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Methyl mercury (CH3Hg+), a neurotoxin, is the most toxic form of mercury that occurs in natural 
waters [1–4]. It is a cause of concern because of increasing worldwide pollution by mercury in both 
water and atmosphere [3, 5]. 
Photodegradation of CH3Hg+ is one of the main removal pathways from surface waters, and it has 
been shown to occur in the presence of dissolved organic matter (DOM) but not in ultra-pure water 
[2, 4]. Several mechanisms for the photodegradation of CH3Hg+ have been proposed, including: (1) 
direct photodegradation of CH3Hg–DOM 
complexes via intramolecular electron transfer [4] and (2) indirect photodegradation of CH3Hg–
DOM by free radicals/ reactive oxygen species such as singlet oxygen (1O2) and the hydroxyl 
radical (HO•) [1, 2, 6]. Studies show that the photo-Fenton reaction or the reactive oxygen species, 
including hydroxyl radical (HO•), 1O2, triplet excited state of DOM (3DOM*), and hydrated 
electron (eaq

-), play a minor role in CH3Hg+ photodegradation in aqueous media [3, 4, 6]. 
Interestingly, the photodegradation of CH3Hg+ depends on the wavelength-specific incident photon 
flux, on DOM contents and salinity, but does not depend on nitrate photolysis [3]. It has been 
shown that rates of CH3Hg+ photodegradation are decreased with increasing salinity and DOM 
contents [3]. Increasing DOM contents with the CH3Hg+ aqueous media can act as a barrier to reach 
the incident light intensity toward the CH3Hg+ component which could presumably decline the rates 
of CH3Hg+ photodegradation. Several gaps still exist concerning the proposed photodegradation 
pathways, including two unresolved key questions: (1) how does DOM form bonds with CH3Hg+? 
and (2) How is the newly formed complex excited upon irradiation? A couple of considerations 
may help in shedding some light over this issue and could provide scope for further research in the 
field. 
The first issue is the formation of p-electron bonding systems between CH3Hg+ [Hg1+ = 
1s22s22p63s23p64s23d104p65s24d105p66s14f145d10] and DOM (CH3Hg–DOM), through 
electron donation from the functional groups of high molecular weight DOM to an empty sorbital of 
CH3Hg+ (ligand-to-metal charge transfer) [7]. 
Note that the p-electron bonding system is not formed with low-molecular-weight DOM, because 
the formed complex would not be stable enough. The overall conditional complexation constants 
(K0 DOM) between Hg(II) and DOM (extracted humic acids, fulvic acids and hydrophobic acids) 
show very strong interactions (K0 DOM = 1023.2±1.0 L/kg) at Hg/DOM ratios below 
approximately 1 lg Hg/mg DOM, which are indicative of mercury–thiol bonds [8]. 
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Photodegradation of methylmercury can thus occur via a pathway that involves thiol complexation 
[2, 4]. In contrast, much weaker interactions (K0 DOM = 1010.7±1.0 L/kg) are observed at 
Hg/DOM ratios above approximately 10 lg Hg/mg DOM, coherently with Hg binding to oxygen 
functional groups [8]. The second issue is that p-electrons are loosely bound and they are highly 
susceptible to radiative excitation [7]. 
The ligand-to-metal charge transfer could be triggered by the photolysis of the complex H3C–
Hg+DOM (where the “” indicates electron donation), which could take place as follows (Eq. 
(1)): 
 

 
 
Oxidized DOM (DOM?•) could undergo several processes. Interestingly, similar phenomena 
involving the charge-transfer photolysis of Fe(III)–DOM complexes ultimately cause DOM 
mineralization via decarboxylation [1]. The species H3C–Hg• might, for instance, react with HO• 
and/or 1O2 [1, 2]. Oxidizing transients are expected to preferentially react with the methyl moiety of 
H3C–Hg•, because the p-electron bonding system would provide an increased electron density on 
the methyl group and would lower the excitation energy of the carbon–mercury bond [9]. Such 
processes would lead to the demethylation of H3C–Hg•, with the formation of elemental Hg and 
oxidation of the methyl group (Eq. (2)). 
 

 
 
Note that the formation of Hg2+ from the reaction (Eq. (2)) would not occur, because irradiated Hg 
cannot release its outer electron from the s-orbital and also because of the high availability of 
hydrated electrons in waters under the light condition [7, 10]. 
The occurrence of inorganic compounds can also be important: for instance, increasing salinity can 
decrease the photodegradation of CH3Hg+ by several processes [3], including: (1) the scavenging of 
HO• by bromide (the main HO• scavenger in seawater) [7, 10] and (2) the different speciation of the 
CH3Hg+ cation in seawater compared to freshwater. In seawater, the formation of stable complexes/ 
ion pairs with anions such as Cl- and Br- may hinder the formation of the photolabile species H3C–
Hg+DOM. 
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