.2) have been established, we can move on to show condition (4.10), by considering a
system of linear equations of the form




L1 ∗ · · · · · · ∗

∗ L2

...

...
. . .

Lµ

. . .
Lm

L12

L13

. . .

Lµν

...

...
. . . ∗

∗ · · · · · · ∗ Lm−1,m







Γ110

Γ220

...
Γµµ0

...
Γmm0

v12

v13

...
vµν

...
vm−1,m




=




0
0

...
0

...
0

02

02

...
02

...
02




, (4.12)

or Lv = 0 for short. Here, each entry of the m2 × 1 vector v corresponds to a connection component Γµν0.
Some have been arranged in pairs as defined by the 1

2m(m− 1) column vectors

vµν :=

(
Γµν0

−Γνµ0

)
,

for all µ < ν. As in the previous step, we have singled out the matrices Lµ and Lµν of dimensions 1× 1 and
2 × 2 respectively. Following the same argument as presented in the proof Theorem 4.6, these will play a
central rôle in demonstrating that L is non-singular. In particular, with reference to Lemma 4.7 and equation
(4.4), the term D of the determinant of matrix (4.12) is given by

D =

(
∏

κ

Lκ

)
·

(
∏

µ<ν

det(Lµν )

)
. (4.13)
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Once conditions (4.10) have been established, we will be able to find a system of linear equations of the
form




M12 ∗ · · · · · · ∗

∗ M13

...
...

. . .

Mµν

...
...

. . . ∗
∗ · · · · · · ∗ Mm−1,m







Γ012

Γ013

...
Γ0µν

...
Γ0,m−1,m




=




0
0
...
0
...
0




, (4.14)

or Mw = 0 for short. Again, the diagonal entries Mµν for all µ, ν have been singled out for their crucial
part in the application of Lemma 4.7, where the term D of the determinant of matrix (4.14) is now given by

D =
∏

µ<ν

Mµν . (4.15)

Case k = 0: Assume the Weyl tensor is a section of C0 so that conditions (4.7) hold together with

Cµνκ0 = Cµν̃κ0 = 0 , (4.16)

for all µ, ν, κ, λ. Then equations (A.3), (A.4), (A.5) and (A.6) become

0 = 2gρ̃[κAλ]µν + 2Γ σ̃
[µν] Cρ̃σ̃κλ + 4Γ σ̃

[µ |[κ Cλ]|σ̃|ν]ρ̃ =: Bµνρ̃|κλ , (A.3)

0 = −Aκµν + 2Γ σ̃
[µν] C0σ̃κ0 + 2Γ σ̃

[µ |κ C0σ̃| ν]0 =: Bµν0|κ0 , (A.4)

0 = gρ̃κA0µν + 2Γ σ̃
[µν] Cρ̃σ̃κ0 + 2Γ 0

[µν] Cρ̃0κ0 + 2Γ σ̃
[µ |κ C0σ̃|ν]ρ̃ − 2Γ σ̃

[µ |0 Cκσ̃| ν]ρ̃ =: Bµνρ̃|κ0 , (A.5)

0 = 2g
[µ |λ̃

Aκ| ν]0 + 2Γ σ̃
[µν] C

0σ̃κλ̃
+ 2Γ σ̃

0[µ C
ν]σ̃κλ̃

+ 2Γ σ̃
[ν |0| C

µ]σ̃κλ̃

+ 2Γ σ̃
[µ |κ C

λ̃σ̃| ν]0
+ 2Γ 0

[µ |κ C
λ̃0| ν]0

+ Γ σ̃
0κ C

λ̃σ̃µν
=: B

µν0|κλ̃
. (A.6)

Now, suppose that the Weyl tensor is otherwise generic and the Cotton-York tensor is a section of A−1.
Then, we see that equation (A.3) is identical to the one used in the proof of case k = 0 of Theorem 4.6.
Hence, conditions (4.2) are established. We also note that the same result can be equally derived from
equations (A.4).

Consequently, equations (A.5) depend only on the connection components Γµν0 for all µ, ν. Now, pick
m equations from the m(m− 1) equations Bµνν̃|µ0, and all m(m− 1) equations Bµνµ̃|µ0:

0 = Γµµ0Cµµ̃νν̃ − Γνν0Cµν̃µν̃ + Γµν0(Cµν̃νν̃ + Cν̃0µ0)− Γνµ0(Cµµ̃µν̃ + Cν̃0µ0)

+
∑

σ 6=µ,ν

(Γµσ0Cµσ̃νν̃ − Γνσ0Cµσ̃µν̃) ,

0 = Γµµ0Cµµ̃νµ̃ − Γνν0Cµν̃µµ̃ + Γµν0(Cµν̃νµ̃ + Cµ̃0µ0)− Γνµ0(Cµµ̃µµ̃ + Cµ̃0µ0)

+
∑

σ 6=µ,ν

(Γµσ0Cµσ̃νµ̃ − Γνσ0Cµσ̃µµ̃) ,

respectively. These equations can be put into the matrix form (4.12) by defining

Lµ :=

{
Cµµ̃mm̃ , for µ 6= m,

C
m,m̃,m−1,m̃−1

, for µ = m,

Lµν :=

(
Cµν̃νµ̃ + Cµ̃0µ0 Cµµ̃µµ̃ + Cµ̃0µ0

Cνµ̃µν̃ + Cν̃0ν0 Cνν̃νν̃ + Cν̃0ν0

)
, for all µ < ν,
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respectively. Now, each matrix Lµν has determinant, for all µ < ν,

det(Lµν) = (Cµν̃νµ̃ + Cµ̃0µ0) · (Cνν̃νν̃ + Cν̃0ν0)− (Cµµ̃µµ̃ + Cµ̃0µ0) · (Cνµ̃µν̃ + Cν̃0ν0) ,

which can be seen to be non-vanishing by the genericity assumption.12 Hence, the term (4.13) is non-
vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Lµ and Lµν have distinct
index structures from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that
L is non-singular, thus establishing conditions (4.10).

At this stage, equations (A.6) only constrain the connection components Γ0µν for all µ, ν. Pick all
1
2m(m− 1) equations B

µν0|µµ̃ :

0 = Γ0µν(Cνν̃µµ̃ + Cµ̃ν̃µν + Cµµ̃µµ̃) +
∑

σ 6=µ,ν

(Γ0µσ(Cνσ̃µµ̃ + Cµ̃σ̃µν)− Γ0νσCµσ̃µµ̃) , (4.17)

which can be put in the matrix form (4.14) by defining, for every µ < ν,

Mµν := Cνν̃µµ̃ + Cµ̃ν̃µν + Cµµ̃µµ̃ .

This is non-vanishing by the genericity assumption, and thus, the term (4.15) is non-vanishing.
As in the previous step, the components of the Weyl tensor in the diagonal entriesMµν ofM have distinct

index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to conclude that
M is non-singular, thus establishing conditions (4.10).

Case k = 1: Assume that the Weyl tensor is a section of C0, so that conditions (4.7), (4.16) and (4.8) hold.
Then equations (A.5), (A.6), (A.7) and (A.8) become

0 = gρ̃κA0µν + 2Γ σ̃
[µν] Cρ̃σ̃κ0 + 2Γ σ̃

[µ |κ C0σ̃| ν]ρ̃ =: Bµνρ̃|κ0 , (A.5)

0 = 2g
[µ |λ̃

Aκ| ν]0 + 2Γ σ̃
[µν] C

0σ̃κλ̃
+ 2Γ σ̃

[µ |κ C
λ̃σ̃| ν]0

=: Bµν0|κλ̃ , (A.6)

0 = −2g
[µ |λ̃

Aκ| ν]ρ̃ + gρ̃κAλ̃µν
+ 2Γ σ̃

[µν] C
ρ̃σ̃κλ̃

+ 2Γ 0
[µν] Cρ̃0κλ̃

+ 2Γ σ̃
[µ |κ C

λ̃|σ̃| ν]ρ̃
+ 2Γ 0

[µ |κ C
λ̃|0| ν]ρ̃

=: Bµνρ̃|κλ̃ , (A.7)

0 = gν̃κA00µ −Aκµν̃ + Γ σ̃
0µ Cν̃σ̃κ0 − Γ σ̃

µ0 Cν̃σ̃κ0 + Γ σ̃
µκ C0σ̃ν̃0 − Γ σ̃

µ0 Cκσ̃ν̃0 + Γ σ̃
0κ C0σ̃µν̃ =: Bµν̃0|κ0 . (A.8)

Now, suppose that the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A0.
Then, both sets of equations (A.5) and (A.6) are equations on Γκµν for all κ, µ, ν. Now, pick all m(m− 1)
equations Bµν0|µν̃ and all 1

2m(m− 1)(m− 2) equations Bµν0|µλ̃

0 = −ΓµµνC0µ̃µν̃ + ΓννµC0ν̃µν̃ +
∑

σ 6=µ,ν

(
ΓµνσC0σ̃µν̃ − Γνµσ(C0σ̃µν̃ + Cν̃σ̃µ0 ) + ΓµµσCν̃σ̃ν0

)
,

0 = −Γµµν(C0µ̃µλ̃
− C

λ̃ν̃ν0
) + Γννµ(C0ν̃µλ̃

+ C
λ̃ν̃µ0

) + ΓµνλC0λ̃µλ̃
+ ΓνλµC0λ̃µλ̃

+
∑

σ 6=µ,ν,λ

(
ΓµνσC0σ̃µλ̃

− Γνµσ(C0σ̃µλ̃
+ C

λ̃σ̃µ0
) + ΓµµσCλ̃σ̃ν0

)
,

respectively. These can be put in matrix form (4.3) by defining, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := C0κ̃ρκ̃ , Kµνλ :=



C

0λ̃µλ̃
C

0λ̃µλ̃
0

0 C0µ̃νµ̃ C0µ̃νµ̃

C0ν̃λν̃ 0 C0ν̃λν̃


 .

12Again, the tracefree property of the Weyl tensor may seem problematic when m = 2. But in that case, some manipulations
show that det(Lµν) = 2Cµ0µ̃0

· (Cµνµ̃ν̃ − Cµν̃µ̃ν ), which is clearly non-vanishing.
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The latter has determinant

det(Kµνλ) = 2C
0λ̃µλ̃

· C0µ̃νµ̃ · C0ν̃λν̃ ,

which can be seen to be non-vanishing by the genericity assumption. So, Kµν and Kµνλ are non-singular,
and thus, the term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have
distinct index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to
conclude that K is non-singular, thus establishing conditions (4.2).

