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Abstract Hirshfeld-I charges were implemented in the Crystal code, for peri-
odic calculations with localized atomic basis sets. Some particular features of the
present periodic implementation are detailed and discussed by means of selected
illustrating examples. In these examples, the Hirshfeld-I charges are somewhere
between the Bader and the Mulliken values and closer to the former. The imple-
mentation exploits heavily symmetry aspects and is shown to scale linearly with
the unit cell dimension.
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A. M. Navarrete-López
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1 Introduction

Ab initio quantum mechanical calculation of periodic systems, which were largely
started in the late 70s to early 80s, can be viewed as an extension to molecular
systems simulation.[1] Implemented methods tipically differ in their use: plane-
wave or atomic centered gaussian functions as basis sets and density functional
or wave-function approaches. In principle, a crystal structure consists of a large
number (≈ 1020) of atoms, a fact that poses a formidable task in the design
of codes for electronic structure calculations of these systems. The problem is
rendered tractable by: imposing the translational invariance of the lattice in an
infinite model and working within periodic boundary conditions. In other words,
exploiting the Bloch function approach which allows one-electron wave-functions
to be expressed as wave-like parts times periodic functions.

As calculations of periodic systems are a kind of logical continuation of those for
molecular systems, so are corresponding properties such as cohesive energy, phase
stability, 1- and 2-electron properties, to name a few. Atomic charge represents one
of the most popular analysis of the electronic density. Since it is not an observable,
various schemes have been developed to partition the whole electronic structure
into its atomic fragments. These schemes are generally divided into two classes
depending on whether they are based on molecular orbitals or electron density.
The most popular method of the first class is the Mulliken equi-partitioned one
[2] which depends on the density P and overlap S matrices. On the other hand,
Löwdin [3] analysis is similar but deals with symmetrically orthogonalized AOs
through the S−1/2 transformation. The Natural Bond Orbital [4] method evaluates
atomic charges based on rotated molecular orbitals that best resembles localized
bonds and lone pairs. Stone’s multipole analysis [5] atributes atomic density to
contributions from multipole expansion.

The second class is based directly on the electron density ρ(r). Among these are
the Voronoi Deformation Density [6] in which atomic cell contains regions that are
nearest to a particular nucleus, and its improvement by Becke [7] in which atomic
density smooths out the Voronoi boundaries by including Becke’s weight functions.
Bader’s QTAIM (Quantum Theory of Atoms in Molecules) [8], one of the most
rigorous and hence one of the most cost intensive partition scheme, defines atomic
basins as those surrounded by zero-flux surfaces.

Most notably recently is the work of Hirshfeld-I (HI) method [9] which belongs
to the latter class and has renewed interest in the original Hirshfeld scheme. [10]
In particular efforts have been made to include open shell algorithms such as the
Fractional Occupation HI (FOHI) [11,12] where both spin and atomic charges of
spherical atomic densities are optimized independently. In the FOHI method, the
spherical atomic densities are obtained by the equi-distribution of the occupation
number of valence obitals. In order to eliminate the need of calculating the pro-
molecular density and their charged analogues, the Iterative Stockholder Atoms
method [13–15] replaces these densities by spherical symmetric weight functions
which are in fact spherical averages of the atomic density obtained from a previous
step. The iterative process halts when both the atomic charges and the aforemen-
tioned spherically averaged densities are solved simultaneously.

As concerns the periodic extension of such approaches, the Mulliken analy-
sis has been one of the earliest methods implemented in ab initio public codes
in the context of localized basis sets.[1] In 1994, the QTAIM method was first
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implemented by Gatti, Saunders and Roetti [16] in the so-called Topond pro-
gram. It adopts the Newton-Raphson algorithm to locate the bond critical points.
Derivatives of ρ(r) were approximated by expressing them as linear combinations
of Hermite Gaussian functions based on the seminal works of McMurchie and
Davison [17] and Saunders. [18] Basin integration, the most costly part of the
QTAIM method, is done by an algorithm proposed by Keith [19], representing
an improvement over the original work by Biegler-König et al. [20]. In Ref. [16],
atomic properties of urea were calculated using cluster contains up to 40 atoms.
Topond includes the Rational Partioned Function of Baker [21] and Banerjee et
al. [22] as implemented in locating bond critical points by Popelier [23]. Recently,
Topond has been merged into Crystal14[24] and, taking advantages of its par-
allel version, has been used in the evaluation of QTAIM properties for systems
containing up to 1300 atoms in the unit cell (13000 atomic orbitals). [25]

HI method has been implemented using projector augmented wave (PAW) ba-
sis set to study periodic protein clusters as large as 10000 atoms [26]. In 2010,
Manz and Sholl [27] proposed a method to evaluate atomic charges that accu-
rately reproduce electrostatic potential for periodic and molecular systems. They
also suggested “charge compensation schemes” where atomic reference charges are
those of ions calculated with a background density and thus better mimics ions in
their natural environment.

The present work documents the original implementation of the HI method in
Crystal, a program that computes the electronic structure of periodic systems
making use of the Linear Combination of Atomic Orbitals (LCAO) approxima-
tion. [24,28]

The manuscript is organized as follows: Sec. 2.1 outlines the implementation
of the HI method on periodic LCAO scheme. Computational details of selected
examples illustrating different chemical environment are given in Sec. 2.2. The
resulting atomic charges compared with Mulliken and QTAIM values are discussed
in Sec. 3.1. Finally, the efficiency and numerical accuracy of the implementation
are briefly discussed in Sec. 3.2.

