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1 Energy and CO2 emissions associated with mechanical plantersused in

2 biomass plantations

5 Abstract
6  Until now, SRC has been studied from many pointg@iv (economic sustainability,
7  environmental impact, harvesting systems, etci)fdw studies of the actual planting
8 operations have been carried out. The objectivhisfstudy was to evaluate the energy
9 input and CO2 emission were evaluated during végrtRotation Coppice (VSRC)
10 planting. The analysis was performed consideriffigmrdint planter types and tree
11 species (poplar, willow and black locust).
12  This work showed that the energy input and@@ission of vSRC planting is linked to
13 different planter types and, consequently, to yipe of planting material used (rods,
14  cuttings and rooting plants). Among the combinatitested, rods planters showed the
15 lowest value for energy consumption (356 M$)hend CQ emission (31 kg b9
16  compared to universal planters type (1,028 M3 drad 92 kg hd). No difference
17  between tree species was observed in this expetifResults highlighted that the

18 energy input required by the planting operatioarik/ 1.7% of the total energy input of

19 the vSRC.
20
21 Keywords

22  Short Rotation Coppice, planters, productivity,|faensumption, energy input, GO
23  emission
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1. Introduction

In Europe, there are two different methods of SR@ivation: very Short Rotation
Coppice (VSRC) with a very high density, from 5,56QL4,000 plants per hectare, and
a harvesting cycle of 1-4 years, and Short Rotafloppice (SRC) with a high density,
from 1,000 to 2,000 plants per hectare, and a B&ingecycle of 5-7 years [1].

In general, because the trees do not have a smaaiketer £150 mm), theSRC with the
highest rotation time (5-7 years) offers woodchgbshigh quality, with a high fibre
content (85-90%) and a favourable particle-sizéridigion. On the contrary, vSRC
presents a high bark content (>20%) [2-3] and dooafly a mediocre particle-size
distribution that is often too rich in ash (>1098) f]. Nevertheless, farmers prefer the
VSRC cultivation model because it has a lower imtaperiod and allows for a more
rapid change of the tree culture in the case of poconomic benefits [5]. Furthermore,

its cultivation and harvest machines and methodsmare familiar to farmers.

The main forestry species used in fast-growing woagbs for biomass production are
willows, poplars, eucalyptus and black locust [6@¢nerally, the choice of the forestry
species is made as a function of the soil and taps conditions where the SRC is

planted [8].

Over the years, many aspects of vSRC have beeiedtueconomic sustainability [8],
environmental impact [9-10], and harvesting systgis1?] - but SRC planting has not
been well studied [13]. In fact, the machines anglements used in planting operations

are adapted from other agricultural sectors (matiméy horticultural sector) or are only
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prototypes [14-15]. Generally, the choice of plasites made on the basis of the tree
species used in VSRC because different tree spgi@ssnt a different planting material
(rods, cuttings, and rooting plants) and consedyeetuire different types of planters.
In fact, in poplar and willow vVSRC, it is possiliteuse cuttings and rods, while in black

locust and eucalyptus VSRC, only rooting plantstmansed [13, 16].

Often, when an evaluation of the energy or of theirenmental impact of biomass
plantations is performed, the average values ansidered independently from the
planter types used [17]. However, this assumptamoit completely correct because the
planter types both in the amount of power that treyuire and in their productivity

[16].

To improve the understanding of the energy consiam@ind CO2 emission required in
the planting operation, the goal of this study asetaluate the performance of six
different types of planters used in VSRC plantingorder to show which one is

mechanically more efficient.

2. Materials and methods

In this experiment, different types of plantersdige a vVSRC plantation were tested.
Trials were performed using a “rod planter” (a maehthat works only with rods, three
“cutting planters” (machines that work only withtings), and two “universal planters”
(machines that can work with both cuttings andingpplants) (Table 1) [16]. In this

study, rod was considered a stem of at least Sgthleand 20 mm bottom diameter.
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Because these planters have a large mass (apptekiné®0-700 kg) and size, they
require a tractor of adequate mass to guarantgglmimal stability during manoeuvres.
In the test, each planter was coupled with a trastth the minimum mass required to
guarantee longitudinal stability during the manaesv(Table 1). All of the tractors

chosen showed a nominal power of at least 44 kW.

