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a b s t r a c t

Let X be a separable Banach space and Q be a coanalytic subset of XN
× X . We prove that

the set of sequences (ei)i∈N in X which are weakly convergent to some e ∈ X and Q ((ei)i∈N, e)
is a coanalytic subset of XN. The proof applies methods of effective descriptive set theory
to Banach space theory. Using Silver’s Theorem [J. Silver, Every analytic set is Ramsey, J.
Symbolic Logic 35 (1970) 60–64], this result leads to the following dichotomy theorem:
if X is a Banach space, (aij)i,j∈N is a regular method of summability and (ei)i∈N is a bounded
sequence in X , then there exists a subsequence (ei)i∈L such that either (I) there exists e ∈ X
such that every subsequence (ei)i∈H of (ei)i∈L is weakly summable w.r.t. (aij)i,j∈N to e and
Q ((ei)i∈H , e); or (II) for every subsequence (ei)i∈H of (ei)i∈L and every e ∈ X with Q ((ei)i∈H , e)
the sequence (ei)i∈H is not weakly summable to e w.r.t. (aij)i,j∈N. This is a version for weak
convergence of an Erdös–Magidor result, see [P. Erdös, M. Magidor, A note on Regular
Methods of Summability, Proc. Amer. Math. Soc. 59 (2) (1976) 232–234]. Both theorems
obtain some considerable generalizations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and results

The aim of this paper is to exhibit some applications of the so-called effective descriptive set theory into Banach space
theory. The methods of effective descriptive set theory have already been used in analysis by Debs (see [1]) for instance;
however this kind of approach is not used very often.
Let us begin with some comments on notation. If X and Y are Banach spaces we denote by L(X, Y ) the set of all linear

and bounded operators from X to Y . It is well known that L(X, Y )with the operator norm is a Banach space. If X is a Banach
space and A is a subset of X we let spanA be the subspace which is generated from A. By spanA we mean the closure of
spanA in X . We assume that the set of natural numbers N starts with 0. Recall that a topological spaceX is called Polish iff
it is separable and metrizable by some metric d such that (X, d) is complete. If X is a metric space we define XN to be the
product X ×X ×X ×· · · with the usual product topology. It is well known that ifX is Polish then so isXN. If K is a compact
metric space we denote by C(K) the set of continuous real functions defined on K . We think of C(K) with the supremum
norm ‖f ‖∞ = sup{|f (x)| / x ∈ K}. It is well known that (C(K), ‖.‖∞) is a Polish space. We will always think of C(K) with
this norm without mentioning it explicitly. The first basic result of this paper is the following.

Theorem 1.1. Let X be a separable Banach space and let Q be a coanalytic subset of XN
× X. Then the set

PQ = {(yi)i∈N ∈ XN / (yi)i∈N is weakly convergent to some y and Q ((yi)i∈N, y)}

is a coanalytic subset of XN.

I This paper is a part of the author’s Ph.D. Thesis, which will be submitted, when completed, to theMathematics Department of the University of Athens,
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The original statement of Theorem 1.1 was about the set of weakly convergent sequences without any additional
properties; i.e. Q = XN

× X . The author would like to express his gratitude to the referee for finding a simpler proof for this
case which does not use any effective arguments. Some special cases of the results of this paper can be proved classically, i.e.
with no effective arguments. However the effective method provides these results to their full extend and in a more direct
way.
Notice that if A is a coanalytic subset of X the corresponding set

{(yi)i∈N ∈ XN / (yi)i∈N is weakly convergent to some y ∈ A} is also coanalytic, as we can view A as a coanalytic subset of
XN
× X via ((xi)i∈N, x) 7→ x. We shall denote this set again by PA.
Theorem 1.1 can be extended into two different directions. Recall that if X is Banach space then the closed unit ball of

X∗ is defined to be the set BX∗ = {x∗ ∈ X∗ / ‖x∗‖ ≤ 1}. It is well known that if X is separable then BX∗ with the weak∗
topology is a compact metric space. The first idea is to think of any element y of a separable Banach space X as a function
defined on the compact metric space (BX∗ , w∗). The arguments for proving Theorem 1.1 can be used in order to prove the
following statement (∗). Let K be a compact metric space and let Q be a coanalytic subset of C(K)N × C(K). Then the set
PQ = {(fi)i∈N ∈ C(K)N / there exists f ∈ C(K) s.t. fi

pw
→ f and Q ((fi)i∈N, f )} is coanalytic.

Recall that a sequence (fi)i∈N in the separable Banach space C([0, 1]) isweakly convergent exactlywhen (fi)i∈N is bounded
and pointwise convergent to some continuous function. Thus statement (∗) is an extension of Theorem 1.1 in the sense that
the sequence (fi)i∈N need not be bounded. Nevertheless this obtains some interesting examples.
Examples 1.2. The following sets are coanalytic . To see why the corresponding sets Q are coanalytic refer to [7].
(1) Let P be the set of sequences (fi)i∈N in C([0, 1])which are differentiable, pointwise convergent to a differentiable f and
furthermore f ′i

pw
→ f ′. Then P is coanalytic.

The author is aware of a classic proof of the latter example. However a classic proof for the next example does not
seem to be known.

