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Abstract 

Water is the strongest competitor to CO2 in the adsorption on microporous materials, affecting their 

performances as CO2 scrubbers in processes such as post-combustion carbon capture. The metal-

organic framework (MOF) UTSA-16 is considered a promising material for its capacity to efficiently 

capture CO2 in large quantities, thanks to the presence of open metal sites (OMSs). It is here shown 

that UTSA-16 is also able to fully desorb water already at room temperature. This property is unique 

from all the other materials with OMSs reported so far. UTSA-16 retains indeed the 70% of its CO2 

separation capacity after admittance of water in a test flow, created to simulate the emissions from a 

real post-combustion carbon-capture process. This important aspect not yet observed for any other 

amine-free material, associated to a high material stability – tested for 160 cycles – and a small 

temperature swing necessary for regeneration, places UTSA-16 in the restrict number of systems with 

a real technological future for CO2 separation.  

 

Introduction 

In recent years, Carbon Capture Utilization and Sequestration (CCUS) has emerged as an 

efficient solution1 to reduce anthropogenic CO2 emissions in the atmosphere.1-5 A novel class of 

microporous materials with high CO2 capacity – metal-organic frameworks (MOFs) 6-10 represents a 

promising alternative to inefficient aqueous alkanolamines, nowadays considered the state of art for 

CO2 scrubbers in CCUS processes.4, 11-14 When designed for post-combustion CO2 capture, CCUS 

technology can be easily retrofitted to critical industrial installations such as coal-fueled power 

plants,11 which are responsible for 28% of global CO2 anthropogenic emissions.15 In the flue gases of 

this type of plant, CO2 is mixed in an excess of N2 (coal-fueled plant exhaust: N2 73-77%; CO2 15-

16%; H2O 5-7%;6, 11 O2 3-4%; natural gas-fueled plant exhaust: N2 63-72%; CO2 8-10%; H2O 18-

20%; O2 2-3%).16-17 Besides an efficient screening towards N2, CO2 adsorbents – such as microporous 

materials – must work in the presence of water in order to conceive CCUS for industrial applications. 

Water represents an important fraction of coal and natural gas-fueled plants flue gas mixture, resulting 

in a strong competitor to CO2 due to its high interaction with any material characterized by polarizing 

centres. As water removal before a CO2 separation unit would make very unlikely an industrial 

application of the process,18 its presence must be seriously taken into account. In MOFs – in addition 

to the problems related to competitive adsorption on the most reactive sites –1, 19-20 the presence of 

water might cause the hydrolysis of the ligand-metal bonds, causing irreversible damage to the crystal 

structure.1, 21 This would limit the implementation of MOFs in real CCUS applications. Furthermore, 

the regeneration (temperature swing) of an adsorber that worked in the presence of moisture, 
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generally requires temperatures higher than 373 K,11, 21-24 implying an additional energy demand with 

respect to an adsorber that worked in dry flow. UTSA-1625-26 is a MOF with K+ counter ions as active 

sites (K2Co3(cit)2, see Figure 1a).27-28 This material shows both high volumetric (160 cm3 cm-3) and 

gravimetric CO2 capacities (4.2 mol kg-1 at 1 bar and 298 K; 0.9 mol kg-1 at 0.15 bar and 333 K) at 1 

bar and 298 K, due to the high concentration of potassium cations and its high density,26-27 coupled 

with a low specific heat capacity (1.0-1.4 J K-1g-1 between 333 and 423 K)27 and a medium isosteric 

heat of CO2 adsorption.28 UTSA-16 demonstrated the ability to reversibly adsorb water already at 

room temperature,27 like no other MOF with open metal sites (OMSs). 

Within this study, a series of single-component (CO2, H2O, N2) sorption isotherms were 

collected in order to evaluate the technological relevance of UTSA-16 for CCUS in terms of 

volumetric CO2 capacity at meaningful pressures, as well as the working capacity and the isosteric 

heat of adsorption for CO2, N2 and H2O. An evaluation of CO2/N2 IAST selectivity has been also 

addressed. After UTSA-16 saturation with water at 313 K, the material was regenerated with and 

without temperature swing and the CO2 capacities were compared. The affinity of UTSA-16 for CO2 

and N2 was also evaluated by pulse and breakthrough measurements along with their reciprocal 

diffusion rate constants. The performances of UTSA-16 were then tested by a dynamic experiments 

aimed to assess the CO2 separation power of UTSA-16 in a wet gas mixture simulating a post-

combustion flue gas (9.83% CO2, 88.46% N2, 1.71% H2O). The results were compared with a dry 

CO2/N2 flow (10% CO2, 90% N2) to quantify the effect of the co-presence of water. The dynamic 

measurements were repeated over 160 adsorption/desorption cycles to test UTSA-16 stability upon 

prolonged use. 