The planters were tested the establishment of y S$kort Rotation Coppice plantation
of hybrid poplar Populus x canadensis), willow (Salix) and black locustRobinia
pseudoacacia) because these species can be considered to leseefative of the

planters used [16].

All of the planters were tested on sandy soil, vatimoisture content between 8 and
10%. The tests were carried out in an area of &ahes; with plots that were 200 metres
in length and 150 meters in width. This area wésnaed-area field in northwest Italy,

near the town of Alessadria (45° 8' 33" N; 8° 2B' ).

A starting plant density of 6,700 plants per hextaas adopted for all of the tree
species. The trials were carried out assuming tartie between rows of 3.00 metres

and a distance between plants of 0.50 metres [16].

All of the tests were performed under the same kegatonditions (air temperature 9-11
C°, and relative humidity 69-73%) and lasted fatays. The planters were allotted by

random methods. Because the planters showed aediffevorking width (3 and 6
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metres as a function of the number of rows workedgh test consisted of five full runs
(1000 metres) carried out continuously (with foums). For this reason, during data
analysis, a different surface worked by the planteas considered, which consisted of
3000 nf for planters equipped with only a planting devfoee row) and 6000 frfor
planters that worked with two planting devices (tveavs). The author considered a
distance of 1000 m to be sufficient to determire filrel consumption and productivity
[15]. Each combination of planter and tree spewias replicated three times, for a total
of 42 replications (black locust was planted oniyhvithe “universal planters”) (Table

2).

Before testing, the soil was prepared by ploughah@ 40 cm depth. For all of the
“cutting planters”, cuttings of a diameter of 926 mm and length of 200 to 220 mm
were used. The “universal planters”, in additionsorking with to those used for the
“cuttings planters”, also worked with the blackustrooting plants that were 0.60 m in
height. The “rod planters” worked with rods thatllediameter of 20 to 40 mm and a

length of 3.00 metres.

2.1. Field capacity

To attribute fuel and energy consumption and, @@ission to the work surface unit,
the field capacities of all of the planters werkgkated. Field capacity was determined
considering the expended time, which was recoradddwing the CIOSTA (Comité
International d’Organisation Scientificue du Trdwen Agricolture) methodology [25].

Each time element was quantified using a centesiigital stopwatch (Hanhart®
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PROFIL 5). Specifically, the field capacity was adated by dividing the worked

surface area by the unit time and was expressed Hf.

2.2. Fuel consumption

The fuel consumption for the entire planting opers was determined by the
“topping-off system.” This method involves measgrithe fuel consumption by
refilling the tractor tank after each test. Thektavas refilled using a 2000 énglass
pipe with 20 cm graduations, corresponding to the accuracy ofnteasurements. In
this work, the fuel consumption was determined w@gg the manoeuvres that were
carried out in the headland up to the point of angje in the forward direction and the
runs that were necessary to load the planters.

To determine the specific fuel consumption for plenting operations, the actual power
required to move the planters was calculated iatigal to the traction force and the
forward speed used in the working conditions. Spdly, the traction force was
measured using a tractor of 140 kW of nominal poftraictor A) and a dynamometer
Allemano TCA with an accuracy of 0.03%. The netcéorequired to move only the
planters was calculated as the difference betweeriarce required to pull the tractor

coupled with each planter (tractor B + planter) #mat necessary to pull only tractor B

(Fig. 1).

The lubricant consumption was estimated as a fonaf diesel consumption according

to the ASABE methods [19].
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2.3. Energy consumption

In this experiment, the total energy required f@RL planting was determined by
considering the direct energy consumption — theggnaput to perform the planting
operation (fuel and lubricant consumption) — ar@itidirect energy consumption — the
energy used for the manufacturing the tractorsiampdements. In particular, an energy
content of 92.0 MJ Kk{ for the tractors and an average value of 69.0 MJehch
kilogram of machine mass was considered for athefplanters [20]. The direct energy
input was calculated considering an energy cormér®7.0 MJ L* for the diesel [21]
and 83.7 MJ kg for the lubricant [20]. Additionally, 1.2 MJ Kgwas added to these
values, as additional fossil energy source was usedheir transportation and
distribution [22].

In this study, a lifetime of 10,000 and 5,000 howess considered for the tractors and
the planters, respectively [23]. The energy speamt rhaintenance and repair was
considered to be 55% of the energy required forufsanturing the machines [24]. The
energy requirement for the production of the cgtinrooting plants, and rods was not
considered in this evaluation.