Now, equations (A.7) constrain only Γµν0 for all µ, ν. Pick m equations from the m(m − 1) equations
Bµνν̃|µν̃ , and all m(m− 1) equations Bµνµ̃|µµ̃

0 = Γµν0Cν̃0µν̃ − 2Γνµ0Cν̃0µν̃ + Γµµ0Cν̃0νν̃ , 0 = Γµν0Cµ̃0µµ̃ − 2Γνµ0Cµ̃0µµ̃ + Γµµ0Cµ̃0νµ̃ ,

respectively. These can be put into matrix form (4.12) by defining

Lµ :=

{
Cm̃0mm̃ , for all µ 6= m,

C
m̃−1,0,m−1,m̃−1

, for µ = m,

Lµν :=

(
Cµ̃0µµ̃ 2Cµ̃0µµ̃

2Cν̃0νν̃ Cν̃0νν̃

)
, for all µ < ν,

respectively. At a glance, we see that each of Lµ and Lµν , since det(Lµν ) = −3Cµ̃0µµ̃ ·Cν̃0νν̃ , are non-singular
by the genericity assumption, and thus, the term (4.13) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Lµ and Lµν have distinct
index structures from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that
L is non-singular, thus establishing conditions (4.10).

Finally, equations (A.8) now constrain only Γ0µν for all µ, ν. Pick all 1
2m(m− 1) equations Bµν̃0|µ0

0 = Γ0µνC0ν̃µν̃ +
∑

σ 6=µ,ν

Γ0µσ

(
Cν̃σ̃µ0 + C0σ̃µν̃

)
,

which can be put into the matrix form (4.14) by defining, for every µ < ν,

Mµν := C0ν̃µν̃ .

By the genericity assumption, each Mµν is non-vanishing, and thus, the term (4.15) is non-vanishing.
Further, one can check that the components of the Weyl tensor in the diagonal entries Mµν of M have

distinct index structures from those in the remaining entries of M. Hence, we can apply Lemma 4.7 to
conclude that M is non-singular, thus establishing conditions (4.11).

Case k = 2: Assume the Weyl tensor is a section of C1 so that conditions (4.7), (4.16) and (4.8) hold
together with

Cµν̃κ̃0 = 0 , (4.18)

for all µ, ν, κ. Then equations (A.7), (A.8), (A.9), (A.10), (A.11), and (A.12) become

0 = −2g
[µ |λ̃

Aκ| ν]ρ̃ + gρ̃κAλ̃µν
+ 2Γ σ̃

[µν] C
ρ̃σ̃κλ̃

+ 2Γ σ̃
[µ |κ C

λ̃|σ̃| ν]ρ̃
=: Bµνρ̃|κλ̃ , (A.7)

0 = gν̃κA00µ −Aκµν̃ + Γ σ̃
µκ C0σ̃ν̃0 =: Bµν̃0|κ0 , (A.8)

0 = 2g[µ̃ |κA0| ν̃]ρ − Γ σ̃
ρ0 Cκσ̃µ̃ν̃ − Γ σ̃

ρκ C0σ̃µ̃ν̃ =: Bµ̃ν̃ρ|κ0 , (A.9)

0 = 4g[µ̃ |[κAλ]| ν̃]0 + 2Γ σ̃
0[κ Cλ]σ̃µ̃ν̃ =: Bµ̃ν̃0|κλ , (A.10)

0 = 2g[µ |κ̃A0| ν]ρ̃ + 2Γ σ̃
[µν] Cρ̃σ̃κ̃0 + 2Γ 0

[µν] Cρ̃0κ̃0 − 2Γ σ̃
[µ |0 Cκ̃|σ̃| ν]ρ̃ =: Bµνρ̃|κ̃0 , (A.11)

0 = 4g[µ |[κ̃A λ̃]| ν]0 + 2Γ σ̃
[µν] C

0σ̃κ̃λ̃
+ 2Γ σ̃

0[µ C
ν]σ̃κ̃λ̃

+ 2Γ σ̃
[ν |0| C

µ]σ̃κ̃λ̃
=: Bµν0|κ̃λ̃ . (A.12)
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Now, suppose the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A1. Then,
referring to the proof of case k = 1 of Theorem 4.6, equations (A.7) lead immediately to conditions (4.2).
Alternatively, one could use equations (A.8).

Next, equations (A.9) are now equations on Γκµ0 for all κ, µ. Pick a subset of m equations of Bµ̃ν̃µ|ν0

and all m(m− 1) equations Bµ̃ν̃µ|µ0

0 = Γµµ0Cνµ̃µ̃ν̃ + Γµν0Cνν̃µ̃ν̃ +
∑

σ 6=µ,ν

Γµσ0Cνσ̃µ̃ν̃ , 0 = Γµµ0Cµµ̃µ̃ν̃ + Γµν0Cµν̃µ̃ν̃ +
∑

σ 6=µ,ν

Γµσ0Cµσ̃µ̃ν̃ ,

respectively, which can be put into matrix form (4.12) by defining

Lµ :=

{
−Cm,µ̃,m̃,µ̃ , for all µ 6= m,

−C
m−1,m̃,m̃−1,m̃

, for µ = m,

Lµν :=

(
Cµν̃µ̃ν̃ 0

0 −Cνµ̃ν̃µ̃

)
, for all µ < ν,

respectively. Each Lµν and each Lµ are obviously non-singular by the genericity assumption. Hence, the
term (4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Lµ and Lµν have distinct
index structures from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that
L is non-singular, thus establishing conditions (4.10).

Finally, equations (A.10) now constrain Γ0µν for all µ, ν. Pick all 1
2m(m− 1) equations Bµ̃ν̃0|µν

0 = Γ0µν(Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃ ) +
∑

σ 6=µ,ν

(Γ0µσCνσ̃µ̃ν̃ − Γ0νσCµσ̃µ̃ν̃ )

which can be put into matrix form (4.14) by defining, for all µ < ν,

Mµν := Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃ .

which is non-vanishing by the genericity assumption. Hence, the term (4.15) is non-vanishing.
Unlike the two previous steps, an issue regarding the index structures of the components of the Weyl

tensor arises. Indeed, components of the form Cµµ̃µ̃ν̃ for all µ, ν occur in both Mµν and the remaining
entries of M. This can be seen from the tracefree property of the Weyl tensor,

Cνσ̃µ̃ν̃ = (Cµµ̃µ̃σ̃ − Cσσ̃µ̃σ̃ )− Cν̃σ̃µ̃ν −
∑

ρ6=µ,ν,σ

(Cρσ̃µ̃ρ̃ − Cρ̃σ̃µ̃ρ )− C0σ̃µ̃0 ,

for all µ, ν, σ. This would thus preclude the application of Lemma 4.7 as we have previously used it.
However, defining new index structures by setting Cµ̃ν̃+ := Cµµ̃µ̃ν̃ + Cνν̃µ̃ν̃ and Cµ̃ν̃− := Cµµ̃µ̃ν̃ − Cνν̃µ̃ν̃

for all µ, ν, removes this ambiguity. The hypotheses of Lemma 4.7 are now fulfilled, and yield the desired
result, i.e conditions (4.11).

Case k = 3: Assume the Weyl tensor is a section of C3, so that conditions (4.7), (4.16), (4.8), (4.18) and
(4.9) hold. Then equations (A.11), (A.12), (A.13), and (A.14) become

0 = 4g[µ |[κ̃A λ̃]| ν]0 + 2Γ σ̃
[µν] C

0σ̃κ̃λ̃
=: Bµν0|κ̃λ̃ , (A.11)

0 = 2g[µ |κ̃A0| ν]ρ̃ + 2Γ σ̃
[µν] Cρ̃σ̃κ̃0 =: Bµνρ̃|κ̃0 , (A.12)

0 = −2g[µ̃ |λAκ̃| ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γ σ̃
ρλ Cκ̃σ̃µ̃ν̃ − Γ 0

ρλ Cκ̃0µ̃ν̃ =: Bµ̃ν̃ρ|κ̃λ , (A.13)

0 = gνκ̃A00µ̃ −Aκ̃µ̃ν + Γ σ̃
ν0 Cµ̃σ̃κ̃0 − Γ σ̃

0ν Cµ̃σ̃κ̃0 − Γ σ̃
ν0 Cκ̃σ̃0µ̃ =: Bµ̃ν0|κ̃0 . (A.14)
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Now, suppose the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A2. Equations
(A.11) and (A.12) constrain Γµνκ for all κ, µ, ν. Pick allm(m−1) equations Bµνµ̃|ν̃0 and all 1

2m(m−1)(m−2)
equations Bµνµ̃|κ̃0

0 = ΓννµCµ̃ν̃ν̃0 +
∑

σ 6=µ,ν

(ΓµνσCµ̃σ̃ν̃0 − ΓνµσCµ̃σ̃ν̃0 ) ,

0 = ΓννµCµ̃ν̃κ̃0 + ΓµνκCµ̃κ̃κ̃0 + ΓνκµCµ̃κ̃κ̃0 +
∑

σ 6=µ,ν,κ

(ΓµνσCµ̃σ̃κ̃0 − ΓνµσCµ̃σ̃κ̃0 ) ,

which can be put in matrix form (4.3) by defining, for all κ, ρ distinct, and µ < ν < λ,

Kκρ := Cρ̃κ̃κ̃0 , Kµνκ :=



Cµ̃κ̃κ̃0 Cµ̃κ̃κ̃0 0

0 Cν̃µ̃µ̃0 Cν̃µ̃µ̃0

Cκ̃ν̃ν̃0 0 Cκ̃ν̃ν̃0


 ,

respectively. That these matrices are non-singular by the genericity assumption is clear, and so the term
(4.6) is non-vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Kµν and Kκµν have
distinct index structures from those in the remaining entries of K. Hence, we can apply Lemma 4.7 to
conclude that K is non-singular.

Next, equations (A.13) now constrain Γµν0 for all µ, ν, and conditions (4.10) follow directly from any
subsets of m2 equations

0 = −Γρλ0Cκ̃0µ̃ν̃ .

Finally, equations (A.14) now only constrain Γ0νκ for all κ, ν. Pick 1
2m(m− 1) equations Bµ̃µ0|κ̃0

0 = −Γ0µκCµ̃κ̃κ̃0 −
∑

σ 6=µ,ν,κ

Γ0µσCµ̃σ̃κ̃0 ,

which can be put in matrix form (4.12) by defining, for all µ < κ,

Mµκ := −Cµ̃κ̃κ̃0 .