2 Methodology

2.1 Periodic HI implementation in Atomic Orbitals basis set

In the periodic LCAO strategy, a basis set of Atomic Orbitals (AO) is considered
to span the Crystalline Orbitals (CO) which are in turn the eigenfunctions of one-
electron Hamiltonians such as those considered in Hartree-Fock or Kohn-Sham
approaches. In a way similar to most molecular codes, the i-th AO in the cell as-
cribed to lattice vector g, χg

i (r) ≡ χi(r−g), is expanded in terms of atom-centered
Gaussian-type functions.[28] One of the advantages of the LCAO approximation
as implemented in Crystal is that it allows full exploitation of symmetry in prac-
tically every step of the calculation.[29] This aspect of the present implementation
will be discussed in the following.

Under the LCAO formulation, the Mulliken atomic charge analysis for periodic
systems becomes a straightforward extension of the molecular case. This is because
the AOs themselves are exploited to partition the electronic structure into atomic
contributions. The resulting computational simplicity is probably the reason of



4 C. M. Zicovich-Wilson et al.

its earliest use in periodic calculations.[1] In addition, thanks to the localized
character of the AOs, the density and overlap matrices can be extended just to
include contributions from neighbouring cells until they drop off below a given
threshold value.[1,18] In practice, this is chosen to maximize saving of memory and
cpu time resources and at the same time reaching the desired numerical accuracy.

In the HI scheme, the partition of the total density into atomic constributions
is performed by considering suitable functions that weight each point within the
spatial region Q designed as reference cell of the crystal lattice. Such weight func-
tions provide the contributions of each center to the electron density function of
the whole system, ρ(r).[9,10] Accordingly, the electronic population assigned to
center A, namely NA, is obtained by means of a spatial integration over Q of the
density times such weight functions according to,

NA =

∫
Q
dr ρ(r)wA(r), (1)

where wA(r) is the weight function corresponding to the A center.[10]
In terms of the AOs, the periodic electron density reads

ρ(r) =
∑
i,j

∑
g

Pg
ij

∑
h

χh+g
j (r)χh

i (r), (2)

where r refers to a given point in region Q and Pg
ij is the density matrix in terms of

the AO basis set. In Eq. (2) the translational invariance of both the electron density
ρ(r) and the density matrix Pg

ij is fully exploited.[1] While the sum is formally
infinite with respect to the lattice vector indices g and h, it is in practice truncated
to fulfill a given accuracy threshold using suitable numerical strategies.[1,18,28]

The HI weight function wA(r) is based on electron densities ρNA

A (r) attributed

to each isolated center A according to wA(r) = ρNA

A (r)/
∑

B∈Q ρ
NB

B (r). [9,10] In
the periodic extension of the method, the sum in the denominator is restricted
to those centers B located within Q. The domain of the atomic electron density
functions is the same region with cyclic boundary conditions. Accordingly, NA

is a given fractional number that corresponds to the atomic population obtained
through Eq. (1) in the precedent step along the iterative procedure. [9] To com-
pute the density function ascribed to isolated center A, an atomic density matrix
associated to such a fractional occupation number, namely PNA

A , is built according
to

PNA

A = P
lint(NA)
A [uint(NA)−NA] + P

uint(NA)
A [NA − lint(NA)] , (3)

where functions uint/lint(NA) are the upper/lower integers closest to NA. The
density matrix of each center A with integer number of electrons is formulated in
terms of the AOs centered on A and they are here obtained from ground state
atomic HF-SCF calculations as already implemented in Crystal. [28] The atomic
densities ρNA

A (r) required to evaluate the weight functions at each point within
the cell region Q are obtained as a particular case of Eq. (2) through

ρNA

A (r) =
∑
ij∈A

[
PNA

A

]
ij

∑
g

χg
i (r)χg

j (r), (4)

where now the indices i and j refer to the AOs centered on A. The cyclic condition
within region Q is straightforwardly imposed.
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For the numerical integration involved in computation of HI charges, Eq. (1),
[9,10] integrands are partitioned within Q into atomic counterparts considering
Voronoi regions multiplied by Becke [7] or Savin [30] weights. In addition, the
lattice sums in Eq. (2) are truncated according to particular threshold values.[31]
The different atomic parts of the functions are then integrated using radial Gauss-
Legendre and angular Lebedev grids.[28] This is the same strategy as implemented
in Crystal for numerical integrations of exchange-correlation functionals in peri-
odic Kohn-Sham calculations.[31]

The symmetry properties of each point of the integration grid are estimated
as usual in the Crystal code. [29] According to such an analysis, the number of
operations that keep a given point invariant or shown it to be equivalent to others
are determined consequently. These data are included as additional factors in the
above mentioned weights so as to warrant the integration of ρ(r) over Q to yield
the right number of electrons per cell.[31]

With such symmetry adapted weights and irreducible set of points, the inte-
grations corresponding to Eq. (1) are performed as weighted sums along the set.
The number of electrons obtained in this way for each center A, namely N ′A, is
connected to the actual number of electrons through

NA =
1

IA

∑
q

N ′Aq
, (5)

where IA is the number of point symmetry operators that leave center A invariant
and the set {Aq} contains all centers in the reference cell equivalent to A by point
symmetry operations. The cardinal of the previous set times IA equals the number
of point operations in the space group.

The previously described numerical integration procedure is parallelized in the
code by assigning each irreducible set of points an independent task. This allows
substantial saving of elapsed computational time as shown in the following.

Our work differs from a previously proposed extension of the HI partition to
periodic systems in the context of plane-wave basis sets,[26] in that the efficiency of
the present implementation allows all the required data to be generated on-the-fly
during calculation instead of writing them on disk. This brings about a relevant
comparative saving with respect to disk usage and input/output operations.