The energy output was attributed to the unit sefaorked and biomass harvested,
considering a dry matter energy content of poplaodv of 18.8 MJ kd. This
calculation was performed considering an averagemass production of 15 Mg haer

year and a 6 year rotation with harvesting caroietevery 2 years [25].

3.3. Environmental assessment



169 The environmental impact of the planting operatioras calculated based on the £O
170 emission due to the fuel combustion during the wamnkl machinery manufacturing.
171  Specifically, a value of 3.76 kg per litre of dieg26-27] and a value of 2.94 kg for each
172 kg of lubricant [28] released into the atmospheezernassumed. In addition, a value of
173 159 g per each MJ of energy content in the machirsssconsidered in the calculation
174  of the frequency of maintenance and repair on tive@mental impact [12].

175

176 The data were processed using Microsoft Excel &#@8S521 (2015) statistical software,
177 using an ANOVA procedure with a GLM approach andmihg a significance level of
178 «=0.05. Eventual differences between treatments wleeeked with the Scheffe’s test
179 because it has a higher statistical power givea tlata distribution [29]. Scheffé's
180 method is a single-step multiple comparison proceduhich applies to the set of
181 estimates of all possible contrasts among the rfaetel means [30].

182

183 3. Results

184

185 3.1. Field capacity

186

187  The highest field capacity (1.20 hd)lwas obtained using the Salix Maskiner Step (rod
188 planter) independent of the tree species considg@redlar or willow) (Table 3). In
189 contrast, the lowest field capacity was observedtie universal planters (Allasia R1
190 and Berto), with values that ranged between 0.2 *hand 0.29 ha'h In this case, no
191 difference was noted between the tree speciegitdatermediate values in productivity

192  (0.56-0.57 ha ) were obtained from the cutting planters.
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Results showed significantly different performancesly between the planter
categories; there were no significant differencetvben specific makes and models

that were included in each category (Table 3).

3.2. Fue consumption

The diesel consumption varied between 6.19 and Bu&3 per hour (Table 4). The

universal planters showed the lowest value, whiéeSalix Maskiner Step (Rod planter)
showed the highest value. In the trials, the hofugf consumption increased according
to the power of the tractor, with a linear trendtttvas independent of the planter’s type

and the tree species planted (Fig. 2) (Table 4)..

Referring to the fuel consumption- of for the unit worked surface, the best
performances were obtained by the Salix Maskinep $7.82 L ha), while the worst
performances were observed in the Allasia R1 piaf®2.24 L hd) (Table 5). That
difference should not be underestimated becausesing a correct planter, it is possible

to save a substantial amount of diesel (3 times).

Results showed significant differences in the valbetween the planter categories,
which could be due to the different working widtidaorward speed of the planters. In
fact, the universal planters that worked only withe row showed the highest fuel

consumption per unit surface, while the lowest galuas obtained by the Salix
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Maskiner planter, which worked with two rows andhna high forward speed (up to 4

km h') (Table 5).

No difference was noted between tree species (popihow and black locust) in the

fuel consumption (Table 5).

Results indicate the average specific fuel consiomph the planting operation of 63.5
g kwWh. In addition, for this parameter, no differencegvieen the planter types and

tree species were observed in the statistical aisalyable 6).

3.3. Energy consumption

The energy consumption of the tested planters thhgaveen 356 and 1,028 MJ has

a function of the differences in their mass, fuehsumption and field capacity. In
particular, the rod planter showed the lowest valdgle the universal planters showed
the highest value. Regarding these values for thtemal planted, only 54 kJ per plant
(cutting) was observed with the Salix Maskiner, levlapproximately 154 kJ per plant
was calculated for the universal planters. In galnghe cutting planters presented

values that were approximately 60% less than tbbdee universal planters (Table 6).

Results did not indicate any difference betweenttbe species (poplar, willow and

black locust) that were planted (Table 6).

3.4. Environmental assessment

10
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The CQ emission calculated in this study ranged betweet®Bkg hd (5 g per plant)
and 95.79 kg h& (14 g per plant). Different values were obtained éach planter
category during the CO2 emission calculation. Aerage value of 92 kg Hq14 g per
plant) was observed for the universal planters.s€healues were approximately 40%
higher than those calculated for the cutting plentand 65% higher than those
calculated for the rod planter. Additionally, fdrig parameter, no differences between
tree species were noted during the statisticalyaisatarried out at a significance level

of a = 0.05 (Table 7).

