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Abstract

The Armadillo C++ library provides programmers
with a high-level Matlab-like syntax for linear al-
gebra. Its design aims at providing a good balance
between speed and ease of use. It can be linked
with different back-ends, i.e. different LAPACK-
compliant libraries. In this work we present a novel
run-time support of Armadillo, which gracefully
extends mainstream implementation to enable dy-
namic back-end switching and multiple back-end
support. The extension is specifically designed
to not affect Armadillo class template prototypes,
thus to be easily interoperable with future evolu-
tions of the Armadillo library itself. The proposed
software stack is then tested for functionality and
performance against a kernel code extracted from
an industrial application.

1 Introduction

Numerical linear algebra operations play a key role
in a number of scientific and industrial applications,
spanning from computational fluid dynamics to
machine learning. Numerical operations need to be
executed as fast as possible in order to significantly
improve the overall performance of applications. In
this regard, hybrid multicore-GPU platforms (and
chips) can effectively support the computation den-
sity required by numerical routines even on off-the-
shelf platforms. Notwithstanding, the performance
tuning of parallel code for hybrid platforms is still

complicated and requires skills that are beyond ca-
pabilities of applicative domain experts. Ideally,
they require a platform-independent, textbook-like
API supported by a run-time exhibiting high effi-
ciency on wide range of problems and platforms.
These requirements (see Sec. 2 ), are the major
driving force of this work that is motivated by a
specific industrial use case provided by Noesis So-
lutions NV.

The area of parallel techniques and libraries for
linear algebra is mature, nevertheless, a review of
existing solutions revealed a number of shortcom-
ings present in the available tools that prevent their
wide adoption by domain experts. The perfor-
mance need crucially pushes library designers to-
ward specialisation for algorithms, which can be
pursued at design or configuration time or at the
run-time. In this latter case, the API fatally put
on weight (i.e. parameters) impairing usability.
This work aims to bridge these shortcomings using
widely-used libraries as building blocks (so-called
back-ends).

In the long term, we advocate a self-optimising,
high-level of abstraction library providing applica-
tions with dynamic and automatic selection of the
best back-end library for each operation on a given
platform. This requires 1) the capability to sup-
port multiple concurrent back-ends libraries (i.e.
the mechanisms), and 2) the capability to sched-
ule operations on the best subset of back-ends (i.e.
the policies). This work focus on the mechanisms,
whereas policies are beyond the scope of the present
work.
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The rest of this paper is organised as follows: Sec.
2 outlines the requirements that the presented soft-
ware stack is supposed to fulfil, Sec. 3 presents a de-
scription of similar existing tools, Sec. 4 describes
the main design principles adopted for building the
proposed software stack, Sec. 5 reports the exper-
imental evaluation on a (mock-up) of a real-world
industrial use case, and finally Sec. 6 outlines some
conclusions and some possible future works.

2 Use case and requirements

Noesis Solutions is a simulation innovation part-
ner to manufacturers in automotive, aerospace and
other engineering-intense industries. Specialised
in simulation Process Integration and numerical
Design Optimization (PIDO), its flagship software
Optimus leverages Noesis’ extensive experience in
optimization and system integration methodologies
to increase the efficiency of established engineer-
ing practices and processes. Noesis actively re-
searches a number of new technologies in the field
of process integration, capturing and improvement
of engineering knowledge within multidisciplinary
industrial processes, advanced methods for mod-
elling and optimization of the behaviour of large
engineering systems in the virtual prototype stage,
parallelization of computational effort, and assess-
ment of quality and robustness of the final product.

Optimus makes heavy use of linear algebra rou-
tines within its kernel code: a significant exam-
ple is the calculation of so-called Response Surface
Models (RSMs), which are used to perform inter-
polation and approximation of discrete datasets.
One of the most time consuming operations re-
quired by the RSMs computation is the inversion
of a rank-deficient matrix in order to solve a lin-
ear system: this can be achieved by calculating
the Moore-Penrose pseudoinverse using the Singu-
lar Value Decomposition (SVD) [8], which repre-
sents the original use case for the library hereby
introduced. As an extension of this use case we
also considered the scenario involving the calcula-
tion of multiple response surfaces on slightly differ-
ent datasets, that require a number of independent
linear systems to be solved with the technique men-
tioned above.

