
Physics Letters B 742 (2015) 330–334

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for exclusive photoproduction of Z±
c (3900) at COMPASS

C. Adolph h, R. Akhunzyanov g, M.G. Alexeev aa, G.D. Alexeev g, A. Amoroso aa,ac, 
V. Andrieux v, V. Anosov g, A. Austregesilo j,q, B. Badełek ae, F. Balestra aa,ac, J. Barth d, 
G. Baum a, R. Beck c, Y. Bedfer v, A. Berlin b, J. Bernhard m, K. Bicker j,q, E.R. Bielert j, 
J. Bieling d, R. Birsa y, J. Bisplinghoff c, M. Bodlak s, M. Boer v, P. Bordalo l,1, 
F. Bradamante x,y, C. Braun h, A. Bressan x,y,∗, M. Büchele i, E. Burtin v, L. Capozza v, 
M. Chiosso aa,ac, S.U. Chung q,2, A. Cicuttin z,y, M.L. Crespo z,y, Q. Curiel v, S. Dalla Torre y, 
S.S. Dasgupta f, S. Dasgupta y, O.Yu. Denisov ac, S.V. Donskov u, N. Doshita ag, V. Duic x, 
W. Dünnweber p, M. Dziewiecki af, A. Efremov g, C. Elia x,y, P.D. Eversheim c, W. Eyrich h, 
M. Faessler p, A. Ferrero v, A. Filin u, M. Finger s, M. Finger Jr. s, H. Fischer i, C. Franco l, 
N. du Fresne von Hohenesche m,j, J.M. Friedrich q, V. Frolov j, F. Gautheron b, 
O.P. Gavrichtchouk g, S. Gerassimov o,q, R. Geyer p, I. Gnesi aa,ac, B. Gobbo y, S. Goertz d, 
M. Gorzellik i, S. Grabmüller q, A. Grasso aa,ac, B. Grube q, T. Grussenmeyer i, A. Guskov g,∗, 
F. Haas q, D. von Harrach m, D. Hahne d, R. Hashimoto ag, F.H. Heinsius i, F. Herrmann i, 
F. Hinterberger c, Ch. Höppner q, N. Horikawa r,4, N. d’Hose v, S. Huber q, S. Ishimoto ag,5, 
A. Ivanov g, Yu. Ivanshin g, T. Iwata ag, R. Jahn c, V. Jary t, P. Jasinski m, P. Jörg i, R. Joosten c, 
E. Kabuß m, B. Ketzer q,6, G.V. Khaustov u, Yu.A. Khokhlov u,7, Yu. Kisselev g, F. Klein d, 
K. Klimaszewski ad, J.H. Koivuniemi b, V.N. Kolosov u, K. Kondo ag, K. Königsmann i, 
I. Konorov o,q, V.F. Konstantinov u, A.M. Kotzinian aa,ac, O. Kouznetsov g, M. Krämer q, 
Z.V. Kroumchtein g, N. Kuchinski g, F. Kunne v,∗, K. Kurek ad, R.P. Kurjata af, A.A. Lednev u, 
A. Lehmann h, M. Levillain v, S. Levorato y, J. Lichtenstadt w, A. Maggiora ac, A. Magnon v, 
N. Makke x,y, G.K. Mallot j, C. Marchand v, A. Martin x,y, J. Marzec af, J. Matousek s, 
H. Matsuda ag, T. Matsuda n, G. Meshcheryakov g, W. Meyer b, T. Michigami ag, 
Yu.V. Mikhailov u, Y. Miyachi ag, A. Nagaytsev g, T. Nagel q, F. Nerling m, S. Neubert q, 
D. Neyret v, V.I. Nikolaenko u, J. Novy t, W.-D. Nowak i, A.S. Nunes l, A.G. Olshevsky g, 
I. Orlov g, M. Ostrick m, R. Panknin d, D. Panzieri ab,ac, B. Parsamyan aa,ac, S. Paul q, 
D.V. Peshekhonov g, S. Platchkov v, J. Pochodzalla m, V.A. Polyakov u, J. Pretz d,8, 
M. Quaresma l, C. Quintans l, S. Ramos l,1, C. Regali i, G. Reicherz b, E. Rocco j, 
N.S. Rossiyskaya g, D.I. Ryabchikov u, A. Rychter af, V.D. Samoylenko u, A. Sandacz ad, 
S. Sarkar f, I.A. Savin g, G. Sbrizzai x,y, P. Schiavon x,y, C. Schill i, T. Schlüter p, K. Schmidt i,3, 
H. Schmieden d, K. Schönning j, S. Schopferer i, M. Schott j, O.Yu. Shevchenko g,19, L. Silva l, 
L. Sinha f, S. Sirtl i, M. Slunecka g, S. Sosio aa,ac, F. Sozzi y, A. Srnka e, L. Steiger y, 
M. Stolarski l, M. Sulc k, R. Sulej ad, H. Suzuki ag,4, A. Szabelski ad, T. Szameitat i,3, 
P. Sznajder ad, S. Takekawa aa,ac, J. ter Wolbeek i,3, S. Tessaro y, F. Tessarotto y, F. Thibaud v, 
S. Uhl q, I. Uman p, M. Virius t, L. Wang b, T. Weisrock m, M. Wilfert m, R. Windmolders d, 
H. Wollny v, K. Zaremba af, M. Zavertyaev o, E. Zemlyanichkina g, M. Ziembicki af, A. Zink h

