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The role of telomere biology in cancer has been studied for a wide variety of different cancers but the
association with telomere length has been controversial. This is because some cancers have been found
to be associated with longer telomeres in circulating white cells whilst other cancer types are more com-
mon in individuals with shorter telomeres. Hence, there has been some skepticism as to whether telom-
ere length may be helpful in estimating cancer risk. For melanoma, however, results have been fairly
consistent showing that longer telomeres are associated with an increased risk. This link was first discov-
ered because of a link between longer telomeres and a high number of naevi. In contrast, for cutaneous
squamous cell carcinomas, the relationship is reversed with higher risk in individuals with shorter telom-
eres. Differences in skin phenotypes with the presence of high number of naevi versus photoageing with
solar elastosis and solar keratoses have already been valuable for dermatologists as the former phenotype
is associated with melanoma whilst the latter is more common in patients with squamous cell carcinoma
of the skin. The hypothesis is that the differences in cutaneous phenotypes already observed by derma-
tologists for skin cancers may, in fact, be useful as well for cancer prediction in general as it may reflect
underlying telomere biology. This manuscript will address the evidence for links between telomere biol-
ogy, skin phenotypes and cancer risk.

� 2016 Elsevier Ltd. All rights reserved.
Telomeres are repeat TTAGGG sequences at the end of linear
chromosomes, which guard against loss of genetic material during
cellular replication. Due to an inherent end replication problem,
chromosomes are exposed to a potential loss of genetic material
so telomeres act as a buffer against loss of chromatin [1]. In normal
human somatic cells, telomeres range from 9 to 15 kb initially,
with a progressive loss in mean telomere length of 15–66 bp per
year [2]. It has been estimated that 17.5% of the inter-individual
variation in leukocyte telomere length is due to the ageing process
[3]. Repeated cell cycles eventually lead to a critically shortened
telomere length which then triggers apoptosis. In cell cultures,
the replicative potential of human cells is estimated at an average
of 52 mitoses per cell known as the Hayflick limit, by which stage,
the critical telomere shortening will lead to the activation of genes
pushing the cells in cell cycle arrest [4]. This arrest in proliferation
is thought to protect against malignant transformation and a fail-
ure to do so results in catastrophic genomic instability and carcino-
genesis. Telomeres are thus important in managing genomic
stability. This central role in genome maintenance makes telom-
eres key players in carcinogenesis and an attractive candidate for
tumour profiling at the molecular level. Although telomere length
has a strong inheritable component [5], it is also influenced by a
wide variety of environmental factors such as oxidative stress,
chronic inflammation, smoking and obesity [2,6–8]. Telomeres
have been estimated to be 240 bp shorter in obese women com-
pared to women with a BMI below 25 and also 5 bp shorter for
every cigarette pack year smoked [2].

The link between cancer susceptibility and telomere length has
not been easy to elucidate perhaps because there was an assump-
tion that all cancers would show associations with telomere length
in the same direction whatever the cancer type. However, when
grouping all cancers together it appears that conflicting results
emerge [9,10]. It is likely that cancer types need to be analysed
separately to observe trends with telomere length. Most studies
looking at associations between telomere length and cancer have
used circulating leukocytes as blood sampling is easily accessible
and telomere length in white cells correlates to telomere length
in other human healthy tissues (but very different from neoplastic
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tissues where telomerase and other neoplastic processes affect
telomerase) [3,11,12].