(2) Let π : C([0, 1])→ C([0, 1]) be a Borel measurable function. Then the set

P =
{
(fi)i∈N ∈ C([0, 1])N / (fi)i∈N is pointwise convergent to some f and(π(fi))i∈N is pw-convergent to π(f )

}
is coanalytic.
The second idea in order to extend Theorem 1.1 is the following. We view an element y of a separable Banach space X as

an operator in L(X∗,R); i.e. this time we drop the compactness and focus on the linearity. In this case the extension is not
so immediate since the space L(X∗,R) need not be Polish. We shall overcome this fact with some additional assumptions.
Definition 1.3. Let X be a Banach space, Y be a separable Banach space and B be a closed and separable subspace of L(X, Y ).
We say that the triple (X, Y , B) is a Polish system iff there exists a sequence (Dn)n∈N ⊆ B which is norm-dense in B and a
Polish topology T on BX such that the restriction Dn � BX : BX → Y is Borel measurable for all n ∈ N.
It is clear that if X is a separable Banach space then it is a Polish space. Since B is pre-assumed separable it follows that

the triple (X, Y , B) is a Polish system. Also notice that in the case where B = span{Ti /i ∈ N} it is enough to find a Polish
topology T such that every linear combination of Ti’s is a Borel measurable function.
We now give one more example of a Polish system. Assume that E is a separable Banach space. Then BE∗ with the weak∗

topology is a compact Polish space. Regard E as a subspace of E∗∗. Since every function x : (BE∗ , w∗)→ R : x(x∗) = x∗(x) is
continuous it follows that the triple (E∗,R, E) is a Polish system. Similarly if Y is an arbitrary separable Banach space and B
is a closed separable subspace of L(X, Y )which consists of (weak∗, ‖ ‖Y ) continuous functions from E∗ to Y then (E∗, Y , B)
is a Polish system.
Theorem 1.4. Let X and Y be Banach spaces with Y being separable. Also let B be a norm closed and separable subspace of L(X, Y )
and Q be a coanalytic subset of BN

× B. Assume that the triple (X, Y , B) is a Polish system. Then the set

PQ = {(Ti)i∈N ∈ BN / there exists T ∈ B s.t. Ti
pw
→ T and Q ((Ti)i∈N, T )}

is a coanalytic subset of BN.
It is clear now that Theorem 1.1 is a special case of Theorem 1.4. Theorem 1.1 was inspired by an attempt to get a similar

version of a result of Erdös and Magidor, (Theorem 1.6). Let us first recall some basic notions.
A double sequence (aij)i,j∈N of real numbers is called a regular method of summability iff whenever X is a Banach space

and (ei)i∈N is a sequence in X converging in norm to e ∈ X , then for all i ∈ N the series
∑
∞

j=0 aijej = yi is convergent and
the sequence (yi)i∈N is also norm convergent to e. An example of a regular method of summability is the Cesàro method:
(a0,j)j∈N = (1, 0, 0, 0, . . . , ), (a1,j)j∈N = (

1
2 ,
1
2 , 0, 0, . . . , ), (a2,j)j∈N = (

1
3 ,
1
3 ,
1
3 , 0, 0, . . . , ), etc.

Let (aij)i,j∈N be a regular method of summability and X be a Banach space. From Remark 3.1 one can see that if (ei)i∈N is a
bounded sequence in X then for all i ∈ N the series

∑
∞

j=0 aijej is convergent in X . Call a bounded sequence (ei)i∈N summable
to e ∈ X with respect to (aij)i,j∈N iff the sequence (yi)i∈N defined by yi =

∑
∞

j=0 aijej, for all i, is norm convergent to e. Also
say that a sequence (ei)i∈N in X is summable w.r.t. (aij)i,j∈N iff it is summable to some e ∈ X , w.r.t. (aij)i,j∈N. It comes straight
from the definition that norm convergent sequences are summable to the same limit. Also a sequence is summable w.r.t.
Cesàro method iff the sequence of the mean values is convergent. It is well known that the notion of summability is not
preserved under subsequences. Erdös and Magidor [4] established the following result. Let (aij)i,j∈N be a regular method of
summability and (ei)i∈N be a bounded sequence in a Banach space X . Then there exists a subsequence (eki)i∈N of (ei)i∈N such
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that: either (I) every subsequence of (eki)i∈N is summable w.r.t. (aij)i,j∈N and each being summed to the same limit; or (II) no
subsequence of (eki)i∈N is summable w.r.t. (aij)i,j∈N. We now give a version of summability for linear operators.
Definition 1.5. Let (aij)i,j∈N be a regularmethod of summability and letX, Y be Banach spaces. Also let B be a closed subspace
of L(X, Y ). A bounded sequence (Ti)i∈N in B is pointwise summable to T ∈ B w.r.t. (aij)i,j∈N iff the sequence (Fi)i∈N defined by
Fi =

∑
∞

j=0 aijTj for all i ∈ N, is pointwise convergent to T .
In the case where (X, Y , B) = (E∗,R, E) for some separable Banach space E, Ti = ei ∈ E for all i ∈ N and T = e ∈ E we

will say that the sequence (ei)i∈N is weakly summable to e instead of pointwise summable to e.
Theorem 1.6. Let X be a Banach space, (aij)i,j∈N be a regular method of summability, (ei)i∈N be a bounded sequence in X and let
Q ⊆ XN

× X be a coanalytic set. Then there exists a subsequence (ei)i∈L of (ei)i∈N such that:
(I) either there exists e ∈ X such that every subsequence (ei)i∈H of (ei)i∈L is weakly summable w.r.t. (aij)i,j∈N to e and
Q ((ei)i∈H , e); or

(II) for every subsequence (ei)i∈H of (ei)i∈L and every e ∈ X with Q ((ei)i∈H , e) the sequence (ei)i∈H is not weakly summable to e
w.r.t. (aij)i,j∈N.
In the case where Q = XN

× X Theorem 1.6 can be proved differently using the well-known Rosenthal’s l1 dichotomy
theorem: for every bounded sequence (ei)i∈N in X there exists a subsequence which is either weakly Cauchy or equivalent
to the unit basis of l1. To see this notice that (i) a weakly Cauchy sequence is weak∗-convergent in some x∗∗ ∈ X∗∗ and
that (ii) every sequence which is equivalent to the unit basis of l1 is not weakly summable w.r.t. (aij)i,j∈N. Also notice
that in the previous theorem we may assume that X is separable; for otherwise we may take the following subspace
X0 = span{ei /i ∈ N} instead of X .
Example 1.7. Consider the separable Banach space C([0, 1]). Then weak convergence is equivalent to pointwise
convergence of a bounded sequence. Put Q ((fn)n∈N, f ) iff the functions f and fn for all n ∈ N are continuously differentiable
and the sequence (f ′n)n∈N is pointwise-Cesàro summable to f ′. We now apply Theorem 1.6.
Let (fn)n∈N be a bounded sequence of differentiable functions in C([0, 1]). Then there exists a subsequence (fn)n∈H such

that: either (I) there exists a differentiable f such that for every L ⊆ H the sequences (fn)n∈L and (f ′n)n∈L are pointwise-Cesàro
summable to f and f ′ respectively; or (II) for every differentiable f and for every L ⊆ H if the sequence (fn)n∈L is pointwise-
Cesàro summable to f then the sequence (f ′n)n∈L is not pointwise-Cesàro summable to f