Beside, this work is intended to be applied as
widely as possible to the Optimus code, hence the

software stack is expected to be general purpose
enough and to fulfil performance and usability re-
quirements that are discussed below.

Performance

The goal is to provide state-of-the-art performance
for the largest possible catalogue of linear alge-
bra operation. To achieve that, the framework is
expected to exploit multicore CPUs and different
GPU accelerators. It is fundamental to provide
high performance on advanced linear algebra op-
erations like linear system solving and matrix de-
compositions.

Usability

As stated above, the idea behind this work is to
provide applicative domain experts with a simple,
textbook-like, interface. In order to hide the com-
plexity of the heterogeneous hardware to the de-
veloper, it is fundamental that the code requires
no modifications when running on the CPU or on
the GPU, while also being able to move the execu-
tion between the host and the device at run-time.
Moreover, such interface should be easily incorpo-
rated into existing C++ code.

We will show that the proposed library is fully
compliant to these requirements where similar tools
fall short. The use case introduced above will be
used to validate this approach by means of a pro-
duction code mock-up that will be described in de-
tail in Sec. 5.

3 Related Work

Given the large spectrum of applications for dense
linear algebra, it is not surprising that there are
several tools for different languages that allow to
perform numerical linear algebra calculations. In
this section we will discuss such tools and how they
compare to the library presented in this work. Since
our main focus is towards high performance com-
putations, we will consider only those libraries that
are clearly intended for high performance purposes,
moreover the comparison will be made with other
C/C++ libraries, since it is the language of choice
for the use case envisioned by the authors, but the
advantages of the approach presented here holds
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also when considering libraries for other languages
like NumPy [16], Theano [4] or Torch [6].

We identify two main ways to categorise dense
linear algebra libraries: 1) by the kind of opera-
tions they implement, 2) by the level of abstrac-
tion that they provide. Table 1 gives an overview
of several related tools classified according to these
two criteria. For the first aspect, we mainly dis-
tinguish between basic and advanced linear algebra
libraries for which we set as reference the the origi-
nal BLAS library [7], and the LAPACK library [3],
respectively. These two libraries are the de-facto
standard for dense linear algebra and they present
a number of implementations by different vendors
which basically share the same API (Intel MKL,
OpenBLAS [17]).

For the second aspect, i.e. the level of abstrac-
tion, all these libraries expose a very low-level in-
terface that is not suitable to be used without a
specific expertise. For this reason, a number of
wrappers have been developed to provide program-
mers with a simplest API to such functionalities;
the most popular are summarised in the bottom
row of Table 1. These tools usually provide a much
larger catalogue of functions than those we consid-
ered here as basic and advanced Linear Algebra,
like sorting, slicing, cumulative summing on arrays
and more [13], which are outside the scope of this
work. Notice that, some of the libraries reported
in Table 1 target only the CPU (BLAS, open-
BLAS, Intel MKL, Armadillo, Eigen, LAPACK),
some others instead make use of CUDA/OpenCL
GPUs (CuBLAS, Magma, cuSolver, CULA Dense,
clBLAS); among them only ViennaCL, ArrayFire
and Lama can use different back-end libraries to
target both CPU and GPU.

The present work is aimed to fill two main gaps in
the landscape of high-performance linear algebra li-
braries: apart from ArrayFire (for which this func-
tionality has been published during the late phase
of development of this work), none of the presented
tools is able to switch the computing back-end at
run-time, since they usually need a custom instal-
lation mapping to specific libraries or at least a re-
compilation of the user code; moreover other high-
level tools claiming to be able to exploit GPU capa-
bilities, including those mentioned above for other
languages, usually refer only to BLAS functional-
ities, whereas the LAPACK tier is computed on
the CPU only. Beside this, none of the mentioned

tools (apart from ArrayFire), can guarantee that
the code is totally portable from one architecture
to another with no modifications of the application
source code.

Among all libraries mentioned in Table 1, Ar-
madillo, OpenBLAS, Magma and ArrayFire are
particularly relevant for this work. For this we re-
cap their main features.