In the present implementation the iterative procedure normally stops when
fulfilling the condition that[

1

Ntotal

∑
A

(
N

(i−1)
A −N (i)

A

)2]1/2
< ε, (6)

where Ntotal and N
(i)
A are number of atoms and electrons assigned to atom A in

the i-th iteration, respectively, and ε is the numerical integration error taken as
the absolute difference between computed (fractionary) and actual (integer) total
number of electrons. This allows the accuracies of the iterative process and the
numerical integrations to be of the same magnitude in final results.

As concerns the use of HI for open-shell systems, it was previously shown [11]
that a rigorous application of information theory to the problem involves ap-
proaches different than what is here considered for closed-shell cases. As a first
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approximation to the issue, in the present work we consider a straightforward ex-
tension of the original proposal [9] in which the weight function ωA(r) in Eq. (1)
is obtained from the total, α⊕β, electron density function. The same weight func-
tions are then used to partition the α 	 β spin-density. In this case, one assumes
that the physical meaning of the partition in terms of atoms/ions for both densi-
ties is mostly contained in the α ⊕ β electronic distribution. Work is in progress
to implement a more rigorous approach that involves a simultaneous 2D fitting of
α and β atomic electron densities so as to extend Eq. (3) to the open-shell case as
proposed in the FOHI method. [11]

2.2 Computational details

In all calculations here considered, the infinite sums for Coulomb and exchange
contributions to the energy are truncated according to five thresholds. They were
set to default values of the code unless otherwise specified.[28] QTAIM charges
were obtained by means of the Topond implementation [32] in Crystal14.[28]
The suggested values of nuclear radius, angular planes and radial points have been
considered.

The set of illustrative examples includes structures with a variety of periodicity
levels (from 0D to 3D) and bonding characteristics (from ionic to covalent). In
Table 1 all the compounds are listed, the adopted functionals and basis set are
reported (notation Hamiltonian/basis set) and some information on their primitive
cells are provided.

Table 1 Structural and computational details of the compounds considered as illustrative
tests. NAtoms and NAOs refer to the number of atoms and AOs per primitive cell

Level of calc. NAtoms NAOs
Urea molecule PBE/POB-TZVP 8 96
LiPA polymer B3LYP/6-31G∗∗ 30 294
Cellulose polymer PBE/6-31G∗∗ 42 516
BN 1-layer PBE/POB-TZVP 2 36
MgO[Li] slab UHF/(see text) 24 212
MgO crystal PBE/POB-TZVP 2 37
SrTiO3 crystal LDA-PZ/(see text) 5 123
α-Al2O3 crystal PBE/(see text) 10 156
Cellulose Iβ crystal PBE/6-311G∗∗ 84 1032
SALEM-2 crystal PBE/POB-TZVP 102 1494
α-quartz (SiO2) crystal PBE/POB-TZVP 9 174
α-Fe2O3 crystal (see text) 10 216

Urea continues to be one of the most studied molecules not only due to its
chemical, biochemical and physical relevances but also because of it being of great
interest in charge density refinement studies. [33] We have calculated the HI atomic
charges of urea using the experimental geometry taken from Ref. [33].

The electronic structure of alkali-doped trans-polyacetylenes is interesting since
they show markedly increase in conductivity upon doping. [34–36] The polymer
undergoes charge transfer from the alkali to the chain which results in formation
of geometric solitons [37]. Recently, a charge density analysis of Li-doped trans-
polyacetylene (LiPA) has been done by some of us. [38] Periodic calculation at
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the B3LYP/6-31G** level showed that, in contrast to Mulliken charges, QTAIM
analysis suggests a transfer of almost one electron from the lithium atom to the
π-system of the polymer. The results obtained for LiPA (C/Li=7) at the same
level of calculation by the three different approaches are shown. The structure and
atom labels are schematized in Fig. 1.

Fig. 1 Schematic representation of the unit cell of Li-Polyacetylene. The atomic charges of
labelled atoms are reported in Table 2.

Hexagonal boron nitride is also known as white graphite due to its structural
resemblance to that carbon material: layers consist of rings of alternate boron and
nitrogen atoms with interplanar interactions including ionic attractions and van
der Waals bondings. We have calculated at the PBE/POB-TZVP[39,40] level the
atomic charges of a monolayer slab taken from the bulk structure reported by
Hassel. [41]

In introducing the density derived electrostatic and chemical charges, Manz
and Sholl [27] calculated the atomic charges of cubic SrTiO3. At the PW91/PAW
level they found that the Sr atom lost 2.50 |e| by their own HI implementation.
This value is substantially larger than Bader’s charge (1.54 |e|) and even the
formal value for such an element. This result prompted Manz to suggest that HI,
at least with the anionic reference densities, overestimates net atomic charges. [42]
Vanpoucke et al. implementation, on the other hand, shows a lost of only 1.6|e| at
the LDA/PAW level [43] which is closer to value obtained with QTAIM method. In
view of such a controversy, we here include results on the same system computed
with the present implementation. As a rather different approach based on AOs
basis set is considered, it is interesting to compare them to controversial results
obtained with plane-waves. To such a scope we also consider the LDA/PZ [44]
functional with a rather large localized basis set. This is similar to that reported
by Erba et al., [45] i.e. O: 8-411G(2d1f); Ti: 86-411(2d1f), while for Sr atom the
core pseudopotential and basis set of Heifets et al. [46] have been considered.

The Zeolitic Imidazolate Framework SALEM-2[47] [Zn(imidazolate)2] is a Metal-
Organic Framework with a Sodalite-like topology closely related to ZIF-8 [Zn(2-
methylimidazolate)2].[48] It crystallizes in the I 4̄m cubic space group (a = 16.83 Å)

and exhibits a large pore volume of more than 2400 Å
3

per unit cell. The struc-
ture is shown in Fig. 2. The system is here considered as a paradigmatic case of
a crystalline system with low density and particular metal-organic interactions, in
this case of Zn-N kind.
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Fig. 2 View of the SALEM-2 Metal Organic Framework, the asymmetric unit is shown on
the left and the atom labels refer to data reported in Table 3.