This is non-vanishing by the genericity assumption, and thus the term (4.13) is non-vanishing too.
Further, one can check that the components of the Weyl tensor in the diagonal entries Mµν of M have

distinct index structures from those in the remaining entries of M. Hence, we can apply Lemma 4.7 to
conclude that M is non-singular, thus establishing conditions (4.10)

Case k = 4: Assume that the Weyl tensor is a section of C4, so that conditions (4.7), (4.16), (4.8), (4.18)
and (4.9) hold together with

Cκ̃0µ̃ν̃ = 0 , (4.19)

for all κ, µ, ν. Then equations (A.13), (A.14), (A.15), and (A.16) become

0 = gνκ̃A00µ̃ −Aκ̃µ̃ν =: Bµ̃ν0|κ̃0 , (A.13)

0 = −2g[µ̃ |λAκ̃| ν̃]ρ + gρκ̃Aλµ̃ν̃ − Γ σ̃
ρλ Cκ̃σ̃µ̃ν̃ =: Bµ̃νρ|κ̃λ̃ , (A.14)

0 = gρκ̃A0µ̃ν̃ − Γ σ̃
ρ0 Cκ̃σ̃µ̃ν̃ =: Bµ̃ν̃ρ|κ̃0 , (A.15)

0 = 2g[µ̃ |λAκ̃| ν̃]0 − Γ σ̃
0λ Cκ̃σ̃µ̃ν̃ =: Bµ̃ν̃0|κ̃λ . (A.16)

Now, suppose that the Weyl tensor is otherwise generic, and the Cotton-York tensor is a section of A3.
Referring to the proof of case k = 2 of Theorem 4.6, equations (A.14) leads immediately to conditions (4.2).
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Next, equations (A.15) now constrain only Γκµ0 for all κ, µ. Choose m equations of Bµ̃ν̃ν|µ̃0 and all
m(m− 1) equations Bµ̃ν̃µ|µ̃0

0 = Γνν0Cµ̃ν̃µ̃ν̃ +
∑

σ 6=µ,ν,ρ

Γρσ0Cµ̃σ̃µ̃ν̃ , 0 = Γµν0Cµ̃ν̃µ̃ν̃ +
∑

σ 6=µ,ν,ρ

Γρσ0Cµ̃σ̃µ̃ν̃ ,

respectively. These can be put into the matrix form (4.12) by defining

Lν :=

{
Cm̃ν̃m̃ν̃ , for all ν 6= m,

C
m̃−1m̃m̃−1m̃

, for ν = m,

Lµν :=

(
Cµ̃ν̃µ̃ν̃ 0

0 −Cν̃µ̃ν̃µ̃

)
, for all µ < ν,

respectively, and det(Lµν ) = −(Cµ̃ν̃µ̃ν̃ )
2. These are clearly non-singular by the genericity assumption, and

thus, the term (4.13) is non-vanishing.
Further, one can check that the components of the Weyl tensor in the entries of Lµ and Lµν have distinct

index structures from those in the remaining entries of L. Hence, we can apply Lemma 4.7 to conclude that
L is non-singular, thus establishing conditions (4.10).

Finally, equations (A.16) now constrain Γ0µν only. Pick all 1
2m(m− 1) equations Bµ̃ν̃0|µ̃µ

0 = −Γ0µνCµ̃ν̃µ̃ν̃ −
∑

σ 6=µ,ν

Γ0µσCµ̃σ̃µ̃ν̃ ,

which can be put in matrix form (4.14) by defining, for all µ < ν,

Mµν := −Cµ̃ν̃µ̃ν̃ .

The genericity assumption tells us that this is non-vanishing non-vanishing, and so, the term (4.15) is non-
vanishing.

Further, one can check that the components of the Weyl tensor in the entries of Mµν have distinct index
structures from those in the remaining entries of M. Hence, we can apply Lemma 4.7 to conclude that M
is non-singular, and condition (4.11) holds true. �

4.3 Conformal invariance

An alternative way to relate the algebraic properties of the Weyl tensor and the Cotton-York tensor, and
the integrability of the almost null structure as given by the propositions and theorems above is to consider
a conformal change of metric

ĝ = Ω2g (4.20)

for some non-vanishing holomorphic function Ω : M → C. First, it is clear that under such a change, the
defining property of the null distribution and its orthogonal complement is invariant, i.e. ĝ is degenerate on
N if and only if g is. Further, since the involutivity of these distributions does not depend on the metric,
we obtain

Lemma 4.13 The integrability of an almost null structure N is a conformally invariant property.

It then comes as no surprise that the integrability condition of N given in Proposition 3.11 is itself purely
conformal since it only involves the conformally invariant Weyl tensor.

Now define Υ := g(Ω−1∇Ω) and denote by ∇̂ the Levi-Civita connection of ĝ. If Â denotes the Cotton-
York tensor of ∇̂, it is well-known (see e.g. [GHN10] and references therein) that under the conformal change
(4.20) the Cotton-York tensor transforms as

Â(X,Y ,Z) = A(X,Y ,Z)−C(Υ,X,Y ,Z) (4.21)
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for all X,Y ,Z ∈ Γ(TM). In four dimensions, similar statements can be madewith regard to the self-dual
and anti-self-dual parts of the Weyl and Cotton-York tensors. By Lemma 3.7, we can now conclude

Lemma 4.14 Let (M, g) be a (2m+ ǫ)-dimensional complex Riemannian manifold endowed with an almost
null structure N , where ǫ ∈ {0, 1} and m ≥ 2. Assume 2m+ ǫ ≥ 5. When ǫ = 0, respectively, ǫ = 1, if the
Weyl tensor is a section of Ck for k ∈ {0, 1, 2}, respectively for k ∈ {0, 1, 2, 3, 4}, then the property that the

Cotton-York is a section of Ak−
1
2 , respectively Ak−1, is conformally invariant.

Assuming 2m + ǫ = 4 and N self-dual, if the self-dual part of the Weyl tensor is a section of +Ck for

k ∈ {0, 1, 2}, then the property that the self-dual part of the Cotton-York is a section of +Ak−
1
2 is conformally

invariant.

It then follows immediately that Propositions 4.5 and 4.10, and Theorems 4.1, 4.6 and 4.11 are conformally
invariant.

5 Further degeneracy

5.1 On the genericity assumption of the Weyl tensor

In general, imposing additional structures on a complex Riemannian manifold (M, g) and its almost null
structure N will make the Weyl tensor degenerate further, and it is therefore important to keep track of
the emerging algebraic relations between the components of the Weyl tensor to check whether Theorems 4.6
and 4.11 remain valid. If one realises that the proofs fail under stronger assumptions, one may still have
the option of making a different choice of components, and succeed in proving the assertion of the theorem,
although in some cases [TC11], no such choice may present itself.

Here, we list a number of reasons leading to further degeneracy to the Weyl tensor:

• The basic framework of the results of section 4 is the filtered vector bundles (C, {Ci}) and (A, {Ai}).
However, as pointed out in Remarks 2.4 and 3.6, it is possible to refine the classifications of the
Weyl tensor and Cotton-York tensor by considering the irreducible p-modules contained in each of the
quotient bundles Ci/Ci+1 and Ai/Ai+1. In particular, Propositions 4.5 and 4.10 can certainly be made
more precise. Extensions of Theorems 4.6 and 4.11 in this setting, however, are less straightforward.
Such a generalisation would remain invariant under P .

• One may consider the algebraic degeneracy of the Weyl tensor with respect to more than one almost
null structure, in particular, any of the canonical almost null structures defined in section 3.3, in which
case the discussion ceases to be P -invariant. This is a generalisation of the four-dimensional Petrov
type D condition.

• The discussion can also be extended in a natural way to real smooth pseudo-Riemannian manifolds, in
which case the almost null structure must satisfy certain reality conditions. In fact, Theorem 4.1 was
initially stated in Lorentzian geometry.

Of course, any combinations of these further degenerate cases can be used. We shall leave the first of
these considerations for now, although we shall briefly comment on it in section 5.4.3. Instead, we focus on
the last two points.

Before we proceed, some scepticism might be expressed as to whether the rather broad genericity assump-
tion used in the proofs of Theorem 4.6 and 4.11 is reasonable. In other words, one may ask the question:
are there any ‘interesting’ real or complex (pseudo-)Riemannian manifolds, whose conformal curvature does
not degenerate so much as to make the claims invalid? But the present work has precisely been motivated
by the existence of such explicit examples as the Kerr-NUT-AdS metric [CLP06], which is, in fact, endowed
with multiple null structures and a reality structure, and a certain class of higher-dimensional Kerr-Schild
metrics [TC]. On the other hand, it is worth pointing out that those manifolds that do not fall into the
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‘generic’ class may well exhibit other geometric structures of interest – a five-dimensional Lorentzian class
of such manifolds is considered in [GLW11].

Remark 5.1 It would also be instructive to derive the Jordan normal forms of the Weyl tensor, regarded as
a section of the bundle of endomorphisms of

∧•
T∗M, corresponding to the each of the degeneracy classes

Ck. In this way, the genericity assumption could become more transparent. Further, the eigenvalue structure
would provide necessary conditions for the existence of a null structure by means of curvature invariants
[CH10]. This being said, it was shown in [TC11], at least in five dimensions, Lorentzian signature, that
the Jordan normal form alone does not determine the algebraic speciality of the Weyl tensor. In fact, the
existence of a certain number of null eigenforms, both simple and non-simple, appears to be a crucial factor
in that matter.13

5.2 Degeneracy of the Cotton-York tensor

The content of Propositions 4.5 and 4.10 is really that the Cotton-York tensor should be regarded as an
obstruction to the integrability of an almost null structure when the Weyl tensor is algebraically special with
respect to it. In fact, Theorems 4.6 and 4.11 do not depend on any genericity assumption on the Cotton-York
tensor. Thus, one may apply stronger conditions on the Cotton-York tensor without affecting Theorems 4.6
and 4.11, i.e. the almost null structure remains integrable. These will in general no longer be conformally
invariant by equation (4.21).

An interesting issue that arises as a result of further degeneracy of the Cotton-York tensor, such as the
Einstein condition, is whether one can deduce that more connection components vanish, i.e. the null structure
enjoy further geometric properties, beside integrability, as determined, e.g. by the differential equations (3.26)
or (3.27). In four dimensions, we know that this is not the case. In higher dimensions, if the Weyl tensor is
a generic section of C0, then the integrability of the almost null structure is also all one can deduce. On the
other hand, for the other degeneracy classes Ck for k > 0, the Einstein condition yields algebraic relations
between the Weyl tensor components and the connection components. Viewed as a homogeneous system of
linear equations on the connection components, it is an open question as to whether these components must
also vanish in high enough dimensions – in low dimensions such a system is underdetermined. It is worth
pointing out, however, [TC11] that additional reality conditions on five-dimensional Einstein manifolds do
lead, in some instances, to further degeneracy of the connection components.

5.3 Multiple null structures

Recall from section 3.3 that the normal form of the metric (locally) determines 2m canonical almost null
structures, the set of which is denoted BS . It is then pertinent to consider the algebraic properties of the
Weyl and Cotton-York tensors with respect to any number of almost null structures in BS , and such an
approach is clearly no longer P -invariant. Nonetheless, for a chosen almost null structure N , one may still
refer to the Weyl tensor as a section of Ck with respect to N for some k, and similarly for the Cotton-York
tensor. In particular, one could apply Propositions 4.5 and 4.10 repeatedly for any number of distinct almost
null structures.