 

Experimental  

Preparation of the sample 

UTSA-16 was synthesized as described in the literature.25-26, 29 Further details are shown in 

Section S1 of the Supporting Information. If not otherwise specified, UTSA-16 was activated under 

high vacuum for two hours at room temperature and then heated up to 363 K overnight. Final vacuum 

was below 5 x 10-4 mbar. For the experiments presented in this work, UTSA-16 pellets were prepared 

by softly pressing the powder at 1 ton and then sieved into macro-particles of 0.2–0.5 mm. The 

integrity of the UTSA-16 structure was tested by means of XRD, HR-TEM and surface area 

measurements, as reported in Section S6 of the Supporting Information. 



4 

 

 

Volumetric CO2 and N2 adsorption measurements and isosteric heat of adsorption 

CO2 and N2 adsorption isotherms were measured using a volumetric instrument 

(Micromeritics ASAP 2020) on pellet UTSA-16 at 298, 333 and 363 K. An ethylene glycol bath 

(Julabo EH-25) maintained the isothermal conditions. The CO2 and N2 isosteric heats of adsorption 

were obtained from these isotherms by following the procedure described in Section S2.1 of the 

Supporting Information. The N2 isosteric heat of adsorption in Mg2(dobdc) (Figure S4 of the 

Supporting Information) was obtained by applying the procedure to the isotherms of Figure S2 of the 

Supporting Information. Further details are given in Section S2.1 of the Supporting Information. 

CO2/N2 selectivity factors were evaluated from the CO2 and N2 single component isotherms by the 

Ideal Adsorbed Solution Theory (IAST) using the pyIAST software (Section S2.2 of the Supporting 

Information)30-31 or – in a more approximate way – by considering coincident the adsorbed quantities 

for each gas in the mixture with those of the corresponding pure gas.11 Eqn. (1) defines the selectivity 

for two competitor gases: 

 

𝑆 =
𝑞𝑖

𝑞𝑗⁄

𝑝𝑖
𝑝𝑗⁄

    (1) 

 

where qi,j represents the quantity of gas i,j adsorbed in mol kg-1 and pi,j the partial pressure of the gas 

i,j. 

TSA working capacities were calculated from the 313 K adsorption isotherm (Figure S5a of 

the Supporting Information) and from the desorption isotherm at 393 K of Figure S5b. The values are 

reported in Table S6 of the Supporting Information. PSA working capacities were calculated for 

UTSA-16 isotherms at 313 K (Figure S5a of the Supporting Information) and at 333 K (Figure S5b, 

blue line). For what concerns the PSA working capacity of Mg2(dobdc) at 313 K and 333 K, we used 

the isotherm published by Mason et al.9 and the one of Figure S2b (black line), respectively. We listed 

the values in Table S7 of the Supporting Information. More details are listed in Section S2.3 of the 

Supporting Information. 

 

Gas diffusion study from pulse and breakthrough measurements  

Diffusion measurements were performed on pellet UTSA-16 for CO2 and N2 at 298, 333, 363 

and 393 K. While pulse chromatography was used to measure diffusion of N2, diffusion parameters 

of CO2 were determined by diluted breakthrough experiments. The experimental conditions of both 
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experiments are listed in Table S8 of the Supporting Information. The flow-rate for diluted CO2 

breakthrough curves (0.5 % CO2 in He) was fixed at 20 ml/min both for the feed gas and for the 

helium used for desorption. UTSA-16 was pretreated at 393 K under a flow of helium overnight. 

Mathematical model used to simulate pulses and breakthrough curves is presented in Section S3.1 of 

the Supporting Information while further experimental details are listed in Section S3.2 of the 

Supporting Information. The calculations for the dimensionless Henry’s law constants of CO2 and N2 

are listed in Section S3.2.1 of the Supporting Information 

 

H2O gravimetric adsorption and isosteric heat of water adsorption 

H2O gravimetric adsorption isotherms were measured on UTSA-16 by means of a Hiden 

Analytical IGA model IGA-002, at different temperatures (328 and 342 K) to a pressure of 40 mbar.  

