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Abstract. We define a very general “parametric connect sum” construction which can be
used to eliminate isolated conical singularities of Riemannian manifolds. We then show that
various important analytic and elliptic estimates, formulated in terms of weighted Sobolev
spaces, can be obtained independently of the parameters used in the construction. Specifically,
we prove uniform estimates related to (i) Sobolev Embedding Theorems, (ii) the invertibility
of the Laplace operator and (iii) Poincaré and Gagliardo-Nirenberg-Sobolev type inequalities.

Our main tools are the well-known theories of weighted Sobolev spaces and elliptic opera-
tors on “conifolds”. We provide an overview of both, together with an extension of the former
to general Riemannian manifolds.

For a geometric application of our results we refer the reader to our paper [15] concerning
desingularizations of special Lagrangian conifolds in Cm.
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1. Introduction

It is a common problem in Differential Geometry to produce examples of (possibly immersed)
Riemannian manifolds (L, g) satisfying a given geometric constraint, usually a nonlinear PDE,
on the metric (Einstein, constant scalar curvature, etc.) or on the immersion (constant mean
curvature, minimal, etc.). If L (or the immersion) happens to be singular, one then faces the
problem of “desingularizing” it to produce a new, smooth, Riemannian manifold satisfying the
same constraint. Often, one actually hopes to produce a family (Lt, gt) of manifolds satisfying
the constraint and which converges in some sense to (L, g) as t→ 0. One typical way to solve
this problem is via “gluing”. We outline this construction as follows, focusing for simplicity on
the situation where L has only isolated point singularities and the constraint is on the metric.

Step 1: For each singular point x ∈ L, we look for an explicit smooth “local model”: i.e., a
manifold (L̂, ĝ) which satisfies a related, scale-invariant, constraint and which, outside of some
compact region, is topologically and metrically similar to an annulus B(x, ε1) \B(x, ε2) in L,

centered in the singularity. We can then glue L̂ onto the manifold L\B(x, ε2), using the “neck
region” B(x, ε1)\B(x, ε2) to interpolate between the two metrics. The fact that the neck region

is “small” is usually not a problem: one can simply rescale ĝ to t2ĝ so that now (L̂, t2ĝ) is

of similar size. The resulting manifold, which we denote (L̂#L, ĝ#g), satisfies the constraints
outside of the neck region simply by construction. If the interpolation is done carefully we
also get very good control over what happens on the neck. We think of (L̂#L, ĝ#g) as an
“approximate solution” to the gluing problem. Rescaling also gives a way to build families:
the idea is to glue (L̂, t2ĝ) into B(x, ε1) \ B(x, tε2), producing a family (Lt, gt); intuitively, as

t→ 0 the compact region in L̂ collapses to the singular point x and Lt converges to L.

Step 2: We now need to perturb each (Lt, gt) so that the resulting family satisfies the
constraint globally. Thanks to a linearization process, the perturbation process often boils
down to studying a linear elliptic system on gt. One of the main problems is to verify that
this system satisfies estimates which are uniform in t. This is the key to obtaining the desired
perturbation for all sufficiently small t. Roughly speaking, there is often a delicate balance to
be found as t → 0: on the one hand, if Lt was built properly, as t → 0 it will get closer to
solving the constraint; on the other hand, it becomes more singular. Uniform estimates are
important in proving that this balance can be reached.

The geometric problem defines the differential operator to be studied. However, this op-
erator is often fairly intrinsic, and can be defined independently of the geometric specifics.
The necessary estimates may likewise be of a much more general nature. Filtering out the
geometric “super-structure” and concentrating on the analysis of the appropriate category of
abstract Riemannian manifolds will then enhance the understanding of the problem, leading
to improved results and clarity. The first goal of this paper is thus to set up an abstract
framework for dealing with gluing constructions and the corresponding uniform estimates.
Here, “abstract” means: independent of any specific geometric problem. We focus on gluing
constructions concerning Riemannian manifolds with isolated conical singularities. These are
perhaps the simplest singularities possible, but in the gluing literature they often appear as an
interesting and important case. Our framework involves two steps, parallel to those outlined
above.

Step A: In Section 11 we define a general connect sum construction between Riemannian
manifolds, extrapolating from standard desingularization procedures.
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Step B: We show how to produce uniform estimates on these connect sum manifolds, by
presenting a detailed analysis of three important problems: (i) Sobolev Embedding Theorems,
(ii) invertibility of the Laplace operator, (iii) Poincaré and Gagliardo-Nirenberg-Sobolev type
inequalities. The main results are Theorems 11.7, 12.2, 12.3, 13.1 and Corollary 13.2.