3.1 Armadillo

Armadillo is a C++ template library for linear al-
gebra with an high-level API, which is deliberately
similar to Matlab [13]. It provides a large number of
functions to manipulate custom objects represent-
ing vectors, matrices and cubes (namely 3rd-order
tensors); among these functions it also provides a
wrapper to an underlying BLAS and LAPACK im-
plementation (hereafter we will refer to such imple-
mentation as the back-end). It employs a number
of internal layers in order to translate simple func-
tion calls like

Solve(A,b); //Solves the linear system Ax=b

to more complex but equivalent syntax of LAPACK

dgesv( &n, &nrhs, a, &lda, ipiv, b, &ldb, &info );

Armadillo is designed to support whatever li-
brary providing an API compliant with BLAS and
LAPACK, such as MKL or OpenBLAS. It is also
able to perform a few of the operations included
in the back-end with its own implementation, but
they are not designed for high performance.
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Figure 1: Comparison between Armadillo (with Magma back-
end) and ArrayFire (with CuSolver back-end) for computing
a Singular Value Decomposition. Experiments are run on a
2×Xeon E5-2660v0@2.20GHz + Nvidia Tesla M2090 platform.
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Table 1: Classification of Linear Algebra libraries

Basic Linear Algebra Advanced Linear Algebra

Low-level in-
terface

BLAS[7], OpenBLAS[17], Intel
MKL, clBLAS, Nvidia cuBLAS

LAPACK[3], Plasma[1], cuSolver,
Magma[15], OpenBLAS[17], Intel
MKL, CULA Dense[10]

High-level
interface

Armadillo[13], Eigen[9], Lama[11],
viennaCL[14], ArrayFire[18]

Armadillo[13], Eigen[9], Lama[11],
viennaCL[14], ArrayFire[18]

3.2 OpenBLAS

OpenBLAS is an open-source implementation of
BLAS which, given the benchmarks provided by
the authors, can be compared to the best-in-class
proprietary libraries like Intel MKL [17]. The stan-
dard distribution of OpenBLAS also provides LA-
PACK functions, some of which are further opti-
mised by the authors. The interface is compatible
with the standard distribution of BLAS/LAPACK.

3.3 Magma

The development of Magma is aimed to replace
LAPACK on heterogeneous architectures, with the
typical Multicore+GPU platform as a paradig-
matic example [1, 15]. The Magma library em-
ploys Directed Acyclic Graphs (DAGs) in order to
dispatch the different tasks related to a given com-
putation to different cores/devices, taking data de-
pendencies into account and aiming for the best
exploitation of the available hardware.

The motivation that drove our interest to Magma
is twofold: it does not require the user to take
care of data transfer between the host and the de-
vice and its API is only marginally different from
the standard LAPACK interface. These two fea-
tures make Magma a good candidate for a drop-
in replacement of LAPACK on heterogeneous plat-
forms.

3.4 ArrayFire

As we stated before, the two main gaps in the sce-
nario of linear algebra tools can in principle be
filled by ArrayFire [18], but a number of reasons led
this work to a different solution: fist of all, Array-
Fire provides different back-ends (CPU, CUDA and
OpenCL), but it did not support run-time switch-
ing between back-ends until the late stage of devel-
opment of this work, preventing it to fulfil the main

goal of this work.
Moreover, it shows very poor performance when
executing a key use-case related operation like the
Singular Value Decomposition: Fig. 1 shows the
relative performance of the ArrayFire CUDA back-
end (which uses Nvidia CuSolver) and the pre-
sented library that relies on Magma as a computing
back-end for CUDA.

4 Components and architec-
ture

Armadillo	Template	API

CPUCUDA	GPU

Armadillo	LAPACK	interface Armadillo	BLAS	
interface

Magma OpenBLAS

Magma	
BLAS cuBLAS OpenBLAS

nvBLAS

Domain	Logic(C++)

Figure 2: Proposed software stack. Blue arrows show the route
of function calls.

As discussed in the previous section, none of
the available tools completely fit the requirements,
therefore we propose a new software architecture
sketched in Fig. 2. The software stack proposed
attempts to reuse as much as possible existing li-
braries as building blocks. This specifically tar-
gets one of the declared objectives, i.e. to minimise
the code to be maintained. The API exposed to
the user is the Armadillo API which is particularly
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simple and user-friendly. The software stack, uses
a number of the libreries discussed in Section 3,
inter-alia Magma and OpenBLAS.

