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Abstract

In this paper we introduce the notion of exhaustiveness which applies for both families and nets of functions. This new notion
is close to equicontinuity and describes the relation between pointwise convergence for functions and α-convergence (continuous
convergence). Using these results we obtain some Ascoli-type theorems dealing with exhaustiveness instead of equicontinuity.
Also we deal with the corresponding notions of separate exhaustiveness and separate α-convergence. Finally we give conditions
under which the pointwise limit of a sequence of arbitrary functions is a continuous function.
© 2008 Elsevier B.V. All rights reserved.
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0. Introduction

The notion of α-convergence (otherwise continuous convergence or “stetige Konvergenz”) has been known by
the beginning of the 20th century (see [9,10]). Around 1950s Stoilov [7] and Arens [1] came up with some results
which characterize α-convergence and are very helpful for this paper. Also this type of convergence was considered
in connection with some other types of convergence in [3]. In Section 1 we state the basic facts about α-convergence.

In Section 2 we introduce the notion of exhaustiveness which goes through the rest of this parer. This is closely
connected to the notion of equicontinuity. We first apply it for families and sequences of functions. This new notion
enables us to view the convergence of a sequence of functions in terms of properties of the sequence and not of
properties of functions as single members. An example of this is Theorem 2.6 which measures the step from pointwise
convergence to α-convergence using the notion of exhaustiveness.

Section 3 is divided into two parts. In the first part we use Theorem 2.6 in order to give a generalization of the clas-
sical Ascoli theorem (Theorem 3.1.1). In the second part we extend the notions of α-convergence and exhaustiveness
to nets of functions. In connection with [1] we consider conditions under which α-convergence follows from a topol-
ogy (see Theorem 3.2.5 and Corollary 3.2.7). Afterwards we introduce the notion of an exhaustive net of functions
and give the analogue of Theorem 2.6 (Theorem 3.2.12). From this we derive that the α-limit of a net of functions is
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a continuous function (Corollary 3.2.13). Using the previous results and Theorem 3.2.12 we obtain some Ascoli-type
theorems (3.2.19, 3.2.20). Also we derive a characterization of locally compact regular spaces (Corollary 3.2.15).

In the first part of Section 4 we consider functions defined on products X × Y and the corresponding notions
of separate exhaustiveness and separate α-convergence. We give a Namioka-type theorem for exhaustiveness from
which (using again Theorem 2.6) we derive the corresponding result for α-convergence (Theorem 4.1.3 and Corol-
lary 4.1.5). In the second part we consider the notion of weak exhaustiveness for sequences of functions. It is well
known that the pointwise limit of a sequence of continuous functions is not necessarily a continuous function. Fol-
lowing the method of considering the properties of the sequence instead of the properties of each function, we give
Theorem 4.2.3. This answers to the problem of finding conditions under which the pointwise limit of a sequence of
functions is a continuous function.

1. Basic facts about α-convergence

Let us begin with some comments on notation. With X and Y we mean metric spaces, unless stated otherwise. If it
is not mentioned explicitly the symbol d stands for the metric on X and the symbol p for the metric on Y .

If x is a member of X and δ is a positive number, with S(x, δ) we mean the (open) ball of radious δ, i.e. S(x, δ) =
{y ∈ X /d(y, x) < δ}. Also if X and Y are metric spaces we denote with C(X,Y ) the set of all continuous functions
from X to Y .

We now give the definition of α-convergence (continuous convergence) [3].

Definition 1.1. Let f,fn, n ∈ N be functions from X to Y . The sequence (fn)n∈N α-converges to f iff for every x ∈ X

and for every sequence (xn)n∈N of points of X converging to x, the sequence (fn(xn))n∈N converges to f (x).

We shall write fn
α−→ f to denote that (fn)n∈N α-converges to f . Also we will keep the analogous notation about

pointwise and uniform convergence, i.e., we will denote them with fn
pw−−→ f and fn

u−→ f respectively.

Remarks 1.2.

(1) It is obvious that α-convergence is stronger than pointwise convergence.
(2) The usual convergences such as pointwise and uniform do not require a topology for the domain space. However

a topology is needed for α-convergence.
(3) Take f : R → R any non-continuous function and xn → x such that the sequence (f (xn))n∈N does not converge

to f (x). If we put fn ≡ f for all n ∈ N, we see that (fn)n∈N does not α-converge to f although the sequence
(fn)n∈N converges uniformly to f .

(4) For all n ∈ N define fn : (0,1] → R such that fn(x) = 1 − nx, for x � 1
n

and fn(x) = 0, for x > 1
n

. Then we can
see that the sequence (fn) α-converges to zero function but does not converge uniformly.

The next proposition is due to Stoilov [7] except the last assertion and describes some interesting results about
α-convergence.

Proposition 1.3. Let (X,d), (Y,p) be metric spaces and functions f,fn, n ∈ N, from X to Y .

(1) If the sequence (fn)n∈N α-converges to f , then f is continuous.
(2) The sequence (fn)n∈N α-converges to f if and only if f is continuous and (fn)n∈N converges to f uniformly on

every compact subset of X.
In particular:

(3) If (fn)n∈N converges to f uniformly and f is continuous, then (fn)n∈N α-converges to f .
And also:

(4) If X is compact and (fn)n∈N α-converges to f , then (fn)n∈N converges to f uniformly.
The following result is due to Holá–Šalát [5].

(5) A metric space X is compact if and only if for all functions f,fn, n ∈ N, from X to Y , if (fn)n∈N α-converges
to f , then (fn)n∈N converges to f uniformly.



V. Gregoriades, N. Papanastassiou / Topology and its Applications 155 (2008) 1111–1128 1113
The following is very useful for latter on.

Proposition 1.4. For all functions f,fn, n ∈ N, from X to Y , if (fn)n∈N α-converges to f then each subsequence
(fkn)n∈N also α-converges to f .

Proof. Let x ∈ X and xn → x. Define yn = xi if n = ki for some i ∈ N and yn = x otherwise. We have that ykn = xn

for each n ∈ N and also yn → x. Since fn
α−→ f we obtain that fn(yn) → f (x). Therefore fkn(ykn) → f (x). Since

ykn = xn we have that fkn(xn) → f (x).
Notice that in fact we have proved the following: if for all (xn)n∈N in X with xn → x we have that fn(xn) → f (x),

then for all (xn)n∈N in X with xn → x we have that fkn(xn) → f (x). (We will use this in Remark 2.7.) �
2. Exhaustiveness

We now introduce a new notion which is close to the notion of equicontinuity.

Definition 2.1. Let (X,d), (Y,p) be metric spaces, x ∈ X, F be a family of functions from X to Y and fn : X → Y ,
n ∈ N.

(1) If F is infinite, we call the family F exhaustive at x iff for every ε > 0 there exists δ > 0 and A a finite subset
of F such that: for every y ∈ S(x, δ) and for every f ∈ F \ A we have that p(f (y), f (x)) < ε.

(2) In case where F is finite we define F to be exhaustive at x iff each member of F is continuous function at X.
(3) F is exhaustive iff F is exhaustive at every x.
(4) The sequence (fn)n∈N is called exhaustive at x iff for all ε > 0 there exist δ > 0 and n0 ∈ N such that for all

y ∈ S(x, δ) and all n � n0 we have that p(fn(y), fn(x)) < ε.
(5) The sequence (fn)n∈N is called exhaustive iff it is exhaustive at every x ∈ X.

Notice that in the most interesting case where (fn)n∈N is a sequence of functions for which fn �= fm for n �= m,
then the family F = {fn /n ∈ N} is exhaustive at some x0 ∈ X if and only if the sequence (fn)n∈N is exhaustive at x0.

Remarks 2.2.

(1) An equicontinuous family is an exhaustive family such that for every ε > 0 the finite set A in Definition 2.1(1)
can be taken to be the empty set. So equicontinuity implies exhaustiveness.

(2) Saying that F is exhaustive does not imply that there exists a finite subset of F (call it A) such that F \ A is
equicontinuous. (That is because the set A in the definition depends on ε > 0.) See also Example 2.4.

Proposition 2.3. Let (X,d), (Y,p) be metric spaces, x ∈ X, F a family of functions from X to Y and fn : X → Y ,
n ∈ N.

(1) F is equicontinuous at x if and only if F is exhaustive at x and for each f ∈F , f is continuous at x.
(2) The family {fn /n ∈ N} is equicontinuous at x if and only if the sequence (fn)n∈N is exhaustive at x and each fn

is continuous at x.