The Henry constants (KH) [mol kg-1 Pa-1] relative to water adsorption were evaluated from the virial 

fittings of isotherms (see Table S12 in Section S4 of the Supporting Information). The fitted curves 

of Figure S10 of the Supporting Information were used to evaluate the water isosteric heats of 

adsorption by following the same procedure described in Section S2.1 of the Supporting Information 

for CO2 and N2 through a fitting of the isotherms with a virial–type equation (see Section S4 of the 

Supporting Information). 

 

Thermogravimetric analysis at room temperature 

The kinetics of water desorption from UTSA-16, reported in Figure 2c were obtained at RT 

by means of a TA-instruments SDT Q600, under N2 flux (100 ml min-1) leaving 0.010 g of UTSA-

16 placed in an uncovered alumina pan in isothermal conditions for 3 days. 

 

Competitive adsorption of water vapour with CO2  

The sequence of alternate CO2 (100 mbar) and H2O (40 mbar) gravimetric single-point 

adsorption isotherms reported in Figure 2d was measured for 0.02 g of UTSA-16. An intelligent 

gravimetric analyzer (IGA-002, supplied by Hiden Analytical Ltd, UK) was used, equipped with a 

fast heating furnace for the temperature control in the 333-673 K range and an ultrahigh vacuum 

system (10-6 mbar). For isothermal measurements at 313 K an isothermal water bath was used. Before 

each measurement, the sample was degassed for 15 h at 363 K. IGA-002 gravimetric analyser was 

also used to measure the CO2 gravimetric isotherms on a wider CO2 pressure range (0-5 bar) and 

temperatures (298-393 K, see Figure 4). Before each CO2 isotherm, a water isotherm was collected 

at the same temperature. The sample was then reactivated at 363 K before that the following CO2 
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isotherm was collected. A detailed description of the experiment is given in Section S5 of the 

Supporting Information. Figure S12 of the Supporting Information reports the water isotherms at 298, 

333, 363 and 393 K measured for this experiment. The CO2 isotherms were fitted with a cubic spline 

functions: the fitting curves are reported as continuous lines in Figure 4. 

 

Multicycle stability test in dry and wet conditions 

The stability upon cycling was tested by packing 0.471 g of pellet UTSA-16 in a column 

(5.074 cm length, 0.457 cm diameter) placed in a GC oven connected to an on-line Thermo-mass 

spectrometer. The aim of this analysis was to evaluate the performances of UTSA-16 as CO2 

adsorbent in presence of a wet gas mixture (9.83% CO2, 88.46% N2, 1.71% H2O) simulating a post-

combustion emission exhaust screened by means of temperature swing adsorption (TSA).32 The 

procedure followed: i) pure N2 was injected in the column at 313 K; ii) UTSA-16 was heated up to 

393 K in 16 min and kept there for 15 min; iii) the material was then cooled down to 313 K in 16 

min; iv) the feed gas was switched to the gas mixture which was put in contact with UTSA-16 for 7 

minutes. Steps (i) to (iii) constitute the desorption process while step (iv) describes the adsorption 

process. This procedure was repeated 160 times (Scheme S1 in Section S6 of the Supporting 

Information). At the end of the cycling test, the exhaust material was extracted from the column and 

characterized by using a multi-technique approach as described in Section S6.1, S6.2, S6.3 and S6.4 

of the Supporting Information. The same adsorption/desorption procedure described above was 

followed to study the uptake of CO2 in dry conditions (10 % CO2/90% N2 feed gas composition in 

step (iv)). For these experiments a NETZSCH STA 449 F1 thermo-gravimeter (TG) connected to a 

QSM 403 C mass spectrometer was used (see Section S6 of the Supporting Information). 

Results and discussion 

CO2 and N2 single component isotherms 

Post-combustion technology requires an adsorber to selectively capture CO2 in the co-

presence of an excess of N2 (> 60 vol.%). The CO2 and N2 single components isotherms for UTSA-

16 evaluated at 298, 333 and 363 K at 1 bar are reported in Figure 1b. 
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Figure 1 (a) Channel of [K2Co3(cit)2 cit=C6H4O7] UTSA-16 microporous structure,25 as view along the [1 0 0] 

direction. Guest species hosted in the MOF pores were omitted for clarity. The atoms were reported according to the 

colour code: hydrogen = white, carbon = grey, oxygen = red, tetrahedral cobalt = light blue, octahedral cobalt = violet, 

potassium = green. (b) CO2 (●) and N2 (■) adsorption isotherms at 298 (black line), 333 (blue line) and 363 K (grey line) 

measured up to 1 bar. Symbols represent experimental data while continuous lines represent the fitted curves, through 

single or dual-site Langmuir fits (Table S1 and S2 of the Supporting Information). (c) Experimental CO2 breakthrough 

adsorption/desorption curves (0.5 % CO2 in He) on UTSA-16 at 298 (black), 333 (blue), 363 (grey) and 393 K (magenta). 