a Universität Bielefeld, Fakultät für Physik, 33501 Bielefeld, Germany 9

b Universität Bochum, Institut für Experimentalphysik, 44780 Bochum, Germany 9,16

c Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Germany 9

d Universität Bonn, Physikalisches Institut, 53115 Bonn, Germany 9

e Institute of Scientific Instruments, AS CR, 61264 Brno, Czech Republic 10

f Matrivani Institute of Experimental Research & Education, Calcutta 700 030, India 11
http://dx.doi.org/10.1016/j.physletb.2015.01.042
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

https://core.ac.uk/display/302080598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.01.042
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2015.01.042
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2015.01.042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.01.042&domain=pdf


C. Adolph et al. / Physics Letters B 742 (2015) 330–334 331
g Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia 12

h Universität Erlangen–Nürnberg, Physikalisches Institut, 91054 Erlangen, Germany 9

i Universität Freiburg, Physikalisches Institut, 79104 Freiburg, Germany 9,16

j CERN, 1211 Geneva 23, Switzerland
k Technical University in Liberec, 46117 Liberec, Czech Republic 10

l LIP, 1000-149 Lisbon, Portugal 13

m Universität Mainz, Institut für Kernphysik, 55099 Mainz, Germany 9

n University of Miyazaki, Miyazaki 889-2192, Japan 14

o Lebedev Physical Institute, 119991 Moscow, Russia
p Ludwig-Maximilians-Universität München, Department für Physik, 80799 Munich, Germany 9,15

q Technische Universität München, Physik Department, 85748 Garching, Germany 9,15

r Nagoya University, 464 Nagoya, Japan 14

s Charles University in Prague, Faculty of Mathematics and Physics, 18000 Prague, Czech Republic 10

t Czech Technical University in Prague, 16636 Prague, Czech Republic 10

u State Scientific Center Institute for High Energy Physics of National Research Center ‘Kurchatov Institute’, 142281 Protvino, Russia
v CEA IRFU/SPhN Saclay, 91191 Gif-sur-Yvette, France 16

w Tel Aviv University, School of Physics and Astronomy, 69978 Tel Aviv, Israel 17

x University of Trieste, Department of Physics, 34127 Trieste, Italy
y Trieste Section of INFN, 34127 Trieste, Italy
z Abdus Salam ICTP, 34151 Trieste, Italy
aa University of Turin, Department of Physics, 10125 Turin, Italy
ab University of Eastern Piedmont, 15100 Alessandria, Italy
ac Torino Section of INFN, 10125 Turin, Italy
ad National Centre for Nuclear Research, 00-681 Warsaw, Poland 18

ae University of Warsaw, Faculty of Physics, 00-681 Warsaw, Poland 18

af Warsaw University of Technology, Institute of Radioelectronics, 00-665 Warsaw, Poland 18

ag Yamagata University, Yamagata 992-8510, Japan 14

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2014
Received in revised form 25 November 2014
Accepted 27 January 2015
Available online 30 January 2015
Editor: M. Doser

Keywords:
COMPASS
Zc(3900)