An ionic 3D periodic system, Corundum (α-Al2O3), has been also considered
as illustrating case. The structure is hexagonal (space group R3̄c) and the corre-
sponding cell parameters are a = 4.76 Å and c = 12.99 Å.[49] The PBE Hamilto-
nian[39] together with a 8-511G* and 6-31d1 basis set for Al and O, respectively,
available in the Crystal web page, [50] have been employed.

Cellulose is the natural bio-polymer most extended in nature, appearing in
six different crystalline forms. Concerning the native material, two allomorphs,
namely Iα and Iβ, usually coexist in it. As regards the latter, in 2002 Nishiyama
et al. reported its crystalline structure obtained through very accurate diffraction
experiments.[51] Iβ cellulose crystallizes in the monoclinic P21 symmetry, with 84
atoms per unit cell (42 per primitive cell). The corresponding cell parameters are
a = 7.64 Å, b = 8.18 Å, c = 10.37 Å, and β = 96.54◦. The structure and labelling
of the atoms in the asymmetric unit are shown in Fig. 3. Calculations have been
performed at the PBE level,[39] with the same basis set (standard 6-311G**) and
computational conditions as considered in a previous work.[52]

Crystalline MgO is known to be an inert material with a high melting point,
consistent with strong ionic bonding, and a wide band gap of 7.8 eV.[53] Its primi-
tive cell contains one formula unit and displays symmetry according to space group
Fm3m. Owing to its high symmetry and structural simplicity it is a good system
for comparisons of computational performances. For the corresponding calcula-
tions we have adopted the PBE Hamiltonian[39] with a POB-TZVP basis set.[40]
In addition, we have considered a defective slab of MgO, modelled as a three-layers,
with a doped Li atom close to an Oxygen vacancy, as shown in Fig. 4. Calculations
were performed at the UHF level with a 61-1G [54] basis set for Li and a VDZ
one [55] for Mg and O.

We selected the P3221 crystal of α-quartz (SiO2) as a test case for study[56]
because it represents a sort of prototype for an extensively investigated family of
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Fig. 3 Schematic view of the β-Cellulose unit cell. Atoms are labelled as belonging to the
first (I) and second (II) intra-HB, emphasizing their acceptor (A) and donor (D) features.

Fig. 4 Unit cell of the Li-doped MgO slab with a Li atom close to an O-vacancy (X). Peri-
odicity is kept along the xy plane and the surface is on top of the draw

silica materials, including zeolites. Calculations were performed at the PBE/POB-
TZVP [39,40] computational level.

Hematite (α-Fe2O3) is an interesting compound for studying the effect of the
Hamiltonian on atomic charges due to the strong correlation between the d-orbital
electrons. It is one of the few crystals whose band gap values are commonly used
to gauge the level of correlation of the methods.[57] UHF often yields band gaps
that are too large, [58] LSDA and SGGA on the other hand give very small or
even null band gap. [59] B3LYP [57] gives a band gap of 3.2 eV comparable to
the experimental value of 2.0 eV. We have calculated its HI atomic charges and
spin-densities for α-Fe2O3 with different Hamiltonians, namely UHF, PBE [39]
and PBE0 [60] considering 8-6411G* and 8-411G* basis sets [50] for Fe and O,
respectively.

3 Results and Discussion

The present implementation will be illustrated in Sec. 3.1 by comparing HI charges
with Mulliken and QTAIM ones for the selected set of periodic systems detailed
in Sec. 2.2. Results are documented in Tables 2 and 3 in which we also include
previous experimental or theoretical data, when available.
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Table 2 Atomic Charges calculated with three different partitions of the electron density
(Mulliken, HI and QTAIM) for structures periodic in 0 to 2D. When available, results from
literature (Lit) are also reported.

System Atoms Mulliken HI QTAIM Lit.
Urea (Molecule) C 0.897 1.100 1.615 1.667a

O -0.745 -0.669 -1.177 -1.177a

N -0.463 -1.012 -1.102 -1.214a

H1 0.208 0.390 0.447 0.482a

H2 0.179 0.406 0.437 0.493a

LiPA (Polymer) C1 -0.088 -0.046 -0.124
C3 -0.181 -0.469 -0.231
C7 -0.064 0.003 -0.020
C11 -0.093 -0.158 0.014
H1 0.087 0.072 -0.013
H3 0.088 0.090 -0.050
H7 0.085 0.050 -0.031
H11 0.044 0.067 -0.037
Li 0.304 0.808 0.900

Cellulose (fiber) O(ID) -0.359 -0.495 -1.059
O (IA) -0.363 -0.256 -1.001
H (I) 0.233 0.326 0.594
O(IID) -0.370 -0.495 -1.068
O (IIA) -0.377 -0.495 -1.029
H (II) 0.240 0.336 0.582

BN (Mono Layer) B 1.259 1.455 2.118 0.429b

1.1c

N -1.259 -1.455 -2.118 -0.429b

-1.1c

a Ref. [33]; b Ref. [61]; c Ref. [62] .

In addition, in Sec. 3.2 data concerning the computational performance of the
implemented algorithm are discussed. In particular, its dependence on Hamilto-
nian (Hartree-Fock or different Kohn-Sham “flavors”), basis set choice, number of
symmetry operators and atoms per cell, parallelization and size of the integration
grid.