X-axis is reported in logarithmic scale. Model data for CO2 breakthrough experiment are reported in Figure S7 of the 

Supporting Information. (d) Experimental (symbols) and model (continuous line) data for N2 pulse chromatography on 

UTSA-16 at 333 K. The three curves show the signal dependence of the flow: 10 (∆), 20 (□) and 30 ml min-1 (○). 

 

When considering a CO2/N2 mixture of 10/90, the uptake of CO2 on UTSA-16 is one order of 

magnitude higher than the N2 capacity for all the temperature considered. The actual loadings at a 

typical post-combustion temperature (333 K) are 0.6 mol kg-1 at 0.10 bar of CO2 and only 0.09 mol 

kg-1 at 0.90 bar of N2.
27-28 

The isosteric heat of adsorption (qst) for CO2 and N2, are obtained by applying the procedure 

described in Section S2.1 of the Supporting Information to the isotherm curves of Figure 1b. The heat 
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involved in the adsorption of CO2 on UTSA-16 (37 kJ mol-1 on average) is consistent with what found 

in previous works26-28 and reflects a medium strength physisorption, an important point in order to 

limit the energy requirements, and hence the cost, of the regeneration process.11 The interaction 

energy between CO2 and UTSA-16 was ca. 24 kJ mol-1 higher than those observed for N2 (Figure S3 

and Table S3 of the Supporting Information), so that the average interaction energy for CO2 (37 kJ 

mol-1) was more than twice that for N2 (13 kJ mol-1). Finally, we note that liquefaction heat values 

for N2
33

 is about 6 kJ mol-1, showing that there was some, albeit weak, interaction between UTSA-16 

surface and N2. It is interesting to note that the isosteric heat of CO2 adsorption for UTSA-16 

approaches the CO2 qst values found for other important MOFs34-38 such as Mg2(dobdc) (Table S3 of 

the Supporting Information).39-41 

Apart from its adsorption capacities and enthalpies, an adsorbent must be evaluated towards 

the diffusion of most relevant gas-mixture components. The reciprocal diffusion time constant (Dc rc
-

2),42 for CO2 and N2 were then evaluated by means of diluted breakthrough and pulse chromatography 

experiments by considering the 298-393 K temperature range, relevant for post-combustion CO2 

capture (see Section S3 of the Supporting Information). Along the reciprocal diffusion time constants 

(Dc rc-2), the dependence over temperature of the Henry’s law constants (KH) for N2 and CO2 was 

monitored. KH of each adsorbent–adsorbate pair is strictly linked to the adsorption free energy. Figure 

1c shows the diluted breakthrough curves for CO2 (0.5 % CO2 in He; see Section S3 of the Supporting 

Information for experimental details) on UTSA-16 at four different temperatures (298, 333, 363 and 

393 K). At the same temperatures used for CO2, chromatographic experiments were done in order to 

test the response to pulses of pure N2 on UTSA-16. In this case, three different flow were considered 

at each temperature. Figure 1d shows the comparison between simulated and experimental pulses of 

N2 at 333 K.  

The reciprocal diffusion time constants are reported in Table S11 of the Supporting 

Information. Interestingly a value of 0.015 s-1 was obtained at 333 K for CO2 indicating a fast 

diffusion of CO2 in the UTSA-16 crystals: for comparison, this value is about two orders of magnitude 

higher than the value of 0.00044 s-1 at 323 K reported for the reference material 13X.42 The Dc rc
-2 

values obtained for N2 are two orders of magnitude higher than those obtained for CO2 because of 

the lower affinity of UTSA-16 for N2. Accordingly, the comparison between the dimensionless Henry 

constants KH confirms the strong affinity of UTSA-16 towards CO2 with respect to N2; as indicated 

in Figure S9 of the Supporting Information, the KH relative to CO2 was more than one order of 

magnitude higher than for N2. The N2 KH values are almost halved going from 298 to 393 K, whereas 

they decreases of an order of magnitude for CO2 in the same temperature range. 
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From the isotherms of Figure S5a and Figure S5b of the Supporting Information, the working 

capacity of UTSA-16 were evaluated for TSA and PSA processes. This figure of merit is defined as 

the amount of CO2 captured for a complete adsorption/desorption cycle.9, 32 For a TSA process, the 

CO2 working capacity is reported in Table S6. The conditions at which the TSA working capacities 

were calculated are in line with the one of a post-combustion process, i.e. adsorption at CO2 partial 

pressure of 0.15 bar and 313 K and desorption at 1 bar and 393 K. 