Proof. We will prove only (1) since the argument for (2) is the same. Also we may assume that F is infinite.
The (⇒) direction is obvious. For the inverse direction: Let ε > 0, then there exist δ1 > 0 and A finite subset of F

such that for every y ∈ S(x, δ1) and for every f ∈ F \ A we have p(f (y), f (x)) < ε. Since each f is continuous at x

there exists δf > 0 such that for every y ∈ S(x, δf ) we have p(f (y), f (x)) < ε. Put δ = min{δ1, δf /f ∈ A} > 0.
One can check that for every y ∈ S(x, δ) and for every f ∈ F we have that p(f (y), f (x)) < ε. �

The preceding proposition suggests that there exists an exhaustive sequence (similarly family) which contains no
continuous functions. Indeed this happens as we can see in the following example.
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Example 2.4. For n ∈ N define fn : R → R such that fn(x) = 1
n

, for x � 0 and fn(x) = 1
2n

, for x > 0. Of course
no fn is continuous at 0. We claim that the sequence (fn)n∈N is exhaustive at 0. Let ε > 0, then there exists an integer
n0 > 1

2ε
such that for δ = 1, for all y ∈ (−1,1) and for all n � n0 we have that |fn(y) − fn(0)| � 1

2n
< ε.

So we obtain the following picture for an exhaustive family of functions F : the family F is equicontinuous “as a
whole” with the continuity of each member of F erased.

Some of the results of equicontinuity apply for exhaustiveness. For example we know that the pointwise limit of
an equicontinuous sequence of functions is a continuous function. The same holds if we replace equicontinuity with
exhaustiveness.

Proposition 2.5. Let (X,d), (Y,p) be metric spaces and f,fn, n = 1,2, . . . , Y -valued functions defined on X. If the
sequence (fn)n∈N converges pointwise to f and (fn)n∈N is exhaustive at x ∈ X then f is continuous at x.

Proof. Since (fn)n∈N is exhaustive at x there exists δ > 0 and there exists n0 ∈ N such that for all y ∈ S(x, δ) and all
n � n0 we have that p(fn(y), fn(x)) < ε

3 .

Let y ∈ S(x, δ). Since fn
pw−−→ f there exists n1 ∈ N such that for all n � n1 it holds that p(fn(y), f (y)) < ε

3 and
p(fn(x), f (x)) < ε

3 . Put n2 = max{n0, n1}. Then

p
(
f (y), f (x)

)
� p

(
f (y), fn2(y)

) + p
(
fn2(y), fn2(x)

) + p
(
fn2(x), f (x)

)
< ε. �

If in the previous proposition we replace the condition “(fn)n∈N is exhaustive at x” with “{fn /n ∈ N} is exhaustive
at x” the same conclusion will still hold. To see that take the interesting case where the set {fn /n ∈ N} is infinite.
Choose naturals k1 < k2 < · · · < kn < · · · such that fkn �= fkm for n �= m. The sequence (fkn)n∈N is exhaustive at x

and then follow the proof of Proposition 2.5.
The notion of exhaustiveness is connected with the notion of α-convergence.

Theorem 2.6. Let (X,d), (Y,p) be metric spaces and functions fn,f : X → Y , n ∈ N. The following are equivalent:

(1) The sequence (fn)n∈N α-converges to f .
(2) The sequence (fn)n∈N converges pointwise to f and (fn)n∈N is exhaustive.

Proof. (1) ⇒ (2) Let us assume that (fn)n∈N is not exhaustive at some point x. This means that there exists ε > 0 such
that for every δ > 0 and for every n ∈ N there exist xn,δ ∈ S(x, δ) and kn � n such that p(fkn(xn,δ), fkn(x)) � ε. By
induction we can define a sequence (xn) and a set of natural numbers {k1 < k2 < · · · < kn < · · ·} such that d(xn, x) < 1

n

and p(fkn(xn), fkn(x)) � ε for each n ∈ N (∗).
Since fn

α−→ f and (fkn)n∈N is a subsequence of (fn)n∈N from Proposition 1.4 we obtain that fkn

α−→ f . We
have that xn → x, hence fkn(xn) → f (x). Also fkn(x) → f (x) because α-convergence is stronger than pointwise
convergence. From the last two statements we obtain that p(fkn(xn), fkn(x)) → 0 contradicting (∗).

(2) ⇒ (1) Let x ∈ X and xn → x. We need to prove that fn(xn) → f (x). Assume ε > 0, since fn
pw−−→ f there

exists n1 ∈ N such that for all n � n1 we have that p(fn(x), f (x)) < ε
2 . Also (fn)n∈N is exhaustive and so there exist

δ > 0 and n2 ∈ N such that for all y ∈ S(x, δ) and for all n � n2 it follows that p(fn(y), fn(x)) < ε
2 .

Since xn → x, for δ > 0 there exist n3 ∈ N such that for all n � n3 we have that d(xn, x) < δ. Therefore if
n � max{n2, n3} from the previous two statements we have that p(fn(xn), fn(x)) < ε

2 . Put n0 = max{n1, n2, n3} and
let n � n0, then

p
(
fn(xn), f (x)

)
� p

(
fn(xn), fn(x)

) + p
(
fn(x), f (x)

)
<

ε

2
+ ε

2
= ε. �

Remark 2.7. A careful look on the proof of the preceding theorem and Proposition 1.4 reveals that we have actually
proved the following.

Let (X,d), (Y,p) be metric spaces, x ∈ X and functions fn,f : X → Y , n ∈ N. The following are equivalent.
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(1) For all sequences (xn)n∈N in X with xn → x we have that fn(xn) → f (x).
(2) The sequence (fn(x))n∈N converges to f (x) and the sequence (fn)n∈N is exhaustive at x.

We put this remark separately from Theorem 2.6 since we will refer to it only once in Corollary 4.1.5.

Theorem 2.6 is interesting not only because it measures the step from pointwise converge to α-converge but also
because it gives some useful results for the α-limit. For example Theorem 2.6 and Proposition 2.5 imply that the
α-limit is a continuous function (which is Proposition 1.3(1) already known). In the next section we will extend this
theorem and we will use both results in order to give some Ascoli-type theorems.

3. Connections with general topology

3.1. A generalization of the classical Ascoli theorem

Recall that if X is a metric space we define the space of bounded functions on X,

Bd(X) = {
f :X → R/ sup

x∈X

∣∣f (x)
∣∣ < ∞}

.

The supremum norm on Bd(X) is defined by ‖f ‖ = supx∈X |f (x)|. We shall denote the corresponding metric space
with (Bd(X),‖ · ‖). Of course the topology induced from this norm is the topology of uniform convergence. In case
where X is compact the set C(X,R) is a subset of Bd(X) and therefore we can view it with the norm ‖ · ‖.

Also recall the classical Ascoli theorem: if X is a compact metric space and F ⊆ C(X,R) then F is compact iff F
is closed, bounded and equicontinuous.

Theorem 3.1.1 (Generalized Ascoli theorem). Let X be a compact metric space and let F be an infinite subset of
(Bd(X),‖ · ‖). The following are equivalent:

(1) If F is closed, bounded and exhaustive then F is compact.
(2) If moreover every cluster point of F is a continuous function then the converse of (1) is also true.

Note that F is not necessarily a subset of C(X,R). Using the fact that an exhaustive family F which consists of
continuous functions is equicontinuous (Proposition 2.3(1)) it is clear that this theorem is indeed a generalization of
the classical Ascoli theorem.

Proof. (1) The main frame is the same with the classical proof. It is enough to prove that F is sequentially compact.
Let (fn)n∈N ⊆ F and (xn)n∈N a dense subset of X. The sequence (fn(x1))n∈N ⊆ R is bounded since F is bounded.
Therefore there exists a convergent subsequence (fk1

n
(x1))n∈N; the sequence (fk1

n
(x2))n∈N is bounded and so there

exists a convergent subsequence ((fk2
n
(x2))n∈N.

Inductively we obtain sequences of naturals · · · ⊆ (k
j+1
n ) ⊆ (k

j
n) ⊆ · · · ⊆ (k1

n) such that for each j ∈ N the sequence
(f

k
j
n
(xj ))n∈N is convergent. One can check that for each j ∈ N the diagonal sequence (fkn

n
(xj ))n∈N is also convergent.

Using the fact that F is exhaustive we obtain that for each x ∈ X the sequence (fkn
n
(x))n∈N is a Cauchy sequence (the

method for this, is very much the same with the classical one).
Put f (x) = limn∈N fkn

n
(x); using the exhaustiveness and the compactness of X from Theorem 2.6 and Proposi-

tion 1.3(4) it follows that fkn
n

u−→ f . Since F is closed we have that f ∈F and so F is compact.
(2) Assume that F is compact but not exhaustive at some point x. Then by definition there exists ε > 0 such

that for every δ > 0 and for every finite A subset of F , there exists xδ,A ∈ S(x, δ) and fδ,A ∈ F \ A such that
|fδ,A(xδ,A) − fδ,A(x)| � ε.

By induction we define two sequences (xn)n∈N ⊆ X and (fn)n∈N ⊆ F such that: fn �= fm for n �= m, xn → x and
|fn(xn) − fn(x)| � ε for each n ∈ N (∗). Since F is compact there exists a subsequence (fkn)n∈N and f ∈ F such
that fkn

u−→ f . From hypothesis the function f is continuous and so f (xkn)
n∈N−−→ f (x).