3.1 Illustrating examples

3.1.1 Urea molecule

HI and QTAIM atomic charges for molecular Urea are listed in Table 2 and com-
pared with experimental results. [33] At the first glance it appears that QTAIM
charges from both theoretical and experimental density are very similar, with the
largest difference being about 0.05|e|. Notably it is the charge of carbon atom that
at the periodic HF/6-31G** level loses 2.54|e|, see Gatti et al., [16] to be compared
to 1.62 (QTAIM theoretical), 1.67 (QTAIM experimental [33]) and 1.1|e| (HI). The
HI charges are in general smaller than the QTAIM ones for heavy atoms while those
of the O and N atoms are comparable to NBO ones calculated at PBE0/cc-pVQZ
level reported by Ruedenberg et al. [63] The hydrogen atom charges are similar
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Table 3 Atomic Charges calculated with three different partitions of the electron density
(Mulliken, HI and QTAIM) for 3D systems. When available, results from literature (Lit) are
also reported.

System Atoms Mulliken HI QTAIM Lit

α-Al2O3 Al 2.016 2.485 2.520
O -1.344 -1.656 -1.679

SrTiO3 Sr 1.275 1.650 1.620 1.62a

2.50b

Ti 1.631 2.240 2.220 2.69a

3.11b

O -0.968 -1.300 -1.27 -1.43a

-1.87b

Cellulose Iβ O(ID) -0.439 -0.448 -1.102
O (IA) -0.391 -0.244 -1.004
H (I) 0.291 0.330 0.563
O(IID) -0.400 -0.456 -1.104
O (IIA) -0.444 -0.457 -1.114
H (II) 0.292 0.331 0.595

SALEM-2 Zn 0.862 0.667 1.202
N -0.676 -0.383 -1.164
C1 0.503 0.250 1.080
H1 0.001 0.043 -0.069
C2 0.191 -0.006 0.432
H2 0.027 0.077 -0.071

a Ref.[43]; b Ref.[42].

for HI, QTAIM (theoretical) and QTAIM (experimental). As will be seen below,
the Mulliken analysis shows the smallest charge transfer on the average.

3.1.2 Li-doped polyacetylene (Li-PA)

Results reported in Table 2 shows that HI charges are in good agreement with
QTAIM ones, as regards the lithium and carbon atoms. In particular, Li loses ca
0.8 electrons while C3 is the most charged and C7 is almost neutral (refer to Fig. 1
for atomic labels). On the contrary, charges of hydrogen atoms evaluated with the
two methods have opposite sign: each proton loses up to 0.07 |e| considering HI,
while it gains an average of 0.03 |e| with QTAIM. However, one is not to put much
weight on atomic charges that vary less than 0.1|e|. These results are somewhat
consistent with the observation that QTAIM yields atomic charges slightly larger
than HI.[9]

3.1.3 Boron Nitride slab

QTAIM anaysis describes a transfer of more than 2 |e| from B to N while Mulliken
and HI methods predict a much smaller transfer of 1.3 and 1.5 |e|, respectively.
From synchroton data using Maximum Entropy method, Yamamura [62] estimated
a transfer of 1.9 |e|. The smallest estimation of charge transfer is less than 0.5 |e|
from Löwdin analysis of PW91/PAW calculations reported by Topsakal et al. [61]
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3.1.4 SrTiO3

Our HI and QTAIM results for the Sr, Ti and O atomic charges are documented in
Table 3 together with Mulliken charges for comparison. According to the comment
provided in Sec. 2.2, these are in quite good agreement with those reported by
Vanpoucke et al., [43] even considering a radically different implementation. This
confirms that HI charges for this periodic system are similar to QTAIM, which
differs significantly from Manz and Sholl [27,42] findings.

3.1.5 Corundum (α-Al2O3)

Atomic charges for this system and the following ones are collected in Table 3.
Although some degree of electron back-donation from O to Al atoms is expected
for this ionic crystal, Mulliken charges overestimate the effect providing a charge
transfer of ≈ 1|e| per Al atom. The ionic character of this oxide is revealed by
both the HI and QTAIM analysis in which the back-donation phenomenon is
substantially less relevant.

3.1.6 Cellulose Iβ

Results for both the isolated chain and the 3D arrangement are tabulated in Ta-
bles 2 and 3, respectively. Two different intra-molecular hydrogen bonds (HB) are
presented in the unit cell, labelled I and II; see Fig. 3. As usual, each HB is char-
acterized by an O atom acting as the donor (D) and the other as acceptor (A). As
a general trend, isolated chain displays a charge on O atoms slightly larger than
in the crystalline structure. In fact, as polymers arrange to constitute the crystal,
additional interchain HBs appear yielding a decrease of the O atom charges. In
this respect, it is worth noting that, while both QTAIM and HI exhibit a similar
trend, Mulliken points to the opposite effect.

3.1.7 Metal-organic framework (SALEM-2)

At variance with previously studied cases, in SALEM-2 the three partitions of
the electron density here exhibit a rather different behavior. QTAIM analysis, see
Table 3, provides a much more ionic picture than Mulliken and HI and, rather
unexpectedly, it assigns a charge larger than the formal one to the Zn atom. HI
and Mulliken charges are qualitatively more similar to each other but, in contrast
with previously studied cases, Mulliken predicts a more ionic system than HI. It
is suspected that the zero-flux surface surrounding the zinc atomic basin is too
flat and thus might have contributed to the uncertainty of the integrated atomic
charges in the QTAIM case. Nonetheless the discrepancy between Mulliken and
HI suggests that a bond of particular characteristics between Zn and N atoms is
occurring. These surprising results deserve a more detailed study which is beyond
the scope of the present work.