The TSA working capacity in UTSA-16 were compared to benchmark materials such as Mg2(dobdc), 

MOF-177 and NaX zeolite. The data shown in Table S6 illustrates how the UTSA-16 working 

capacity (0.62 mol kg-1) is similar to the one of NaX zeolite (0.89 mol kg-1) and it is definitely better 

than MOF-1779.For what concerns Mg2(dobdc), this MOF has a working capacity 67% higher than 

the one of UTSA-16. The supremacy of Mg2(dobdc) with respect to UTSA-16 in a TSA process, 

derives from the higher interaction energy towards CO2 (47 vs. 37 kJ mol-1)39 and to its higher 

Langmuir surface area (2060 vs. 904 m2 g-1).27, 43 However, both Mg2(dobdc)24 and NaX44-46 are 

highly hydrophilic materials. The UTSA-16 working capacity was evaluated also for a PSA process, 

as explained in the Section S2.3 of the Supporting Information. A direct comparison was done with 

Mg2(dobdc) at 313 and 333 K. In this case, as demonstrated by the values of Table S7 of the 

Supporting Information, UTSA-16 possesses a PSA working capacity only slightly lower than for 

Mg2(dobdc) MOF (-4% at 313 K and -29% at 333 K). The small difference in PSA working capacity 

between these two MOFs can be related to their different isotherm shapes at the studied temperatures. 

In fact, while Mg2(dobdc) has a higher total uptake than UTSA-16 (as shown in Table S7), the latter 

has a shallower isotherm at the initial step with respect to the former.11 

 

H2O adsorption in UTSA-16 

Water adsorption on UTSA-16 was measured at 328 K and it is reported in Figure 2a. This 

isotherm reassembles the typical trend of microporous materials.47 

In the experiment, a maximum relative water vapor pressure of 0.25 could be reached (due to 

instrumental limitations) which corresponds to an absolute pressure of 39 mbar. At this relative water 

vapor pressure, UTSA-16 was able to uptake 11 mol kg-1, that is slightly lower than what reported 

for Cu3(btc)2 in similar conditions (ca. 14 mol kg-1).34 Looking at the desorption branch (empty 

symbols in Figure 2a), we note the absence of any hysteresis loop: this indicates on one hand the 

structure stability of UTSA-16 upon contact with water and, more importantly, the complete removal 

of water from the material. The ability to efficiently desorb water vapor at a temperature of 328 K 

was not observed for any other MOFs having OMSs such as Mg2(dobdc)24 or Cu3(btc)2.
24, 34, 48 
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The isosteric heat of water on UTSA-16 was extrapolated from the isotherms at 328 and 342 

K (Figure S10, Supporting Information) and is plotted as a function of coverage in Figure 2b. In the 

range of water coverage from 0.08 to 6 mol kg-1, qst increases with increasing coverage, which occurs 

when the adsorbate-adsorbate (water-water) interaction is greater than the adsorbate-adsorbent 

interaction.49-51 When finally a complete monolayer is formed over the adsorbent surface, a maximum 

in the qst curve is obtained. For UTSA-16, the maximum qst for water molecules was 62 kJ mol-1. This 

value is lower than what found for water on Cu3(btc)2 (69.4 kJ mol-1)52 and on a CCUS benchmark 

MOF such as Mg-MOF-74 (80-73 kJ mol-1),53-54 explaining the lower activation temperature 

necessary for UTSA-16.21 The lower hydrophilicity of UTSA-16 with respect to Cu3(btc)2 is testified 

also by the corresponding Henry’s law constants (KH) relative to the interaction of water with the 

cations: for UTSA-16, KH was only 8.0 x 10-5 mol kg-1 Pa-1 at 328 K, much lower than KH for of 

Cu3(btc)2 (2.0 x 10-2 mol kg-1 Pa-1 at 323 K).34, 55 

 Complete water removal from UTSA-16 upon degassing was reported also at RT.27 In Figure 