For the ε > 0 there exists n0 ∈ N such that for all n � n0 we have that |f (xkn)−f (x)| < ε
3 . Also there exists n1 ∈ N

such that for all n � n1 it holds that ‖fkn − f ‖ < ε
3 . Let n = max{n0, n1}, then |fkn(xkn) − fkn(x)| � |fkn(xkn) −

f (xkn)| + |f (xkn) − f (x)| + |f (x) − fkn(x)| � 2 · ‖fkn − f ‖ + |f (xkn) − f (x)| < ε, contradicting (∗). �
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3.2. Exhaustive nets of functions and other Ascoli-type results

Here we deal with functions defined on a topological space. First we define α-convergence for a net of functions
using a condition which also appears in [1] and show that this is indeed an extension of α-convergence as defined in
Definition 1.1. Then we introduce the notion of an exhaustive net of functions and prove the analogue of Theorem 2.6.
From this we derive Corollary 3.2.13 which ensures that the α-limit of a net of functions is a continuous function.

A natural question to ask is whether α-convergence follows from a topology, i.e., if there is a topology T for which
fi

T−→ f iff fi
α−→ f . This question has been settled by Arens in [1]. Using results of this type and the notion of

exhaustiveness we derive two Ascoli-type results (Theorems 3.2.19, 3.2.20).
The most obvious way to define α-convergence for a net of functions (fi)i∈I is to give the following condition:

for all x ∈ X and all nets (xi)i∈I with xi → x it follows that fi(xi) → f (x). In fact this condition is the definition of
continuous convergence for a net of functions (see [8, p. 241]). In our case though it will be more suitable to give a
stronger condition.

Recall that if (I,�I ) and (K,�K) are two directed sets we define the product pre-ordering � on I ×K as follows:

(i1, κ1) � (i2, κ2) ⇔ i1 �I i2 and κ1 �K κ2.

It is clear that the space (I × K,�) is directed. From now on we will write just I × K without mentioning explicitly
the pre-ordering described above. Also we will refer to a pre-ordering with the symbol �; it should be clear from the
context were � refers to.

Definition 3.2.1. (See also [1].) Let X be a topological space, (Y,p) be a metric space, a function f : X → Y and
a net (fi)i∈I of functions from X to Y . We say that the net (fi)i∈I α-converges to f iff for all x ∈ X and all nets
(xκ)κ∈K in X such that xκ → x the net (y(i,κ))(i,κ)∈I×K defined by y(i,κ) = fi(xκ) converges to f (x) (in Y ), i.e.,
for all ε > 0 there exist i0 ∈ I and κ0 ∈ K such that for all i ∈ I and κ ∈ K with i0 � i and κ0 � κ , we have that
p(fi(xκ), f (x)) < ε.

As before we shall write fi
α−→ f in case where (fi)i∈I α-converges to f .

It turns out that continuous convergence mentioned above is indeed weaker than α-convergence. In fact—despite
its name—the continuous limit of a net of functions is not necessarily a continuous function (see Example 3.2.4), in
contradiction with the α-limit (see Corollary 3.2.13).

It is clear that a subnet of an α-convergent net is also α-convergent. Now we have to make sure that the new
definition coincides with Definition 2.1 in case where we have a sequence of functions and X is a metric space.

Proposition 3.2.2. Let X and Y be metric spaces and also let functions fn,f : X → Y . The net (fn)n∈N α-converges
to f (in the sense of the previous definition) if and only if (fn)n∈N α-converges to f as a sequence (i.e., in the sense
of Definition 2.1).

Proof. While it is easy to verify that if (fn)n∈N α-converges to f as a net then (fn)n∈N α-converges to f as a
sequence, the inverse direction needs a little attention.

Assume that (fn)n∈N α-converges to f as a sequence. Let x ∈ X and a net (xκ)κ∈K in X such that xκ → x. We
will prove that fn(xκ) → f (x).

Suppose that fn(xκ) � f (x). Then there exists an open subset of Y call it U , which contains f (x) and: for all
n ∈ N and all κ ∈ K there exist n′, κ ′ such that n � n′, κ � κ ′ and fn′(xκ ′) /∈ U (∗).

So for some m1 � 1 and some κ1 ∈ K fm1(xκ1) /∈ U . Since xκ → x there exists some λ1 ∈ K with κ1 � λ1 and for
all λ ∈ K with λ1 � λ we have that d(xλ, x) < 1

2 (where d is the metric on X).
Taking n = m1 + 1 and κ = λ1 in (∗) there exist m2 > m1 and κ2 ∈ K with λ1 � κ2 such that fm2(xκ2) /∈ U .
Since λ1 � κ2 we also have that d(xκ2, x) < 1

2 . Now take some λ2 ∈ K with κ2 � λ2 such that for all λ ∈ K with
λ2 � λ it follows that d(xλ, x) < 1

3 .
Applying (∗) again there exist m3 > m2 and κ3 ∈ K with λ2 � κ3 such that fm3(xκ3) /∈ U . Also we have that

d(xκ3, x) < 1
3 .

Proceeding inductively we find naturals m1 < m2 < · · · < mn < · · · and elements of K, κ1 � κ2 � · · · � κn � · · ·
such that for all n ∈ N fmn(xκn) /∈ U and d(xκn, x) < 1 .
n
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Define zn = xκn for all n ∈ N. Then (zn)n∈N is a sequence in X which converges to x. Since (fn)n∈N α-converges
to f as a sequence it follows that the subsequence (fmn)n∈N α-converges to f as well (see Proposition 1.4). It follows
that fmn(zn) = fmn(xκn)

n∈N−−→ f (x), contradicting to the fact that fmn(xκn) /∈ U , for all n ∈ N. �
Notice that in the previous proposition we may assume that X is just a first countable topological space, i.e., each

x ∈ X has a countable neighborhood basis. The previous proof is very tempting for someone to make the following
conjecture whenever X is a first countable topological space: in order to achieve α-convergence using Definition 3.2.1
it is enough to use sequences (xn)n∈N instead of arbitrary nets (xκ)κ∈K and then check that fi(xn) → f (x).

However this is not true. The problem is that although a sequence of naturals m1 < m2 < · · · < mn < · · · defines a
subsequence of some (fn)n∈N, a corresponding sequence i1 � i2 � · · · � in � · · · of elements of some directed I may
not define a subnet of a net (fi)i∈I .

Example 3.2.3. Here we give an example of functions fi, f : [0,1] → [0,1], i ∈ I , such that the net (fi)i∈I does not
α-converge to f , however it has the following property: for all x ∈ [0,1] and all sequences (xn)n∈N in [0,1] with
xn → x it holds that fi(xn) → f (x).

Therefore it is essential to use arbitrary nets (xκ)κ∈K in Definition 3.2.1 even if we regard X as a metric space.
Let ω1 be the first uncountable ordinal with the usual well ordering. For each n ∈ N define Δn = ( 1

n+1 , 1
n
) and

let πn : ω1 → Δn which is one-to-one. Notice that for each x ∈ [0,1] there exists at most one pair (n, ξ) such that
πn(ξ) = x.

Put I = ω1. Of course I is directed. For each ξ ∈ I define fξ : [0,1] → {0,1} such that

fξ (x) =
{

1, if for some n ∈ N we have that x = πn(ξ),

0, otherwise.

Also put f ≡ 0.
Now let a sequence (xn)n∈N in [0,1] and x ∈ [0,1] such that xn → x. The set A = {ξ ∈ ω1 / for some k,n ∈ N we

have that xn = πk(ξ)} is countable. Therefore if we set ξ0 = supA + 1 then ξ0 < ω1.
Now for each ξ ∈ ω1 with ξ0 � ξ we have that fξ (xn) = 0 for all n ∈ N. Therefore fξ (xn) → f (x).
We will prove that the net (fξ )ξ∈ω1 does not α-converge to f .
Think of N×ω1 with the product ordering. For each (n, ξ) ∈ N×ω1 define x(n,ξ) = πn(ξ). Since πn[ω1] ⊆ Δn it is

easy to see that x(n,ξ) → 0. We will show that fi(x(n,ξ)) � 0. Let i ∈ ω1 and (n, ξ) ∈ N×ω1. Take ξ ′ = max{i, ξ} ∈ ω1
and i′ = ξ ′. Then i � i′, (n, ξ) � (n, ξ ′) and fi′(x(n,ξ ′)) = fξ ′(x(n,ξ ′)) = fξ ′(πn(ξ

′)) = 1, i.e., fi(x(n,ξ)) � 0.

We also give an example which distinguishes α-convergence from continuous convergence.

Example 3.2.4. Let ω be the first infinite ordinal and set I = ω + 1 = {n/n ∈ ω} ∪ {ω} with the usual well ordering.
Notice that if (xi)i∈I is a net of elements of [0,1] such that xi

i∈I−−→ x for some x ∈ [0,1], then xω = x.
Now take any function f : [0,1] → [0,1] which is not continuous and define fi = f for all i ∈ I . Using the remark

above it is easy to check that the net (fi)i∈I converges to f continuously. Since the function f is not continuous it
follows that f cannot be an α-limit (see Corollary 3.2.13).

