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Energy and CO2 emissions associated with mechanical planters used in 1 

biomass plantations  2 

 3 

 4 

Abstract  5 

Until now, SRC has been studied from many points of view (economic sustainability, 6 

environmental impact, harvesting systems, etc.), but few studies of the actual planting 7 

operations have been carried out. The objective of this study was to evaluate the energy 8 

input and CO2 emission were evaluated during very Short Rotation Coppice (vSRC) 9 

planting. The analysis was performed considering different planter types and tree 10 

species (poplar, willow and black locust).  11 

This work showed that the energy input and CO2 emission of vSRC planting is linked to 12 

different planter types and, consequently, to the type of planting material used (rods, 13 

cuttings and rooting plants). Among the combinations tested, rods planters showed the 14 

lowest value for energy consumption (356 MJ ha-1) and CO2 emission (31 kg ha-1) 15 

compared to universal planters type (1,028 MJ ha-1 and 92 kg ha-1). No difference 16 

between tree species was observed in this experiment. Results highlighted that the 17 

energy input required by the planting operation is only 1.7% of the total energy input of 18 

the vSRC.  19 
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1. Introduction 25 

 26 

In Europe, there are two different methods of SRC cultivation: very Short Rotation 27 

Coppice (vSRC) with a very high density, from 5,500 to 14,000 plants per hectare, and 28 

a harvesting cycle of 1-4 years, and Short Rotation Coppice (SRC) with a high density, 29 

from 1,000 to 2,000 plants per hectare, and a harvesting cycle of 5-7 years [1]. 30 

In general, because the trees do not have a small diameter (>150 mm), the SRC with the 31 

highest rotation time (5-7 years) offers woodchips of high quality, with a high fibre 32 

content (85–90%) and a favourable particle-size distribution. On the contrary, vSRC 33 

presents a high bark content (>20%) [2-3] and occasionally a mediocre particle-size 34 

distribution that is often too rich in ash (>10%) [2, 4]. Nevertheless, farmers prefer the 35 

vSRC cultivation model because it has a lower rotation period and allows for a more 36 

rapid change of the tree culture in the case of poor economic benefits [5]. Furthermore, 37 

its cultivation and harvest machines and methods are more familiar to farmers. 38 

 39 

The main forestry species used in fast-growing wood crops for biomass production are 40 

willows, poplars, eucalyptus and black locust [6-7]. Generally, the choice of the forestry 41 

species is made as a function of the soil and landscape conditions where the SRC is 42 

planted [8]. 43 

 44 

Over the years, many aspects of vSRC have been studied - economic sustainability [8], 45 

environmental impact [9-10], and harvesting systems [11-12] - but SRC planting has not 46 

been well studied [13]. In fact, the machines and implements used in planting operations 47 

are adapted from other agricultural sectors (mainly the horticultural sector) or are only 48 
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prototypes [14-15]. Generally, the choice of planters is made on the basis of the tree 49 

species used in vSRC because different tree species present a different planting material 50 

(rods, cuttings, and rooting plants) and consequently require different types of planters. 51 

In fact, in poplar and willow vSRC, it is possible to use cuttings and rods, while in black 52 

locust and eucalyptus vSRC, only rooting plants can be used [13, 16]. 53 

 54 

Often, when an evaluation of the energy or of the environmental impact of biomass 55 

plantations is performed, the average values are considered independently from the 56 

planter types used [17]. However, this assumption is not completely correct because the 57 

planter types both in the amount of power that they require and in their productivity 58 

[16].  59 

 60 

To improve the understanding of the energy consumption and CO2 emission required in 61 

the planting operation, the goal of this study is to evaluate the performance of six 62 

different types of planters used in vSRC planting in order to show which one is 63 

mechanically more efficient.  64 

 65 

2. Materials and methods 66 

 67 

In this experiment, different types of planters used in a vSRC plantation were tested. 68 

Trials were performed using a “rod planter” (a machine that works only with rods, three 69 

“cutting planters” (machines that work only with cuttings), and two “universal planters” 70 

(machines that can work with both cuttings and rooting plants) (Table 1) [16]. In this 71 

study, rod was considered a stem of at least 3 m length and 20 mm bottom diameter. 72 
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 73 

Because these planters have a large mass (approximately 600-700 kg) and size, they 74 

require a tractor of adequate mass to guarantee longitudinal stability during manoeuvres. 75 

In the test, each planter was coupled with a tractor with the minimum mass required to 76 

guarantee longitudinal stability during the manoeuvres (Table 1). All of the tractors 77 

chosen showed a nominal power of at least 44 kW.  78 

 79 

The planters were tested the establishment of a very Short Rotation Coppice plantation 80 

of hybrid poplar (Populus x canadensis), willow (Salix) and black locust (Robinia 81 

pseudoacacia) because these species can be considered to be representative of the 82 

planters used [16].  83 

 84 

All of the planters were tested on sandy soil, with a moisture content between 8 and 85 