′. Notice now that we cannot apply
Rosenthal’s l1 dichotomy theorem to the sequence (f ′n)n∈N simply because it may fail to be bounded. Notice also that one
can pursue the dichotomy further by applying it to case (II) for the sequence (fn)n∈L and Q = XN

× X . However we will not
follow this direction.
Of course there is no point in stating an analogue version of Theorem 1.6 for sequences (fi)i∈N in C([0, 1]) since (fi)i∈N is

a priori bounded. However we may give an extension of Theorem 1.6 using linear operators.
Theorem 1.8. Let X and Y be Banach spaces with Y being separable, let (aij)i,j∈N be a regular method of summability and let
(Ti)i∈N be a bounded sequence of linear and bounded operators from X to Y . Put B = span{Ti /i ∈ N} and assume that the triple
(X, Y , B) is a Polish system. Also let Q ⊆ BN

× B. Then there exists a subsequence (Ti)i∈L of (Ti)i∈N such that:
(I) either there exists some T in B such that every subsequence (Ti)i∈H of (Ti)i∈L is pointwise summable to T w.r.t. (aij)i,j∈N and
Q ((Ti)i∈H , T ); or

(II) for every subsequence (Ti)i∈H of (Ti)i∈L and every T ∈ B with Q ((Ti)i∈H , T ) the sequence (Ti)i∈H is not pointwise summable
to T w.r.t. (aij)i,j∈N.

Below we refer to notions of effective descriptive set theory, in particular we refer to ∆11 computability. In the next
section we prove – under the appropriate hypothesis – that the pointwise limit of a sequence of operators (Ti)i∈N is ∆11-
computable from the sequence (Ti)i∈N, (Theorem 2.3). From this using the Theorem on Restricted Quantification 2.1 we
prove Theorem 1.4. Theorem 1.1 becomes then an easy consequence. We will not bother to give the proof for the case
where we have a sequence of functions in C(K). It shall become evident to the reader that this case can be proved similarly
— in fact even easier. We also give some examples of sets of the form PQ as in Theorem 1.1 which are not Borel; thus the
fact that a set of the form PQ is coanalytic is the best we can say about it. However in some cases PQ becomes Borel, see
Proposition 2.5.
In Section 3we give some applications. First we prove the dichotomy Theorem 1.8 fromwhich Theorem 1.6 follows. Then

we consider the special case of Theorem 1.6 where Q = XN
× X and examine some of its consequences. The outcome is the

following corollary which in part characterizes the reflexive Banach spaces. (Recall that a Banach space is reflexive iff the
closed unit ball BX is weakly compact).
Corollary 1.9. Let X be a Banach space and let K be a bounded andweakly closed subset of X. Also let (aij)i,j∈N be a regularmethod
of summability. Then K is weakly compact if and only if for all sequences (xi)i∈N in K there exists a subsequence (xki)i∈N which is
weakly summable w.r.t. (aij)i,j∈N.
Notice that in the special case where K is convex and (aij)i,j∈N is positive (i.e. aij ≥ 0 for all i, j ∈ N) this corollary is a

weaker version of a theorem in [2] (p.82). The latter is substantially based on James’ characterization of weakly compact
sets given in [6] (Theorem 5). On the other hand Corollary 1.9 uses elementary methods from the point of view of functional
analysis. Finally we use a bit more of effective theory. In particular we prove the following corollary which makes a
substantial use of Debs’ Theorem, (see [1]).
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Corollary 1.10. Let X be a Banach space and let (ei)i∈N be a bounded sequence in X for which case (II) of Theorem 1.6 fails for
Q = XN

× X. Then there exists a Borel measurable function f : [N]ω → [N]ω such that the sequence (ei)i∈f (L) is a weakly
convergent subsequence of (ei)i∈L for all L ∈ [N]ω .
For the definition of [N]ω refer to the first lines of Section 3.

2. The set of pointwise convergent operators

In this section we prove Theorem 1.4 and consequently Theorem 1.1. We describe the general setting. As usual if X is a
Banach space, then by BX we denote the closed unit ball of X . We will deal with sets of operators from some Banach space
X to a separable Banach space Y . In order to proceed we need the operators to be members of a Polish space. Furthermore
since we deal with pointwise convergence we need to quantify over BX . So it is necessary to have a Polish topology for BX .
The notion of a Polish system given in the Introduction (see Definition 1.3) is exactly to meet those requirements.
Now we have to get into effective descriptive set theory. For a complete introduction to the effective theory in Polish

spaces, see [9] ch. 3. We denote byΣ11 ,Π
1
1 and∆

1
1 the corresponding pointclasses of lightface analytic, coanalytic and Borel

sets. The analogous symbols are used for the relativized case. We shall also write y ∈ ∆11(x) if y is computed from a set in
Σ11 (x) and a set inΠ

1
1 (x). We will use the following deep result of the effective theory, which is originally proved in [8] but

can also be found in [9] 4D.3 in a form which is closer to the present.
Theorem 2.1 (The Theorem on Restricted Quantification). Let X and Y be recursively representable Polish spaces and let
Q ⊆ X× Y be inΠ11 (ε) for some ε ∈ N . Put P(x)⇔ (∃y ∈ ∆11(ε, x))Q (x, y). Then P is also inΠ

1
1 (ε).