Our Step A is actually much more general than Step 1, as described above: it is specifically
designed to deal with both compact and non-compact manifolds and it allows us to replace the
given singularity not only with smooth compact regions but also with non-compact “asymptot-
ically conical ends” or even with new singular regions. It also allows for different “neck-sizes”
around each singularity. In this sense it offers a very broad and flexible framework to work
with.

The range of possible estimates covered by our framework is clearly much wider than the
set of Problems (i)-(iii) listed in Step B. Indeed, the underlying, well-known, theory of elliptic
operators on conifolds is extremely general. Within this paper, this choice is to be intended
as fairly arbitrary: amoungst the many possible, we choose 3 estimates of general interest but
differing one from the other in flavour: Problem (i) is of a mostly local nature, Problems (ii)
and (iii) are global. In reality, however, our choice of Problems (i)-(iii) is based on the very
specific geometric problems we happen to be interested in. The second goal of this paper is
thus to lay down the analytic foundations for our papers [14], [15] concerning deformations
and desingularizations of submanifolds whose immersion map satisfies the special Lagrangian
constraint. The starting point for this work was a collection of gluing results concerning
special Lagrangian submanifolds due to Arezzo-Pacard [2], Butscher [3], Lee [9] and Joyce [6],
[7], and parallel results concerning coassociative submanifolds due to Lotay [12]. It slowly
became apparent, thanks also to many conversations with some of these authors, that several
parts of these papers could be simplified, improved or generalized: related work is currently
still in progress. In particular, building approximate solutions and setting up the perturbation
problem requires making several choices which then influence the analysis rather drastically. A
third goal of the paper is thus to present a set of choices which leads to very clean, simple and
general results. One such choice concerns the parametrization of the approximate solutions:
parametrizing the necks so that they depend explicitly on the parameter t is one ingredient
in obtaining uniform estimates. A second ingredient is the consistent use, even when dealing
with compact manifolds, of weighted rather than standard Sobolev spaces. Although such
choices may seem obvious to some members of the “gluing community”, it still seems useful
to emphasize this point.

For expository purposes we found it useful to split the paper into three separate parts. Part
I is devoted to weighted Sobolev spaces and the corresponding Sobolev Embedding Theorems.
The main example we are interested in is the case of “conifolds”; in this special case the Sobolev
Embedding Theorems, cf. Corollary 6.8, are well-known. However, Problem (i) requires
keeping close track of how the corresponding Sobolev constants depend on the conifolds and
on the other data used in the connect sum construction. It is thus useful to step back and
investigate exactly which properties of Sobolev spaces are crucial to the validity of Embedding
Theorems. In the standard, i.e. non-weighted, case, the book by Hebey [4] provides an
excellent introduction to this problem. Given the lack of an analogous reference for weighted
Sobolev spaces, we devote a fair amount of attention to their definition and properties. Our
main result in Part I is Theorem 5.1, which proves the validity of the Sobolev Embedding
Theorems under fairly general hypotheses on the “scale” and “weight” functions with which
we define these spaces.

Part II is devoted to the Fredholm theory of elliptic operators on conifolds. This theory is
well-known but, for the reader’s convenience, we review it (together with its asymptotically
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cylindrical counterpart) in Sections 7 and 9. Sections 8 and 10 contain instead some useful
consequences of the Fredholm theory.

Part III contains the main results of this paper, corresponding to Steps A and B, above:
the definition of “conifold connect sums” and the uniform estimates, Problems (i)-(iii).

We conclude with one last comment. Depending on the details, the connect sum construction
can have two outcomes: compact or non-compact manifolds. In the context of weighted spaces,
Problem (i) does not notice the difference. Problems (ii) and (iii) require instead that the
kernels of the operators in question vanish. On non-compact manifolds this can be achieved
very simply, via an a-priori choice of weights: roughly speaking, we require that there exist non-
compact “ends”, then put weights on them which kill the kernel. This topological assumption is
perfectly compatible with the geometric applications described in [15]. On compact manifolds
it is instead necessary to work transversally to the kernel; uniform estimates depend on allowing
the subspace itself to depend on the parameter t. We refer to Section 12 for details.

Acknowledgments. I would like to thank D. Joyce for many useful suggestions and
discussions concerning the material of this paper. I also thank M. Haskins and J. Lotay for
several conversations. Part of this work was carried out while I was a Marie Curie EIF Fellow
at the University of Oxford. It has also been supported by a Marie Curie ERG grant at the
Scuola Normale Superiore in Pisa.

2. Preliminaries

Let (L, g) be an oriented m-dimensional Riemannian manifold. We can identify its tangent
and cotangent bundles via the maps

(2.1) TxL→ T ∗xL, v 7→ v# := g(v, ·), with inverse T ∗xL→ TxL, α 7→ α[.