10%. The tests were carried out in an area of 3 hectares, with plots that were 200 metres 86 

in length and 150 meters in width. This area was a fenced area field in northwest Italy, 87 

near the town of Alessadria (45° 8' 33" N; 8° 28' 11" E).  88 

 89 

A starting plant density of 6,700 plants per hectare was adopted for all of the tree 90 

species. The trials were carried out assuming a distance between rows of 3.00 metres 91 

and a distance between plants of 0.50 metres [16]. 92 

 93 

All of the tests were performed under the same weather conditions (air temperature 9-11 94 

C°, and relative humidity 69-73%) and lasted for 3 days. The planters were allotted by 95 

random methods. Because the planters showed a different working width (3 and 6 96 
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metres as a function of the number of rows worked), each test consisted of five full runs 97 

(1000 metres) carried out continuously (with four turns). For this reason, during data 98 

analysis, a different surface worked by the planters was considered, which consisted of 99 

3000 m2 for planters equipped with only a planting device (one row) and 6000 m2 for 100 

planters that worked with two planting devices (two rows). The author considered a 101 

distance of 1000 m to be sufficient to determine the fuel consumption and productivity 102 

[15]. Each combination of planter and tree species was replicated three times, for a total 103 

of 42 replications (black locust was planted only with the “universal planters”) (Table 104 

2). 105 

 106 

Before testing, the soil was prepared by ploughing at a 40 cm depth. For all of the 107 

“cutting planters”, cuttings of a diameter of 9 to 25 mm and length of 200 to 220 mm 108 

were used. The “universal planters”, in addition to working with to those used for the 109 

“cuttings planters”, also worked with the black locust rooting plants that were 0.60 m in 110 

height. The “rod planters” worked with rods that had a diameter of 20 to 40 mm and a 111 

length of 3.00 metres. 112 

 113 

2.1. Field capacity 114 

 115 

To attribute fuel and energy consumption and CO2 emission to the work surface unit, 116 

the field capacities of all of the planters were calculated. Field capacity was determined 117 

considering the expended time, which was recorded following the CIOSTA (Comité 118 

International d’Organisation Scientificue du Travail en Agricolture) methodology [25]. 119 

Each time element was quantified using a centesimal digital stopwatch (Hanhart® 120 
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PROFIL 5). Specifically, the field capacity was calculated by dividing the worked 121 

surface area by the unit time and was expressed in ha h-1.  122 

 123 

2.2. Fuel consumption 124 

 125 

The fuel consumption for the entire planting operations was determined by the 126 

“topping-off system.” This method involves measuring the fuel consumption by 127 

refilling the tractor tank after each test. The tank was refilled using a 2000 cm3 glass 128 

pipe with 20 cm3 graduations, corresponding to the accuracy of the measurements. In 129 

this work, the fuel consumption was determined considering the manoeuvres that were 130 

carried out in the headland up to the point of a change in the forward direction and the 131 

runs that were necessary to load the planters. 132 

To determine the specific fuel consumption for the planting operations, the actual power 133 

required to move the planters was calculated in relation to the traction force and the 134 

forward speed used in the working conditions. Specifically, the traction force was 135 

measured using a tractor of 140 kW of nominal power (tractor A) and a dynamometer 136 

Allemano TCA with an accuracy of 0.03%. The net force required to move only the 137 

planters was calculated as the difference between the force required to pull the tractor 138 

coupled with each planter (tractor B + planter) and that necessary to pull only tractor B 139 

(Fig. 1). 140 

 141 

The lubricant consumption was estimated as a function of diesel consumption according 142 

to the ASABE methods [19]. 143 

 144 
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2.3. Energy consumption  145 

 146 

In this experiment, the total energy required for vSRC planting was determined by 147 

considering the direct energy consumption – the energy input to perform the planting 148 

operation (fuel and lubricant consumption) – and the indirect energy consumption – the 149 

energy used for the manufacturing the tractors and implements. In particular, an energy 150 

content of 92.0 MJ kg-1 for the tractors and an average value of 69.0 MJ for each 151 

kilogram of machine mass was considered for all of the planters [20]. The direct energy 152 

input was calculated considering an energy content of 37.0 MJ L-1 for the diesel [21] 153 

and 83.7 MJ kg-1 for the lubricant [20]. Additionally, 1.2 MJ kg-1 was added to these 154 

values, as additional fossil energy source was used in their transportation and 155 

distribution [22]. 156 

In this study, a lifetime of 10,000 and 5,000 hours was considered for the tractors and 157 

the planters, respectively [23]. The energy spent for maintenance and repair was 158 

considered to be 55% of the energy required for manufacturing the machines [24]. The 159 

energy requirement for the production of the cuttings, rooting plants, and rods was not 160 

considered in this evaluation.  161 

The energy output was attributed to the unit surface worked and biomass harvested, 162 

considering a dry matter energy content of poplar wood of 18.8 MJ kg-1. This 163 

calculation was performed considering an average biomass production of 15 Mg ha-1 per 164 

year and a 6 year rotation with harvesting carried out every 2 years [25].  165 

 166 

3.3. Environmental assessment  167 

 168 
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The environmental impact of the planting operations was calculated based on the CO2 169 

emission due to the fuel combustion during the work and machinery manufacturing. 170 