3.1.8 MgO[Li] slab with Oxygen vacancy

The open-shell implementation is illustrated through a surface defect represented
by a 2D slab whose reference cell is in a doublet spin state. The structure is



Hirshfeld-I charges in Linear Combination of Atomic Orbitals periodic calculations 13

electrically neutral as the charge deficiency connected with the substitution of
a Mg2+ by a Li+ is compensated by an isolated electron in the O vacancy. The
latter, labeled as X in Fig. 4, is described by a dummy atom with the same O basis
set. The atomic charges and spin-densities of the symmetry irreducible atoms are
reported in Table 4.

Table 4 UHF atomic charges and spin-densities for a three-layers slab of MgO doped with a
Li atom close to an O vacancy (see Fig. 4).

Mulliken HI QTAIM
Li 0.990 (0.000) 1.031 (0.000) 0.917 (0.000)
Mg1 1.936 (0.016) 2.013 (0.018) 1.800 (0.030)
Mg2 1.973 (0.000) 2.060 (0.000) 1.808 (0.000)
Mg3 1.959 (0.000) 2.053 (0.000) 1.799 (0.000)
Mg4 1.964 (0.000) 2.041 (0.000) 1.821 (0.000)
X -1.002 (0.892) -1.026 (0.784) -0.880 (0.773)
O1 -1.959 (0.013) -2.069 (0.051) -1.820 (0.035)
O2 -1.967 (0.000) -2.053 (0.000) -1.828 (0.000)
O3 -1.949 (0.004) -2.018 (0.010) -1.771 (0.009)
O4 -1.948 (0.000) -2.026 (0.000) -1.779 (0.000)
O5 -1.955 (0.000) -2.034 (0.000) -1.782 (0.000)
O6 -1.955 (0.000) -2.036 (0.000) -1.819 (0.000)

All three methods show similiar trends for both atomic charges and spin-
densities. It is interesting noting that in this case, the HI method depicts a slightly
more ionic distribution than the other two methods. The unpaired electrons appear
to localize mainly on the defect site X with a small contribution of the spin-density
from the neighboring atoms.

3.1.9 Correlation Analysis

The present set of data allows us to perform a statistical analysis similar to that
provided in a previous work on the performance of HI for neutral molecules.[9] In
that case, the correlation between HI charges and those obtained using other elec-
tron density analyses was carried out. The analysis here undertaken just consider
Mulliken and QTAIM for comparison and a more modest sample size: 13 periodic
systems against 168 molecules.[9] In addition, the correlation for molecules mostly
included non-metallic elements, namely C, H, N, O, F and Cl, which appear pre-
dominantly bonded in a covalent way to each other. On the contrary, many of the
systems considered here display ionic or semi-ionic bonding character together with
covalent ones. This is because their composition includes not only non-metallic but
also different metal and transition metal elements. Accordingly, results are not ex-
pected to exhibit a neat correspondence between both sets of data. Nonetheless,
this would give a rough idea on how differently the performances of HI for periodic
and molecular systems do compare.

The three atomic charge analyses here considered, namely Mulliken, QTAIM
and HI, show a rather consistent tendency. We have performed a linear fit analysis
of the 70 atomic charges reported in Tables 2, 3, 4, 5 and 9. The regression equation
for the Mulliken vs. HI charges is (0.8270x − 0.0307) and for the QTAIM vs. HI
charges is (0.9356x− 0.0266). The first observation is that the HI charge is more
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consistent with the Mulliken one (R2 = 0.9404) than it is with the QTAIM charge
(R2 = 0.9139). The slopes of both functions are smaller than unity which shows
that HI charge is consistently larger than Mulliken charge but smaller than QTAIM
one. However, despite the poorer correlation, the general trend of HI appears to
be more similar to QTAIM than Mulliken, as the corresponding slope is closer to
unity. Figure 5 shows that both lines intersect closely with the origin since sample
systems are all neutral.

Fig. 5 Linear fit for HI vs. Mulliken charges (solid line, triangles) and HI vs. QTAIM charges
(dotted line, squares).

When the H, C and O atoms are analyzed separately, the correlations between
the HI and Mulliken charges, for example, deteriorate unevenly. The corresponding
values are R2 = 0.7799, 0.8765, 0.8556, respectively. This implies that the corre-
lations of the metal elements, again between the HI and Mulliken charges, are
significantly better than for electronegative ones.

The present correlation analysis between HI and Mulliken charges contrasts
with that previously reported for neutral molecules.[9] In that work, a substan-
tially poorer agreement between both charge analyses (R2 = 0.17) arised. Such a
difference is to be mostly attributed to the fact that the elements that supposedly
prevail in the sampling set of molecules are actually in the first row of the peri-
odic table. As previously shown, they display the worst correlation between both
methods.

3.2 Computational performance

3.2.1 Effect of Basis Set

As in the molecular case, the choice of basis set is of great importance to the
accuracy in calculations for periodic systems. This is in particular due to the
large number of bond types existing in such a kind of systems. Plane waves and
localized basis functions are popular schemes implemented. Plane wave basis sets
are not dependent on neither atomic type nor atomic positions, they are BSSE free
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but instead exhibit Pulay stress owing to their dependence on unit cell size and
shape.[64] Their computational implementation is much simpler than for localized
functions. On the other hand, the latter set requires a much smaller number of
basis functions to adequately describe void and atomic core regions. Concerning
the latter, it is worth noting that there is no need to consider pseudo-potentials as
in the plane-wave case. Additionally, properties such as projected density of states
or atomic charges are comparatively more straightforward. Ideas of basis sets that
work well for molecular systems, for example the case of diffuse functions, may
not transfer well to periodic systems.[65] In fact, problems associated with diffuse
functions lead to the development of the POB-TZVP and POB-DZVP basis sets
that are tailored to solid-state calculations by Peintinger, Oliveira and Bredow[40]
where, beside being smaller than the starting Ahlrichs def2-TZVP basis, [66,67]
gaussians with orbital coefficients smaller than 0.1 were removed (with exception
for certain metals where the basis is then designated as POB-TZVP+(s,p)) which
helps relieve linear dependency.