Let us give another example in which I does not have a maximum element. Put I = ω1, where ω1 is the first
uncountable ordinal. Notice that if (xi)i∈ω1 is a net in [0,1] which converges to some x ∈ [0,1], then there exists
some ξ ∈ ω1 such that xλ = x for all ξ � λ < ω1. One can now apply to the previous example taking this I .

As we mentioned in the beginning it is interesting to ask whether we can find a topology T for a family of
functions F from which α-convergence follows. First observe that this family F must consist of continuous functions.
To see this take fn = f , for all n ∈ N. Then fn

T−→ f and so fn
α−→ f . From Proposition 1.3(1) we have that f is

continuous.
Let us recall a topological notion. Let F be a family of continuous functions from X to Y . Each topology for F

is giving rise to a product topology for X × F . A topology T for F is called jointly continuous iff the evaluation
function E : X × F → Y : E(x,f ) = f (x) is continuous (see [8, p. 223]). For example the discrete topology on F
is jointly continuous, since F consists of continuous functions. (Also notice that if there exists a jointly continuous
topology on an arbitrary F ′ then F ′ consists of continuous functions.)
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Similarly a topology T for F is called jointly continuous on compacta iff for each compact K ⊆ X the restriction
of the evaluation function EK : K × F → Y : EK(x,f ) = f (x) is continuous. Of course if T is jointly continuous
then it is jointly continuous on compacta. It is not hard to see that the inverse is also true in case where X is locally
compact.

It is also easy to see that if T0 is jointly continuous and T1 is a larger topology, then T1 is also jointly continuous.
Therefore a natural question to ask is whether there exists a least jointly continuous topology for F .

Recall the compact open topology for F , i.e., the topology which is generated from the sets

W(K,U) = {
f ∈F /f [K] ⊆ U

}
,

where K ⊆ X is compact and U ⊆ Y is open. It is well known that the compact open topology for F is jointly
continuous on compacta and in fact it is the least one with this property [8, Theorem 5, p. 223]. Hence whenever X is
locally compact the compact open topology is the least jointly continuous topology for F .

The following theorem is essentially contained in [1, Theorem 4]; here we are just making a refinement which is
more suitable for later on.

Theorem 3.2.5. Let X be a topological space, Y be a metric space, F ⊆ C(X,Y ) and T0 a topology for F . The
following are equivalent:

(1) The topology T0 is the least jointly continuous topology on F .

(2) For all nets (fi)i∈I of functions in F and all functions f ∈ F , fi
α−→ f if and only if fi

T0−→ f .

In particular α-convergence in F follows from a topology if and only if there exists the least jointly continuous
topology for F .

Before proving this theorem let us state the following proposition. Notice that it is also given in [8] (p. 241, M(a))
with one difference: the author refers to continuous convergence instead of α-convergence that we refer to.

Proposition 3.2.6. Let F be a family of continuous functions from X to Y and T a topology on F . The following are
equivalent:

(1) The topology T is jointly continuous.
(2) For all nets (fi)i∈I of functions in F and all functions f ∈ F , if fi

T−→ f then fi
α−→ f .

Proof of Theorem 3.2.5. (1) ⇒ (2) Let a net of functions (fi)i∈I in F and a function f ∈ F . If fi
T0−→ f then fi

α−→ f

from Proposition 3.2.6 since T0 is jointly continuous.

For the inverse direction let fi
α−→ f . We will prove that fi

T0−→ f . For each i ∈ I define Wi = {fj / i � j} ∪ {f }.
Let T be the topology which is generated from the sets Wi and {g}, for i ∈ I and g ∈F with g �= f .

We will prove that the topology T is jointly continuous and that fi
T−→ f . From this it follows that T0 ⊆ T and so

fi
T0−→ f .
Since the T -subbasic sets which contain f are exactly the Wi ’s, it is obvious that fi

T−→ f . Now assume that
xκ

κ∈K−−−→ x and gκ
T−→ g. We will prove that gκ(xκ)

κ∈K−−−→ g(x).
If g �= f then since {g} ∈ T and g is continuous (as a member of F ) the result follows. So assume that g = f .
Let ε > 0. Since xκ → x and fi

α→f we have that fi(xk) → f (x) = g(x). Therefore there exist i0 ∈ I and κ0 ∈ K

such that p(fi(xκ), g(x)) < ε for all i, κ with i0 � i and κ0 � κ (∗).
Also gκ

T−→ f , hence for the set Wi0 there exists κ1 ∈ K such that for all κ ∈ K with κ1 � κ we have that gκ ∈ Wi0 .
The function f is continuous as a member of F . Therefore there exists some κ2 ∈ K such that for all κ ∈ K with

κ2 � κ we have that p(f (xκ), f (x)) < ε.
Pick κ3 ∈ K with κ0, κ1, κ2 � κ3 and let κ ∈ K such that κ3 � κ . We will show that p(gκ(xκ), g(x)) < ε.
Since gκ ∈ Wi0 either gκ = fi some i ∈ I with i0 � i, or gκ = f . Take the first case. From (∗) since κ0 � κ and

i0 � i we have that p(fi(xκ), g(x)) < ε, i.e. p(gκ(xκ), g(x)) < ε. For the case gκ = f since κ2 � κ we have that
p(gκ(xκ), g(x)) = p(f (xκ), f (x)) < ε.
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(2) ⇒ (1) Assume a topology T for F which is jointly continuous. We will prove that T0 ⊆ T . It is enough to show
that each T -convergent net is also T0-convergent.

Let a net (fi)i∈I in F such that fi
T−→ f , for some f ∈ F . From Proposition 3.2.6 we have that fi

α→f and hence

from (2) it follows that fi
T0−→ f . �

It follows that if X is locally compact α-convergence in F follows from the compact open topology [1, Theo-
rem 4(b)]. Recall the topology of uniform convergence on compact sets for an arbitrary F , whose basis consists of the
sets

W(f,K,ε) = {
g :X → Y /p

(
f (x), g(x)

)
< ε, for all x ∈ K

}
,

where f ∈F , K is a compact subset of X and ε > 0.
It is well known that in case where F consists of continuous functions the compact open topology for F coincides

with the topology of uniform convergence on compact sets (see [8, Theorem 11, p. 230] and [1, Theorem 6]).
Putting Theorem 3.2.5 and all these remarks together the next corollary is self-evident.

Corollary 3.2.7. (See [1].) Let X be a locally compact topological space and Y be a metric space. Then for each net
of functions (fi)i∈I in C(X,Y ) and each f ∈ C(X,Y ) we have that fi

α−→ f iff fi → f uniformly on each compact
subset of X.

Notice the resemblance with Stoilov’s result Proposition 1.3(2). Later on using the notion of exhaustiveness we
will extend this corollary to arbitrary functions fi , i.e., not necessarily continuous (Theorem 3.2.14).

As mentioned the local compactness of X is sufficient to ensure the existence of the least jointly continuous
topology for some F . Arens has also proved in [1] that in case where F = C(X, [0,1]) (with X being completely
regular) this condition is also necessary [1, Theorem 3].

Corollary 3.2.8. (See [1].) Let X be a completely regular space. Then X is locally compact iff for all nets (fi)i∈I in
C(X, [0,1]) and all f ∈ C(X, [0,1]) we have that fi

α−→ f iff fi → f uniformly on each compact subset of X.

We now proceed to the notion of an exhaustive net of functions. For the rest of this section with X we will mean a
topological space and Y a metric space.

Definition 3.2.9. A net (fi)i∈I of functions from X to (Y,p) is called exhaustive at some x0 ∈ X iff for all ε > 0
there exists some open set V containing x0 and i0 ∈ I such that for all x ∈ V and all i ∈ I with i0 � i we have that
p(fi(x), fi(x0)) < ε.

A net (fi)i∈I is called exhaustive iff it is exhaustive at all x ∈ X.

As in Section 2, if I is directed and the family F = {fi / i ∈ I } is equicontinuous at x0 then the net (fi)i∈I is
exhaustive at x0. The inverse fails even if each fi is a continuous function (see the next example). Hence we cannot
have the analogue of Proposition 2.3(2).

Example 3.2.10. Take I = N × N and define (m1, n1) � (m2, n2) iff m1 · n2 � n1 · m2. Then I is directed.
Define f(m,n) : [1,4] → R : x �→ max{x n

m , x}. Notice that f(1,n)(x) = xn for all n ∈ N and all x ∈ [1,4]. It is easy
to check that the sequence (f(1,n))n∈N is not equicontinuous at 2 and so the family F = {f(m,n) / (m,n) ∈ I } is also
not equicontinuous at 2. (In fact F is not even exhaustive since it consists of continuous functions.)

However if (2,1) � (m,n) then 2 ·n � m and so f(m,n)(x) = x for all x ∈ [1,4]. Therefore the net (fi)i∈I converges
uniformly to the identity function. It is now easy to see that the net (f(m,n))(m,n)∈I is exhaustive at 2.

As expected the analogues of Proposition 2.5 and Theorem 2.6 hold for exhaustive nets.