Intuitively the preceding theorem gives a condition under which the projection of a coanalytic set is also coanalytic. Let
us now describe how one can give a recursive presentation of some Polish space X. We fix once and for all a recursive

enumeration of the rationals {rs / s ∈ N} for example rs = (−1)(s)0 ·
(s)1

(s)2 + 1
. We think of the set of the reals R with

this recursive presentation. Let d be a suitable metric for X and D = {xn / n ∈ N} be a dense subset of X. We define the
irrationals ε1, ε2 ∈ N as follows: ε1(〈s, n,m〉) = 1 if d(xn, xm) < rs and 0 otherwise; ε2(〈s, n,m〉) = 1 if d(xn, xm) ≤ rs
and 0 otherwise. Then X admits a presentation which is recursive in εX = 〈ε1, ε2〉. The basic neighborhoods are the sets
NX
〈n,s〉 = N

X(xn, rs) = {x ∈ X / d(x, xn) < rs}. It follows that the relation P(x, n, s) ⇔ d(x, xn) < rs is semirecursive in εX,
(see [9], 3C.1). In most casesXwill be a separable Banach space, hence d can be chosen to be the function d(x, y) = ‖x− y‖.
Also we may choose the countable dense set D so that D+ D ⊆ D and rs · D ⊆ D for all s ∈ N. We then define the irrationals
ε3, ε4 as follows: ε3(〈n,m, k〉) = 1 if xn + xm = xk and 0 otherwise; ε4(〈s, n, k〉) = 1 if rs · xn = xk and 0 otherwise. In this
case we define εX = 〈ε1, ε2, ε3, ε4〉. Using this suggested recursive presentation for Banach spaces one can verify that the
addition and scalar multiplication are recursive functions.
Since the results about the pointclass ∆11 are carried out in a straightforward way to the relativized pointclass ∆

1
1(εX),

we may assume that each given Polish space is already recursively presented. It is also necessary to code sequences in
Polish spaces. If ȳ = (yi)i∈N is a sequence in a Polish space X we define the irrational δ(ȳ) as follows: δ(ȳ)(〈i, n, s〉) = 1
if d(yi, xn) < rs and 0 otherwise; where {xn / n ∈ N} is the countable dense subset of X which comes with the recursive
presentation of X. Thinking of a sequence as a member of the Baire space makes it easier for the computations to come.
However one should have in mind that a sequence (yi)i∈N is also a member of XN. We will abuse the notation by writing
∆11((yi)) instead of ∆

1
1(δ(ȳ)). In fact one can give a precise meaning for ∆

1
1((yi)): it is the class of points which are ∆

1
1-

computable from ȳ = (yi)i∈N ∈ XN. It is not hard to see that the irrational δ(ȳ) is in ∆11((yi)) and that the sequence (yi)i∈N

is in ∆11(δ(ȳ)). Hence a point is in ∆
1
1(δ(ȳ)) exactly when it is in ∆

1
1((yi)). This justifies the interchange of notations. In the

case we are interested in, the sequence (yi)i∈N is going to be a sequence of operators.
Now let us get into the proof of Theorem 1.4. We fix the spaces X, Y and B such that (X, Y , B) is a Polish system. Also we

fix a sequence (Dn)n∈N which is dense in B and a Polish topology T on BX such that the restriction of every Dn on (BX , T ) is
Borelmeasurable. As pointed out beforewemay assume that each Polish spacewe dealwith is already recursively presented
and in particular the set {Dn / n ∈ N} is the one which comes with the recursive presentation of B. When we refer to BX we
always mean the topological space (BX , T ). The function f : N × BX → Y : f (n, x) = Dn(x) is Borel measurable. Using a
well-known theorem of Kleene (see [9] 7A.1) there is an irrational ε∗ such that f is∆11(ε

∗)-recursive. Again we may assume
that f is∆11-recursive. Hence the relation P ⊆ BX × N3 defined by P(x, n,m, s)⇔ ‖Dn(x)− Dm(x)‖ < rs is in∆11. Using the
recursive presentation of B it is not hard to see that the relation Q ⊆ B × B × N defined by Q (T , L, s) ⇔ ‖T − L‖ < rs is
semirecursive. The next proposition is the corresponding for the pointwise evaluation of operators.
Proposition 2.2. Define P, P≤ ⊆ BX×B×B×N by P(x, T , L, s)⇔ ‖T (x)−L(x)‖ < rs and P≤(x, T , L, s)⇔ ‖T (x)−L(x)‖ ≤ rs.
Then P and P≤ are both in∆11.
Proof. We claim that

‖T (x)− L(x)‖ < rs ⇔ (∃k)(∃m)(∃n)
[
‖T − Dm‖ <

1
k+ 1

& ‖L− Dn‖ <
1
k+ 1

& ‖Dm(x)− Dn(x)‖ < rs −
2
k+ 1

]
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Both directions are straightforward; for the left-to-right-hand direction notice that one has to choose k ∈ N s.t.
‖T (x) − L(x)‖ < rs − 4

k+1 and m, n ∈ N s.t. ‖Dm − T‖ < 1
k+1 , ‖L − Dn‖ <

1
k+1 . Using this equivalence one can see

that both P and P≤ are in∆11. a
Now we are going to compute the complexity of the pointwise limit of a sequence of operators. The following is the

essential step for using the Theorem on Restricted Quantification 2.1.

Theorem 2.3. Let a sequence (Ti)i∈N in B, T ∈ B and assume that the sequence (Ti)i∈N converges pointwise to T , i.e. Ti(x)
i∈N
→ T (x)

for all x ∈ X. Then T is in ∆11((Ti)). In particular if E is a Banach space, e ∈ E and (ei)i∈N is a sequence in E which is weakly
convergent to e, then e is in∆11((ei)). Similarly if K is a compact metric space and (fi)i∈N is a sequence in C(K)which is pointwise
convergent to f ∈ C(K) then f is in∆11((fi)).

Lemma 2.4. Let T ∈ B. Put RT (x, n, s)⇔ ‖T (x)−Dn(x)‖ ≤ rs. If (Ti)i∈N is a sequence in B which converges pointwise to T then
the relation RT is in∆11((Ti)).
Proof. First of all notice that

F = Ti ⇔ (∀s)(∀n)[ ‖F − Dn‖ < rs ↔ ‖Ti − Dn‖ < rs ]
⇔ (∀s)(∀n)[ ‖F − Dn‖ < rs ↔ δ(T̄ )(〈i, n, s〉) = 1 ]

where δ(T̄ ) is the irrational assigned to the sequence T̄ = (Ti)i∈N. Thus the relation Eq(i, F)⇔ F = Ti is in∆11((Ti)). Now

‖T (x)− Dn(x)‖ ≤ rs ⇔ lim
i∈N
‖Ti(x)− Dn(x)‖ ≤ rs.