Specifically, a value of 3.76 kg per litre of diesel [26-27] and a value of 2.94 kg for each 171 

kg of lubricant [28] released into the atmosphere were assumed. In addition, a value of 172 

159 g per each MJ of energy content in the machines was considered in the calculation 173 

of the frequency of maintenance and repair on the environmental impact [12]. 174 

 175 

The data were processed using Microsoft Excel and SPSS 21 (2015) statistical software, 176 

using an ANOVA procedure with a GLM approach and adopting a significance level of 177 

α = 0.05. Eventual differences between treatments were checked with the Scheffe’s test 178 

because it has a higher statistical power given this data distribution [29]. Scheffé's 179 

method is a single-step multiple comparison procedure which applies to the set of 180 

estimates of all possible contrasts among the factor level means [30]. 181 

 182 

3. Results  183 

 184 

3.1. Field capacity 185 

 186 

The highest field capacity (1.20 ha h-1) was obtained using the Salix Maskiner Step (rod 187 

planter) independent of the tree species considered (poplar or willow) (Table 3). In 188 

contrast, the lowest field capacity was observed for the universal planters (Allasia R1 189 

and Berto), with values that ranged between 0.27 ha h-1 and 0.29 ha h-1. In this case, no 190 

difference was noted between the tree species tested. Intermediate values in productivity 191 

(0.56-0.57 ha h-1) were obtained from the cutting planters. 192 
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 193 

Results showed significantly different performances only between the planter 194 

categories; there were no significant differences between specific makes and models 195 

that were included in each category (Table 3).  196 

 197 

3.2. Fuel consumption  198 

 199 

The diesel consumption varied between 6.19 and 8.89 litres per hour (Table 4). The 200 

universal planters showed the lowest value, while the Salix Maskiner Step (Rod planter) 201 

showed the highest value. In the trials, the hourly fuel consumption increased according 202 

to the power of the tractor, with a linear trend that was independent of the planter’s type 203 

and the tree species planted (Fig. 2) (Table 4).. 204 

 205 

Referring to the fuel consumption of for the unit of worked surface, the best 206 

performances were obtained by the Salix Maskiner Step (7.82 L ha-1), while the worst 207 

performances were observed in the Allasia R1 planter (22.24 L ha-1) (Table 5). That 208 

difference should not be underestimated because by using a correct planter, it is possible 209 

to save a substantial amount of diesel (3 times).  210 

 211 

Results showed significant differences in the values between the planter categories, 212 

which could be due to the different working width and forward speed of the planters. In 213 

fact, the universal planters that worked only with one row showed the highest fuel 214 

consumption per unit surface, while the lowest value was obtained by the Salix 215 
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Maskiner planter, which worked with two rows and with a high forward speed (up to 4 216 

km h-1) (Table 5).  217 

 218 

No difference was noted between tree species (poplar, willow and black locust) in the 219 

fuel consumption (Table 5). 220 

 221 

Results indicate the average specific fuel consumption in the planting operation of 63.5 222 

g kWh-1. In addition, for this parameter, no differences between the planter types and 223 

tree species were observed in the statistical analysis (Table 6). 224 

 225 

3.3. Energy consumption 226 

 227 

The energy consumption of the tested planters ranged between 356 and 1,028 MJ ha-1 as 228 

a function of the differences in their mass, fuel consumption and field capacity. In 229 

particular, the rod planter showed the lowest value, while the universal planters showed 230 

the highest value. Regarding these values for the material planted, only 54 kJ per plant 231 

(cutting) was observed with the Salix Maskiner, while approximately 154 kJ per plant 232 

was calculated for the universal planters. In general, the cutting planters presented 233 

values that were approximately 60% less than those of the universal planters (Table 6).  234 

 235 

Results did not indicate any difference between the tree species (poplar, willow and 236 

black locust) that were planted (Table 6).  237 

 238 

3.4. Environmental assessment 239 
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 240 

The CO2 emission calculated in this study ranged between 31.19 kg ha-1 (5 g per plant) 241 

and 95.79 kg ha-1 (14 g per plant). Different values were obtained for each planter 242 

category during the CO2 emission calculation. An average value of 92 kg ha-1 (14 g per 243 

plant) was observed for the universal planters. These values were approximately 40% 244 

higher than those calculated for the cutting planters and 65% higher than those 245 

calculated for the rod planter. Additionally, for this parameter, no differences between 246 

tree species were noted during the statistical analysis carried out at a significance level 247 

of α = 0.05 (Table 7). 248 

 249 

4. Discussion 250 

 251 

For field capacity, better results (1.20 ha h-1) were obtained using the rod planter 252 

because with this machine, it is possible to operate at a higher forward speed (4.0 km h-253 