Theorem 3.2.11. Let a function f : X → Y and a net (fi)i∈I of functions from X to Y . If the net (fi)i∈I is exhaustive
and converges pointwise to f then f is a continuous function.
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Theorem 3.2.12. Let a function f : X → Y and a net (fi)i∈I of functions from X to Y . The following are equivalent:

(1) fi
α−→ f .

(2) fi
pw−−→ f and the net (fi)i∈I is exhaustive.

Corollary 3.2.13. If f is the α-limit of a net, then f is a continuous function.

This corollary makes an essential use of the notion of exhaustiveness. No diagonal arguments which work for
nets of the form (fi(xi))i∈I would get us this result. This is because the continuous limit of a net of functions is not
necessarily continuous (see Example 3.2.4).

Proof. The only point which is not entirely the same with the proofs of Section 2 is direction 1 ⇒ 2 of Theorem 3.2.12.
Assume that fi

α−→ f and that f is not exhaustive at some x0 ∈ X. Then for some ε > 0 we have that for all
open neighborhoods V of x0 and all i ∈ I there exist some x ∈ V and some κ ∈ I with i � k such that p(fκ(x),

fκ(x0)) � ε (∗).
Denote with Vx0 the family of open neighborhoods of x0. For U1,U2 ∈ Vx0 define U1 � U2 iff U2 ⊆ U1. Of course

the set Vx0 with � is directed.
Define M = {(κ,V ) ∈ I × Vx0 / there exists x ∈ V such that p(fκ(x), fκ(x0)) � ε}.
Consider the product pre-ordering (described before Definition 3.2.1) for I × Vx0 and then the restriction on M .

Using (∗) one can verify that M with this relation is directed; in fact for all i ∈ I and for all V ∈ Vx0 there exists some
k ∈ I with i � k and (k,V ) ∈ M (∗∗).

From the Axiom of Choice we get a net (x(κ,V ))(κ,V )∈M in X such that p(fκ(x(κ,V )), fκ(x0)) � ε and x(κ,V ) ∈ V ,
for all (κ,V ) ∈ M .

It is clear that x(κ,V )
(κ,V )∈M−−−−−→ x0 and from our hypothesis for α-convergence we get that

fi(x(κ,V ))
(i,κ,V )∈I×M−−−−−−−−→ f (x0).

Since fi(x0) → f (x0) it is easy to check that there exists some i0 ∈ I and (κ0,V0) ∈ M such that for all i ∈ I and
(κ,V ) ∈ M with i0 � i, κ0 � κ,V ⊆ V0 we have that p(fi(x(κ,V )), fi(x0)) < ε.

Now use (∗∗) to get some κ ∈ I with i0, κ0 � κ and (κ,V0) ∈ M . Therefore p(fκ(x(κ,V0)), fκ(x0)) < ε, which is a
contradiction from the choice of x(κ,V0). �

In Corollary 3.2.7 the only reason one has to assume that the functions fi are continuous is because it is necessary
to have a topology from which α-convergence follows. The notion of exhaustiveness allows us to overcome this.

Theorem 3.2.14. Let X be a locally compact topological space and (Y,p) be a metric space. Also let functions
fi, f : X → Y , i ∈ I , with I directed. The following are equivalent:

(1) The net (fi)i∈I α-converges to f .
(2) The function f is continuous and for each compact K ⊆ X the net (fi)i∈I converges to f uniformly on K .

It follows that if X is locally compact then α-convergence in C(X,Y ) follows from the topology of uniform conver-
gence on compact sets.

Before proving this theorem we give a remark that we will use regularly. If I is directed and J ⊆ I is cofinal in I

then J is also directed. Hence if (xi)i∈I is a net then each J as above gives rise to a subnet (xj )j∈J .

Proof. (1) ⇒ (2) The function f is continuous from Corollary 3.2.13. Let K be a compact subset of X. If the net
(fi)i∈I does not converge to f uniformly on K , then for some ε > 0 and for all i ∈ I there exist j ∈ I with i � j and
there exists x ∈ K such that p(fj (x), f (x)) � ε.

Define J = {j ∈ I / there exists some x ∈ K such that p(fj (x), f (x)) � ε}, then J is cofinal in I . From the Axiom
of Choice there exists a net (xj )j∈I in K such that p(fj (xj ), f (xj )) � ε for all j ∈ J (∗).
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Since K is compact there exists a subnet (xjμ)μ∈M and x0 ∈ K such that xjμ

μ∈M−−−→ x0. As mentioned before α-

convergence is preserved under subnets; hence we have that fjμ

α−→ f and so fjμ(xjμ)
μ∈M−−−→ f (x0). Also from the

continuity of f it follows that f (xjμ)
μ∈M−−−→ f (x0). Therefore p(fxjμ

(xjμ), f (xjμ))
μ∈M−−−→ 0 contradicting (∗).

(2) ⇒ (1) Let a net (xμ)μ∈M in X which converges to some x0. Since X is locally compact there exists some
open U such that x0 ∈ U and U is compact. Pick some μ0 ∈ M such that for all μ ∈ M with μ0 � μ we have that
xμ ∈ U .

Define L = {xμ /μ0 � μ} and K = L. Then the set K is a closed subset of U and thus compact. From the hy-
pothesis it follows that the net (fi)i∈I converges to f uniformly on K . Using the continuity of f it is easy to see that
p(fi(xμ), f (x0)) → 0. �

We can also give the analogue of 3.2.8.

Corollary 3.2.15. Let X be a regular space and Y be a metric space with at least two elements. The following are
equivalent:

(1) X is locally compact.
(2) For all nets (fi)i∈I of functions from X to Y and for all f : X → Y , the net (fi)i∈I α-converges to f if and only

if f is continuous and (fi)i∈I converges to f uniformly on each compact subset of X.

Proof. The direction (1) ⇒ (2) is Theorem 3.2.14.
(2) ⇒ (1) Assume towards a contradiction that X is not locally compact. We will define a net of functions which

converges to some continuous f uniformly on every compact subset of X and does not α-converge to f .
Take K to be the family of all compact subsets of X. For K1,K2 ∈ K define K1 � K2 iff K1 ⊆ K2. Then (K,�) is

directed.
Fix some y0, y1 ∈ Y with y0 �= y1. For K ∈ K define fK : X → Y such that fK(x) = y0 if x ∈ K and fK(x) = y1

if x /∈ K . Also put f (x) = y0 for all x ∈ X.
We will prove that the net (fK)K∈K does not α-converge to f .
Since X is not locally compact there exists some x0 ∈ X such that for each closed F with x0 ∈ F ◦ there exists a

net (xF
i )i∈IF in F with no convergent subnet. Now take I to be the disjoint union of all those IF ’s; i.e., for all i ∈ I

there exists a unique F such that i ∈ IF .
For i, j ∈ I define

i � j ⇔ i ∈ IF and j ∈ IC and [either F = C and i �F j or C � F ].
It is not hard to see that � is a pre-ordering on I .
Also I is directed. Let i ∈ IF , j ∈ IC and define L = F ∩ C. Then x0 ∈ L◦.
Assume that F ∩ C = F . Then F ⊆ C. If F � C then j � i. If F = C then since (IF ,�F ) is directed there exists

some κ ∈ IF such that i, j �F κ . Since κ ∈ IF it follows that i, j � κ .
Assume now that F ∩ C � F . If F ∩ C = C then C � F and so i � j . If F ∩ C � C then any κ ∈ IF∩C = IL

suffices for the relation i, j � κ .
Now for i ∈ I define xi = xF

i , where F is the unique closed F with x0 ∈ F ◦ and i ∈ IF . We claim that xi
i∈I−−→ x0.

Indeed if U is open with x0 ∈ U , using the regularity of X there exists some closed F with x0 ∈ F ◦ ⊆ F ⊆ U . Let any
i0 ∈ IF . If i ∈ I with i0 � i and i ∈ IC then C ⊆ F and from the choice of xC

i we have that xi = xC
i ∈ C ⊆ F ⊆ U .

Finally we prove that fK(xi) � f (x0) = y0. Let K ∈K and i ∈ I with i ∈ IF . It is enough to find some j ∈ I such
that i � j and fK(xj ) = y1, i.e., xj /∈ K .

Define JF = {j ∈ IF / i �F j} and notice that JF is directed. It is easy to see that each J ⊆ JF which is cofinal
in JF is also cofinal in IF . Hence each subnet of (xF

j )j∈JF is also a subnet of (xF
i )i∈IF . Now K cannot contain the

net (xF
j )j∈JF for otherwise from the compactness of K we would get a convergent subnet of (xF

i )i∈IF . However this

contradicts to the choice of the net (xF
i )i∈IF . Therefore there exists some j ∈ JF with xF

j /∈ K . Hence i � j and

xj = xF /∈ K . �
j
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These results together with Theorem 3.2.5 will provide us with the tools to give some Ascoli-type theorems. In
Section 3.1 we gave an analogous result for not necessarily continuous functions. However it was essential to have
a metric on the set F . Now we will not have to assume any metrizability at all; the topology of α-convergence will
suffice. The payoff though is that we must restrict ourselves to continuous functions.