There are induced isomorphisms on all higher-order tensor bundles over L. In particular the
metric tensor g, as a section of (T ∗L)2, corresponds to a tensor g[, section of (TL)2. This
tensor defines a natural metric on T ∗L with respect to which the map of Equation 2.1 is an
isometry. In local coordinates, if g = gijdx

i⊗dxj then g[ = gij∂i⊗∂j , where (gij) denotes the
inverse matrix of (gij).

Given any x ∈ L we denote by ix(g) the injectivity radius at x, i.e. the radius of the largest
ball in TxL on which the exponential map is a diffeomorphism. We then define the injectivity
radius of L to be the number i(g) := infx∈Lix(g). We denote by Ric(g) the Ricci curvature
tensor of L: for each x ∈ L, this gives an element Ricx(g) ∈ T ∗xL⊗ T ∗xL.

Let E be a vector bundle over L. We denote by C∞(E) (respectively, C∞c (E)) the cor-
responding space of smooth sections (respectively, with compact support). If E is a metric
bundle we can define the notion of a metric connection on E: namely, a connection∇ satisfying

∇(σ, τ) = (∇σ, τ) + (σ,∇τ),

where (·, ·) is the appropriate metric. We then say that (E,∇) is a metric pair.
Recall that coupling the Levi-Civita connection on TL with a given connection on E pro-

duces induced connections on all tensor products of these bundles and of their duals. The
induced connections depend linearly on the initial connections. Our notation will usually not
distinguish between the initial connections and the induced connections: this is apparent when
we write, for example, ∇2σ (short for ∇∇σ). Recall also that the difference between two con-

nections ∇, ∇̂ defines a tensor A := ∇− ∇̂. For example, if the connections are on E then A
is a tensor in T ∗L ⊗ E∗ ⊗ E. Once again, we will not distinguish between this A and the A
defined by any induced connections.

Let E, F be vector bundles over L. Let P : C∞(E) → C∞(F ) be a linear differential
operator with smooth coefficients, of order n. We can then write P =

∑n
i=0Ai · ∇i, where Ai
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is a global section of (TL)i ⊗ E∗ ⊗ F and · denotes an appropriate contraction. Notice that
since P is a local operator it is completely defined by its behaviour on compactly-supported
sections.

Remark 2.1. Assume P =
∑n

i=0Ai · ∇i. Choose a second connection ∇̂ on E and set A :=

∇ − ∇̂. Substituting ∇ = ∇ − ∇̂ + ∇̂ = A + ∇̂ allows us to write P in terms of ∇̂. Notice
that the new coefficient tensors Âi will depend on A and on its derivatives ∇̂kA.

Now assume E and F are metric bundles. Then P admits a formal adjoint P ∗ : C∞(F )→
C∞(E), uniquely defined by imposing

(2.2)

∫
L

(Pσ, τ)F volg =

∫
L

(σ, P ∗τ)E volg, ∀σ ∈ C∞c (E), τ ∈ C∞c (F ).

P ∗ is also a linear differential operator, of the same order as P .

Example 2.2. The operator∇ : C∞(E)→ C∞(T ∗L⊗E) has a formal adjoint∇∗ : C∞(T ∗L⊗
E)→ C∞(E). Given P =

∑n
i=0Ai · ∇i, we can write P ∗ in terms of ∇∗. For example, choose

a smooth vector field X on L and consider the operator P := ∇X = X ·∇ : C∞(E)→ C∞(E).
Then (∇X)∗σ = ∇∗(X# ⊗ σ).

The ∇-Laplace operator on E is defined as ∆ := ∇∗∇ : C∞(E) → C∞(E). When E is
the trivial R-bundle over L and we use the Levi-Civita connection, this coincides with the
standard positive Laplace operator acting on functions

(2.3) ∆g := −trg(∇2) = −g[ · ∇2 : C∞(L)→ C∞(L).

Furthermore ∇ = d and ∇∗ = d∗ so this Laplacian also coincides with the Hodge Laplacian
d∗d. On differential k-forms the Levi-Civita ∇-Laplacian and the Hodge Laplacian coincide
only up to curvature terms.

To conclude, let us recall a few elements of Functional Analysis. We now let E denote a
Banach space. Then E∗ denotes its dual space and 〈·, ·〉 denotes the duality map E∗×E → R.

Let P : E → F be a continuous linear map between Banach spaces. Recall that the norm
of P is defined as ‖P‖ := sup|e|=1|P (e)| = supe6=0(|P (e)|/|e|). This implies that, ∀e 6= 0,

|P (e)| ≤ ‖P‖ · |e|. If P is injective and surjective then it follows from the Open Mapping
Theorem that its inverse P−1 is also continuous. In this case inf|e|=1|P (e)| > 0 and we can

calculate the norm of P−1 as follows:

(2.4) ‖P−1‖ = supf 6=0

|P−1(f)|
|f |

= supe6=0

|e|
|P (e)|

= sup|e|=1

1

|P (e)|
=

1

inf|e|=1|P (e)|
.