Photoproduction
Tetraquark

A search for the exclusive production of the Z±
c (3900) hadron by virtual photons has been performed 

in the channel Z±
c (3900) → J/ψπ±. The data cover the range from 7 GeV to 19 GeV in the centre-

of-mass energy of the photon–nucleon system. The full set of the COMPASS data set collected with 
a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z±

c (3900) →
J/ψπ±) × σγ N→Z±

c (3900)N/σγ N→ J/ψN of 3.7 × 10−3 has been established at the confidence level of 90%.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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The Z±
c (3900) state was recently discovered by the BES-III 

and Belle Collaborations in e+e− → π+π− J/ψ reactions at 
√

s =
4.26 GeV [1,2] via the decay channel

Z±
c (3900) → J/ψπ±. (1)

It has been interpreted as a tetraquark state [3–6], although other 
explanations like a molecular state [7–11], a cusp effect [12]
and an initial-single-pion-emission mechanism [13] were also pro-
posed. According to the vector meson dominance (VMD) model, 
a photon may behave like a J/ψ so that a Z±

c (3900) can be pro-
duced by the interaction of an incoming photon with a virtual 
charged pion provided by the target nucleon

γ N → Z±
c (3900)N. (2)

The corresponding diagram is shown in Fig. 1a.
Based on the VMD model, the authors of Ref. [14] predict a siz-

able cross section of the reaction in Eq. (2) for √sγ N ∼ 10 GeV. 
Under the assumption that the decay channel of Eq. (1) is dom-
inant and that the total width Γtot of the Z±

c (3900) particle is 
46 MeV/c2, as measured by BES-III, the cross section reaches a 
maximum value of 50 nb to 100 nb at √sγ N = 7 GeV. The J/ψ
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Fig. 1. Diagrams for (a) Z+
c (3900) production via virtual π+ exchange and (b) 

J/ψπ+ production via pomeron exchange.

production in photon–nucleon interactions at COMPASS covers the 
range √

sγ N from 7 GeV to 19 GeV and thus can be used to 
also study Z±

c (3900) production and to estimate the partial width 
Γ J/ψπ of the decay channel Z±

c (3900) → J/ψπ± .
The COMPASS experiment [15] is situated at the M2 beam 

line of the CERN Super Proton Synchrotron. The data used in 
the present analysis were obtained scattering positive muons of 
160 GeV/c (2002–2010) or 200 GeV/c momentum (2011) off solid 
6LiD (2002–2004) or NH3 targets (2006–2011). The longitudinally 
or transversely polarized targets consisted of two (2002–2004) or 
three (2006–2011) cylindrical cells placed along the beam direc-
tion. Polarization effects were canceled out by combining data with 
opposite polarization orientations. Particle tracking and identifica-
tion were performed in a two-stage spectrometer, covering a wide 
kinematic range. The trigger system comprises hodoscope counters 
and hadron calorimeters. Beam halo was rejected by veto counters 
upstream of the target.

In the analysis presented in this Letter, the reaction

μ+N → μ+ Z±
c (3900)N → μ+ J/ψπ±N → μ+μ+μ−π±N (3)

was searched for. In order to select samples of exclusive μ+ J/ψπ±
events, a reconstructed vertex in the target region with an incom-
ing beam track and three outgoing muon tracks (two positive and 
one negative) is required. Tracks are attributed to muons if they 
cross more than 15 radiation lengths of material. Only the events 
with exactly three muons and one pion in the final state were 
selected. A pair of muons is treated as a J/ψ candidate if the 
difference between its reconstructed mass Mμ+μ− (Fig. 2a) and 
the nominal J/ψ mass is less than 150 MeV/c2 that is 3 times 
larger than the mass resolution. In case both μ+μ− combinations 
satisfy this condition, the event is rejected. Except for the tiny re-
coil of the target nucleon, the sum of the scattered muon energy, 
Eμ′ , and the energies of produced J/ψ and π± mesons, E J/ψ and 
Eπ± , should be equal to the beam energy Eb for the exclusive 
reaction of Eq. (3). The distribution of events as a function of the 
energy balance �E = Eμ′ + E J/ψ + Eπ± − Eb is presented in Fig. 2b. 
With the experimental energy resolution of about 3 GeV, the en-
ergy balance is required to be |�E| < 10 GeV. The distribution of 
the negative squared four-momentum transfer Q 2 = −(Pb − Pμ′ )2

is shown in Fig. 3a. Here Pμ′ and Pb are four-momenta of the 
scattered and incident muons, respectively. The momentum of the 
produced pion is required to be larger than 2 GeV/c in order to re-
duce the background of exclusive events with a J/ψ and a π± in 
the final state produced via pomeron exchange (Fig. 1b). The total 
number of selected μ+ J/ψπ+ and μ+ J/ψπ− events is 565 and 
405, respectively. The distribution of the centre-of-mass energy of 
the photon–nucleon system √sγ N is shown in Fig. 3b.