First let us state some notations. With P we denote the topology of pointwise convergence on the set of functions
from X to Y . Also if T is a topology on some F0 and F ⊆ F0 then T F stands for the restriction of the topology T
on F . Also we denote with clT F the closure of F with respect to T .

The following lemma is useful for the proof of Theorem 3.2.19. It is also interesting on its own right.

Lemma 3.2.16. Let X be a topological space, Y be a metric space and let some F0 which is a subset of C(X,Y ).
Assume that there exists a topology T0 for F0 which is the least jointly continuous topology. Let F ⊆ F0 with the
following property: for each net of functions in F which is pointwise convergent to a function f from X to Y there
exists an exhaustive subnet. Then the following hold:

(1) The restriction of the topology T0 on F coincides with the topology of pointwise convergence, i.e. T F
0 = PF .

Hence α-convergence in F coincides with pointwise convergence.
(2) The T0-closure of F is equal to the pointwise closure of F in F0, i.e. clT0 F = F0 ∩ clP F .

In fact if F0 is P-closed in C(X,Y ) (i.e., if the function f is in C(X,Y ) and f ∈ clP F0 then we have that
f ∈F0), then clT0 F = clP F .

Proof. (1) First notice that the topology T F
0 is the least jointly continuous topology for F . To see this, for any func-

tions fi, f ∈ F (i ∈ I ), since F ⊆ F0 and T0 is the least jointly continuous topology for F0, from Theorem 3.2.5 we

obtain that fi
α−→ f iff fi

T0−→ f ; i.e., α-convergence in F follows from the topology T F
0 . Again from Theorem 3.2.5

we have that T F
0 is the least jointly continuous topology for F .

It is easy to check that PF is contained in any topology for F which is jointly continuous. Using the remark above
it is enough to show that the topology PF is jointly continuous.

Let xi
i∈I−−→ x and fi

pw−−→ f , with fi, f ∈F , i ∈ I . Suppose that fi(xi) � f (x). Then for some open U ⊆ Y which
contains f (x) and some J ⊆ I which cofinal in I we have that fj (xj ) /∈ U , for all j ∈ J , (∗).

From the hypothesis for F the net (fj )j∈J has an exhaustive subnet (fjμ)μ∈M . Since fjμ

pw−−→ f , from Theo-

rem 3.2.12 we have that fjμ

α−→ f . Hence fjμ(xjμ)
μ∈M−−−→ f (x) contradicting (∗).

(2) In the proof of (1) we mentioned that the topology of pointwise convergence is contained in each jointly
continuous topology, hence PF0 ⊆ T0. Therefore clT0 F ⊆ F0 ∩ clP F .

Now let f ∈ F0 which is in clP F . Then there exists a net (fi)i∈I in F such that fi
pw−−→ f . From the property

of F there exists a subnet (fiκ )κ∈K which is exhaustive. Applying again Theorem 3.2.12 we have that fiκ
α−→ f . From

Theorem 3.2.5 (since all our functions are members of F0) we obtain that fiκ

T0−→ f and so f ∈ clT0 F . Therefore
clT0 F = F0 ∩ clP F .

In fact we have shown that if f ∈ clP F then the function f is the α-limit of a net of functions in F . From
Corollary 3.2.13 we have that f is continuous and hence in case where F0 is P-closed in C(X,Y ) it follows that
f ∈F0. So in this case clP F ⊆ F0 and therefore F0 ∩ clP F = clP F . Hence clT0 F = clP F . �
Remark 3.2.17. Let F ⊆ C(X,Y ) and P1,P2 be the following properties for F :

P1: for all nets in F there exists an exhaustive subnet.
P2: for all nets in F which are pointwise convergent (not necessarily to a member of F ) there exists an exhaustive

subnet.
It is obvious that if F is equicontinuous then P1 and P2 hold. In fact if P1 holds for F then F is equicontinuous.

Suppose not, then there exists ε > 0, x0 ∈ X, a net (xV )V ∈V which converges to x0 and a net (fV )V ∈V in F such that
p(fV (xV ), fV (x0)) � ε, for all V ∈ V. Using this it is easy to see that no subnet of (fV )V ∈V is exhaustive at x0.

However condition P2 does not imply equicontinuity. Therefore the preceding lemma is stronger than a corre-
sponding lemma which asserts that F is equicontinuous.
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Counterexample: For each k ∈ Z with k �= 0 define fk : [2,4]→R: fk(x) = max{xk+1, x} and put F = {fk / k �= 0}.
Of course F ⊆ C([2,4],R). The family {fn /n � 1} is not equicontinuous and so neither is F . We will show that F
has the property P2.

Notice that if fk(x) = xk+1 we have that k � 1 and if fk(x) = x then k � −1.
Let (fi)i∈I be a net in F which is pointwise convergent. Choose a family of naturals (ki)i∈I such that fi = fki

for
all i ∈ I . We will prove that the whole net (fi)i∈I is exhaustive. Let x0 ∈ [2,4] and ε > 0. Notice that since x0 > 1 the
number r ≡ r(x0) defined by r = inf{|xn

0 − xm
0 |/n,m � 1 and n �= m} is positive.

The net (fi(x0))i∈I is Cauchy and so there exists i0 ∈ I such that for all i, j ∈ I with i0 � i, j we have that
|fi(x0) − fj (x0)| < r . From the choice of r we cannot have that fi(x0) = x

ki+1
0 and fj (x0) = x0 for any i, j ∈ I with

i0 � i, j .

Hence either for all i, j ∈ I with i0 � i, j we have that fi(x0) = x
ki+1
0 and fj (x0) = x

kj +1
0 or for all i, j ∈ I with

i0 � i, j we have that fi(x0) = fj (x0) = x0.
Take the first case. We have that ki � 1 for all i ∈ I with i0 � i. Again from the choice of r it follows that ki = kj =

k � 1 for all i, j ∈ I with i0 � i, j . Since k � 1 and fi = fki
= fk we have that fi(x) = fk(x) = max{xk+1, x} = xk+1

for all x ∈ [2,4] and all i ∈ I with i0 � i.
From the continuity of the function (x �→ xk+1) there exists some δ > 0 such that for all x ∈ (x0 −δ, x0 +δ)∩[2,4]

we have that |xk+1 − xk+1
0 | < ε. Now let i ∈ I with i0 � i and x ∈ (x0 − δ, x0 + δ) ∩ [2,4]. Then |fi(x) − fi(x0)| =

|xk+1 − xk+1
0 | < ε.

For the second case the result is proved similarly.

From now on we will state the compact open topology with C and the topology of uniform convergence on compact
sets with Uc . As mentioned before Corollary 3.2.7 these topologies coincide on a family F which consists of continu-
ous functions. Also if X is locally compact and F ⊆ C(X,Y ) then CF = UF

c is the least jointly continuous topology
for F (see comments before Theorem 3.2.5). Taking F0 = C(X,Y ) in Lemma 3.2.16 we obtain the following.

Corollary 3.2.18. Let X be a locally compact topological space, Y be metric space and let some F which is a subset
of C(X,Y ). Assume that for each net of functions in F which is pointwise convergent to a function f from X to Y

there exists an exhaustive subnet. Then the following hold:

(1) The restriction of the topology C on F coincides with the topology of pointwise convergence, i.e., CF = UF
c = PF .

(2) The C-closure of F is equal to the pointwise closure of F , i.e., clC F = clUc F = clP F .

Theorem 3.2.19 (Ascoli-type (I)). Let X be a topological space, Y be metric space and let some F0 which is a subset
of C(X,Y ) and P-closed in C(X,Y ). Assume that there exists the least jointly continuous topology T0 for F0. Let
some F which is a subset of F0. The following are equivalent:

(I) The set F is T0-compact.
(II) Each net in F has a subnet which is α-convergent in F .

(III) The following conditions hold:
(i) F is T0-closed.

(ii) For each x ∈ X the set F[x] = {f (x) /f ∈ F} has a compact closure in Y .
(iii) F is equicontinuous.

(IV) The following conditions hold:
(1) F is T0-closed.
(2) For each x ∈ X the set F[x] = {f (x) /f ∈ F} has a compact closure in Y .
(3) For each net of functions in F which is pointwise convergent to a function f from X to Y there exists an

exhaustive subnet.

Notice that conditions (iii) and (3) above are not equivalent because of the counterexample given in Remark 3.2.17.
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Proof. The equivalence between (I) and (II) is straightforward. Assume now (I). We will prove the conditions of (III).
For (i) notice that since Y is Hausdorff as a metric space then each jointly continuous topology for F0 is also Hausdorff.
Hence F is T0-closed as a T0-compact subset of the Hausdorff space (F0,T0).

For (ii) take x ∈ X and notice that the function Ex : F0 → Y : Ex(f ) = f (x) is T0-continuous since T0 is jointly
continuous. Now F[x] = {f (x) /f ∈F} = {Ex(f ) /f ∈ F} = Ex[F]. Since F is T0-compact we obtain that F[x] is
a compact subset of Y .