Recall that, given any subspace Z ≤ F , the annihilator of Z is defined as

Ann(Z) := {φ ∈ F ∗ : 〈φ, z〉 = 0, ∀z ∈ Z}.

Notice that Ann(Z) = Ann(Z). Let P ∗ : F ∗ → E∗ be the dual map, defined by 〈P ∗(φ), e〉 :=
〈φ, P (e)〉. It is simple to check that Ann(Im(P )) = Ker(P ∗).

Recall that the cokernel of P is defined to be the quotient space Coker(P ) := F/Im(P ).
Assume the image Im(P ) of P is a closed subspace of F , so that Coker(P ) has an induced
Banach space structure. The projection π : F → Coker(P ) is surjective so its dual map
π∗ : (Coker(P ))∗ → F ∗ is injective. The image of π∗ coincides with the space Ann(Im(P ))
so π∗ defines an isomorphism between (Coker(P ))∗ and Ann(Im(P )). We conclude that there
exists a natural isomorphism (Coker(P ))∗ ' Ker(P ∗).
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Remark 2.3. It is clear that Ker(P ∗) can be characterized as follows:

φ ∈ Ker(P ∗)⇔ 〈φ, P (e)〉 = 0, ∀e ∈ E.

On the other hand, the Hahn-Banach Theorem shows that f ∈ Z iff 〈φ, f〉 = 0, ∀φ ∈ Ann(Z).

Applying this to Z := Im(P ), we find the following characterization of Im(P ):

f ∈ Im(P )⇔ 〈φ, f〉 = 0, ∀φ ∈ Ker(P ∗).

We say that P is Fredholm if its image Im(P ) is closed in F and both Ker(P ) and Coker(P )
are finite-dimensional. We then define the index of P to be

i(P ) := dim(Ker(P ))− dim(Coker(P )) = dim(Ker(P ))− dim(Ker(P ∗)).

Important remarks: Throughout this paper we will often encounter chains of inequalities
of the form

|e0| ≤ C1|e1| ≤ C2|e2| ≤ . . .
The constants Ci will often depend on factors that are irrelevant within the given context.
In this case we will sometimes simplify such expressions by omitting the subscripts of the
constants Ci, i.e. by using a single constant C.

We assume all manifolds are oriented. In Part 2 of the paper we will work under the
assumption m ≥ 3.

Part 1. Sobolev Embedding Theorems

The goal of this part is to provide a self-contained overview of certain aspects of the theory of
weighted Sobolev spaces on Riemannian manifolds. Aside from the special case of “conifolds”,
discussed in Section 6 and which is well-known, the point of view we present here applies to
manifolds in general and we would not know where to find it in the literature. In Sections 4
and 5 we find it useful to separate the “scaling factor” ρ from the “weight” w: distinguishing
them in this way appears not to be a standard choice in the literature, but we find it useful
so to emphasize their different roles in the theory.

3. Review of the theory of standard Sobolev spaces

We now introduce and discuss Sobolev spaces on manifolds. A good reference, which at
times we follow closely, is Hebey [4].

Let (E,∇) be a metric pair over (L, g). The standard Sobolev spaces are defined by

(3.1) W p
k (E) := Banach space completion of the space {σ ∈ C∞(E) : ‖σ‖W p

k
<∞},

where p ∈ [1,∞), k ≥ 0 and we use the norm ‖σ‖W p
k

:=
(

Σk
j=0

∫
L |∇

jσ|p volg

)1/p
. We will

sometimes use Lp to denote the space W p
0 .

Remark 3.1. At times we will want to emphasize the metric g rather than the specific Sobolev
spaces. In these cases we will use the notation ‖ · ‖g.

It is important to find conditions ensuring that two metrics g, ĝ on L (corresponding to

Levi-Civita connections ∇, ∇̂), define equivalent Sobolev norms, i.e. such that there exists
C > 0 with (1/C)‖ · ‖g ≤ ‖ · ‖ĝ ≤ C‖ · ‖g. In this case the corresponding two completions, i.e.
the two spaces W p

k , coincide.

Definition 3.2. We say that two Riemannian metrics g, ĝ on a manifold L are equivalent if
they satisfy the following assumptions:
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A1: There exists C0 > 0 such that

(1/C0)g ≤ ĝ ≤ C0g.