Using the relation P≤ defined in Proposition 2.2 and the relation Eq one can see that the relation RT is in∆11((Ti)). a

Proof of Theorem 2.3. We need to show that the relation P(n, t)⇔ ‖T − Dn‖ < rt is both inΣ11 ((Ti)) andΠ
1
1 ((Ti)).

• TheΠ11 ((Ti)) case. Recall that for each L ∈ Bwe have that ‖L‖ = sup{‖L(x)‖ / x ∈ BX }. So

‖T − Dn‖ ≤ rs ⇔ (∀x)[ ‖T (x)− Dn(x)‖ ≤ rs ]
⇔ (∀x)[ RT (x, n, s) ]

where RT is as in Lemma 2.4. Therefore the relation P is inΠ11 ((Ti)).

P(n, t) ⇔ (∃s)[ rs < rt & ‖T − Dn‖ ≤ rs ]
⇔ (∃s)[ rs < rt & (∀x)RT (x, n, s) ]

• TheΣ11 ((Ti)) case.We first claim that (∗)

‖T − Dn‖ < rt ⇔ (∃k)(∀m)(∃x)
{
‖Dm(x)− Dn(x)‖ > ‖Dm − Dn‖ −

1
k+ 1

&
[
‖Dm(x)− T (x)‖ <

1
k+ 1

→ ‖T (x)− Dn(x)‖ < rt −
3
k+ 1

]}
For the (⇒) direction: choose k ∈ N s.t. ‖T − Dn‖ < rt − 3

k+1 . Let m ∈ N be given. Since ‖Dm − Dn‖ =
sup{‖Dm(x) − Dn(x)‖ / x ∈ BX } there exists some x ∈ BX such that ‖Dm(x) − Dn(x)‖ > ‖Dm − Dn‖ − 1

k+1 . Now
‖T (x) − Dn(x)‖ ≤ ‖T − Dn‖ < rt − 3

k+1 , (regardless of the value of ‖Dm(x) − T (x)‖). For the (⇐) direction: let k be
given as above and choosem s.t. ‖Dm− T‖ < 1

k+1 , (suchm exists since the set {Dm /m ∈ N} is dense in X). For thism choose
some x ∈ BX which comes fromhypothesis. Since ‖Dm(x)−T (x)‖ ≤ ‖Dm−T‖ < 1

k+1 wehave that ‖T (x)−Dn(x)‖ < rt−
3
k+1 .

Also we have that ‖Dm(x)− Dn(x)‖ > ‖Dm − Dn‖ − 1
k+1 . It follows that

‖Dm − Dn‖ < ‖Dm(x)− Dn(x)‖ +
1
k+ 1

≤ ‖Dm(x)− T (x)‖ + ‖T (x)− Dn(x)‖ +
1
k+ 1

<
1
k+ 1

+ rt −
3
k+ 1

+
1
k+ 1

= rt −
1
k+ 1

; therefore

‖T − Dn‖ ≤ ‖T − Dm‖ + ‖Dm − Dn‖

<
1
k+ 1

+ rt −
1
k+ 1

= rt .

Hence we have proved the equivalence. From this it follows that P is inΣ11 ((Ti)). a
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In the case of (fi)i∈N and f in C(K) the previous proof becomesmuch simpler. Just take a sequence (xm)m∈N which is dense
in K and notice that ‖f − dn‖ ≤ rs ⇔ (∀m)[ |f (xm)− dn(xm)| ≤ rs ]. Then apply the analogous of Lemma 2.4. We are now
ready for the proof of the first main theorem.

Proof of Theorem 1.4. Recall that the space BN is a Polish space and that we have assumed that it is recursively presented.
The set Q which comes from the statement of the theorem is a coanalytic set. Thus it is in someΠ11 (ε). Wemay assume that
it is in fact in Π11 . Put Q0(x, T , (Ti), j, s) ⇔ ‖T (x) − Tj(x)‖ ≤ rs. One can verify that Q is in ∆

1
1. Now define S(x, T , (Ti)) ⇔

T (x) = limi∈N Ti(x); then S is also in ∆11 since S(x, T , (Ti)) ⇔ (∀s)[ rs > 0 → (∃j0)(∀j ≥ j0)Q0(x, T , (Ti), j, s) ]. Using
Theorem 2.3 we have that

PQ ((Ti)) ⇔ (Ti) is pointwise convergent to some T ∈ B & Q ((Ti)i∈N, T )
⇔ (∃T )(∀x)[T (x) = lim

i∈N
Ti(x) & Q ((Ti)i∈N, T )]

⇔ (∃T ∈ ∆11((Ti)))(∀x)[T (x) = limi∈N
Ti(x) & Q ((Ti)i∈N, T )]

⇔ (∃T ∈ ∆11((Ti)))(∀x)[S(x, T , (Ti)) & Q ((Ti)i∈N, T )]

From the Theorem on Restricted Quantification 2.1 it follows that PQ is inΠ11 and thus it is a coanalytic set. a

The sets of the form PQ are not Borel in general even if Q is the whole space. We outline the proof for some examples. Let
Tr denote the Polish space of trees on N. Also denote byWF the set of well-founded trees. The setWF is a coanalytic subset
of Tr . A classic method for proving that a set P ⊆ X is not a Borel set is finding a continuous function π : Tr → X such that
T ∈ WF ⇔ π(T ) ∈ P; in fact this proves that P isΠ1

1 -complete (see [7], 22.9).
In [7] (see 33.11) one can find the construction of a continuous function π : Tr → C([0, 1])N, π(T ) ≡ (f Ti )i∈N such that

for all T , (1) the sequence (f Ti )i∈N is bounded and (2) T ∈ WF if and only if the sequence (f Ti )i∈N is pointwise convergent
– and in fact – if and only if the sequence (f Ti )i∈N is pointwise convergent to 0. This proves the Π1