In Table 5 we have tabulated the atomic charges of α-Quartz and Hematite,
calculated at PBE and PBE0 levels, respectively, with Mulliken, HI and QTAIM.
Calculations for Hematite have been performed with the {6, 6, 6, 7, 13} set of pa-
rameters for integrals calculations. Four different basis sets were considered in each
case which are detailed in Table 5. Basis set labeled BS1 is a split-valence triple-ζ
one specially optimized for Hematite.[58]

Concerning α-Quartz, the trend exhibited as increasing the variational flexi-
bility of basis set reflects what is expected from previous results on molecules.[9]
In fact, at variance with Mulliken, HI charges monotonically approach QTAIM
values in going from minimal to triple-ζ basis set level as it arises from results
listed in Table 5.

Table 5 Basis set effect on atomic charges computed under different charge partition ap-
proaches: α-Quartz and Hematite cases.

Approach Atom STO-6G 6-31G** a/BS1b POB-DZVP POB-TZVP
α-Quartz (SiO2)

Mulliken Si 1.150 1.125 1.221 1.930
O -0.575 -0.562 -0.611 -0.965

HI Si 1.268 2.787 2.947 3.154
O -0.634 -1.394 -1.474 -1.577

QTAIM Si 3.068 3.074 3.203 3.191
O -1.538 -1.524 -1.602 -1.597

Hematite (α-Fe2O3)
Mulliken Fe 0.644 2.285 1.799 1.365

O -0.429 -1.523 -1.199 -0.910
HI Fe 0.727 2.340 1.259 1.173

O -0.485 -1.560 -0.840 -0.782
QTAIM Fe 2.292 1.934 1.925 1.924

O -1.301 -1.089 -1.086 -1.079
a α-Quartz. b Hematite.

On the contrary, charges for Hematite exhibit a much more erratic behavior.
According to the SCF energy trend, the variational flexibility order for the con-
sidered basis sets is STO-6G < POB-DZVP < BS1 . POB-TZVP. It arises from
data supplied in Table 5 that QTAIM analysis provides as usual atomic charges
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practically independent of the basis set choice, at least as regards the four richest
sets. On the contrary, both Mulliken and HI schemes yield an extremal charge sep-
aration in the BS1 case, unexpectedly suggesting a larger ionicity than QTAIM.
In general, it appears that the trend displayed by Mulliken and HI is very similar,
a fact that reflects a significant basis set dependency in the latter.

From the chemical point of view, the difference between both considered sys-
tems is the cationic element involved, namely Si or Fe. It is likely that the basis
set erratic behavior of Mulliken and HI charges is connected to the appearance of
unfilled d orbitals in the latter.

3.2.2 CPU time dependence on computational conditions

We now turn to the comparative computational cost of HI and QTAIM. This is
illustrated in the following four systems with different periodicity: Urea (0D), Li-
PA (1D), BN monolayer (2D) and Corundum (3D). The corresponding CPU times
are detailed in Table 6.

Table 6 CPU time (in s) of HI and QTAIM for Urea molecule, LiPA, BN monolalyer and
Corundum (α-Al2O3).

Urea (mol) Li-PA (pol) BN (slab) α-Al2O3

HI 16 22 23 14
QTAIM 4565 7559 2249 6576

The results show that in this implementation, HI calculation is more than
two orders of magnitude faster than QTAIM one while yields comparable atomic
charges. Though such calculations are substantially more costly than Mulliken ones
they are still fast in comparison to an electronic structure calculation. As examples,
for two medium size systems like Li-PA and SALEM-2, the ratio between the whole
SCF and HI parts of the calculation is 38 and 30, respectively. It is worth noting
that the cost of the HI calculation is due largely to the integration in Eq. (1)
and thus depends on the unit cell and grid sizes. Comparing with the numerical
integration, calculation of atomic density matrix in Eq. (3) is insignificant. These
aspects will be further discussed in Sec. 3.2.3.

In Sec. 2.1 the exploitation of symmetry equivalences in the costly numerical
integration step has been discussed. We have calculated the HI charges for the
MgO supercell (2 × 2 × 2) in which the number of point symmetry operations is
systematically reduced from 48 to 1. The dependence of the CPU time on this
number of symmetry operators is shown in Fig. 6.

It appears that the computational time roughly decreases as 1/NG , NG being
the number of point symmetry operators in space group G. This behavior is based
on the fact that the number of symmetry irreducible points of the grid (where
the electron density and weight functions are actually evaluated for integration)
roughly scales as the total number of points divided by NG .

We have also employed the MgO system to study the CPU time dependence
on the unit cell size. Several supercells of this system have been considered and
the different CPU times of different supercells and grid sizes are shown in Table 7.
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Fig. 6 CPU time dependence on number of symmetry operators. MgO supercell 2× 2× 2

Table 7 Dependence of CPU time on unit cell size in terms of number of atoms per unit cell
(N At/u. c.) and number of symmetry irreducible points in the integration grid (N Grid Pts).
Severa MgO supercells are considered.

N At/u. c. N Grid Pts CPU Time (sec)
2 747 1.6
8 1507 4.8
16 2679 13.1
32 4678 15.4
64 9330 27.5

It turns out that the computational time increases with the number of atoms
in the unit cell in a proportion similar to that due to the number of symmetry
irreducible points in the integration grid.