A2: For all j ≥ 1 there exists Cj > 0 such that

|∇j ĝ|g ≤ Cj .
Remark 3.3. It may be useful to emphasize that the conditions of Definition 3.2 are symmetric
in g and ĝ. Assumption A1 is obviously symmetric. Assumption A2 is also symmetric. For
j = 1, for example, this follows from the following calculation which uses the fact that the
connections are metric:

(3.2) |∇ĝ|g = |∇ĝ − ∇̂ĝ|g = |A(ĝ)|g ' |A(g)|ĝ = |∇̂g|ĝ,
where ' replaces multiplicative constants. Notice that in Equation 3.2 A is the difference of
the induced connections on T ∗L ⊗ T ∗L. This tensor depends linearly on the tensor defined
as the difference of the connections on TL. It is simple to see that these two tensors have
equivalent norms so that Assumption A2 provides a pointwise bound on the norms of either
one. From here we easily obtain bounds on the norms of the tensor defined as the difference
of the induced connections on any tensor product of TL and T ∗L. Similar statements hold for
bounds on the derivatives of A.

Assumptions 1 and 2 can be unified as follows. Assume that, for all j ≥ 0, there exists
Cj > 0 such that

|∇j(ĝ − g)|g ≤ Cj .
As long as C0 is sufficiently small, for j = 0 this condition implies Assumption 1. Since
∇jg = 0, it is clear that for j > 0 it is equivalent to Assumption 2.

Lemma 3.4. Assume g, ĝ are equivalent. Then the Sobolev norms defined by g and ĝ are
equivalent.

Proof. Consider the Sobolev spaces of functions on L. Recall that ∇u = du. This implies that
the W p

1 norms depend only pointwise on the metrics. In this case Assumption A1 is sufficient
to ensure equivalence. In general, however, the W p

k norms use the induced connections on
tensor bundles. For example, assume j = 2. Then

|∇2u| = |(A+ ∇̂)(A+ ∇̂)u| ≤ |A2u|+ |A · ∇̂u|+ |∇̂(Au)|+ |∇̂2u|,
where A := ∇ − ∇̂ is the difference of the appropriate connections. It is clearly sufficient
to obtain pointwise bounds on A and its derivative ∇̂A. As mentioned in Remark 3.3, these
follow from Assumption A2. The same is true for Sobolev spaces of sections of tensor bundles
over L.

Now consider the Sobolev spaces of sections of E. Since we are not changing the connection
on E, Assumption A1 ensures equivalence of the W p

1 norms. The equivalence of the W p
k norms

is proved as above. �

For p > 1 we define p′ via

(3.3)
1

p
+

1

p′
= 1, i.e. p′ =

p

p− 1
.

For p ≥ 1 we define p∗ via

(3.4)
1

p∗
=

1

p
− 1

m
, i.e. p∗ =

mp

m− p
.

It is simple to check that

(3.5)
1

p∗
+

1

p′
=
m− 1

m
.
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More generally, for p ≥ 1 and l = {1, 2, . . . } we define p∗l via

(3.6)
1

p∗l
=

1

p
− l

m
, i.e. p∗l =

mp

m− lp
,

so that p∗ = p∗1. Notice that p∗l is obtained by l iterations of the operation

p 7→ p∗

and that 1
p∗l
< 1

p∗l−1
< 1

p , so if p∗l > 0 (equivalently, lp < m) then p∗l > p∗l−1 > p. In other

words, under appropriate conditions p∗l increases with l.
The Sobolev Embedding Theorems come in two basic forms, depending on the product lp.

The Sobolev Embedding Theorems, Part I concern the existence of continuous embeddings of
the form

(3.7) W p
k+l(E) ↪→W

p∗l
k (E) (for lp < m),

i.e. the existence of some constant C > 0 such that, ∀σ ∈W p
k+l(E),

(3.8) ‖σ‖
W
p∗
l

k (E)
≤ C‖σ‖W p

k+l(E).

A standard argument based on Hölder’s inequality then shows that W p
k+l(E) ↪→ W q

k (E), for
all q ∈ [p, p∗l ]. We call C the Sobolev constant. In words, bounds on the higher derivatives
of σ enhance the integrability of σ. Otherwise said, one can sacrifice derivatives to improve
integrability; the more derivatives one sacrifices, the larger the integrability range [p, p∗l ].

The exceptional case of Part I concerns the existence of continuous embeddings of the form

(3.9) W p
k+l(E) ↪→W q

k (E) (for lp = m), ∀q ∈ [p,∞).

The Sobolev Embedding Theorems, Part II concern the existence of continuous embeddings of
the form

(3.10) W p
k+l(E) ↪→ Ck(E) (for lp > m).

Roughly speaking, this means that one can sacrifice derivatives to improve regularity.