On the other hand, one has to be a little more cautious if one wishes to generalise Theorems 4.6 and 4.11
in the present context. Indeed, assuming the algebraic degeneracy of the Weyl tensor with respect to two
or more almost null structures will violate the genericity condition on the Weyl tensor. There is not enough
space for a full treatment of this problem here. Instead, we focus on a generalisation of the four-dimensional
Petrov type D condition in the sense that the self-dual part of the Weyl tensor is algebraically special with
respect to two distinct self-dual almost null structures, i.e. it can be viewed as a section of +C0 with respect
to each of these. A similar definition can be made regarding the anti-self-dual part of the Weyl tensor.

In higher dimensions, the situation is analogous except for matters of self-duality. For clarity, the algebraic
conditions on the Weyl tensor and Cotton-York tensor are given explicitly.

13One can already see that if the Weyl tensor is a section of C0, then any simple section of
∧

2(V∗)1, i.e. scalar multiples of
θ̃µ̃ ∧ θ̃ν̃ for all µ, ν, is an eigenform of C.
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Theorem 5.2 Let (M, g) be a (2m + ǫ)-dimensional complex Riemannian manifold, where ǫ ∈ {0, 1} and
2m+ ǫ ≥ 5. Let N be an almost null structure on M, and let B be a subset of BS, the set of all canonical
almost null structures on (some open subset of) M as defined in section 3.3. Suppose that the Weyl tensor
and the Cotton-York tensor (locally) satisfy

C(X,Y ,Z, ·) = 0 , A(Z,X,Y ) = 0 , (5.1)

respectively, for all X,Y ∈ Γ(N⊥
M ), and Z ∈ Γ(NM ), for all NM ∈ B. Suppose further that the Weyl tensor

is otherwise generic. Then the almost null structures in B are (locally) integrable.

Proof. For definiteness, we treat the odd-dimensional case only. With no loss of generality, we can assume
that N = N12...m ∈ B. Let NM be a canonical almost null structure in B distinct from N . In particular,
M = {µ1, . . . , µp} ⊂ S = {1, 2, . . . ,m}, where µi 6= µj for all i 6= j. Let M̃ = S \M . Suppose that the Weyl
tensor and Cotton-York tensors satisfy conditions (5.1) with respect to both N and NM . In particular, in
the latter case, we have conditions on the components of the Weyl tensor given by

Cµiµjµkκ = Cµi0µkκ = Cν̃iµjµkκ = Cµiµjµkκ̃ = Cµi0µk0 = Cν̃i0µkκ = Cµi0µkκ̃ = Cν̃iµjµk0 = 0 , (5.2)

Cν̃iµjµkκ̃ = Cµiν̃j ν̃kκ = Cν̃i0µk0 = 0 , (5.3)

Cν̃i0µkκ̃ = Cµi0ν̃kκ = Cµiν̃j ν̃k0 = Cµiν̃j ν̃kκ̃ = Cν̃iν̃j ν̃kκ = Cν̃i0ν̃k0 = Cν̃i0ν̃kκ̃ = Cν̃iν̃j ν̃kκ̃ = 0 , (5.4)

for all µi ∈ M , and µ̃j ∈ M̃ , and all κ. We note that there is some redundancy in the sense that conditions
(5.2) are also satisfied by virtue of the algebraic degeneracy of the Weyl tensor with respect to N . Further,
conditions (5.4) are absent in the proof of Theorem 4.11 (case k = 0). So the only issue that might arise
concerns conditions (5.3). Now, recall that the entries of the matrices Kµν , Kκµν , Lµ, Lµν and Mµν in the
proofs of Theorems 4.6 and 4.11 are linear combinations of the components

Cµνµ̃ν̃ , Cµµ̃νν̃ , and Cµ0µ̃0 , (5.5)

for all µ, ν. By inspection, it is then clear that none of the conditions (5.3) violate the genericity assumption
on components (5.5). Hence, Theorems 4.6 and 4.11 apply to N , i.e. N is integrable.

It now remains to show that NM is also integrable.14 To this end, we note that the two almost null
structures N and NM are interchanged by the symmetry

µi ↔ µ̃i ,

for all µi ∈ M̃ . In particular, the components (5.5) remain invariant under this symmetry, and thus, the
genericity assumption on these is not violated. We can therefore apply Theorems 4.6 and 4.11 to conclude
that NM is integrable.

At this stage, since NM ∈ B was arbitrary, we can extend the above argument to any number of canonical
almost null structures in B, which proves the claim of the theorem. �

Remark 5.3 It is well-known that in four dimensions, the maximum number of null structures on a non-
conformally flat complex Riemannian manifold is four – both self-dual and anti-self-dual part of the Weyl
tensors are then of type D. One may conjecture whether this upper bound is 2m for a (2m+ ǫ)-dimensional
manifold, where ǫ ∈ {0, 1}. In [TC11], however, a counterexample to the conjecture is presented in five
dimensions – the Myers-Perry black hole with one rotation coefficient has eight null structures. But it is not
clear whether this is a feature of odd dimensions only.

Remark 5.4 In [MT10], it is shown that the integrability condition for the existence of a conformal Killing-
Yano 2-form φ in normal form with distinct eigenvalues on (M, g) is precisely that the Weyl tensor satisfies
condition (5.1) where B = BS. Further, if the exterior derivative of φ satisfies

dφ(X,Y ,Z) = 0 ,

14In general, the fact that N is already integrable will imply that some of connection components obstructing the integrability
of NM will vanish, but this does not affect the argument.
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for all X,Y ∈ Γ(N⊥
M ), and Z ∈ Γ(NM ), for all NM ∈ BS, then (M, g) locally admits 2m null structures.

We note that this result makes no assumption on the genericity of the Weyl tensor, and indeed, it is certainly
true in the conformally flat case. On the other hand, this suggests that Theorem 5.2 together with some
additional conditions on the non-vanishing components of the Weyl tensor could provide sufficient conditions
for the existence of such a conformal Killing-Yano 2-form, as in the four-dimensional case [WP70,PR86].

5.4 Real versions

Let (M, g) be a real (2m+ ǫ)-dimensional orientable pseudo-Riemannian smooth manifold, where ǫ ∈ {0, 1}
and 2m+ ǫ ≥ 5. We now work in the smooth real category. Thus, the tangent bundle TM, the cotangent
bundle T∗M, and tensor products thereof, such as the bundle C of Weyl tensors, and the bundle A of
Cotton-York tensors, are all smooth real vector bundles.

An almost null structure on (M, g) can then be defined as a complex subbundle N of the complexified
tangent bundle C⊗ TM, which is totally null with respect to the complexified metric, and of rank m, i.e.

N ⊂ N⊥ ⊂ C⊗ TM . (5.6)

To clarify the following discussion, we recall that the orthogonal complement of a real subbundle of TM,
respectively, a complex subbundle of C ⊗ TM, is taken with respect to the real metric, respectively, the
complexified metric. In both cases, it is denoted by a ·⊥.

The complexified tangent bundle is naturally equipped with a reality structure, induced from an involu-
tory complex-conjugation operation¯: C⊗TM → C⊗TM, which preserves the real metric. This motivates
the following definition.

Definition 5.5 ([KT92]) LetN be an almost null structure on (M, g). The real index rp of the fiberNp over
a point p ∈ M is the dimension of the intersection of N and its complex conjugate N , i.e. rp = dimNp∩N p.
If rp = rq for any points p, q in some open subset U of M, we say that N has (constant) real index r in U .

The signature of the metric imposes restrictions on the possible values of the real index r as made precise
by the next lemma.

Lemma 5.6 ([KT92]) Let N be an almost null structure on a pseudo-Riemannian manifold (M, g) where
g has signature (k, ℓ), i.e. (k positive eigenvalues, ℓ negative eigenvalues), with k+ ℓ = 2m+ ǫ. Then at any
given point p ∈ M, the real index rp of the fiber Np must be a non-negative integer such that rp ≤ min{k, ℓ}
and

• rp ∈ {min{k, ℓ} mod 2} when ǫ = 0, and

• rp ∈ {min{k, ℓ} mod 1} when ǫ = 1.

Assuming the real index r to be constant in some open subset of M, the intersection N ∩N gives rise to a
complexified real totally null subbundle R of the tangent bundle of rank r.

In section 3, we have distinguished the concept of integrability and involutivity (or formal integrability),
and the Frobenius theorem tells us that these are essentially equivalent. While it may seem that this
distinction is thus superfluous in the holomorphic category, in the smooth category, it becomes somewhat

ambiguous. If the distributions N , N , N⊥ and N
⊥
are involutive, so are the real spans of the intersections

N ∩N and N⊥∩N
⊥
. Hence, by the Frobenius theorem, R is integrable, and, following the same arguments

of Lemma (3.9), is tangent to totally null and geodetic real submanifolds of dimension r. In addition, each
fiber of the vector bundle N +N/N ∩N is naturally equipped with a complex structure, and the quotient
manifold M/R thus acquires the structure of a CR manifold of codimension r + ǫ. However, this CR
manifold is in general not embeddable, i.e. its underlying complex structure is involutive, but not integrable.
Whether this CR manifold is embeddable or not, we shall nonetheless refer to such a null structure as being
integrable. In the real-analytic category, on the other hand, one can simply complexify M and work in the
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holomorphic category, in which case the embeddability of the CR structure will follow. The involutivity of the
complex conjugate pair of almost null structures gives rise to two holomorphic foliations of the complexified
manifold, and the intersection of the leaves of these foliations are the complexification of totally null and
geodetic leaves of a real foliation of the original real manifold. These analytical issues for even-dimensional
Lorentzian manifolds are discussed in [Tra02a].

An almost null structure of constant real index on (M, g) is equivalent to the reduction of the structure
group of the frame bundle to a real Lie group, RP say, of SO(k, ℓ). Its complexification can be viewed as

the intersection of the complex parabolic subgroups NP and NP , preserving the almost null structures N
and N respectively. A description of such real Lie groups can be found at the infinitesimal level in [KT92].
In this context, the classification of the curvature tensors should be carried out in terms of an RP -invariant
decomposition of the irreducible SO(k, ℓ)-modules C and A. We can however bypass these representation-
theoretic arguments by noting that the filtration (5.6) and its complex conjugate induce two filtrations {NCi}

and {NCi} on C⊗C, preserved by NP and NP respectively. Then, for each i, we can consider the real span

of the intersection NCi
p ∩

N Ci
p at every point p. This gives rise to an RP -invariant subbundle of C, which we

may reasonably describe as a real analogue of the complex subbundles N Ci and NCi, i.e. it defines algebraic
classes of the Weyl tensor with respect to both N and N . However, depending on the real index of N , the

fibers of NCi and N Ci will intersect trivially for some values of i, which precludes the existence of certain
algebraic classes of Weyl tensors with respect to both N and N . The same argument applies regarding the
Cotton-York tensor.