1 -completeness of the

set P1 = {(fi)i∈N ∈ C([0, 1])N / ∃f ∈ C([0, 1]) such that fi
pw
→ f }. Using condition (1) above it follows that the set

P2 = {(fi)i∈N ∈ C([0, 1])N / (fi)i∈N is weakly convergent in C([0, 1])} is also Π1
1 -complete. By letting F

T
n (x) =

∫ x
0 f
T
n (t) and

F T (x) =
∫ x
0 f
T (t) one can verify theΠ1

1 -completeness of the set P3 = {(Fi)i∈N ∈ C([0, 1])N / ∃F ∈ C([0, 1]) such that Fi
pw
→

F , the Fi’s and F are differentiable and F ′i
i∈N
→ F ′}. In some cases though the sets of the form PQ become Borel.

Proposition 2.5. Let X be a separable Banach space and Y , B be such that the triple (X, Y , B) is a Polish system. Also let Q be a
Borel subset of Q ⊆ BN

× B. Then the set PQ defined in Theorem 1.4 is a Borel subset of BN.
In particular if E is Banach space such that E∗ is separable and Q is a Borel subset of EN

× E then the set PQ is also a Borel
subset of EN.

Proof. Define R((Ti), T ) ⇔ the sequence (Ti)i∈N is pointwise convergent to T ⇔ (Ti) is bounded &(∀n)[Ti(xn)
i∈N
→ T (xn)];

where (xn)n∈N is norm dense in BX . Hence R and R ∩ Q are Borel subsets of B. Notice that PQ = pr[R ∩ Q ] where
pr : BN

× B→ BN is the projection function and that the function pr is one-to-one on R. Using a classic theorem of Souslin
(see [9]) we have that PQ is also a Borel set as an one-to-one image of a Borel set. a

Notice that no effective set theoretic arguments were used in the previous proof. Thus whenever X is separable and Q is
Borel no effective theory is needed for the proof of Theorem 1.4.

3. Applications

In this sectionwe present some applications of the theorems proved in the previous section. Let us beginwith some basic
notions. Denote with [N]ω the set of all infinite subsets ofN. Consider the topology on [N]ω which is generated from the sets
An = {L ∈ [N]ω / n ∈ L}, Bn = {L ∈ [N]ω / n 6∈ L}, n ∈ N. It is well known that [N]ω with that topology is a Polish space. If L
is an infinite subset ofNwe denote by [L] the set of all infinite subsets of L. The dichotomywe achieve is essentially based on
the following theorem given by Silver. LetA be an analytic (equivalently coanalytic) subset of [N]ω . Then for all M ∈ [N]ω
there exists an infinite L ⊆ M such that: either (I) [L] ⊆ A; or (II) [L] ⊆ [N]ω r A, see [11]. For the version of this theorem
which refers to Borel sets instead of analytic sets see [5]. (The original proof uses the method of forcing; for a classical proof
refer to [12]). Let us proceed with a useful characterization of a regular method of summability.

Remark 3.1. It is well known [3] that a double sequence of reals (aij)i,j∈N is a regular method of summability if and only if
the following hold: (1) supi∈N

∑
∞

j=0 |aij| < M <∞; (2) limi∈N aij = 0, for all j ∈ N and (3) limi∈N
∑
∞

j=0 aij = 1.

Now we are ready for the proof of Theorem 1.8.

Proof of Theorem 1.8. Define the set

A = {L = {k0 < k1 < · · · < ki < · · · } ∈ [N]ω / the sequence (Tki)i∈N is
pointwise summable to some T ∈ Bw.r.t. (aij)i,j∈N and Q ((Tki)i∈N, T )}.
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For every i ∈ N and every L = {kj / j ∈ N} ∈ [N]ω put f (i, L) =
∑
∞

j=0 aijTkj . Using Remark 3.1 one can see that this f is well
defined and continuous, (see [4], [10]). Put f (L) = (f (i, L))i∈N and h(L) = (Ti)i∈L; it is clear that both functions f and h are
continuous.
Let RQ be the subset of BN

× BN which is defined by

RQ ((Fi), (Si)) ⇔ there exists some T ∈ B such that the sequence (Fi)i∈N

is pointwise convergent to T and Q ((Si), T )

With arguments similar to these of the proof of Theorem 1.4 one can see that the set RQ is coanalytic. Now compute

L ∈ A ⇔ f (L) is pointwise convergent to some T ∈ B and Q ((Ti)i∈L, T )
⇔ f (L) is pointwise convergent to some T ∈ B and Q (h(L), T )
⇔ RQ (f (L), h(L))

Using the continuity of f , hwe have that the setA is coanalytic. The dichotomy follows from Silver’s Theorem.
Now we will prove the uniqueness of the limit for the case (I). Let M be such that [M] ⊆ A; i.e. if H ∈ [M] there exists

T ∈ B such that the sequence (Ti)i∈H is pointwise summable to T w.r.t. (aij)i,j∈N and Q ((Ti)i∈H , T ). We will show how one
can choose a subsequence of (Ti)i∈M such that every one of its subsequences is pointwise summable to the same limit. We
will not worry about the additional property Q since for every H ∈ [M] and every T ∈ B if (Ti)i∈H is pointwise summable to
T then Q ((Ti)i∈H , T ). The latter is because we are in case (I) and also because the pointwise limit is unique. The method for
proving the uniqueness is essentially the same with this in [4] and [10]. The following remark is going to be very useful.

Remark 3.2. Using (2) of Remark 3.1 it is easy to see that if a sequence (Fn)n∈N in B is pointwise summable to some F ∈ B
and S0, S1, . . . , SN ∈ B, then the sequence (S0, S1, . . . , SN , FN+1, FN+2, . . . , Fn, . . . ) is also pointwise summable to F .