The validity of these theorems for a given manifold (L, g) depends on its Riemannian prop-
erties. It is a useful fact that the properties of (E,∇) play no extra role: more precisely, if
an Embedding Theorem holds for functions on L it then holds for sections of any metric pair
(E,∇). This is a consequence of the following result.

Lemma 3.5 (Kato’s inequality). Let (E,∇) be a metric pair. Let σ be a smooth section of
E. Then, away from the zero set of σ,

(3.11) |d|σ|| ≤ |∇σ|.

Proof.

2|σ||d|σ|| = |d|σ|2| = 2(∇σ, σ) ≤ 2|∇σ||σ|.
�

The next result shows that if Part I holds in the simplest cases it then holds in all cases.
Likewise, the general case of Part II follows from combining the simplest cases of Part II with
the general case of Part I.

Proposition 3.6.

(1) Assume Part I, Equation 3.7, holds for all p < m with l = 1 and k = 0. Then Part I
holds for all p and l satisfying lp < m and for all k ≥ 0.
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(2) Assume Part I, Equation 3.7, holds in all cases and that the exceptional case, Equation
3.9, holds for l = 1 and k = 0. Then the exceptional case holds for all p and l satisfying
lp = m and for all k ≥ 0.

(3) Assume Part I, Equation 3.7, and the exceptional case, Equation 3.9, hold in all cases
and that Part II, Equation 3.10, holds for all p > m with l = 1 and k = 0. Then Part
II holds for all p and l satisfying lp > m and for all k ≥ 0.

Proof. As discussed above, it is sufficient to prove that the result holds for functions: as a
result of Kato’s inequality it will then hold for arbitrary metric pairs (E,∇).

(1) Assume l = 1. Given u ∈ W p
k+1, Kato’s inequality shows that |u|, . . . |∇ku| ∈ W p

1 .

Applying Part I to each of these then shows that W p
k+1 ↪→W p∗

k . The general case follows from
the composition of the embeddings

W p
k+l ↪→W p∗

k+l−1 ↪→W
p∗2
k+l−2 ↪→ . . .

(2) For l = 1 we can prove W p
k+1 ↪→ W q

k as in (1) above. Now assume lp = m for l ≥ 2.

Then Part I yields W p
l ↪→ W

p∗l−1

1 . Since p∗l−1 = m we can now apply the exceptional case in
its simplest form.

(3) Let us consider, for example, the case l = 2 and k = 0. We are then assuming that
p > m/2. Let us distinguish three subcases, as follows. Assume p ∈ (m/2,m). Then Part

1 implies that W p
2 ↪→ W p∗

1 . Since p∗ > m we can now use the embedding W p∗

1 ↪→ C0 to
conclude. Now assume p = m. Then W p

2 ↪→W q
1 for any q > m and we can conclude as above.

Finally, assume p > m. Then W p
2 ↪→W p

1 ↪→ C0. The other cases are similar. �

Corollary 3.7. Assume the Sobolev Embedding Theorems hold for (L, g). Let ĝ be a second
Riemannian metric on L such that, for some C0 > 0, (1/C0)g ≤ ĝ ≤ C0g. Then the Sobolev
Embedding Theorems hold also for (L, ĝ).

Proof. According to Proposition 3.6 it is sufficient to verify the Sobolev Embedding Theorems
in the case l = 1 and k = 0. These involve only C0-information on the metric. The conclusion
is thus straight-forward. �

Remark 3.8. Under a certain density condition, Proposition 3.6 can be enhanced as follows.

Assume Part I, Equation 3.7, holds for p = 1, l = 1 and k = 0, i.e. W 1
1 ↪→ L

m
m−1 . Assume

also that, for all p < m, the space C∞c (L) is dense in W p
1 . Then Part I holds for all p < m

with l = 1 and k = 0, i.e. W p
1 ↪→ Lp

∗
. The proof is as follows.

Choose u ∈ C∞c (L). One can check that, for all s > 1, |u|s ∈ W p
1 , cf. e.g. [4]. Then, using

Part I and Hölder’s inequality,

‖|u|s‖
L

m
m−1
≤ C

∫
L

(|u|s + |∇|u|s|) volg

≤ C
∫
L

(|u|s−1|u|+ |u|s−1|∇u|) volg

≤ C ‖|u|s−1‖Lp′ (‖u‖Lp + ‖∇u‖Lp) .

Let us now choose s so that (s− 1)p′ = sm/(m− 1), i.e. s = p∗(m− 1)/m. Substituting, we
find (∫

L
|u|p∗

)m−1
m

≤ C
(∫

L
|u|p∗

) 1
p′

‖u‖W p
1
.

This leads to ‖u‖Lp∗ ≤ C‖u‖W p
1
, for all u ∈ C∞c (L). By density, the same is true for all

u ∈W p
1 .
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To conclude, we mention that if (L, g) is complete then C∞c (L) is known to be dense in W p
1

for all p ≥ 1, cf. [4] Theorem 3.1.