2c, it can be appreciated the kinetics of water removal from UTSA-16 under N2 flow at RT. This 

propriety is unique among MOFs possessing OMSs,24, 34, 48, 56 at which water strongly bound lowering 

the adsorbent selectivity towards CO2
57

 and vanishing the beneficial effects of these active sites 

(unless a chemical reaction between the support and CO2 takes place).19 This fact would allow to 

regenerate the material at the same temperature adopted during the adsorption (≥ 313 K), minimizing 

the temperature swing between adsorption and desorption. For the implementation of these adsorbents 

in real CCUS applications, the advantages are evident. As a proof of concept, 40 mbar of H2O was 

dosed at 313 K on fully activated UTSA-16 in a microbalance. Two activation temperatures were 

tested: the material was degassed at 363 K and at 313 K until the pristine sample weight was 

recovered. At 313 K, the sample was fully regenerated upon degassing in less than 2 h (Figure S11, 

Supporting Information). After equilibration at 313 K, 100 mbar of CO2 were dosed on UTSA-16. 

Figure 2d shows the coincidence between the CO2 uptakes measured after the activation at 

363 K (violet line) and 313 K (light blue line); this indicates how the CO2 uptake in UTSA-16 does 

not depend on the treatment temperature. Nevertheless, it is evident from the comparison of Figure 

2c and Figure S11 that the time necessary to complete the activation is strongly dependent on 

temperature. In particular, at room temperature, about 24 h were necessary to remove 88% of the 

adsorbed water from the material, whereas 2 h were sufficient to complete the process at 313 K. The 

activation time is further reduced to 30 minutes at 363 K and to less than 10 minutes at 393 K. The 

regeneration time in UTSA-16 obtained at 393 K is comparable with the one of amine-MOF mmen-

Mg2(dobpdc),19 which is regenerated in 5 minutes, at 423 K. This result is significant, being alkil-
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amine-MOF considered benchmark adsorbents for the capture of CO2 in the presence of water. These 

temperatures (363 and 393 K) were chosen to speed up the regeneration step in the cycling 

measurements reported in the following section. 

 

 

Figure 2  (a) H2O adsorption isotherm on UTSA-16 at 328 K. Adsorption (★) and desorption (☆) branches are 

reported. The experimental data were acquired only up to 25% of water saturation, due to instrumental limitations. The 

black line is the result of the fitting through a virial-type function of the adsorption data (see Section S5 of the Supporting 

Information). (b) Dependence of the water isosteric heat adsorption to increasing coverage (red line). These points were 

obtained by applying the procedure of Section S2.1 of the Supporting Information to the water isotherms recorded at 328 

and 342 K (Figure S10 of the Supporting Information). (c) Thermogravimetric analysis of UTSA-16 at 298 K under N2 

flow (dark cyan line). (d) Kinetics of CO2 adsorption cycling on UTSA-16 at 313 K for UTSA-16 activated overnight at 

363 K (violet lines) or at 313 K for 2 h after contact with 40 mbar of H2O (light blue line). A gas pressure of 100 mbar of 

CO2 was dosed on the material and, once reached the equilibrium, the system was degassed in dynamic vacuum to verify 

the reversibility of the process (p < 1 x 10-3 mbar). Up and down arrows mark the starting of the gas dosage and degassing, 

respectively. 
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IAST selectivity calculations 

The Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz31 has shown to be a 

reliable method to predict the selectivity of competitor gases that do not strongly interact between 

each other.35 In this work, IAST was used to estimate the multi-component isotherms of a CO2/N2 

mixture, and consequentially the CO2/N2 selectivity factors. 

 

 

Figure 3 IAST CO2/N2 selectivity factors for a CO2: N2 binary gas mixture (♦) at 1 bar and 298 (black line), 333 

(light blue line) and 363 K (grey line) calculated from experimental single-component isotherms reported in Figure 1b 

for increasing CO2 partial pressure.  

 

Figure 3 reports the IAST selectivity factors of CO2/N2 gas mixture plotted against increasing 

CO2 partial pressure. Focusing the attention on the black curve estimated at 298 K, the UTSA-16 

IAST S factor relative to 15% CO2: 85% N2 is slightly lower than the one obtained at 296 K for the 

same material, as reported by Xiang et al. (187 vs. 314)26 where the IAST S factors were obtained 

from simulated single-component isotherms. From the same work of Xiang, it is interesting the 

matching in S factors between Mg2(dobdc) and UTSA-16 (180 vs. 187). This similarity can be 

attributed to the CO2 and N2 uptakes of UTSA-16 and Mg2(dobdc) at 0.15 and 0.85 bar, respectively. 