Since B is separable for each k ≥ 1 there exists a sequence (Bkn)n∈N of open balls of radius 1k s.t. B =
⋃
n∈N B

k
n. Notice that

if (nk)k∈N is a sequence of natural numbers then the intersection
⋂
∞

k=1 B
k
nk is at most a singleton. Define

A(Bkn) = {L = {k0 < k1 < · · · < ki < · · · } ⊆ M / the sequence (Tki)i∈N

is pointwise summable w.r.t. (aij)i,j∈N to some T ∈ Bkn}

Since Bkn is an open subset of X , from Theorem 1.4 we have that the set A(Bkn) is coanalytic for every k, n. From Silver’s
Theorem there exists someH10 ⊆ M such that: either (a) every subsequence of (Ti)i∈H10 is pointwise summable w.r.t. (aij)i,j∈N

to some T ∈ B10; or (b) every subsequence of (Ti)i∈H10 is pointwise summable w.r.t. (aij)i,j∈N to some T 6∈ B10.

Repeating the same arguments we find M ⊇ H10 ⊇ H
1
1 ⊇ · · · ⊇ H

1
n ⊇ · · · such that for every n ∈ N either (A)

every subsequence of (Ti)i∈H1n is pointwise summable w.r.t. (aij)i,j∈N to some T ∈ B1n; or (B) every subsequence of (Ti)i∈H1n is
pointwise summable w.r.t. (aij)i,j∈N to some T 6∈ B1n.
Let L1 = {l10 < l

1
1 < · · · < l

1
n < · · · } be the diagonal sequence which comes from (H

1
n )n∈N, i.e. l1n is the nth term H

1
n . The

sequence (Ti)i∈L1 is a subsequence of (Ti)i∈M and thus it is pointwise summable to some T ∈ B =
⋃
n∈N B

1
n. Take n1 ∈ N such

that T ∈ B1n1 . We claim that for this n1 the case (A) above occurs. We need to show that (B) does not hold and in order to do
so it is enough to find a subsequence of (Ti)i∈H1n1

which is summable to T ∈ B1n1 . Take the first n1 − 1 terms of (Ti)i∈L1 and
replace them with the first n1 − 1 terms of (Ti)i∈H1n1

; (if n1 = 0 do nothing, if n1 = 1 replace just the first term and so on).
This gives rise to a subsequence (Ti)i∈N of (Ti)i∈H1n1

which differs from (Ti)i∈L1 by n1 − 1 terms at most. Since the sequence
(Ti)i∈L1 is pointwise summable to T using Remark 3.2 we obtain that (Ti)i∈N is pointwise summable to T as well.
We continue with k = 2 and find sets L1 ⊇ H20 ⊇ H

2
1 ⊇ · · · ⊇ H

2
n ⊇ · · · such that for every n ∈ N either (A)

every subsequence of (Ti)i∈H2n is pointwise summable w.r.t. (aij)i,j∈N to some T ∈ B2n; or (B) every subsequence of (Ti)i∈H2n
is pointwise summable w.r.t. (aij)i,j∈N to some T 6∈ B2n. As before we define L2 and find n2 for which (A) holds. Proceeding
inductively we find sequences of sets (Lk)k∈N, (Hkn)k,n such that for all k ≥ 1 we have that

• Lk is the diagonal sequence which comes from (Hkn)n∈N,
• Lk−1 ⊇ Hk0 ⊇ H

k
1 ⊇ · · · ⊇ H

k
n ⊇ . . . and

• for all n ∈ N we have that either (A : k) every subsequence of (Ti)i∈Hkn is pointwise summable w.r.t. (aij)i,j∈N to some
T ∈ Bkn; or (B : k) every subsequence of (Ti)i∈Hkn is pointwise summable w.r.t. (aij)i,j∈N to some T 6∈ Bkn.

Also we define a sequence of natural numbers (nk)k∈N for which (A : k) holds for nk. Define L∞ to be the diagonal
sequence which comes from (Lk)k∈N. We claim that each subsequence (Ti)i∈L∞ is pointwise summable in

⋂
∞

k=1 B
k
nk . Since the

last intersection is at most a singleton if we prove this we are done.
Let N be an infinite subset of L∞ and k ≥ 1. Since L∞ is the diagonal sequence which comes from (Lk)k∈N we have that if

i ∈ N then i ∈ Lk for all large i. By repeating the same argument for Lk instead for L∞ we have that if i ∈ N then i ∈ Hknk for all
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large i. Letm be the number of naturals which are in N and not in Hknk . We replace the firstm terms of N by the firstm terms
of Hknk — if m = 0 we do nothing. Thus we have a subsequence (Ti)i∈N ′ of (Ti)i∈Hknk

. Since (A : k) holds for nk we have that

the sequence (Ti)i∈N ′ is pointwise summable in Bknk . From Remark 3.2 we have that the sequence (Ti)i∈N is also pointwise
summable in Bknk . a

In the rest of this section we give some applications of Theorem 1.6 taking Q = XN
× X . From now on we always take

this Q when referring to Theorem 1.6. The dichotomy result of this theorem allows us to give a weak-convergence version
of a theorem of James which characterizes a reflexive Banach space. First notice the following.

Proposition 3.3. Let E be a finite dimensional normed space, (bi)i∈N be a bounded sequence in E, b ∈ E and (aij)i,j∈N be a regular
method of summability. Assume that every subsequence of (bi)i∈N is summable to b w.r.t. (aij)i,j∈N. Then the sequence (bi)i∈N
converges to b in norm.

Proof. Assume not, then there exist some ε > 0 and a subsequence (ci)i∈N such that ‖ci − b‖ ≥ ε for all i ∈ N. Since (ci)i∈N
is bounded and E is finite dimensional there exists a subsequence (di)i∈N which converges in norm to some d ∈ E. It follows
that the sequence (ei)i∈N defined by ei =

∑
∞

j=0 aijdj (i ∈ N) is also convergent to d.
Also since (di)i∈N is a subsequence of (bi)i∈N from hypothesis we have that (di)i∈N is summable to b w.r.t. (aij)i,j∈N, i.e.

the sequence (ei)i∈N defined above converges to b. Hence d = b and di
‖·‖

→ b which is a contradiction since (di)i∈N is a
subsequence of (ci)i∈N and ‖ci − b‖ ≥ ε for all i ∈ N. a

Corollary 3.4. Let X be a Banach space and (aij)i,j∈N be a regular method of summability. Then X is reflexive if and only if every
bounded sequence in X has a subsequence which is weakly summable w.r.t. (aij)i,j∈N.