For (iii) we will prove the equivalent condition P1 in Remark 3.2.17. Take a net (fi)i∈I in F . Since F is T0-
compact there exists a subnet (fiκ )κ∈K which is T0-convergent in F . From Theorem 3.2.5 the subnet (fiκ )κ∈K is
α-convergent and hence from Theorem 3.2.12 it is exhaustive.

It is also obvious that (III) implies (IV).
Assume now the conditions of (IV). We will prove that F is T0-compact. Notice that F ⊆ ∏

x∈X F[x]. From (2)
and Tychonoff’s theorem the set

∏
x∈X F[x] is P-compact. Hence clP F is also P-compact. From condition (3) and

Lemma 3.2.16 we have that clP F = clT0 F and since F is T0-closed it follows that clP F = F . Therefore F is P-
compact. Again from Lemma 3.2.16 the topology of pointwise convergence on F coincides with T F

0 . Hence F is
T0-compact. �

Taking F0 in the previous theorem to be C(X,Y ) and using the remarks above for the compact open topology we
obtain the following result (compare with [8, 7.6, p. 224, 7.17, p. 233–234]).

Theorem 3.2.20 (Ascoli-type (II)). Let X be a locally compact topological space, Y be metric space and let some F
which is a subset of C(X,Y ). The following are equivalent:

(I) The set F is C-compact (equivalently Uc-compact).
(II) Each net in F has a subnet which is α-convergent in F .

(III) The following conditions hold:
(i) F is C-closed (equivalently Uc-closed).

(ii) For each x ∈ X the set F[x] = {f (x) /f ∈ F} has a compact closure in Y .
(iii) F is equicontinuous.

(IV) The following conditions hold:
(1) F is C-closed (equivalently Uc-closed).
(2) For each x ∈ X the set F[x] = {f (x) /f ∈ F} has a compact closure in Y .
(3) For each net of functions in F which is pointwise convergent to a function f from X to Y there exists an

exhaustive subnet.

4. Further applications

4.1. Separate α-convergence

Here we deal with functions defined on products of the form X × Y and we give conditions under which sepa-
rate exhaustiveness (α-convergence) of a sequence gives joint exhaustiveness (respectively α-convergence) on some
comeager subset of X × Y .

Let X,Y,Z be metric spaces and a function f : X × Y → Z. For y ∈ Y we denote with f y the function
(x �→ f (x, y)) for x ∈ X. Also we denote with fx the function (y �→ f (x, y)). In case where we have a sequence of
functions (fn)n∈N we use the symbols f

y
n and fx,n for the corresponding functions.

It is also useful to think of functions defined on some G = A × B which is a subset of X × Y . Of course in this
case the function f y is defined on A for y ∈ B . The analogous holds for fx .

Definition 4.1.1. Let X,Y,Z be metric spaces and functions fn,f : X × Y → Z. We say that the sequence (fn)n∈N

is separately exhaustive iff for each y ∈ Y the sequence (f
y
n )n∈N is exhaustive and for each x ∈ X the sequence

(fx,n)n∈N is exhaustive.
Also we say that the sequence (fn)n∈N converges α-separately iff for all x, y the sequence (f

y
n )n∈N α-converges

to f y and the sequence (fx,n)n∈N α-converges to fx .
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In case where our functions are defined on some G ⊆ X × Y we keep the same definitions as above, where the
sequences (f

y
n )n∈N and (fx,n)n∈N are taken for suitable x’s and y’s.

The analogous well-known notions of a separate continuous function and a separate uniformly convergent sequence
are immediate.

As expected separate exhaustiveness does not imply exhaustiveness and α-separate convergence does not imply
α-convergence.

Example 4.1.2. For each n ∈ N define fn,f : R2 → R such that

f (x, y) =
{ x·y

x2+y2 , if (x, y) �= (0,0),

0, if (x, y) = (0,0)

and fn = f + 1
n

. Notice that fn
u−→ f . Since f is not continuous the sequence (fn)n∈N does not α-converge to f . From

Theorem 2.6 the sequence (fn)n∈N is not exhaustive. However we will show that (fn)n∈N is separately exhaustive.
Let xn → x �= 0. We may assume that xn �= 0 for all n ∈ N. For each y ∈ R we have that f

y
n (xn) = fn(xn, y) =

xn·y
x2
n+y2 + 1

n
n∈N−−→ x·y

x2+y2 = f (x, y) = f y(x).

If xn → 0 and y = 0 then f 0
n (xn) = 0 + 1

n
→ 0 = f 0(0) and if y �= 0 then f

y
n (xn) = xn·y

x2
n+y2 + 1

n
→ 0 = f y(0).

Since fn(x, y) = fn(y, x) and f (x, y) = f (y, x) the same things hold for the sequences (fx,n)n∈N (x ∈ R).
It follows that the sequence (fn)n∈N is separately exhaustive. Also from Theorem 2.6 the sequence converges

α-separately to f although it does not α-converge.

Recall that a set A ⊆ X is called nowhere dense iff (A)◦ = ∅. The set A is called meager iff it is the countable
union of a sequence of nowhere dense sets. Also A is called comeager iff X \ A is meager.

The previous example comes from the classical example of a separately continuous function which is not continu-
ous. A well-known result of Namioka says that separate continuity implies continuity on some comeager subset of the
domain space X × Y . Furthermore if X and Y are compact this subset can be taken to be of the form A × Y . A small
variation of the proof of the first result gives the analogue for exhaustiveness (see [11] and [12]).

Theorem 4.1.3. Let (X,d), (Y,p), (Z, l) be metric spaces and functions fn : X × Y → Z. Assume that for all y ∈ Y

each function f
y
n : X → Z is continuous and also that the sequence (fn)n∈N is separately exhaustive. Then there

exists a comeager set G ⊆ X × Y such that the sequence (fn)n∈N is exhaustive at every (x, y) ∈ G.

Proof. For each m,k,n0 ∈ N define

Fm,k,n0 =
{
(x, y) ∈ X × Y /∀n � n0 and ∀u,v ∈ S

(
y,

1

k

)
⇒ l

(
fn(x,u), fn(x, v)

)
� 1

m

}
.

We claim that each Fm,k,n0 is closed.
Let (xi, yi)

i∈N−−→ (x, y) with (xi, yi) ∈ Fm,k,n0 for all i ∈ N. Also let n � n0 and u,v ∈ S(y, 1
k
). We will prove that

l(fn(x,u), fn(x, v)) � 1
m

.
Since yi → y and u,v ∈ S(y, 1

k
) there exists some i0 ∈ N such that for all i � i0 we have that u,v ∈ S(yi,

1
k
). Since

(xi, yi) ∈ Fm,k,n0 we have that l(fn(xi, u), fn(xi, v)) � 1
m

, for all i � i0. From hypothesis the functions f u
n and f v

n

are continuous. Since xi → x it follows that l(fn(x,u), fn(x, v)) � 1
m

.
For each (x, y) ∈ X × Y the sequence (fx,n)n∈N is exhaustive at y. Using this it is not hard to see that X × Y =⋂

m∈N

⋃
k∈N

⋃
n0∈N

Fm,k,n0 .
For all y ∈ Y put F

y
m,k,n0

= {x ∈ X /(x, y) ∈ Fm,k,n0}. Define D = ⋃
m,k,n0

{(x, y) /x ∈ F
y
m,k,n0

\ (F
y
m,k,n0

)◦}. Of
course with Dy we mean the set of all x ∈ X such that (x, y) ∈ D.

It is obvious that D ⊆ ⋃
m,k,n0

Fm,k,n0 \ (Fm,k,n0)
◦. Since each set Fm,k,n0 is closed it follows that the set

Fm,k,n0 \ (Fm,k,n0)
◦ is meager. Hence D is meager as well. Put G = X × Y \ D. Let (x, y) ∈ G. We will prove

that the sequence (fn)n∈N is exhaustive at (x, y).
Let ε > 0 and m ∈ N such that 2

m
< ε. Choose k,n0 ∈ N such that (x, y) ∈ Fm,k,n0 . Then x ∈ F

y
m,k,n0

\ Dy ⊆
(F

y
)◦. Hence x ∈ (F

y
)◦.
m,k,n0 m,k,n0
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The sequence (f
y
n )n∈N is exhaustive at x and each f

y
n is a continuous function. From Proposition 2.3 we obtain

that the sequence (f
y
n )n∈N is equicontinuous at x. Therefore there exists δ > 0 such that S(x, δ) ⊆ F

y
m,k,n0

and for all

s ∈ S(x, δ) and all n ∈ N it follows that l(fn(s, y), fn(x, y)) � 1
m

(∗).
Let (s, t) ∈ S(x, δ) × S(y, 1

k
) and n � n0. We need to prove that l(fn(s, t), fn(x, y)) < ε. Since s ∈ S(x, δ) ⊆

F
y
m,k,n0

we have that (s, y) ∈ Fm,k,n0 . From the fact that t ∈ S(y, 1
k
) and n � n0 we obtain that l(fn(s, t), fn(s, y)) �

1
m

(∗∗).
Now from (∗) and (∗∗) we have that

l
(
fn(s, t), fn(x, y)

)
� l

(
fn(s, t), fn(s, y)

) + l
(
fn(s, y), fn(x, y)

)

� 1

m
+ 1

m
= 2

m
< ε. �

Remark 4.1.4. Notice that if G0 is a subset of X × Y of the form A × B we can repeat the same proof using the
restrictions on G0. However the resulting set G ⊆ G0 is going to be meager in G0, i.e., the set G0 \G will be meager.
Therefore if in the previous theorem our functions are defined only on a set G0 = A × B ⊆ X × Y , the conclusion is
that there exists a set G ⊆ G0 such that G0 \ G is meager and the sequence (fn)n∈N is exhaustive at every (x, y) ∈ G.
This remark will help us in the next result.