1). By contrast, universal planters showed lower field capacities (0.28 ha h-1) compared 254 

to cutting planters (0.56 ha h-1) only as a function of the number of rows worked (one 255 

row instead of two rows). In fact, assuming an equal working width for both machine 256 

categories, there are no differences regarding the working rate. These results are in line 257 

with those obtained in other studies [13, 15-16]. 258 

 259 

Hourly fuel consumption is proportional to the tractor’s engine power [31]. High values 260 

were obtained for planters coupled to tractors with a high nominal power. Regarding 261 

fuel consumption per unit surface, the situation changes because the fuel consumption is 262 
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linked to the working rate. In fact, the best results were obtained by the Salix Maskiner 263 

because with this planter, it is possible to operate on two rows simultaneously with a 264 

high forward speed (up to 4.0 km h-1) [16].  265 

 266 

Furthermore, the data analysis indicated that for vSRC planting, it is possible to 267 

consider an average specific fuel consumption of a tractor of 63.5 g kWh-1. This value is 268 

approximately 50% lower than the values obtained in biomass-harvesting operations 269 

(115-120 g kWh-1) [24, 32-33]. 270 

 271 

The energy consumption analysis indicated that for vSRC planting, up to 1,04 MJ ha-1 is 272 

necessary when using universal planters, while this value decreased by approximately a 273 

factor of five when the rod planters are used. This low value can be attributed to a 274 

different working width and forward speed [15]. Therefore, improvements can be 275 

obtained by building planters with a double planting device. As to raising forward 276 

speed, the solution is more complex. The low forward speed is linked to human work 277 

because the planters are manually fed [16]. Therefore, to increase forward speed, it is 278 

necessary to develop a specific device that is able to feed the planter automatically. In 279 

fact, the setup of automatic planting devices could allow to obtain good results, not only 280 

in terms of the work productivity [33-34], but also in terms of the energy efficiency. 281 

 282 

The energy consumption observed in the planting operations was only 1.7% of the total 283 

energy input to the vSRC plantation [10]. Furthermore, considering a biomass 284 

production of 15 Mg per year and a cycle of 2 years [25, 35], the energy required by the 285 

planting operations has a low impact on the total biomass production (minor, at 0.5%). 286 
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This value is lower (approximately 60%) than the energy input to the harvesting 287 

operations that was obtained by Fiala and Becenetti [12] (1.1% of the energy content in 288 

biomass produced). 289 

 290 

In this study, the energy consumption of the universal planters – planters that work with 291 

all forestry species – is constant for all of the tested forestry species. This situation 292 

could be positive because it permits the selection of tree species as a function of only 293 

site conditions and their cultivation limits and potentialities [36]. In contrast, the type of 294 

planting material (rods, cuttings or rooting plants) could directly influence the choice of 295 

planter models and, consequently, the energy consumption. 296 

 297 

Furthermore, the data analysis shows a different value for the CO2 emission during 298 

biomass planting as a function of planter type. Lower results were observed for the rod 299 

planters (31 kg ha-1) in comparison to 92 kg ha-1 emitted when universal planters were 300 

used. This difference can be attributed to the differing productivity of the planters. In 301 

fact, in this study, the rod planter presented the highest values, while the universal 302 

planters presented the lowest values. Nevertheless, a high forward speed could have 303 

negative impacts on crop performance or survival. In general, these results are in line 304 

with those obtained during an environmental impact assessment of biomass production 305 

by dedicated poplar plantations [37-38].  306 

 307 

5. Conclusions 308 

 309 
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The energy input of vSRC planting is linked to different planter types and, 310 

consequently, to different types of propagation material (rods, cuttings and rooting 311 

plants). The rods planter has the lowest energy consumption and CO2 emission. In 312 

contrast, no difference was found when comparing the different tree species (poplar. 313 

willow and black locust). This study have also demonstrated that the energy 314 

consumption of planting operations is very small compared to the energy content in 315 

biomass produced (approximately 0.5%). Furthermore, this work showed that the 316 

specific fuel consumption that is required by vSRC planting is lower than 5% compared 317 

to that required for biomass harvesting. 318 

Finally, in the future, it would be interesting to conduct a specific evaluation on 319 

productivity, energy consumption and CO2 emission during the production of the 320 

different planting materials to obtain a complete profile of the total energy input and 321 

CO2 emission required in the planting operations.  322 

 323 

 324 
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