Armadillo answers to the need of a textbook-like
API for linear algebra operations, this feature cuts
down the development time and the learning curve
for the application domain expert who needs to im-
plement a complex business logic. Moreover, its
large user-base and active development, represent a
valuable aspect when comparing Armadillo to other
similar tools. Armadillo relies on external libraries
for implementing LAPACK and BLAS operations,
for which it exposes an interface that can be easily
isolated in the code. This work focused on modi-
fying such high-level interface so that Armadillo is
able to select which LAPACK implementation will
be used to perform the operations defined by the
user within the front-end. In a nutshell, we affected
the way Armadillo translates the function names
used internally to the conventional LAPACK nam-
ing. The overall impact of such extension is lim-
ited to three files and a few hundred lines of code,
allowing easy portability to future versions of the
library.

The choice of using a standard BLAS/LAPACK
distribution for the CPU back-end is not particu-
larly critical since there are no other features than
performance that can guide the selection. Intel
MKL is commonly regarded as the reference imple-
mentation for what concern computational speed
on Intel CPUs, while OpenBLAS comes very close
without the burden of a commercial license, even-
tually becoming the library of choice for this work.
It is worth to remark that, for what concerns this
back-end, it is trivial to replace OpenBLAS with
MKL or any other library implementation. This
can be done simply linking the selected library at
compile time when building the new software stack.

For what concern the heterogeneous back-end,
Magma presents a distinctive aspect that makes
it standing out: it does not require that the in-
put matrix is already on the GPU when calling a
function, i.e. it automatically manage data trans-
fer. Such feature is fundamental in order to provide
code portability between CPU and GPU, since all
the host/device memory management operations
are hidden behind a LAPACK-like interface. Fur-
thermore, Magma does not require the user to know
what is going on behind the scenes between the
host and the device. The fact that Magma is Open

Source software make it a better choice when com-
pared to libraries that in principle would allow the
same approach, like for example CULA Dense [10],
which is a commercial tool targeted to custom and
cluster installations.

4.1 Support for run-time back-end
switching

Armadillo makes use of a number of internal lay-
ers in order to map the high-level user call to the
LAPACK syntax for a given operation. The last
step of this translation process points to functions
declared as

arma_<LAPACK name>( ... )

these names corresponds 1-to-1 to the naming con-
vention of the underlying LAPACK implementa-
tion (e.g. capitalised, w/o trailing underscore).
This mapping has been modified so that it is 1-
to-N and allows multiple back-ends to coexist.
From the implementation point of view, the
arma <> names has been mapped to multiple C++
11 function pointers, so that the final translation
process can be resumed in the following way (let us
consider dgesdd as target operation):

arma dgesdd(...)

↓
backend dgesdd[backend index](...)

↓
dgesdd, magma dgesdd︸ ︷︷ ︸

array of C++ 11 function pointers

With this structure it is possible to dynamically
select either the OpenBLAS back-end (dgesdd) or
the Magma back-end (magma dgesdd) by setting
the array subscript to the right value. However,
since the default back-end is managed by way of
global variable (in thread-local storage), a tiny ex-
tension of the Armadillo API is needed to manage
the different back-ends. Listing 1 shows the typ-
ical usage of the extended armadillo library. The
usage of a global variable to percolate information
related to a function call (i.e. Armadillo opera-
tion) has been carefully weighted during the de-
sign stage. Using an additional function parameter
to pass this information down to the back-end call
were also possible, but this requires to rewrite a
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1 // Check if supported CUDA driver and device are present
2 arma::arma_magma_init();
3 // Set the Magma back-end and device at run-time
4 arma::arma_set_backend(1);
5 arma::arma_set_device(0);
6 // Domain logic ...
7 // Finalises Magma back-end for a clean exit
8 arma::magma_finalize();

Listing 1: Typical usage of the extended Armadillo library.

large part of Armadillo run-time support and this
is against design principles declared in Sec. 2. The
presented solution does not affect Armadillo API
and requires a very localised patch to Armadillo
implementation, which can be easily propagated to
the next Armadillo releases. Notice that, the pre-
sented solution should be looked in the perspective
of future work where the selection of target back-
end will be moved to a fully internal self-optimising
mechanism, thus no longer exposed to the program-
mer. Also, this approach makes it easy adding more
LAPACK back-ends, e.g. Plasma [1] and clMagma
[5], by simply extending the array to more elements
(i.e. function pointers).