Melanoma susceptibility via an excess of naevi was one of the
first tumour to show a link with longer telomeres in white cells
[13]. The reason why telomere length was measured in individuals
with a high number of naevi was because dermatologists working
in high risk melanoma clinics had observed that these high risk
patients with multiple atypical naevi showed reduced signs of skin
ageing and photoageing compared to their peers. It was therefore
suspected that their ageing process may be delayed. In fact, many
melanoma patients show far less photoageing compared to
patients with squamous cell carcinoma, the latter usually associ-
ated with sun damaged skin with solar lentigines and solar ker-
atoses. The link between melanoma susceptibility and longer
telomeres suggests that these individuals may have a reduced
senescence which is likely to affect many cell types and not just
melanocytes. It is yet, unproven, if longer telomeres are causal in
the formation of a large numbers of cutaneous naevi in these high
risk melanoma patients. However, considering the role of the
telomere unit in cell replication, it is highly likely that an excess
of naevi is a reflection of the lack of senescence in melanocytes
and is linked to their longer telomeres [14]. This has potential
implications for other tissues as individuals with high numbers
of naevi have been shown to be taller than those with fewer naevi
and also have higher bone mineral density [15]. Bone mass and
growth early in life is likely to be affected by telomere biology well
before melanoma susceptibility is evident later in life. Melanoma
case-control studies, family studies and analyses of genetic
changes in melanoma tumours have all replicated the link between
melanoma susceptibility and telomere biology from 2011 onwards.
These studies assessed telomere length in melanoma cases com-
pared to controls or reported on polymorphisms in genes which
affect telomere length [16–19].

In contrast, cutaneous squamous cell carcinoma susceptibility is
associated with shorter telomeres [20–22]. The cutaneous pheno-
type associated with squamous cell carcinoma of the skin is char-
acterised by epidermal and dermal atrophy, solar lentigines and
solar keratoses which are far less common in melanoma patients
(albeit in lentigo maligna in elderly patients)[23]. This photoaged
skin phenotype is likely to reflect the altered telomere biology
via shorter telomeres and increased senescence in cutaneous squa-
mous cell carcinoma patients.

More recently, large genome wide association studies led to the
identification of 10 loci associated with telomere length variation
[24–29]. Following the discovery of these loci, a large melanoma
case-control study from the Genomel Consortium developed a
genetic score to estimate melanoma risk based on these SNPs asso-
ciated with telomere length variation [26]. The combined SNPs
score does predict melanoma risk again confirming the role of
the telomere unit in melanoma susceptibility [30]. It is, however,
important to note these SNPs only explain 1% of the variance in
telomere length so many other genes, environmental factors as
well as epigenetics factors may explain the rest of the variance in
telomere length. Genetic variants reported in the Codd et al. study
[26] may not have an effect solely on telomere length as they may
have pleiotropic effects on cancer risk via immune responses and
DNA repair as well [30].

In fact, well before these recent telomere studies, dermatolo-
gists were well aware that phenotypic risk factors for squamous
cell carcinomas and melanoma were different. This may be surpris-
ing when there is a tendency to combine all skin cancers together
and always assume that they are all caused by excessive sun expo-
sure. Squamous cell carcinoma of the skin is usually associated
with chronic sun damage whilst many melanoma patients, espe-
cially in the context of familial susceptibility, show very little signs
of photoageing. A high number of naevi (high risk of melanoma)
and severe photoageing with solar keratoses (high risk of squa-
mous cell carcinoma) have already been reported to often be
mutually exclusive even after adjusting for age which support
the fact that melanomas and squamous cell carcinoma do arise
from very different ‘‘at risk” cutaneous phenotypes. Of the smaller
numbers of melanomas associated with a photoageing phenotype
these are more likely to be seen in older patients, be a nodular sub-
type or lentigo maligna and on chronically sun exposed sites
[31,32]. This led to the divergent melanoma pathways hypothesis
described in the 1990s via the photoageing or alternatively via
the naevus phenotype [31,32]. Whilst it is true that squamous cell
carcinoma affects older individuals compared to melanoma, telom-
ere studies looking at SCC have adjusted for age and the association
remains with shorter telomeres for squamous cell carcinomas [21].
Shorter telomeres in squamous cell carcinomas may also explain
the reduced immune surveillance with less robust lymphocytic
response in relation to neoplastic keratinocytes. It is common to
find a strong lymphocytic response in melanoma tumours whilst
for squamous cell carcinomas, this is not commonly reported his-
tologically. While it is not proven that these differences in immune
responses in different types of skin cancers are explained by telom-
ere biology, it is quite likely that longer telomeres have a signifi-
cant impact on lymphocyte functions [33].