In fact, at those partial pressures, the higher N2 uptake in Mg2(dobdc) with respect to UTSA-16 (1.11 

vs. 0.16 mol kg-1 at 0.85 bar, Figure 1b and Figure S2a of the Supporting Information), compensate 

the higher CO2 uptake in the former with respect to the latter (6.41 vs. 2.53 mol kg-1 at 0.85 bar, and 

Figure 1b and Figure S2b of the Supporting Information).  

At 333 K (blue line), the UTSA-16 IAST S factor at 15% CO2 : 85% N2 decreases as expected, 

attesting to a value of 80. The use of IAST for the prediction of CO2 co-adsorption in the presence of 

water has been avoided in this work. In fact, as demonstrated for adsorbents with similar UTSA-16 
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properties, a model based on ideal behaviour – such as IAST – cannot properly reproduce the 

adsorption of CO2 in the presence of high water vapour concentrations.58  

Another way to calculate the selectivity is by approximating the adsorbed quantity of each 

component of the gas mixture by directly extrapolating it from the single components isotherms. 

Although approximated, this is a method often used in literature as an easy tool for the preliminary 

screening between different adsorbents. The CO2/N2 selectivities of UTSA-16 obtained by this 

method were reported in Table S5 of the Supporting Information in order to allow the comparison 

with some of the best adsorbents for CO2 capture such as Mg2(dobdc)9 and Cu3(btc)2
34, 36

 (Table S5 

and Figure S1 and S2 of the Supporting Information): since the comparison at 333 K is particularly 

significant for post-combustion processes we point out that, although the maximum CO2 volumetric 

capacity of UTSA-16 is lower than that of Mg2(dobdc) at 1 bar (4.5 vs. 6.1 mmol cm-3, at 333 K), the 

UTSA-16 CO2/N2 is comparable to the one of Mg2(dobdc)11 and significantly higher than for 

Cu3(btc)2.
11 

 

Stability experiments upon cycling in dry and wet conditions 

UTSA-16 stability after repeated contact with water vapour was tested at different adsorption 

temperatures (T in the 298-393 K range) by measuring the CO2 isotherm in the over-atmospheric 

pressure range (0-5 bar). After exposure to water at the T temperature (see Figure S12 of the 

Supporting Information) the MOF was regenerated at 363 K in vacuum and the CO2 isotherm was 

measured. The procedure was repeated at least twice for each temperature (Table S13, Supporting 

Information). Figure 4 illustrates the full set of gravimetric isotherms of CO2 collected at increasing 

temperatures, following the sequence reported in Section S5 of the Supporting Information. 
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Figure 4 Gravimetric isotherms on UTSA-16 ( > 5 bar) at 298 (●), 333 (▲), 363 (★) and 393 K (■) measured 

for CO2 before (black line, full symbols) and after (light blue line, empty symbols) contacting the MOF with 40 mbar of 

water vapour. These isotherms were collected on the same specimen following the sequence: adsCO2-degas-adsH2O-

degas-adsCO2. The CO2 gravimetric isotherm recorded at 298 K after the overall 11 cycles is reported with diamond 

scatters. Symbols refers to experimental data, continuous lines to the corresponding cubic spline fitting. 

 

The large set of gravimetric isotherms (values listed in Table S13 of the Supporting 

Information) showed similar behaviour if compared to the volumetric isotherms and illustrates nicely 

that UTSA-16 is able to uptake the same amount of CO2 after contact with water vapour at 

temperatures as high as 393 K (empty symbols, light blue lines). Only the isotherm at 298 K, collected 

at the end of the entire measurement session, showed a very modest loss (5%) in the CO2 capture at 

5 bar. The uptakes at 0.15 bar (the reference pressure of CO2 in post combustion emissions) were 

instead identical from the 1st to the 12th gravimetric isotherm. A very similar experiment reported for 

Cu3(btc)2 showed that, already a 298 K and 30% of RH, this MOF undergoes to a continuous loss in 

CO2 uptake.59 

UTSA-16 was tested for vacuum swing adsorption (VSA) by Khurana et al.60 and Rajagopalan 

et al.,61 without considering the effect of water. In our case, cycling experiments (up to 160 cycles) 

were performed in order to test UTSA-16 stability in a TSA process, in which the presence of water 

is contemplated. This target was achieved by exposing UTSA-16 to a wet CO2/N2 flow at 1 bar and 
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313 K, simulating the exhaust gas flow coming from a NG-fired power plant: 9.83% CO2, 88.46% 

N2, 1.71% H2O (see Table S14 and Figure S13 of the Supporting Information). A temperature of 393 

K was chosen for a faster desorption of CO2 in view of the 160 cycles planned for this experiment. 