BLAS support

The main focus of this work is directed towards
the LAPACK class of functions, but a good im-
plementation of the BLAS layer is a fundamental
building block of a comprehensive linear algebra li-
brary. We separately consider the BLAS calls made
within a higher level LAPACK function and the
direct BLAS calls made from Armadillo. In the
former case, each LAPACK back-end refers to a
specific implementation that is internally defined,
whereas the latter case is more complex. A BLAS
call performed by Armadillo uses a standard BLAS
syntax, which would normally map to OpenBLAS,
in this case we leverage the nvBLAS library [12]
provided by NVidia in order to offload the opera-
tion to a GPU when available. Figure 2 shows the
relationship between the different libraries included
in the framework, including the BLAS layer.

A more sophisticated approach would require the
direct usage of the cuBLAS-XT API [12] within
the Armadillo BLAS interface, avoiding the need
of linking an external library and giving more con-
trol to the framework on where to perform a given
BLAS operation; indeed such further implementa-
tion is planned as a future work.

4.2 Multiple concurrent back-end
support

The proposed use case involves the possibility to
perform a number of identical LAPACK operations
working on independent data issued from within a
loop. This is a natural setting for further exploiting
(either data or stream) parallelism on loop itera-
tions. This scenario requires to further ensure cor-
rectness when concurrently running multiple inde-
pendent back-ends within the same process, called
compartmentalisation. In this sense, there is the
need to carefully study the congruence with com-
partmentalisation of original Armadillo code (prop-
erty 1) and the presented back-end switching mech-
anism (property 2).

Concerning compartmentalisation, we observed
that both Magma (from v2.0) and OpenBLAS
can preserve correctness when concurrent calls are
made within the same process, but this requires
to disable their internal multithreading parallelism.
This can be achieved by calling specific functions
we exposed within our framework.
The same does not hold for nvBLAS, which is then
excluded when testing this framework in a mul-
tithreaded fashion, hence direct BLAS calls here
are handled by OpenBLAS only. This issue should
be addressed with careful integration of the above
mentioned cuBLAS-XT. As we shall see in Sec. 5,
in the tested cases, the concurrent exploitation of
multiple single threaded back-ends is faster than
sequential execution of multithreaded back-ends.

For the property 1, we noticed that Armadillo is
congruent to compartmentalisation since does not
break correctness of the BLAS/LAPACK libraries.
The correctness of the property 2 derives from the
previous considerations and by implementation de-
sign: we perform a privatisation of the global vari-
able used to switch between different back-ends by
means of thread-local storage. It is worth noting
that, since only concurrently executing operation
needs to be compartmentalised, the run-time struc-
ture can be easily moved from one thread per call
proposed here, to a master-worker structure over
a workpool of threads. In the future work, we
planned to use the master thread to implement self-
optimising policies.

In this work we implemented the one thread per
call policy by way of the C++11 language features
std::async and std::future, which can guaran-
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(a) 2×Xeon E5-2660v0@2.20GHz + Nvidia Tesla M2090.
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(b) Xeon E5-2650v2@2.60GHz + Nvidia Tesla K40.
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(c) Xeon E5-1650v3@3.50GHz + Nvidia Quadro K620, TCC mode enabled.

Figure 3: Solve Ax = b with dgesdd. Performance comparison between OpenBLAS and Magma back-ends.

tee that each asynchronous call lives in a different
thread. The next section presents a scenario where
the usage of multiple concurrent back-ends brings
a significant performance improvement.

5 Experimental validation

The experimental evaluation is aimed to assess that
1) a single back-end is not always better in perfor-
mance than the others; 2) multiple back-ends may
squeeze more horsepower than a single back-end
on the same heterogeneous platform. In this latter
respect, the scalability of the approach is also an
interesting aspect. A comprehensive performance
comparison among different back-end libraries is
not really needed to fix OpenBLAS and Magma as
low-level libraries to target CPU and GPU, respec-
tively. They are widely considered state-of-the-art
library under performance viewpoint and are com-
pliant to the requirements stated in Sec. 2. For
the sake of exemplification, in Fig. 1 Magma and
NVidia’s CuSolver are compared on SVD, which is

the most expressed operation in Noesis’ use case.