The most basic setting in which all parts of the Sobolev Embedding Theorems hold is when
L is a smooth bounded domain in Rm endowed with the standard metric g̃. Another important
class of examples is the following.

Theorem 3.9. Assume (L, g) satisfies the following assumptions: there exists R1 > 0 and
R2 ∈ R such that

i(g) ≥ R1, Ric(g) ≥ R2 g.

Then:

(1) The Sobolev embeddings Part I, Equation 3.7, hold for all p and l satisfying lp < m
and for all k ≥ 0.

(2) The exceptional case of Part I, Equation 3.9, holds for all p and l satisfying lp = m
and for all k ≥ 0.

(3) The Sobolev embeddings Part II, Equation 3.10, hold for all p and l satisfying lp > m
and for all k ≥ 0.

Furthermore, when kp > m, W p
k is a Banach algebra. Specifically, there exists C > 0 such

that, for all u, v ∈W p
k , the product uv belongs to W p

k and satisfies

‖uv‖W p
k
≤ C‖u‖W p

k
· ‖v‖W p

k
.

We will prove Theorem 3.9 below. Roughly speaking, the reason it holds is the following.
Given any coordinate system on L, the embeddings hold on every chart endowed with the
flat metric g̃. Now recall that, given any (L, g) and any x ∈ L, it is always possible to find
coordinates φx : B ⊂ Rm → L in which the metric g is a small perturbation of the flat metric:
this implies that the embeddings hold locally also with respect to g. The problem is that,
in general, the size of the ball B, thus the corresponding Sobolev constants, will depend on
x. Our assumptions on L, however, can be used to build a special coordinate system whose
charts admit uniform bounds. One can then show that this implies that the embeddings hold
globally. The main technical step in the proof of Theorem 3.9 is thus the following result
concerning the existence and properties of harmonic coordinate systems.

Theorem 3.10. Assume (L, g) satisfies the assumptions of Theorem 3.9. Then for all small
ε > 0 there exists r > 0 such that, for each x ∈ L, there exist coordinates φx : Br ⊂ Rm → L
satisfying

(1) φ−1
x (seen as a map into Rm) is harmonic.

(2) ‖φ∗xg − g̃‖C0 ≤ ε.

Remark 3.11. Theorem 3.10 can be heavily improved, cf. [4] Theorem 1.2. Firstly, it is
actually a local result, i.e. one can get similar results for any open subset of L by imposing
similar assumptions on a slightly larger subset. Secondly, these same assumptions actually
yield certain C0,α bounds. Thirdly, assumptions on the higher derivatives of the Ricci tensor
yield certain bounds on the higher derivatives of φ∗xg − g̃, see Remark 4.6 for details.

To conclude, it may be useful to emphasize that imposing a global lower bound on the
injectivity radius of (L, g) implies completeness.

Proof of Theorem 3.9. As seen in Proposition 3.6, it is sufficient to prove the Sobolev Embed-
ding Theorems in the simplest cases. Concerning Part I, let us choose u ∈ W p

1 (L). Using the
coordinates of Theorem 3.10, φ∗xu ∈ W

p
1 (Br). All Sobolev Embedding Theorems hold on Br

with its standard metric g̃. Thus there exists a constant C such that, with respect to g̃,

(3.12) ‖φ∗xu‖Lp∗ (Br)
≤ C‖φ∗xu‖W p

1 (Br).
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The fact that ∇u = du implies that Equation 3.12 involves only C0 information on the metric.
Since φ∗xg is C0-close to g̃, up to a small change of the constant C the same inequality holds
with respect to φ∗xg. Let Bx(r) denote the ball in (L, g) with center x and radius r. Then
Bx(r/2) ⊂ φx(Br) ⊂ Bx(2r) so∫

Bx(r/2)
|u|p∗volg ≤

∫
φx(Br)

|u|p∗volg

≤ C

(∫
φx(Br)

(|u|p + |du|p) volg

) p∗−p+p
p

≤ C
(∫

L
(|u|p + |du|p) volg

) p∗−p
p

(∫
Bx(2r)

(|u|p + |du|p) volg

)
.

Let us now integrate both sides of the above equation with respect to x ∈ L. We can then
change the order of integration according to the formula∫

x∈L

(∫
y∈Bx(r)

f(y) volg

)
volg =

∫
y∈L

f(y)

(∫
x∈By(r)

volg

)
volg.