Could these differences in the ‘‘at risk” skin phenotypes
observed for skin cancers shed any light on the association
between telomere length and other cancers? In fact, there are
already interesting contrasting results regarding telomere length
and lung cancer risk where the squamous cell carcinoma type in
the lung is more likely to be associated with shorter telomeres
whilst adenocarcinoma of the lung (more common in non-
smokers) is linked to longer telomeres and this appears to be con-
sistent across studies [34–37]. SNPs in the TERT gene have been
associated with adenocarcinomas of the lung but not with squa-
mous cell or small cell lung cancers [38]. This again highlights
the issue of histological subtypes when looking at associations
between cancer and telomere length or telomere SNPs. The associ-
ation between shorter telomeres and squamous cell carcinoma
type tumours is also often reported for squamous cell tumours of
other organs such as oro-pharynx [39,40] oesophagus [41–44] or
cervix [45]. Adenocarcinomas of the colon, kidney, prostate, uterus
and breast are, on the contrary, more likely to be associated with
longer telomeres [46–53]. Still, the association with adenocarcino-
mas of the colon and breast is controversial as other studies have
shown inverse relationships with telomere length or no association
at all [9]. The association between telomere length and cancer is
therefore quite complex as some studies have reported a U shape
curve with risk of cancer seen in the extreme groups of telomere
length [54–56]. Telomere length can be also be by affected by envi-
ronmental factors and these are often not adjusted for, such as,
obesity, smoking (apart from lung cancer) and alcohol abuse. Fur-
thermore, there has been discrepant results between studies look-
ing at telomere length measured by Southern Blot (which gives a
measurement of the telomere unit in bp but is more time consum-
ing) and those using qPCR (faster and cheaper but does not give an
actual length but mean TL ratio) [57]. Recently, whole genome
sequencing has been used to measure telomere length and may,
in the future, replace qPCR and Southern blot [58].

In Dyskeratosis Congenita, considered a short telomere syn-
drome caused by mutations in telomere genes, SCCs of the head
and neck and oral leucoplakia are reported frequently and the skin
is showing all the signs of premature photoageing with ker-
atinocyte dysplasia so again the skin in this syndrome is very infor-
mative as it is a window into telomere biology. These patients are
also more prone to cutaneous and non cutaneous SCC type
tumours and not adenocarcinomas in line with their very short
telomeres [59].
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In melanoma families, the risk of other solid tumours is
increased and the most commonly reported tumours are brain,
pancreas, breast, colon, kidney, lymphomas and sarcomas amongst
many others [60–65]. For the brain, gliomas have already been
linked to longer telomeres and the same has been observed for soft
tissue sarcoma [66–68]. In melanoma families, tumours are also
more likely to be of the adenocarcinoma type from the colon,
breast, pancreas or prostate cancer whilst the squamous cell carci-
noma type such as SCC of the skin, lung, oropharynx or cervix are
not as common [61,69,70]. So even in the familial clustering of
tumours within melanoma families, the association is more likely
to be observed with tumours linked to longer telomeres rather
than shorter telomeres.

Telomere biology may also be relevant for cancer survival as
shown for colon cancer where telomere length has been used as
a predictor of immune function in colon cancer [71,72] as longer
telomeres are a favourable prognostic factor in this tumour [73].
It is speculated that this is explained by a more efficient immune
response. The implications are that telomere length measurements
have a potential as risk stratification enrichment biomarkers for
estimating cancer risk but also for prognosis and for individualised
therapeutic interventions [14]. Globally shorter telomere length in
circulating white cells have been associated with reduced cancer
survival and these results have been confirmed in a meta-
analysis [10, 47].

In melanoma, high number of naevi offer a survival advantage
after adjusting for all melanoma prognostic factors and this again
may be related to telomere biology as an excess of naevi is linked
to longer telomeres [74]. To date, there are no studies published
looking at melanoma survival in relation to telomere length and
this is because telomere length is not an easy phenotype to collect
and 5 years follow up data is needed to assess melanoma survival.
These studies are not yet available.
Conclusion

The skin is a very important window into the body reflecting
many changes in cellular functions, especially in relation to the
ageing process. Research so far suggests that changes in skin prop-
erties with age have good correlations with telomere length espe-
cially in skin carcinogenesis. This, in turn, may be highly relevant
for cancer biology in general and not just skin so that assessing
skin phenotypes in different types of cancers in the future may
shed some light on underlying telomere biology and further eluci-
date the complex relationship between ageing and cancer
susceptibility.
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