The mass spectrum for J/ψπ± events is shown in Fig. 4a. 
It does not exhibit any statistically significant resonant structure 
around 3.9 GeV/c2. In order to quantify possible contribution from 
the Zc decay we define the signal range 3.84 GeV/c2 < M J/ψπ± <

3.96 GeV/c2. It is selected according to the measured mass and 
width of Zc , their uncertainties, observed in the previous exper-
iments, and the COMPASS setup resolution for M J/ψπ± of about 
15 MeV/c2. The observed number of events N J/ψπ in this range 
is treated as consisting of an a priori unknown Z±

c (3900) signal 
N Zc and a background contribution Nbkg . According to the method 
described in Ref. [16], the probability density function g(N Zc ) is 
given by

g(N Zc ) = n

∞∫

0

e−(N Zc +Nbkg)(N Zc + Nbkg)
N J/ψπ

N J/ψπ ! f (Nbkg)dNbkg, (4)

where n is a normalization constant and the probability density 
function f (Nbkg), assumed to be Gaussian, describes the back-
ground contribution in the signal interval. The mean value and the 
Gaussian width of f (Nbkg) are estimated by fitting a sum of two 
exponential functions (A · e−aM J/ψπ + B · e−bM J/ψπ ) to the J/ψπ±
mass spectrum in the range 3.3 GeV/c2 < M J/ψ π+ < 6.0 GeV/c2

excluding the signal region. The fitted function is shown as a line 
in Fig. 4a. The number of expected background events in the sig-
nal region is 49.7 ± 3.4 while 51 is observed. The upper limit NUL

Zc

for the number of produced Z±
c (3900) events corresponding to a 

confidence level of CL = 90% is then determined from the expres-
sion

NUL
Zc∫

0

g(N Zc ) = 0.9 (5)

to be NUL
Z = 15.1 events.
c

Fig. 2. (a) The dimuon mass distribution for all dimuons produced in muon–nucleon scattering (blue, upper curve), and for exclusively produced dimuons (yellow, lower 
curve). (b) Distribution for the energy balance �E in the reactions Eq. (7) (yellow, upper curve) and Eq. (3) (green, lower curve). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Kinematic distributions for the reactions Eq. (7) (yellow, upper curves) and Eq. (3) (green, lower curves) (a) Q 2, (b) √sγ N . (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) Mass spectrum of the J/ψπ± state. The fitted function is shown as a line. (b) p2
T distributions for exclusively produced J/ψ mesons off the 6LiD (blue, lower) and 

NH3 (red, upper) targets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
For the absolute normalization of the Z±
c (3900) production rate 

we estimated for the same data sample the number of exclusively 
produced J/ψ mesons from incoherent exclusive production in

γ N → J/ψN, (6)

the cross section of which is known for our range of √sγ N [17]. 
The same selection criteria are applied for the exclusive production 
of the J/ψ mesons

μ+N → μ+ J/ψN, (7)

and Z±
c (3900) hadrons. To separate J/ψ production and non-

resonant production of dimuons, the dimuon mass spectrum is 
fitted by a function consisting of three Gaussians (two to describe 
the J/ψ peak and one for the ψ(2S) peak) and an exponential 
background under the peaks (see Fig. 2a). Finally 18.2 ×103 events 
of exclusive J/ψ production remain in the sample. The distribu-
tion of the squared transverse momentum p2