With these considerations in mind, we might be able to apply Theorems 4.6 and 4.11 in this real setting.
Since the reality conditions on the Weyl tensor clearly violate the genericity assumption, we need to go back
to the proofs of these theorems, and check whether these new assumptions undermine them. To facilitate
the analysis, these reality conditions are described explicitly in the remark below.

Remark 5.7 One may choose a (local) complexified frame {ξµ, ξ̃µ̃, ǫξ0} adapted to the almost null structure
N , i.e. such that {ξµ : µ = 1, . . . ,m} span N , as already described in section 3.3. This null frame will now be
subject to reality conditions depending on the real index r of N and metric signature (k, ℓ). For specificity,
assume k > ℓ. In 2m dimensions, the spanning vector fields of N can be chosen in such way that the complex
conjugation acts as

¯: (ξ1, . . . , ξr, ξr+1, . . . , ξs, ξs+1, . . . , ξm) 7→ (ξ1, . . . , ξr, ξ̃r̃+1
, . . . , ξ̃s̃,−ξ̃

s̃+1
, . . . ,−ξ̃m̃) ,

where s = k+r
2 (this must be an integer by Lemma 5.6). Here, the vector fields {ξµ : µ = 1, . . . , r} span the

real part of N ∩N .
Similarly, in 2m+ 1 dimensions, when r − ℓ is odd, we have

¯: (ξ1, . . . , ξr, ξr+1, . . . , ξs, ξs+1, . . . , ξm, ξ0) 7→ (ξ1, . . . , ξr, ξ̃r̃+1
, . . . , ξ̃s̃,−ξ̃

s̃+1
, . . . ,−ξ̃m̃,−ξ0) ,

where s = k+r
2 . When r − ℓ is even, we have

¯: (ξ1, . . . , ξr, ξr+1, . . . , ξs, ξs+1, . . . , ξm, ξ0) 7→ (ξ1, . . . , ξr, ξ̃r̃+1
, . . . , ξ̃s̃,−ξ̃

s̃+1
, . . . ,−ξ̃m̃, ξ0) ,

where s = k+r−1
2 .

In all three cases, the remaining vector fields
{
ξ̃µ̃ : µ = 1, . . . , r

}
of the frame must evidently be real

since the metric is real.
As in section 3.3, we can also consider the set BS of all canonical almost null structures on some open set,

each of which inherits the real index of the ‘primary’ almost null structure N . It is then more appropriate
to take the quotient of BS by the equivalence relation

NM ∼ NN ⇔ NM = NN ,

where NM ,NN ∈ BS . This quotient will be denoted BS/ ∼.
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We are now in the position of extending Theorem 5.2 to the real smooth category. Indeed, the theorem
provides the right setting for the case at hand since if the Weyl tensor is degenerate with respect to an almost
null structure N , so must it be with respect to its complex conjugate N . Also, the complex conjugate pair
N and N will just be two of the canonical almost null structures given in section 3.3. In fact, we can
consider any number of complex conjugate pairs of these, or in the above notation, any number of almost
null structures in BS/ ∼. Further, the reality conditions described in Remark 5.7 on the non-vanishing
components of the Weyl tensor is of no serious consequence on the genericity assumption. Finally, while
Theorem 5.2 is formulated in the holomorphic category, real analyticity need not be imposed if one now
regards the components of the connection and curvature, in the proofs of Theorems 4.6, 4.11 and 5.2, as
being complex-valued smooth functions on an open set. From these considerations, we can conclude

Theorem 5.8 Let (M, g) be a (2m+ ǫ)-dimensional pseudo-Riemannian smooth manifold of arbitrary sig-
nature, where ǫ ∈ {0, 1} and 2m + ǫ ≥ 5. Let N be an almost null structure on M of any real index
allowable by Lemma 5.6. Let BS/ ∼ be the set of all canonical almost null structures on (some open subset
of) M modulo complex conjugation as defined in Remark 5.7. Let B ⊂ BS/ ∼. Suppose that the Weyl and
Cotton-York tensors (locally) satisfy

C(X,Y ,Z, ·) = 0 , A(Z,X,Y ) = 0 ,

respectively, for all X,Y ∈ Γ(N⊥
M ), and Z ∈ Γ(NM ), for all NM ∈ B. Assume further that the Weyl tensor

is otherwise generic. Then the almost null structures in B are (locally) integrable.

Remark 5.9 Incidentally, from its signature-independent formulation, this theorem may, in some instances,
be regarded as a criterion as to whether a pseudo-Riemannian manifold of a given signature can be Wick-
transformed to a different signature. Indeed, the Kerr-NUT-(A)dS metric, which has been presented in
Euclidean, Lorentzian, and split signatures [CLP06,CL08], is known [MT10] to satisfy the algebraic degen-
eracy of Theorem 5.8 where B = BS/ ∼.

The full extensions of Theorems 4.6 and 4.11 to the real category deserve separate treatments specific to
each real index, and as they stand, the proofs must be adapted to the underlying real structure. Nonetheless,
it must be emphasised that this is no tragedy. In fact, the arguments are greatly simplified by the fact that
more components of the Weyl tensor vanish.

In the next three sections, we comment briefly on the Euclidean, split signature and Lorentzian cases.

5.4.1 Hermitian structures

We now assume that g is positive definite, i.e. k = 2m + ǫ, ℓ = 0. Then, the real index of an almost null
structure must have constant real index r = 0, and the complexified tangent bundle splits according to the
direct sum

C⊗ TM = N ⊕N ⊕ ǫ(N⊥ ∩ N
⊥
) . (5.7)

When ǫ = 0, N defines a metric compatible almost complex structure, and when ǫ = 1, a metric compatible
almost CR structure. In both cases, N and N define the distributions of (0, 1)-vectors and (1, 0)-vectors
respectively, or in other words, the +i- and −i-eigensubbundles of an almost complex structure of the
complexified tangent bundle C ⊗ TM. For specificity, we assume ǫ = 0, in which case the structure of the
frame bundle reduces from SO(2m) to the unitary group U(m). In this case, we remark that the question
of the integrability of the almost Hermitian structure does not, by the Newlander-Niremberg theorem,
necessitate real analyticity.

Now, the direct sum (5.7) yields decompositions of the bundles C and A into irreducible U(m)-modules,
and we recover the classification given in references [FFS94,TV81]. In the present context, it suffices to note

that in the complexification gri(
N C) ∼= gr−i(

NC) ∼= gr−i(
N C) for i = 0, 1, 2, and gri(

NA) ∼= gr−i(
NA) ∼=

gr−i(
NA), for i = 1

2 ,
3
2 . One can then write C = C0 ⊕ C1 ⊕ C2 and A = A1

2
⊕ A3

2
, where each of the (not
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necessarily irreducible) U(m)-modules Ci and Ai can be identified with the real span of gri(
NC)⊕ gr−i(

NC)
and gri(

NA)⊕gr−i(
NA) respectively. A similar analysis can be done when ǫ = 1. Thus, Theorem 5.8 covers

all possible algebraic special classes of the Weyl tensor with respect to one or more canonical almost null
structures.

5.4.2 Real null structures on pseudo-Riemannian manifolds of split signature

The other extreme is the case where g has signature (m,m+ ǫ) and the almost null structure has real index
m. In this case, we literally have a real version of the classification of the Weyl tensor and Cotton-York
tensor, and Theorems 4.6, 4.11 and 5.2 all apply. When integrable, the almost null structure gives rise to a
foliation of M by m-dimensional totally null and geodetic leaves.

5.4.3 Robinson structures

In Lorenzian signature, i.e. k = 2m − 1 + ǫ, ℓ = 1, one needs to distinguish between the cases ǫ = 0 and
ǫ = 1. When ǫ = 0, the real index of an almost null structure N must have constant real index r = 1,
and N defines an almost Robinson structure (N ,K) on (M, g), where K is a real null line bundle whose
complexification is the intersection of N and its complex conjugate N . In particular, we have a filtration of
vector bundles

K ⊂ K⊥ ⊂ TM , (5.8)

where K⊥ is the orthogonal complement of K with respect to the real metric. When N is integrable, the
integral curves of the generators of K are null geodesics. At every point p, the fiber of the screen space
K⊥/K is naturally equipped with a complex structure, which is preserved along the flow of K. Further, the
quotient manifold M/K acquires the structure of a CR manifold.

In the odd-dimensional case (ǫ = 1), the real index of an almost structure can be either 0 or 1. In fact,
it may not even be constant throughout the manifold: an example is afforded by the five-dimensional black
ring [TC11]. Nonetheless, in a small enough open set, the real index will remain constant. In the case r = 0,
the almost null structure defines an almost CR structure. On the other hand, when r = 1, if N and N⊥

are integrable, the real null line bundle K arising from the intersection of the null distributions generates a
congruence of null geodesics. Each fiber of the screen space K⊥/K is endowed with a CR structure, and the
quotient manifold M/K acquires the structure of a CR manifold of codimension 2. The remaining part of
the discussion focuses on Robinson structures.

Geometrically, the existence of a prefered null direction is equivalent to a reduction of the structure group
of the frame bundle to the group Sim(2m − 2 + ǫ), which preserves the filtration (5.8), and which has Lie
algebra sim(2m−2+ ǫ) := (R⊕so(2m−2+ ǫ))⊕R2m−2+ǫ, a parabolic Lie subalgebra of so(1, 2m−1+ ǫ). In
the language of relativity, the summands of sim(2m− 2+ ǫ) generate boosts, screen space rotations, and null
rotations respectively. Clearly, the center z of sim(2m−2+ǫ) lies in its R-summand, and the grading element
E ∈ z induces a |1|-grading on both so(1, 2m − 1 + ǫ) and its standard representation. Thus, the tangent
bundle (locally) admits the grading TM = K1⊕K0⊕K−1 where K1

∼= K, K0
∼= K⊥/K, and K−1

∼= TM/K⊥.
In the relativity literature [CMPP04a], sections of Ki are said to be of boost weight i. The bundles C and A
now admit Sim(2m− 2 + ǫ)-invariant filtrations of vector bundles

KC2 ⊂ KC1 ⊂ KC0 ⊂ KC−1 ⊂ KC−2 = C , KA2 ⊂ KA1 ⊂ KA0 ⊂ KA−1 ⊂ KA−2 = A , (5.9)

respectively, and each of the quotient bundles KCi/KCi+1 and KAi/KAi+1 is a completely reducible so(2m−
2 + ǫ)-module.

The existence of an almost Robinson structure is equivalent to a reduction of the structure group to
the Lie group KP with Lie algebra (R ⊕ u(m − 1)) ⊕ R2m−2+ǫ ⊂ sim(2m − 2 + ǫ). This reduction induces
further splitting of each of the so(2m− 2+ ǫ)-irreducible components of the associated graded bundle of any
Sim(2m − 2 + ǫ)-invariant filtrations. In particular, in even dimensions, the complexification of the screen
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space splits as a direct sum

C⊗K⊥/K = (K⊥/K)1,0 ⊕ (K⊥/K)0,1 ⊕ C ,

where (K⊥/K)1,0 and (K⊥/K)0,1 denote the +i- and −i-eigenbundles of the center z(u(m− 1)) respectively,
and one can identify the null distribution N with (C⊗K)⊕ (K⊥/K)0,1.