By following the composition of the effluent gas over time and comparing the CO2 breakthrough 

curves obtained from different cycles it was possible to verify whether the material was able to capture 

CO2 in the presence of water vapour and to maintain its structure integrity. A similar experiment was 

also performed considering a dry 10% CO2 / 90% N2 flow, in order to quantify the drop in the CO2 

working capacity due to the presence of water. The results relative to the dry flow are reported in 

Section S6 of the Supporting Information. 

Results obtained for the 1st and the 160th cycle of the wet experiment are shown in Figure 5, and a 

scheme of the experimental setup (Scheme S1 of the Supporting Information) is reported in Section 

S6 of the Supporting Information. From Figure 5 it is clear how UTSA-16 maintains its CO2 capacity 

in the presence of water vapor, even after 160 cycles. A fortiori, similar results were obtained for the 

dry flow as shown in Figure S14 of the Supporting Information.  

 

 

Figure 5 UTSA-16 stability upon cycling as in a TSA process. Mass signals of CO2 (●, black), N2 (■) and of 

water (★, light blue) for the 1st (left) and the 160th cycle (right) of a breakthrough experiment considering a flow of 9.83% 

CO2, 88.46% N2, 1.71% H2O at 313 K. For a faster moisture removal from the material, the temperature used was 393 K. 

 

A multi-technique approach was used to test the UTSA-16 structural stability after cycling. 

The structure of UTSA-16 keeps its crystallinity still after cycling as demonstrated by the negligible 
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changes in XRD patterns (see Figure S15 of the Supporting Information), and the very modest loss 

in surface area (13%, Table S15 of the Supporting Information) can be compared to the native 

powder.27 These results were confirmed by HR-TEM (Figure S16 and S17 of the Supporting 

Information) that further demonstrated that the cycling processes did not damage the sample. 

The CO2 working capacities for UTSA-16 in wet conditions (0.94 ± 0.04 mol kg-1) are only 

slightly lower (–31 % in CO2 uptake) than the working capacity of 1.30 ± 0.02 mol kg-1 observed 

using dry gas feed (Figure S14 of the Supporting Information). Remy et al. performed a similar 

experiment for Mg2(dobdc) highlighting a loss in CO2 capture of 64 % when passing from dry to wet 

condition.56 This result is unique among materials in which the capture of CO2 is not regulated by a 

chemical reaction. Indeed, for MOFs functionalized with amines (e.g. mmen-Mg2(dobpdc) and 

IRMOF-74-III-CH2NH2),
19, 62 the uptake of CO2 does not change after water admittance in the gas 

flow. Nevertheless, the significantly lower isosteric heat of CO2 adsorption of UTSA-16 with respect 

to amine-MOFs (37 vs. 71 kJ mol-1),63 would lead to a significant reduction in the regeneration costs 

and in the heat management problems. 

 

Conclusions 

Our findings highlighted several important aspects related to UTSA-16 as CO2 adsorbent. In 

particular, the presence of water does not affect significantly the CO2 working capacity of this 

material when operating in post combustion conditions, even after prolonged cycling, as 

demonstrated experimentally. 

These properties come from the relatively mild affinity of UTSA-16 to water and to the high density 

of open metal sites, a favorable factor for the interaction with CO2.  

Such a high stability in the CO2 separation properties was previously reported only for amine-

functionalized MOFs. However, this class of MOFs possesses a high CO2 interaction energy, which 

leads to a high cost of the adsorbent regeneration and to problems connected with heat management. 

The lower CO2 interaction energy of UTSA-16 would allow to overcome the above-mentioned 

drawbacks typical of amine-functionalized MOFs, making UTSA-16 a competitive material for CO2 

separation not only at academic but also at technological level. 
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GRAPHICAL ABSTRACT 

 
UTSA-16 metal-organic framework showed applicability-level selectivity towards CO2 in real post-
combustion flue gas conditions. 
 