5.1 Dynamic back-end support:
evaluation

Listing 2 shows a relevant benchmark for what con-
cern black-box models interpolation within Opti-
mus, since it represents more than the 99% of com-
puting time for two of the response surface models
included in Optimus. Calculations are carried out
using double precision values. Timing considers

1 arma::arma_set_backend(backend);
2 // fill coefficients and constant terms to random

doubles
3 arma::mat A = arma::randu<arma::mat>(n,n);
4 arma::vec b = arma::randu<arma::vec>(n);
5 // declare result vector
6 arma::vec results = arma::zeros<arma::vec>(n);
7 // solve Ax=b with pseudoinverse
8 results.col(i) = arma::pinv(A) * b.col(i);

Listing 2: Mock-up of the industrial use-case code: it
represents a section of a single-output interpolating model.

7



1 arma::vec lin_solve(const arma::mat &A, const arma::vec &
b, const int backend=0, const int device=0) {

2 arma::arma_set_backend(backend);
3 arma::arma_set_device(device);
4 arma::vec x = arma::pinv(A) * b;
5 return x;
6 }
7

8 int main(int argc, char *argv[]) {
9 // fill coefficient matrix with random doubles

10 arma::mat A = arma::randu<arma::mat>(n,n);
11 // Declare constant terms and results array of vectors
12 arma::mat b = arma::randu<arma::mat>(n,nDatasets);
13 std::vector<std::future<arma::vec>> results(nDatasets);
14 // solve Ax=b nDatasets times, for different b vectors
15 for (int i = 0; i < nDatasets; i++){
16 // Naive round robin sets the back-end and the device
17 // A is slightly modified each iteration
18 // ...
19 // Solve Ax=b asynchronously
20 results[i] = std::async( std::launch::async, lin_solve

, A, b.col(i), backend, device );
21 }
22 // gather results
23 for(int i = 0; i < nDatasets; i++) results[i].get();
24 }

Listing 3: Mock-up of the industrial use-case code: represents
the calculation of multiple interpolating model. Each loop
iteration involves an independent computation, hence parallel
asynchronous calls are employed.

only line 8 of Listing 2, the LAPACK back-end is
used to perform arma::pinv(A), which is based on
the divide-and-conquer SVD (dgesdd). Notice that
line 2 selects at run-time which back-end should
be used to perform the calculation, OpenBLAS or
Magma. Figures 3a, 3b and 3c compare compu-
tation time for the two supported back-ends. The
vertical line indicates the break-even point for the
Magma back-end.
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Figure 4: Compute Cholesky decomposition of symmetric posi-
tive definite square matrix using dpotrf. Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz + Nvidia Tesla K40

Presented results show that there is no best back-
end for all conditions: Figures 3a and 3b show how
the relative performance of the two back-ends de-

pend on both the size of the matrix to be com-
puted and the specific hardware configuration. The
threshold that identifies the break-even point for
Magma and OpenBLAS moves accordingly. Figure
3c presents the extreme case where the GPU is very
low-end when compared to the CPU. For this case,
the hybrid Magma back-end is disadvantageous for
any size of the matrix.

As further test case for this work, we present the
results achieved for the Cholesky decomposition of
a symmetric positive definite matrix. Such matrix
factorization is used as a building block for another
Response Surface Modelling technique, the scope of
which is strictly related to the main use case. As
figure 4 shows, the results achieved follow the same
pattern as the previous case, but the break-even
threshold for Magma is much different due to the
different kernels involved in the computation.

5.2 Concurrent back-end support:
evaluation

While in Listing 2 the calculation of the Moore-
Penrose Pseudoinverse is carried out only once, in
a real-life applications we possibly would like to
calculate an interpolating model more than once
on slightly different datasets (i.e. cross-validation
tasks). In this sense, it is worth to probe the effi-
ciency of implementing an addition level of paral-
lelism in the code. Listing 3 presents a variation
of the previous use case, where the matrix A and
the constant terms are different for each iteration of
the for loop; in this code we implemented the tech-
nique introduced in Sec. 4.2 in order to perform
each loop iteration on a different back-end/device.