The complexification of each of the quotient bundles KCi/KCi+1 is now a completely reducible u(m− 1)-
module. The Sim(2m− 2 + ǫ)-invariant filtrations (5.9) decompose further into KP -invariant subfiltrations,
and it is these filtrations that are relevant in the Lorentzian version of the Goldberg-Sachs theorem. The
precise details will be given in a future publication. At this stage, it suffices to say that the curvature condi-
tions for the existence of an Robinson structure can be read off from Lemma 3.7, provided that appropriate
reality conditions are imposed. It is straightforward to check that under these reality conditions, the complex

subbundles NC2 and NC2 of C⊗C intersect trivially. Similarly, in odd dimensions, the bundles NCk and N Ck

intersect trivially when k = 3, 4. In particular, in the light of Remark 3.4, there are no higher-dimensional
Lorentzian analogue of the Petrov type N condition in this context.

In four dimensions, since so(2) ∼= u(1), it is clear that there is no further reduction of the structure
group. Geometrically, it simply means that singling out a null direction is equivalent to singling out an
almost Robinson structure. Further, the isomorphism so(1, 3) ∼= sl(2,C) tells us that the complex conjugate
of a self-dual almost null structures is anti-self-dual. In particular, the self-dual part of the Weyl tensor and
an anti-self-dual part of the Weyl tensor are now complex conjugate of one another. Thus, the algebraic
degeneracy of the self-dual part of the Weyl tensor is always mirrored by that of the anti-self-dual part of
the Weyl tensor via complex conjugation. As a result, each of the self-dual complex Petrov types has a
(non-trivial) real Lorentzian counterpart.

Theorem 5.8 already gives a (partial) Lorentzian version of the Goldberg-Sachs theorem. In fact, it tells
us more. One may have multiple Robinson structures, i.e. a Lorentzian analogue of multiple null structures,
whereby at most two distinct null directions are distinguished, each having up to 2m−1 complex structures
associated to its screen space. For other degeneracy classes, however, one must alter the proofs of Theorems
4.6 and 4.11 in order to demonstrate the integrability of the almost Robinson structure.15 The full analysis
in higher dimensions will be presented elsewhere.

Finally, as in the holomorphic category, one may wish to find refinements of the Goldberg-Sachs theorem
in terms of irreducible u(m − 1)-modules of the bundle KC. However, it is pointed out in section 3.4.2 of
reference [TC11] that certain algebraic classes of the Weyl tensor do not necessarily lead to the integrability
of the underlying almost Robinson structure, and these classes are in fact defined by irreducible u(m − 1)-
modules.16 This seems to indicate that the NP -invariant filtration on the complexification C ⊗ C is more
relevant than the KP -irreducible modules of the real bundle C in determining the integrability of (N ,K).

6 Conclusion and outlook

The main thesis of this paper was to deduce the integrability of a given holomorphic maximal totally null
distribution on a complex Riemannian manifold with prescribed Weyl and Cotton-York tensors in arbitrary
dimensions. This can be viewed as a generalisation of what is known as the complex Goldberg-Sachs theorem.
For this purpose, we introduced a higher-dimensional generalisation of the complex Petrov classification of
the Weyl tensor. We also gave an extension of these results to the case of multiple almost null structures,
which were then applied to the category of real smooth pseudo-Riemannian manifolds.

15For a five-dimensional Einstein Lorentzian manifold, computations have shown that if the Weyl tensor degenerates to

a generic section of the real span of NCk ∩ N Ck, for k = 1, 2, then (N ,K) is integrable. The latter case is presented in
[God10,TC11], and corresponds to the Weyl tensor being determined solely by a spinor field of real index 1.

16To see this, we note that in five dimensions, Lorentzian signature, each of the irreducible KP -modules of the graded vector
bundle gr(C) is either one-real-dimensional or one-complex-dimensional, and each can be identified with a real or complex
independent component of the Weyl tensor in a (spinor) frame adapted to (N ,K). Thus, the vanishing of one such component
– modulo KP -gauge transformations – is tantamount to the projection of the Weyl tensor to the corresponding irreducible
KP -module being zero.
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The discussion used a minimal amount of theory. But at its core was the parabolic Lie algebra stabilising
the almost null structure. There is another parabolic Lie algebra in the story, and it is related to conformal
geometry. Indeed it was pointed out in section 4.3 that the Goldberg-Sachs theorem in any dimensions is
a conformally invariant statement. This strongly suggests that the present results should be cast in the
elegant language of parabolic geometry: the conditions on the Weyl tensor and Cotton-York tensor with
respect to an almost null structure on a base conformal manifold can be re-expressed as conditions on the
curvature of the projective pure spinor bundle fibered over it, and a section thereof. The content of the
Goldberg-Sachs theorem is that certain curvature prescriptions imply a differential condition on this section,
which can ultimately be translated by a foliation by maximal totally null leaves on the base manifold.

A The Bianchi identity

In this appendix, we give the Bianchi identity in component form in the null basis {ξµ, ξ̃µ̃, ǫξµ} introduced
in section 3.3 with the following conventions:

• the directional derivatives with respect to this frame are denoted

∂µf := ξµf , ∂µ̃f := ξ̃µ̃f , ∂0f := ξ0f ,

for all µ, and any for any holomorphic function f ;

• the index notation follows the convention of [PR84]. In particular, the Einstein summation convention
is used throughout, and square brackets around a set of indices denotes skew symmetrisation;

• only the Bianchi equations in odd dimensions are given – the even-dimensional case can be recovered
by ignoring any term containing an index 0.

∂[µ Cν ρ]κλ = −2Γ σ
[µν Cρ]σκλ − 2Γ σ̃

[µν Cρ]σ̃κλ − 2Γ 0
[µν Cρ]0κλ

− 2Γ σ
[µ |[κ Cλ]|σ|ν ρ] − 2Γ σ̃

[µ |[κ Cλ]|σ̃|ν ρ] − 2Γ 0
[µ |[κ Cλ]|0|ν ρ] , (A.1)

2∂[µ Cν]0κλ + ∂0Cµνκλ = −2Γ σ
[µν] C0σκλ − 2Γ σ̃

[µν] C0σ̃κλ − 2Γ σ
0[µ Cν]σκλ − 2Γ σ̃

0[µ Cν]σ̃κλ − 2Γ 0
0[µ Cν]0κλ

− 2Γ σ
[ν |0| Cµ]σκλ − 2Γ σ̃

[ν |0| Cµ]σ̃κλ − 4Γ σ
[µ |[κ Cλ]|σ| ν]0 − 4Γ σ̃

[µ |[κ Cλ]|σ̃| ν]0 − 4Γ 0
[µ |[κ Cλ]|0| ν]0

− 2Γ σ
0[κ Cλ]σµν − 2Γ σ̃

0[κ Cλ]σ̃µν − 2Γ 0
0[κ Cλ]0µν , (A.2)

2∂[µ Cν]ρ̃κλ + ∂ρ̃Cµνκλ = −2gρ̃[κAλ]µν − 2Γ σ
[µν] Cρ̃σκλ − 2Γ σ̃

[µν] Cρ̃σ̃κλ − 2Γ 0
[µν] Cρ̃0κλ

− 2Γ σ
ρ̃[µ Cν]σκλ − 2Γ σ̃

ρ̃[µ Cν]σ̃κλ − 2Γ 0
ρ̃[µ Cν]0κλ − 2Γ σ

[ν |ρ̃| Cµ]σκλ − 2Γ σ̃
[ν |ρ̃| Cµ]σ̃κλ − 2Γ 0

[ν |ρ̃| Cµ]0κλ

−4Γ σ
[µ |[κ Cλ]|σ| ν]ρ̃−4Γ σ̃

[µ |[κ Cλ]|σ̃| ν]ρ̃ −4Γ 0
[µ |[κ Cλ]|0| ν]ρ̃−2Γ σ

ρ̃[κ Cλ]σµν −2Γ σ̃
ρ̃[κ Cλ]σ̃µν −2Γ 0

ρ̃[κ Cλ]0µν ,

(A.3)

2∂[µ Cν]0κ0 + ∂0Cµνκ0 = Aκµν − 2Γ σ
[µν] C0σκ0 − 2Γ σ̃

[µν] C0σ̃κ0

− 2Γ σ
0[µ Cν]σκ0 − 2Γ σ̃

0[µ Cν]σ̃κ0 − 2Γ 0
0[µ Cν]0κ0 − 2Γ σ

[ν |0| Cµ]σκ0 − 2Γ σ̃
[ν |0| Cµ]σ̃κ0

− 2Γ σ
[µ |κ C0σ| ν]0 + 2Γ σ

[µ |0 Cκσ| ν]0 − 2Γ σ̃
[µ |κ C0σ̃| ν]0 + 2Γ σ̃

[µ |0 Cκσ̃| ν]0

− Γ σ
0κ C0σµν + Γ σ

00 Cκσµν − Γ σ̃
0κ C0σ̃µν + Γ σ̃

00 Cκσ̃µν , (A.4)
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2∂[µ Cν]ρ̃κ0 + ∂ρ̃Cµνκ0 = −gρ̃κA0µν − 2Γ σ
[µν] Cρ̃σκ0 − 2Γ σ̃

[µν] Cρ̃σ̃κ0 − 2Γ 0
[µν] Cρ̃0κ0

− 2Γ σ
ρ̃[µ Cν]σκ0 − 2Γ σ̃

ρ̃[µ Cν]σ̃κ0 − 2Γ 0
ρ̃[µ Cν]0κ0 − 2Γ σ

[ν |ρ̃| Cµ]σκ0 − 2Γ σ̃
[ν |ρ̃| Cµ]σ̃κ0 − 2Γ 0

[ν |ρ̃| Cµ]0κ0

− 2Γ σ
[µ |κ C0σ| ν]ρ̃ + 2Γ σ

[µ |0 Cκσ| ν]ρ̃ − 2Γ σ̃
[µ |κ C0σ̃| ν]ρ̃ + 2Γ σ̃

[µ |0 Cκσ̃|ν]ρ̃

− Γ σ
ρ̃κ C0σµν + Γ σ

ρ̃0 Cκσµν − Γ σ̃
ρ̃κ C0σ̃µν + Γ σ̃

ρ̃0 Cκσ̃µν , (A.5)