Proof. First recall that X is reflexive if and only if every bounded sequence in X has a weakly convergent subsequence. So
the left-to-right-hand direction is immediate.
For the inverse direction let (xi)i∈N be a bounded sequence in X . Notice that from the hypothesis we have that case (II) of

Theorem 1.6 fails for (xi)i∈N. Thus case (I) holds, i.e. there exist some x ∈ X and a subsequence (xki)i∈N such that every one
of its subsequences is weakly summable to xw.r.t. (aij)i,j∈N.
We claim that the sequence (xki)i∈N is weakly convergent to x. Let x∗ ∈ X∗. Define bi = x∗(xki)− x

∗(x), for all i ∈ N. Then
(bi)i∈N is a bounded sequence inR. Wewill prove that each subsequence of (bi)i∈N is summable to 0 ∈ Rw.r.t. (aij)i,j∈N. If we
prove this then from Proposition 3.3 we will have that bi → 0, i.e. x∗(xki)→ x∗(x). A subsequence of (bi)i∈N is defined by a

subsequence (yi)i∈N of (xki)i∈N. We need to prove that
∑
∞

j=0 aij(x
∗(yj)− x∗(x))

i∈N
→ 0. We know that

∑
∞

j=0 aijx
∗(yj)

i∈N
→ x∗(x),

since (yi)i∈N is a subsequence of (xki)i∈N. Also
∑
∞

j=0 aijx
∗(x) = x∗(x) ·

∑
∞

j=0 aij
i∈N
→ x∗(x) · 1 = x∗(x), from the properties of a

regular method of summability. Hence
∑
∞

j=0 aij(x
∗(yj)− x∗(x)) =

∑
∞

j=0 aijx
∗(yj)−

∑
∞

j=0 aijx
∗(x)

i∈N
→ x∗(x)− x∗(x) = 0. a

The previous proof can be extended and give Corollary 1.9 mentioned in the introduction. Let us outline the proof of this.
First recall that each such set K is weakly compact iff every sequence in K has a weakly convergent subsequence in K . So
the left-to-right-hand direction of the corollary is clear. For the converse direction we proceed as in the previous proof; the
only thing that needs some attention is where we find a sequence (xki)i∈N in K which is weakly convergent to some x. We
need to know that x is a member of K as well. However this is immediate since K is weakly closed.
A careful look at the proof of Corollary 3.4 reveals the following: if case (II) of Theorem1.6 fails for somebounded sequence

(ei)i∈N, then (ei)i∈N has a weakly convergent subsequence. It is clear that if case (II) of Theorem 1.6 fails for some bounded
sequence (ei)i∈N, then it also fails for every one of its subsequences. Thus we have actually proved the following: if case
(II) of Theorem 1.6 fails for some bounded sequence (ei)i∈N, then every subsequence of (ei)i∈N has a weakly convergent
subsequence. We now ask when one can pick this weakly convergent subsequence in a ‘‘Borel manner". The basic tool for
this is given by the following theoremwhich is due to Debs (see [1]). LetX be a recursively presented Polish space and (fi)i∈N
be a sequence of continuous functions fromX toR such that: (1) the sequence (fi)i∈N is pointwise bounded, (2) every cluster
point of (fi)i∈N inRX with the topology of pointwise convergence is a Borel measurable function and (3) the sequence (fi)i∈N
is in∆11(α). Then there exists L ∈ ∆

1
1(α) such that the subsequence (fi)i∈L is pointwise convergent.

There is something here that needs some explanation. SinceX need not be compactwemay not view the sequence (fi)i∈N
as a member of a Polish space. So one can ask what the abbreviation ‘‘(fi)i∈N is in ∆11(α)" means. That is the relation of the
pointwise evaluation P(x, i, n, s)⇔ fi(x) ∈ NR

〈n,s〉 (where N
R
〈n,s〉 = {y ∈ R /|y− rn| < rs}) is a∆11(α) subset ofX× N× N.

Now let X be a separable Banach space and (ei)i∈N be a bounded sequence in X for which case (II) of Theorem 1.6 fails. We
view every ei as a real function defined onX = (BX∗ , w∗). Fix also an L ⊆ [N]ω . The relation P(x∗, i, n, s)⇔ x∗(ei) ∈ NR

〈n,s〉

is in fact open; thus it is in ∆11(α) for some α. Therefore the sequence (ei)i∈L is in ∆
1
1(α, L) in the sense of Debs’ Theorem.

Using our hypothesis about the sequence (ei)i∈N it is not difficult to verify conditions (1) and (2) in the latter theorem for
the sequence (ei)i∈L. Thus we have derived the following. If (ei)i∈N is a bounded sequence in a separable Banach space X
for which case (II) of Theorem 1.6 fails, then for all L there exists M in ∆11(α, L) such that the sequence (ei)i∈M is weakly
convergent in X , (where α is a fixed point depending on the initial sequence). Debs’ result has a classic interpretation, see
[1]. In our case that will be Corollary 1.10.
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Proof of Corollary 1.10. Define P ⊆ [N]ω × [N]ω by P(L,M)⇔ M ⊆ L & the sequence (ei)i∈M is weakly convergent. From
Theorem 1.4 it follows that the previous P is a coanalytic set. Wemay assume that P is inΠ11 . From the previous remarks we
have that for every L ∈ [N]ω there existsM ∈ [N]ω in∆11(L) such that P(L,M), (as usual we have eliminated the parameter
α). From the Strong ∆-Selection Principle (see 4D.6 in [9]) there exists a Π11 -recursive function f defined on all [N]

ω with
values in [N]ω s.t. P(L, f (L)) for every L ∈ [N]ω . Now totalΠ11 -recursive functions are∆

1
1-recursive (see 4C.3 in [9]) and thus

Borel. a
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