Corollary 4.1.5. Let X,Y,Z be metric spaces and functions fn,f : X × Y → Z. Assume that each function f
y
n is

continuous.

(1) If the sequence (fn)n∈N converges to f α-separately, then there exists a comeager set G ⊆ X ×Y such that for all
(x, y) ∈ G and all sequences ((xn, yn))n∈N in X ×Y with (xn, yn) → (x, y) it follows that fn(xn, yn) → f (x, y).
In particular the sequence (fn � G)n∈N α-converges to f � G.

(2) Assume that X and Y are compact. If each function fx is continuous and the sequence (fn)n∈N converges to f

separate uniformly, then there exist a comeager set G ⊆ X × Y such that for all (x, y) ∈ G and all sequences
((xn, yn))n∈N in G with (xn, yn) → (x, y) it follows that fn(xn, yn) → f (x, y); i.e., the sequence (fn � G)n∈N

α-converges to f � G.

Proof. For (1) notice that the sequence (fn)n∈N converges to f pointwise. Then use Theorem 4.1.3 and Remark 2.7.
For (2) we need Remark 4.1.4. First notice the function f is separate continuous, since for each y ∈ Y we have that

f
y
n

u−→ f y and each f
y
n is continuous.

From Namioka’s result (see [12] and [11]) there exists a comeager set G0 ⊆ X × Y such that f is continuous at
every (x, y) ∈ G0. Also since X and Y are compact the set G0 is of the form A × Y .

It follows that the restriction f � G0 is a continuous function and hence separately continuous. Now using Propo-
sition 1.3(3) the sequence (fn � G0)n∈N converges to f � G0 α-separately. It follows that the sequence (fn � G0)n∈N

is separately exhaustive.
Since G0 is of the form A × Y from Remark 4.1.4 there exists a set G ⊆ G0 such that G0 \ G is meager and

the sequence (fn � G0)n∈N is exhaustive at every (x, y) ∈ G. Applying Remark 2.7 for the restrictions on G0

we obtain that for all (x, y) ∈ G and all sequences ((xn, yn))n∈N in G0 with (xn, yn) → (x, y) it follows that
fn(xn, yn) → f (x, y).

Also notice that X × Y \ G = (X × Y \ G0) ∪ (G \ G0). Hence G is comeager in X × Y . �
4.2. Notions which are derived from exhaustiveness

The notion of exhaustiveness can lead us to some more definitions with interesting properties. Using these new
meanings we will derive a necessary and sufficient condition for the continuity of a function which is the pointwise
limit of a sequence of—not necessarily continuous—functions (see Theorem 4.2.3).
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Definition 4.2.1. Let (X,d), (Y,p) be metric spaces, x ∈ X and (fn)n∈N be a sequence of functions from X to Y .

(1) The sequence (fn)n∈N is weakly exhaustive at x iff for all ε > 0 there exists δ > 0 such that for all y ∈ S(x, δ)

there exists ny ∈ N such that for all n � ny we have that p(fn(y), fn(x)) < ε.
(2) The sequence (fn)n∈N is of vanishing oscillation at x iff for all ε > 0 there exists n0 ∈ N such that for all n � n0

there exists δn > 0 such that for all y ∈ S(x, δn) it follows that p(fn(y), fn(x)) < ε.
(3) The sequence (fn)n∈N is weakly exhaustive iff it is weakly exhaustive at every x. The same for the notion of the

vanishing oscillation.

Remark 4.2.2.

(1) The idea of weak exhaustiveness is that the natural n0 now depends not only on the ε > 0 but also on the y chosen
in S(x, δ). The dual happens for the vanishing oscillation: the δ > 0 does not only depend on ε > 0 but also on
the function fn.

(2) Both new meanings introduced in Definition 4.2.1 are weaker that the exhaustive notion. For counterexamples
refer to Example 4.2.5.

(3) It is clear that one might give the analogous definitions for a family of functions F or a net of functions (fi)i∈I ,
as we did in Sections 2 and 3. However here we are not interested for a topology for α-convergence so we will
not use nets. Also the notion of a weakly exhaustive sequence (instead of a family) reflects better the situation in
the next theorem.

A well-known problem is when the pointwise limit of continuous functions is continuous. An answer is obtained
for compact spaces in [4]. Here we will present a much more general result.

Theorem 4.2.3. Let (X,d), (Y,p) be metric spaces, x ∈ X and functions fn,f : X → Y , n ∈ N, such that the sequence
(fn)n∈N converges pointwise to f . Then f is continuous at x if and only if the sequence (fn)n∈N is weakly exhaustive
at x.

Note that we do not assume any continuity for fn. This leads to a deeper idea: we do not care about each function
as a single member but we do care for what is the sequence as a whole.

Proof. (⇒) Let ε > 0, from the continuity of f there exists δ > 0 such that for all y ∈ S(x, δ) we have that
p(f (y), f (x)) < ε

2 . Let y ∈ S(x, δ), since (fn)n∈N converges pointwise to f there exists ny ∈ N such that
for all n � ny it follows that p(fn(y), f (y)) < ε

4 and p(fn(x), f (x)) < ε
4 . So for each n � ny we have that

p(fn(y), fn(x)) < ε.
(⇐) Let ε > 0, since (fn)n∈N is weakly exhaustive at x there exists δ > 0 such that for all y ∈ S(x, δ) there

exists ny ∈ N such that for all n � ny it follows that p(fn(y), fn(x)) < ε
3 . Take y ∈ S(x, δ), since (fn)n∈N converges

pointwise to f there exists n0 ∈ N such that for all n � n0 we have that p(fn(y), f (y)) < ε
3 and p(fn(x), f (x)) < ε

3 .
Therefore p(f (y), f (x)) < ε and thus f is continuous at x. �

Recall that if we have a function f : X → Y and a point x ∈ X the oscillation of f at x is defined by osc(f, x) =
inf{diam(f [U ]) /U : open subset of X and x ∈ U}, where diam(A) = sup{p(z,w)/ z,w ∈ A}, for A ⊆ Y . It is easy
to see that f is continuous at x if and only if osc(f, x) = 0.

The following proposition is straightforward and we put it down because it helps in Examples 4.2.5.

Proposition 4.2.4. Let (X,d), (Y,p) be metric spaces, x ∈ X and functions fn : X → Y , n ∈ N. The sequence (fn)n∈N

is of vanishing oscillation at x if and only if osc(fn, x)
n∈N−−→ 0.

Example 4.2.5. (1) Let (fn)n∈N be any sequence of continuous functions, pointwise converging to a function f which
is not continuous at a point x. Since each fn is continuous at x we have that osc(fn, x) = 0 for each n ∈ N. From
Proposition 4.2.4 we obtain that the sequence (fn)n∈N is of vanishing oscillation at x. However (fn)n∈N is not weakly
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exhaustive at x because of Theorem 4.2.3 and the fact that f is not continuous at x. It follows also that the sequence
(fn)n∈N is not exhaustive at x.

(2) For each n ∈ N define fn : R → R: fn(x) = 0 for x ∈ (−∞,− 1
n
) ∪ ( 1

n
,+∞) ∪ {0}; the graph of fn restricted

on [− 1
n
,0) × R is linear connecting the points of R2: (− 1

n
,0) and (0,1); and the graph of fn restricted on (0, 1

n
] × R

is also linear connecting the points of R2: (0,1) and ( 1
n
,0). The sequence (fn)n∈N converges pointwise to the zero

function which is continuous. Therefore from Theorem 4.2.3 the sequence (fn)n∈N is weakly exhaustive at 0. It is
not difficult to check that osc(fn,0) � 1 for each n ∈ N. Therefore the sequence (osc(fn,0))n∈N does not converge
to 0 and from Proposition 4.2.4 it follows that the sequence (fn)n∈N is not of vanishing oscillation at 0. Hence the
sequence (fn)n∈N is not exhaustive at x.

Open problems.

(1) It would be interesting to study the relation between equal [2] and uniformly equal convergence [6] under the
notions of exhaustiveness and weak exhaustiveness. We can ask the same with pointwise and equal or pointwise
and uniformly equal convergence.

(2) Let F be an infinite family of functions from X to Y and let σ stand for any convergence of sequences of functions.
Denote with Fσ the family of cluster points of F under σ -convergence. Under what conditions Fσ is exhaustive?
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