2∂[µ Cν]0κλ̃
+ ∂0Cµνκλ̃

= −2g
[µ |λ̃

Aκ|ν]0 − 2Γ σ
[µν] C

0σκλ̃
− 2Γ σ̃

[µν] C
0σ̃κλ̃

− 2Γ σ
0[µ C

ν]σκλ̃
− 2Γ σ̃

0[µ C
ν]σ̃κλ̃

− 2Γ 0
0[µ C

ν]0κλ̃
− 2Γ σ

[ν |0| C
µ]σκλ̃

− 2Γ σ̃
[ν |0| C

µ]σ̃κλ̃

− 2Γ σ
[µ |κ C

λ̃σ| ν]0
+ 2Γ σ

[µ |λ̃
Cκσ| ν]0 − 2Γ σ̃

[µ |κ C
λ̃σ̃| ν]0

+ 2Γ σ̃

[µ |λ̃
Cκσ̃| ν]0 − 2Γ 0

[µ |κ C
λ̃0| ν]0

+ 2Γ 0
[µ |λ̃

Cκ0| ν]0

− Γ σ
0κ C

λ̃σµν
+ Γ σ

0λ̃
Cκσµν − Γ σ̃

0κ C
λ̃σ̃µν

+ Γ σ̃
0λ̃

Cκσ̃µν − Γ 0
0κ C

λ̃0µν
+ Γ 0

0λ̃
Cκ0µν , (A.6)

2∂[µ Cν]ρ̃κλ̃
+ ∂ρ̃Cµνκλ̃

= 2g
[µ |λ̃

Aκ|ν]ρ̃ − gρ̃κAλ̃µν

− 2Γ σ
[µν] C

ρ̃σκλ̃
− 2Γ σ̃

[µν] C
ρ̃σ̃κλ̃

− 2Γ 0
[µν] Cρ̃0κλ̃

− 2Γ σ
ρ̃[µ C

ν]σκλ̃
− 2Γ σ̃

ρ̃[µ C
ν]σ̃κλ̃

− 2Γ 0
ρ̃[µ C

ν]0κλ̃

− 2Γ σ
[ν |ρ̃| C

µ]σκλ̃
− 2Γ σ̃

[ν |ρ̃| C
µ]σ̃κλ̃

− 2Γ 0
[ν |ρ̃| Cµ]0κλ̃

− 2Γ σ
[µ |κ C

λ̃|σ| ν]ρ̃
− 2Γ σ̃

[µ |κ C
λ̃|σ̃| ν]ρ̃

− 2Γ 0
[µ |κ C

λ̃|0|ν]ρ̃

+ 2Γ σ
[µ |λ̃

Cκ|σ| ν]ρ̃ + 2Γ σ̃
[µ |λ̃

Cκ|σ̃|ν]ρ̃ + 2Γ 0
[µ |λ̃

Cκ|0| ν]ρ̃ − Γ σ
ρ̃κ C

λ̃σµν
− Γ σ̃

ρ̃κ C
λ̃σ̃µν

− Γ 0
ρ̃κ C

λ̃0µν

+ Γ σ

ρ̃λ̃
Cκσµν + Γ σ̃

ρ̃λ̃
Cκσ̃µν + Γ 0

ρ̃λ̃
Cκ0µν , (A.7)

∂µCν̃0κ0 + ∂ν̃C0µκ0 + ∂0Cµν̃κ0 = −gν̃κA00µ +Aκµν̃

− Γ σ
µν̃ C0σκ0 − Γ σ̃

µν̃ C0σ̃κ0 + Γ σ
ν̃µ C0σκ0 + Γ σ̃

ν̃µ C0σ̃κ0 − Γ σ
ν̃0 Cµσκ0 − Γ σ̃

ν̃0 Cµσ̃κ0

+ Γ σ
0ν̃ Cµσκ0 + Γ σ̃

0ν̃ Cµσ̃κ0 + Γ 0
0ν̃ Cµ0κ0 − Γ σ

0µ Cν̃σκ0 − Γ σ̃
0µ Cν̃σ̃κ0 − Γ 0

0µ Cν̃0κ0

+ Γ σ
µ0 Cν̃σκ0 + Γ σ̃

µ0 Cν̃σ̃κ0 − Γ σ
µκ C0σν̃0 − Γ σ̃

µκ C0σ̃ν̃0 + Γ σ
µ0 Cκσν̃0 + Γ σ̃

µ0 Cκσ̃ν̃0

− Γ σ
ν̃κ C0σ0µ − Γ σ̃

ν̃κ C0σ̃0µ + Γ σ
ν̃0 Cκσ0µ + Γ σ̃

ν̃0 Cκσ̃0µ − Γ σ
0κ C0σµν̃ − Γ σ̃

0κ C0σ̃µν̃

+ Γ σ
00 Cκσµν̃ + Γ σ̃

00 Cκσ̃µν̃ , (A.8)

2∂[µ̃ C ν̃]ρκ0 + ∂ρCµ̃ν̃κ0 = −2g[µ̃ |κA0| ν̃]ρ − 2Γ σ
[µ̃ν̃] Cρσκ0 − 2Γ σ̃

[µ̃ν̃] Cρσ̃κ0 − 2Γ 0
[µ̃ν̃] Cρ0κ0

− 2Γ σ
ρ[µ̃ C ν̃]σκ0 − 2Γ σ̃

ρ[µ̃ C ν̃]σ̃κ0 − 2Γ 0
ρ[µ̃ C ν̃]0κ0 − 2Γ σ

[ν̃ |ρ| C µ̃]σκ0 − 2Γ σ̃
[ν̃ |ρ| C µ̃]σ̃κ0 − 2Γ 0

[ν̃ |ρ| C µ̃]0κ0

− 2Γ σ
[µ̃ |κ C0|σ| ν̃]ρ + 2Γ σ

[µ̃ |0 Cκ|σ| ν̃]ρ − 2Γ σ̃
[µ̃ |κ C0|σ̃| ν̃]ρ + 2Γ σ̃

[µ̃ |0 Cκ|σ̃| ν̃]ρ

− Γ σ
ρκ C0σµ̃ν̃ + Γ σ

ρ0 Cκσµ̃ν̃ − Γ σ̃
ρκ C0σ̃µ̃ν̃ + Γ σ̃

ρ0 Cκσ̃µ̃ν̃ (A.9)

2∂[µ̃ C ν̃]0κλ + ∂0Cµ̃ν̃κλ = −4g[µ̃ |[κAλ]| ν̃]0 − 2Γ σ
[µ̃ν̃] C0σκλ − 2Γ σ̃

[µ̃ν̃] C0σ̃κλ

− 2Γ σ
0[µ̃ C ν̃]σκλ − 2Γ σ̃

0[µ̃ C ν̃]σ̃κλ − 2Γ 0
0[µ̃ C ν̃]0κλ − 2Γ σ

[ν̃ |0| C µ̃]σκλ − 2Γ σ̃
[ν̃ |0| C µ̃]σ̃κλ

− 4Γ σ
[µ̃ |[κ Cλ]|σ| ν̃]0 − 4Γ σ̃

[µ̃ |[κ Cλ]|σ̃| ν̃]0 − 4Γ 0
[µ̃ |[κ Cλ]|0| ν̃]0

− 2Γ σ
0[κ Cλ]σµ̃ν̃ − 2Γ σ̃

0[κ Cλ]σ̃µ̃ν̃ − 2Γ 0
0[κ Cλ]0µ̃ν̃ , (A.10)

2∂[µ Cν]0κ̃λ̃
+ ∂0Cµνκ̃λ̃

= −4g[µ |[κ̃A λ̃]| ν]0 − 2Γ σ
[µν] C

0σκ̃λ̃
− 2Γ σ̃

[µν] C
0σ̃κ̃λ̃

− 2Γ σ
0[µ C

ν]σκ̃λ̃
− 2Γ σ̃

0[µ C
ν]σ̃κ̃λ̃

− 2Γ 0
0[µ C

ν]0κ̃λ̃
− 2Γ σ

[ν |0| C
µ]σκ̃λ̃

− 2Γ σ̃
[ν |0| C

µ]σ̃κ̃λ̃

− 4Γ σ
[µ |[κ̃ C

λ̃]|σ| ν]0 − 4Γ σ̃
[µ |[κ̃ C

λ̃]|σ̃| ν]0 − 4Γ 0
[µ |[κ̃ C

λ̃]|0| ν]0

− 2Γ σ
0[κ̃ C

λ̃]σµν − 2Γ σ̃
0[κ̃ C

λ̃]σ̃µν − 2Γ 0
0[κ̃ C

λ̃]0µν , (A.11)
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2∂[µ Cν]ρ̃κ̃0 + ∂ρ̃Cµνκ̃0 = −2g[µ |κ̃A0| ν]ρ̃ − 2Γ σ
[µν] Cρ̃σκ̃0 − 2Γ σ̃

[µν] Cρ̃σ̃κ̃0 − 2Γ 0
[µν] Cρ̃0κ̃0

− 2Γ σ
ρ̃[µ Cν]σκ̃0 − 2Γ σ̃

ρ̃[µ Cν]σ̃κ̃0 − 2Γ 0
ρ̃[µ Cν]0κ̃0 − 2Γ σ

[ν |ρ̃| Cµ]σκ̃0 − 2Γ σ̃
[ν |ρ̃| Cµ]σ̃κ̃0 − 2Γ 0

[ν |ρ̃| Cµ]0κ̃0

− 2Γ σ
[µ |κ̃ C0|σ| ν]ρ̃ + 2Γ σ

[µ |0 Cκ̃|σ| ν]ρ̃ − 2Γ σ̃
[µ |κ̃ C0|σ̃| ν]ρ̃ + 2Γ σ̃

[µ |0 Cκ̃|σ̃| ν]ρ̃

− Γ σ
ρ̃κ̃ C0σµν + Γ σ

ρ̃0 Cκ̃σµν − Γ σ̃
ρ̃κ̃ C0σ̃µν + Γ σ̃

ρ̃0 Cκ̃σ̃µν (A.12)

2∂[µ̃ C ν̃]ρκ̃λ + ∂ρCµ̃ν̃κ̃λ = 2g[µ̃ |λAκ̃| ν̃]ρ − gρκ̃Aλµ̃ν̃ − 2Γ σ
[µ̃ν̃] Cρσκ̃λ − 2Γ σ̃