A rather large supercell (5 × 5 × 5) of the same system with 250 atoms and
4625 AOs per cell has been considered to illustrate the performance of parallel
implementation described in Sec. 2.1. A quite dense grid has been considered in this
case, namely a pruned (75,974) one (see Sec. 3.2.3 for notation). The dependence of
the elapsed time on the reciprocal of the number of processors (1/Nprocs, Nprocs ∈
{64, 32, 16, 8, 4, 2}) is shown in Fig. 7.

Figure shows that for values of 1/Nprocs > 1/32 = 0.03125 the behavior of
elapsed time is close to linear, refecting an efficient task distribution among pro-
cessors and the absence of time consuming operations like input/output ones. As
the number of threads increases to 64, the trend clearly loses the linear character
suggesting that non-parallelized parts of the algorithm start to take relevance in
the computational cost. These are principally the definition and classification of
the grid points and the calculation of the atomic density matrices considered in
Eq. (4) at each iteration. Additionally, the communication between processors is
partially responsible of such a slight efficiency decay.
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Fig. 7 CPU time of parallel calculations in dependence on the reciprocal of the number of
processors (1/Nprocs) for MgO supercell (5× 5× 5).

3.2.3 The influence of the integration grid density on accuracy and timing

In the present implementation, it is possible to set by input the accuracy of the
numerical integration in Eq. (1). Four different predefined grids are available which
are collected in Table 8 together with the corresponding number of symmetry
irreducible points for the α-Quartz case (see Sec. 2.2). The considered grids are
pruned and here denoted as (r, a), where r and a are the number of radial and
maximum number of angular points, respectively. [28,31] The computational cost
of the HI calculation together with the integration accuracy, evaluated as the
absolute difference between numerically integrated and actual number of electrons
per unit cell are also tabulated.

Table 8 α-Quartz. Different integration grids vs CPU time (sec) and accuracy in total number
of electrons (|e|)

Grid N points CPU Time Accur
(55,434) 9738 109 2× 10−4

(75,434) 21459 114 1× 10−4

(75,974) 44267 219 6× 10−5

(99,1454) 87416 453 1× 10−5

An estimation of the accuracy in the determination of atomic charges is the
previously defined integration accuracy divided by the number of atoms, Eq. (6).
In the case of α-Quartz with 9 atoms per unit cell, it turns out that even with the
less dense grid, namely (55,434), the accuracy per atomic charge is about 10−5

which is in general enough for most applications. Such a grid is the default for the
HI implementation in Crystal and it was considered in most of the illustrating
examples. Computational cost of integration in such conditions is more than four
times faster than the cost with the largest grid (99,1454).
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3.2.4 The Hamiltonian choice

In Table 9 Mulliken, HI and QTAIM atomic charges together with the correspond-
ing spin densities for antiferromagnetic α-Fe2O3 calculated at the UHF, PBE0 and
PBE levels, are listed. Calculations were performed under the same computational
conditions as considered in Sec. 3.2.1. Charges corresponding to PBE0 are listed
in Table 5 and also here for the sake of easy comparison.

Table 9 Hamiltonian effect on Hematite (α-Fe2O3) atomic charges and absolute values of the
spin-densities (in brackets)

Fe O
PBE PBE0 UHF PBE PBE0 UHF

Mulliken 2.059 2.285 2.618 -1.373 -1.523 -1.746
(3.689) (4.290) (4.740) (0.000) (0.001) (0.000)

H-I 2.120 2.340 2.669 -1.413 -1.560 -1.779
(3.496) (4.070) (4.504) (0.000) (0.001) (0.000)

QTAIM 1.666 1.934 2.361 -0.929 -1.089 -1.340
(3.620) (4.209) (4.652) (0.001) (0.001) (0.001)

Ionicity increases in passing from PBE to UHF descriptions of the system while
PBE0 atomic charges are in between, a fact that somehow reflects the ability of
this hybrid method to better recover the experimental band gap values. The spin-
densities on Fe atoms display a somehow parallel trend. The values obtained with
Mulliken and HI partitions indicate that in all cases the electronic structure appear
to be much more ionic when considering the latter analysis, but at the same time
the spin densities are smaller. The enhancement of the ionicity of the system
respect to QTAIM featured by HI is the largest one with PBE and decreases as
increasing the contribution of the exact exchange in calculations.

4 Conclusions

The present work describes an implementation for the extension of the molecu-
lar HI method to periodic electronic structures. Its particularity with respect to
other periodic implementations [11,26,42,43] is that it is suitable for both Hartree-
Fock and Kohn-Sham wave-functions spanned in terms of a basis set of AOs. The
method was implemented in the Crystal code and its performance is here illus-
trated by several examples.

The HI atomic charges obtained through this implementation have been com-
pared with Mulliken and QTAIM ones in several test cases that cover different
bonding types and periodicity levels. In most of them it turns out that, as it has
been also found for molecules, [9] Mulliken tends to provide charges substantially
smaller in absolute value than QTAIM, but HI provides intermediate values in
general closer to the latter than to Mulliken, an effect that becomes more signif-
icant as increasing the size of the AO basis set. Such a general behavior however
exhibits exceptions as, for instance, the Metal-Organic Framework SALEM-2.

The present implementation exploits in a great part the machinery already
implemented in the Crystal code for the numerical integration of the different
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quantities employed in Kohn-Sham calculations. Notably is the exploitation of
symmetry equivalences that allows the computation of the HI charges for systems
as large as the above mentioned SALEM-2 with a primitive cell volume of 2490 Å3

and 102 atoms in barely 22 s of CPU time. Using the same machine the cost of the
whole energy calculation in direct mode is 663 s. Additionally it is shown that the
implementation scales linearly with the unit cell size, it is easily paralellized, and
its computational efficiency allows avoiding input/output operations generating
all required quantities on-the-fly in each iteration.
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