The specific test environment was equipped with
2 identical CUDA devices, hence we actually iden-
tified three computing back-ends: OpenBLAS,
Magma on device 0 and Magma on device 1. To
feed the different devices, we dispatched each it-
eration of the loop by using a naive round robin
strategy, eventually obtaining a number of concur-
rent activities equal to the number of iterations. In
this context, it is not possible to speed up the cal-
culation of a single iteration of the loop, but we can
measure the weak scaling of this implementation as
the overall performance when computing multiple
models with more working elements.

Even if we associate a specific device to the
Magma back-end, the ratio of the whole opera-
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(a) 1000x1000 matrix.
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(b) 2500x2500 matrix.

Figure 5: Computing multiple interpolating model (see Listing 3) with different and multiple back-ends: OpenBlas (OBLAS)
and Magma are tested in both MultiThreading (-MT) and SingleThreaded (-ST) versions. Experiments are run on a 2×Xeon
E5-2660v0@2.20GHz + 2×Nvidia Tesla M2090 platform.

tion that is actually performed on the GPU de-
pends on the internal implementation of Magma,
in this sense the degree of concurrency that can
be achieved it is not bound to the number of de-
vices and back-ends, but to the use of the resources
that is made by the implementation of the Magma
library for the specific operation. Modelling such
effects by means of a theoretical study can be an
interesting subject for a future work. In this case,
for correctness reasons, each back-end works in sin-
gle threaded mode; for this, and given the pre-
vious considerations, there is still room for satu-
rating the computational resources beyond using
the three back-ends concurrently, indeed figure 5a
shows the clear advantage of such approach com-
pared to the sequential computation with the dif-
ferent back-ends in terms of weak scaling.

6 Conclusions

In this work we presented the design of a novel
extension of Armadillo, a high-level linear algebra
library, which is able to support multiple back-ends
with both their dynamic switching and their par-
allel execution. This extension happen by way of
a very careful design aiming to maximise the likely
to interoperate with the (independent) evolution
of the Armadillo library and LAPACK-compliant
back-end libraries. Specifically, the design of the
software stack is compliant with the requirements
presented in Sec. 2. The presented prototype,
which is under extensive industrial testing within
Noesis laboratories, it makes it possible to both

1) achieve a significant performance improvement
with respect to previous CPU implementation and
2) to significantly reduce the porting time of the
domain logic onto heterogenous platforms.

Experimental evaluation demonstrated that, for
the presented use case, there is no such thing
like a single best back-end. The relative speed
of each back-end depends on both the hardware
configuration and the matrix size. For this, dy-
namic back-end switching is a truly enabling fea-
ture for the optimisation of this class of computa-
tions. This will require to implement a effective
data-dependent scheduling policy, which is a topic
for future works. Thanks to compartmentalisation,
multiple instances of one or more back-ends can be
used in parallel with greater efficiency than those
provided by multithreaded versions of all of them.
Still, the weak scaling is currently moderate, es-
pecially when targeting multiples GPUs, which is
again a topic for future investigations.

6.1 Future development

The presented implementation leaves room for a
number of improvements that is worth investigat-
ing. From the viewpoint of the industrial appli-
cation, the main concern is to extend the support
for multiple hardware architecture, namely to sup-
port GPUs from different vendors; this is expected
to be achieved via the use of clMagma [5], but its
early development stage prevented us from making
a working implementation. Whether a LAPACK
replacement supporting OpenCL would be avail-
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able in the future, the integration in the presented
library would be straightforward.

From performance viewpoint a number of is-
sues are still to be refined: 1) testing other state-
of-the-art implementations of LAPACK, such as
PLASMA [1]; 2) study how to guess the most effec-
tive back-end for a given 〈hardware configuration,
operation, problem size〉 in order to define effective
scheduling policies; 3) study optimal back-end par-
allelism degree, i.e. the number of the back-end
instances to be run at the same time to saturate
computing resources without polluting the memory
hierarchy. This two latter points turn out into the
need of designing a high-level mechanism to offload
asynchronous calls onto a workpool of back-ends
with a programmable scheduling policy, as for ex-
ample implemented in the Fastflow framework [2].
Also, it is possible to rethink the way direct BLAS
calls are handled by Armadillo. In this respect the
implementation of cuBLAS-XT [12] directly within
the Armadillo BLAS interface can be useful. More-
over, it can be evisioned a back-end system also in
this case, with the implementation of an OpenCL
BLAS library.
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