[µ̃ν̃] Cρσ̃κ̃λ − 2Γ 0
[µ̃ν̃] Cρ0κ̃λ

− 2Γ σ
ρ[µ̃ C ν̃]σκ̃λ − 2Γ σ̃

ρ[µ̃ C ν̃]σ̃κ̃λ − 2Γ 0
ρ[µ̃ C ν̃]0κ̃λ − 2Γ σ

[ν̃ |ρ| C µ̃]σκ̃λ − 2Γ σ̃
[ν̃ |ρ| C µ̃]σ̃κ̃λ − 2Γ 0

[ν̃ |ρ| C µ̃]0κ̃λ

− 2Γ σ
[µ̃ |κ̃ Cλ|σ| ν̃]ρ − 2Γ σ̃

[µ̃ |κ̃ Cλ|σ̃| ν̃]ρ − 2Γ 0
[µ̃ |κ̃ Cλ|0| ν̃]ρ + 2Γ σ

[µ̃ |λ Cκ̃|σ| ν̃]ρ + 2Γ σ̃
[µ̃ |λ Cκ̃|σ̃| ν̃]ρ + 2Γ 0

[µ̃ |λ Cκ̃|0| ν̃]ρ

− Γ σ
ρκ̃ Cλσµ̃ν̃ − Γ σ̃

ρκ̃ Cλσ̃µ̃ν̃ − Γ 0
ρκ̃ Cλ0µ̃ν̃ + Γ σ

ρλ Cκ̃σµ̃ν̃ + Γ σ̃
ρλ Cκ̃σ̃µ̃ν̃ + Γ 0

ρλ Cκ̃0µ̃ν̃ , (A.13)

∂µ̃Cν0κ̃0 + ∂νC0µ̃κ̃0 + ∂0Cµ̃νκ̃0 = −gνκ̃A00µ̃ +Aκ̃µ̃ν − Γ σ
µ̃ν C0σκ̃0 − Γ σ̃

µ̃ν C0σ̃κ̃0 + Γ σ
νµ̃ C0σκ̃0 + Γ σ̃

νµ̃ C0σ̃κ̃0

− Γ σ
ν0 Cµ̃σκ̃0 − Γ σ̃

ν0 Cµ̃σ̃κ̃0 + Γ σ
0ν Cµ̃σκ̃0 + Γ σ̃

0ν Cµ̃σ̃κ̃0 + Γ 0
0ν Cµ̃0κ̃0 − Γ σ

0µ̃ Cνσκ̃0 − Γ σ̃
0µ̃ Cνσ̃κ̃0 − Γ 0

0µ̃ Cν0κ̃0

+ Γ σ
µ̃0 Cνσκ̃0 + Γ σ̃

µ̃0 Cνσ̃κ̃0 − Γ σ
µ̃κ̃ C0σν0 − Γ σ̃

µ̃κ̃ C0σ̃ν0 + Γ σ
µ̃0 Cκ̃σν0 + Γ σ̃

µ̃0 Cκ̃σ̃ν0

− Γ σ
νκ̃ C0σ0µ̃ − Γ σ̃

νκ̃ C0σ̃0µ̃ + Γ σ
ν0 Cκ̃σ0µ̃ + Γ σ̃

ν0 Cκ̃σ̃0µ̃ − Γ σ
0κ̃ C0σµ̃ν − Γ σ̃

0κ̃ C0σ̃µ̃ν

+ Γ σ
00 Cκ̃σµ̃ν + Γ σ̃

00 Cκ̃σ̃µ̃ν , (A.14)

2∂[µ̃ C ν̃]ρκ̃0 + ∂ρCµ̃ν̃κ̃0 = −gρκ̃A0µ̃ν̃ − 2Γ σ
[µ̃ν̃] Cρσκ̃0 − 2Γ σ̃

[µ̃ν̃] Cρσ̃κ̃0 − 2Γ 0
[µ̃ν̃] Cρ0κ̃0

− 2Γ σ
ρ[µ̃ C ν̃]σκ̃0 − 2Γ σ̃

ρ[µ̃ C ν̃]σ̃κ̃0 − 2Γ 0
ρ[µ̃ C ν̃]0κ̃0 − 2Γ σ

[ν̃ |ρ| C µ̃]σκ̃0 − 2Γ σ̃
[ν̃ |ρ| C µ̃]σ̃κ̃0 − 2Γ 0

[ν̃ |ρ| C µ̃]0κ̃0

− 2Γ σ
[µ̃ |κ̃ C0σ| ν̃]ρ + 2Γ σ

[µ̃ |0 Cκ̃σ| ν̃]ρ − 2Γ σ̃
[µ̃ |κ̃ C0σ̃| ν̃]ρ + 2Γ σ̃

[µ̃ |0 Cκ̃σ̃| ν̃]ρ

− Γ σ
ρκ̃ C0σµ̃ν̃ + Γ σ

ρ0 Cκ̃σµ̃ν̃ − Γ σ̃
ρκ̃ C0σ̃µ̃ν̃ + Γ σ̃

ρ0 Cκ̃σ̃µ̃ν̃ , (A.15)

2∂[µ̃ C ν̃]0κ̃λ + ∂0Cµ̃ν̃κ̃λ = −2g[µ̃ |λAκ̃| ν̃]0 − 2Γ σ
[µ̃ν̃] C0σκ̃λ − 2Γ σ̃

[µ̃ν̃] C0σ̃κ̃λ

− 2Γ σ
0[µ̃ C ν̃]σκ̃λ − 2Γ σ̃

0[µ̃ C ν̃]σ̃κ̃λ − 2Γ 0
0[µ̃ C ν̃]0κ̃λ − 2Γ σ

[ν̃ |0| C µ̃]σκ̃λ − 2Γ σ̃
[ν̃ |0| C µ̃]σ̃κ̃λ

− 2Γ σ
[µ̃ |κ̃ Cλσ| ν̃]0 + 2Γ σ

[µ̃ |λ Cκ̃σ| ν̃]0 − 2Γ σ̃
[µ̃ |κ̃ Cλσ̃| ν̃]0 + 2Γ σ̃

[µ̃ |λ Cκ̃σ̃| ν̃]0 − 2Γ 0
[µ̃ |κ̃ Cλ0| ν̃]0 + 2Γ 0

[µ̃ |λ Cκ̃0| ν̃]0

− Γ σ
0κ̃ Cλσµ̃ν̃ + Γ σ

0λ Cκ̃σµ̃ν̃ − Γ σ̃
0κ̃ Cλσ̃µ̃ν̃ + Γ σ̃

0λ Cκ̃σ̃µ̃ν̃ − Γ 0
0κ̃ Cλ0µ̃ν̃ + Γ 0

0λ Cκ̃0µ̃ν̃ , (A.16)

2∂[µ̃ C ν̃]ρκ̃λ̃
+ ∂ρCµ̃ν̃κ̃λ̃

= −2gρ[κ̃A λ̃]µ̃ν̃ − 2Γ σ
[µ̃ν̃] C

ρσκ̃λ̃
− 2Γ σ̃

[µ̃ν̃] C
ρσ̃κ̃λ̃

− 2Γ 0
[µ̃ν̃] Cρ0κ̃λ̃

− 2Γ σ
ρ[µ̃ C

ν̃]σκ̃λ̃
− 2Γ σ̃

ρ[µ̃ C
ν̃]σ̃κ̃λ̃

− 2Γ 0
ρ[µ̃ C

ν̃]0κ̃λ̃
− 2Γ σ

[ν̃ |ρ| C
µ̃]σκ̃λ̃

− 2Γ σ̃
[ν̃ |ρ| C

µ̃]σ̃κ̃λ̃
− 2Γ 0

[ν̃ |ρ| C µ̃]0κ̃λ̃

−4Γ σ
[µ̃ |[κ̃ C

λ̃]|σ| ν̃]ρ−4Γ σ̃
[µ̃ |[κ̃ C

λ̃]|σ̃| ν̃]ρ−4Γ 0
[µ̃ |[κ̃ C

λ̃]|0| ν̃]ρ−2Γ σ
ρ[κ̃ C

λ̃]σµ̃ν̃ −2Γ σ̃
ρ[κ̃ C

λ̃]σ̃µ̃ν̃ −2Γ 0
ρ[κ̃ C

λ̃]0µ̃ν̃ ,

(A.17)

2∂[µ̃ C ν̃]0κ̃0 + ∂0Cµ̃ν̃κ̃0 = Aκ̃µ̃ν̃ − 2Γ σ
[µ̃ν̃] C0σκ̃0 − 2Γ σ̃

[µ̃ν̃] C0σ̃κ̃0

− 2Γ σ
0[µ̃ C ν̃]σκ̃0 − 2Γ σ̃

0[µ̃ C ν̃]σ̃κ̃0 − 2Γ 0
0[µ̃ C ν̃]0κ̃0 − 2Γ σ

[ν̃ |0| C µ̃]σκ̃0 − 2Γ σ̃
[ν̃ |0| C µ̃]σ̃κ̃0

− 2Γ σ
[µ̃ |κ̃ C0σ| ν̃]0 + 2Γ σ

[µ̃ |0 Cκ̃σ| ν̃]0 − 2Γ σ̃
[µ̃ |κ̃ C0σ̃| ν̃]0 + 2Γ σ̃

[µ̃ |0 Cκ̃σ̃| ν̃]0

− Γ σ
0κ̃ C0σµ̃ν̃ + Γ σ

00 Cκ̃σµ̃ν̃ − Γ σ̃
0κ̃ C0σ̃µ̃ν̃ + Γ σ̃

00 Cκ̃σ̃µ̃ν̃ , (A.18)
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2∂[µ̃ C ν̃]0κ̃λ̃
+ ∂0Cµ̃ν̃κ̃λ̃

= −2Γ σ
[µ̃ν̃] C

0σκ̃λ̃
− 2Γ σ̃

[µ̃ν̃] C
0σ̃κ̃λ̃

− 2Γ σ
0[µ̃ C

ν̃]σκ̃λ̃
− 2Γ σ̃

0[µ̃ C
ν̃]σ̃κ̃λ̃

− 2Γ 0
0[µ̃ C

ν̃]0κ̃λ̃

− 2Γ σ
[ν̃ |0| C

µ̃]σκ̃λ̃
− 2Γ σ̃

[ν̃ |0| C
µ̃]σ̃κ̃λ̃

− 4Γ σ
[µ̃ |[κ̃ C

λ̃]|σ| ν̃]0 − 4Γ σ̃
[µ̃ |[κ̃ C

λ̃]|σ̃| ν̃]0 − 4Γ 0
[µ̃ |[κ̃ C

λ̃]|0| ν̃]0

− 2Γ σ
0[κ̃ C

λ̃]|σ|µ̃ν̃ − 2Γ σ̃
0[κ̃ C

λ̃]|σ̃|µ̃ν̃ − 2Γ 0
0[κ̃ C

λ̃]|0|µ̃ν̃ , (A.19)

∂[µ̃ Cν̃ ρ̃]κ̃λ̃
= −2Γ σ

[µ̃ ν̃ C
ρ̃]σκ̃λ̃

− 2Γ σ̃
[µ̃ ν̃ C

ρ̃]σ̃κ̃λ̃
− 2Γ 0

[µ̃ ν̃ C
ρ̃]0κ̃λ̃

− 2Γ σ
[µ̃ |[κ̃ C

λ̃]|σ|ν̃ ρ̃]
− 2Γ σ̃

[µ̃ |[κ̃ C
λ̃]|σ̃|ν̃ ρ̃]

− 2Γ 0
[µ̃ |[κ̃ C

λ̃]|0|ν̃ ρ̃]
, (A.20)
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