T of the J/ψ (Fig. 4b) 
for the exclusive sample is fitted by a sum of two exponential 
functions in order to separate the contributions from exclusive co-
herent production on the target nuclei and exclusive production on 
(quasi-)free target nucleons. The contribution from coherent pro-
duction is found to be 30.3% for the 6LiD target and 38.9% for NH3
target (36.1% averaged over the sample). The amount of nonexclu-
sive events in the exclusive incoherent sample is estimated to be 
about 30 ± 10%. Since only the charged pion distinguishes the final 
state of the process in Eq. (2) from the final state of the process 
in Eq. (6), the ratio Ra of their acceptances is in a first approx-
imation equal to the acceptance for this pion. Based on previous 
COMPASS measurements and Monte Carlo simulations this ratio is 
about Ra = 0.5 ± 0.1syst. , averaged over all setup and target config-
urations. Thus we obtain the result

BR(Z±
c (3900) → J/ψπ±) × σγ N→Z±

c (3900)N

σγ N→ J/ψN

∣∣∣∣〈√sγ N 〉=13.8 GeV

< 3.7 × 10−3, (8)

where BR denotes the branching ratio for the Z±
c (3900) → J/ψπ±

decay channel. Assuming σγ N→ J/ψN = 14.0 ± 1.6stat. ± 2.5syst. nb
as measured by the NA14 Collaboration for 

√
sγ N = 13.7 GeV [17], 

the result can be presented as

BR
(

Z±
c (3900) → J/ψπ±) × σγ N→Z±

c (3900)N

∣∣〈√sγ N 〉=13.8 GeV

< 52 pb. (9)

The upper limits for the ratio of the cross sections in intervals 
of √sγ N are presented in Table 1.

The main contribution to the systematic uncertainty of the 
result shown in Eq. (8) comes from the background description 
in the signal range of the J/ψπ spectrum. Changes of the fit-
ting function and the fitting ranges shift the result within ±15%. 
The absolute normalization is performed with a relative accuracy 
of about 25% that includes our limited knowledge of the ratio 
Ra = 0.5 ± 0.1syst. and systematic errors in the estimation of the 
nonexclusive contamination in the reference J/ψ sample (15%), 
determined from the pT dependence of the energy balance �E . 
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Table 1
Upper limits for Z±

c (3900) production rate for intervals of √sγ N .

Interval 〈√sγ N 〉, 
GeV

BR( J/ψπ) × σZc /σ J/ψ , 
10−3

Full 13.8 3.7
√

sγ N < 12.3 GeV 10.8 10
12.3 GeV <

√
sγ N < 14.1 GeV 13.2 3.7

14.1 GeV <
√

sγ N < 15.4 GeV 14.7 4.5
15.4 GeV <

√
sγ N 16.4 6.0

Nevertheless, this relatively large uncertainty may change the up-
per limit just by up to 3%. Contribution of the absolute normaliza-
tion remains small with respect to the contribution related to the 
background fitting even for result in Eq. (9), where the uncertainty 
of the σγ N→ J/ψN measurement by NA14 contributes. So, the sys-
tematic uncertainty of the results in Eqs. (8) and (9) is about 15%.

The result shown in Eq. (9) can be converted into an upper limit 
for the partial width Γ J/ψπ of the decay in Eq. (1) based on the 
VMD model. According to Ref. [14] the cross section for the reac-
tion in Eq. (2), averaged over the measured √sγ N distribution for 
J/ψπ± events is about Γ J/ψπ × 430 pb/MeV for Λπ = 0.6 GeV, 
a free parameter of the π N N vertex, yielding

Γ J/ψπ

Γtot
× σγ N→Z±

c (3900)N

= Γ 2
J/ψπ × 430 pb/MeV

Γtot
< 52 pb. (10)

Assuming Γtot = 46 MeV/c2, we obtain an upper limit Γ J/ψπ <

2.4 MeV/c2. While the results in Eqs. (8) and (9) are model inde-
pendent, the result for the partial width Γ J/ψπ is strongly model 
dependent.

No signal of exclusive photoproduction of the Z±
c (3900) state 

and its decay into J/ψπ± was found. Therefore an upper limit 
was determined for the product of the cross section of this pro-
cess and the relative Z±

c (3900) → J/ψπ± decay probability nor-
malized to the cross section of incoherent exclusive photoproduc-
tion of J/ψ mesons. The obtained result was treated within the 
framework of Zc production mechanism proposed in Ref. [14]. In 
case the assumptions made therein are correct, the decay channel 
Z±

c (3900) → J/ψπ± cannot be the dominant one. This result is a 
significant input to clarify the nature of the Z±

c (3900) state.
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