4. Discussion

For field capacity, better results (1.20 hd) lwere obtained using the rod planter
because with this machine, it is possible to opgeafita higher forward speed (4.0 kin h
1. By contrast, universal planters showed lowedfimpacities (0.28 ha’h compared
to cutting planters (0.56 ha‘honly as a function of the number of rows workedg
row instead of two rows). In fact, assuming an équaking width for both machine
categories, there are no differences regardingvthr&ing rate. These results are in line

with those obtained in other studies [13, 15-16].

Hourly fuel consumption is proportional to the tats engine power [31]. High values
were obtained for planters coupled to tractors waithigh nominal power. Regarding

fuel consumption per unit surface, the situatioanges because-the fuel consumption is

11
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linked to-the working rate. In fact, the best reswere obtained by the Salix Maskiner
because with this planter, it is possible to oper@t two rows simultaneously with a

high forward speed (up to 4.0 kri)H{16].

Furthermore, the data analysis indicated that SR@ planting, it is possible to
consider an average specific fuel consumptiontedetor of 63.5 g kWH. This value is
approximately 50% lower than the values obtainediomass-harvesting operations

(115-120 g kWH) [24, 32-33].

The energy consumption analysis indicated that&RC planting, up to 1,04 MJ tas
necessary when using universal planters, whilevfiise decreased by approximately a
factor of five when the rod planters are used. Tow value can be attributed to a
different working width and forward speed [15]. Téi®re, improvements can be
obtained by building planters with a double plagtidevice. As to raising forward
speed, the solution is more complex. The low fodrvspeed is linked to human work
because the planters are manually fed [16]. Thexeto increase forward speed, it is
necessary to develop a specific device that is @bfeed the planter automatically. In
fact, the setup of automatic planting devices calilow to obtain good results, not only

in terms of the work productivity [33-34], but alsoterms of the energy efficiency.

The energy consumption observed in the plantingatjpes was only 1.7% of the total
energy input to the vSRC plantation [10]. Furthereoconsidering a biomass
production of 15 Mg per year and a cycle of 2 y¢a%s 35], the energy required by the

planting operations has a low impact on the toialass production (minor, at 0.5%).

12
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This value is lower (approximately 60%) than theergy input to the harvesting
operations that was obtained by Fiala and Becefiei(1.1% of the energy content in

biomass produced).

In this study, the energy consumption of the urgakplanters — planters that work with
all forestry species — is constant for all of testéd forestry species. This situation
could be positive because it permits the seleatiotiee species as a function of only
site conditions and their cultivation limits andiguatialities [36]. In contrast, the type of
planting material (rods, cuttings or rooting plardsuld directly influence the choice of

planter models and, consequently, the energy copisoim

Furthermore, the data analysis shows a differehtevéor the CQ emission during

biomass planting as a function of planter type. eovesults were observed for the rod
planters (31 kg hY in comparison to 92 kg Haemitted when universal planters were
used. This difference can be attributed to theediify productivity of the planters. In

fact, in this study, the rod planter presented highest values, while the universal
planters presented the lowest values. Neverthetessgh forward speed could have
negative impacts on crop performance or survivalgeneral, these results are in line
with those obtained during an environmental im@astessment of biomass production

by dedicated poplar plantations [37-38].

5. Conclusions

13
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The energy input of vVSRC planting is linked to erfnt planter types and,
consequently, to different types of propagation emal (rods, cuttings and rooting
plants). The rods planter has the lowest energywoption and CO2 emission. In
contrast, no difference was found when comparirgg different tree species (poplar.
willow and black locust). This study have also destmated that the energy
consumption of planting operations is very smalnpared to the energy content in
biomass produced (approximately 0.5%). Furthermdnes work showed that the
specific fuel consumption that is required by vSR@nting is lower than 5% compared
to that required for biomass harvesting.

Finally, in the future, it would be interesting twnduct a specific evaluation on
productivity, energy consumption and £€@mission during the production of the
different planting materials to obtain a completefite of the total energy input and

CO, emission required in the planting operations.
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