Reducing r if necessary, the C0 estimate on g yields uniform bounds (with respect to x)
on volg(Bx(r/2)) and volg(Bx(2r)) because analogous bounds hold for g̃. This allows us to
substitute the inner integrals with appropriate constants. We conclude that∫

L
|u|p∗ volg ≤ C

(∫
L

(|u|p + |du|p) volg

) p∗−p
p
(∫

L
(|u|p + |du|p) volg

)

= C

(∫
L

(|u|p + |du|p) volg

) p∗
p

.

We conclude by raising both sides of the above equation to the power 1/p∗. Notice that the
final constant C can be estimated in terms of the volume of balls in L and of the constant C
appearing in Equation 3.12.

The exceptional case of Part I is similar: it is sufficient to replace p∗ with any q > m. Part
II is also similar, though slightly simpler. Specifically, one finds as above that

‖u‖C0(φx(Br)) ≤ C‖u‖W p
1 (φx(Br)) ≤ C‖u‖W p

1 (L)

Since this holds for all x ∈ L, we conclude that ‖u‖C0(L) ≤ C‖u‖W p
1 (L).

The proof that W p
k is a Banach algebra relies on the Sobolev Embedding Theorems and some

simple algebraic manipulations. For brevity we present only the case W p
2 with 2p > m, which

already contains all the main ideas; [1], Theorem 5.23, gives the general proof for domains in
Rm.

Recall the Leibniz rule

∇j(uv) =

j∑
k=0

(
j

k

)
(∇ku)⊗ (∇j−kv).

It thus suffices to estimate each term on the right hand side, for j = 0, 1, 2. The embedding
W p

2 ↪→ C0 implies that∫
L
|uv|p volg ≤ ‖u‖pC0 ·

∫
L
|v|p volg ≤ C‖u‖pW p

2
· ‖v‖p

W p
2
.
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We can analogously estimate all other terms except perhaps
∫
|∇u|p|∇v|p. If p > m we can

use the stronger embedding W p
2 ↪→ C1 to estimate this term as above. Otherwise we use the

following fact.
Fact : Assume m/2 < p ≤ m. Then there exist r, r′ such that 1/r + 1/r′ = 1 and pr < p∗,

pr′ < p∗.
This fact is obvious if p = m (using the convention p∗ =∞). For p < m it suffices to choose

r such that m/p < r < m/(p−m) and r′ = r/(r − 1).
The Sobolev Embedding Theorem, Part I, then yields W p

1 ↪→ Lpr so |∇u|p ∈ Lr. Likewise,

|∇v|p ∈ Lr′ so, using Hölder’s inequality,∫
L
|∇u|p|∇v|p volg ≤ ‖|∇u|p‖Lr · ‖|∇v|p‖Lr′ = ‖∇u‖pLpr · ‖∇v‖

p

Lpr′

≤ C‖∇u‖p
W p

1
· ‖∇v‖p

W p
1
≤ C‖u‖p

W p
2
· ‖v‖p

W p
2
.

Combining all these estimates proves that ‖uv‖W p
2
≤ C‖u‖W p

2
· ‖v‖W p

2
, as claimed. �

Example 3.12. Any compact oriented Riemannian manifold (L, g) satisfies the assumptions
of Theorem 3.9. Thus the Sobolev Embedding Theorems hold in full generality for such
manifolds. The same is true for the non-compact manifold Rm, endowed with the standard
metric g̃.

Let (Σ, g′) be a compact oriented Riemannian manifold. Consider L := Σ × R endowed

with the metric h̃ := dz2 + g′. It is clear that (L, h̃) satisfies the assumptions of Theorem 3.9
so again the Sobolev Embedding Theorems hold in full generality for these manifolds. More
generally they hold for the asymptotically cylindrical manifolds of Section 6. Notice however
that here we are using the Sobolev spaces defined in Equation 3.1. In Section 6 we will verify
the Sobolev Embedding Theorems for a different class of Sobolev spaces, cf. Definition 6.14.

4. Scaled Sobolev spaces

In applications standard Sobolev spaces are often not satisfactory for various reasons.
Firstly, they do not have good properties with respect to rescalings of the sort (L, t2g). Sec-
ondly, uniform geometric bounds of the sort seen in Theorem 3.9 are too strong. Thirdly, the
finiteness condition in Equation 3.1 is very rigid and restrictive.

For all the above reasons it is often useful to modify the Sobolev norms. A simple way of
addressing the first two problems is to introduce an extra piece of data, as follows.

Let (L, g, ρ) be an oriented Riemannian manifold endowed with a scale factor ρ > 0 or a
scale function ρ = ρ(x) > 0. Given any metric pair (E,∇), the scaled Sobolev spaces are
defined by

(4.1) W p
k;sc(E) := Banach space completion of the space

{
σ ∈ C∞(E) : ‖σ‖W p

k;sc
<∞

}
,

where we use the norm ‖σ‖W p
k;sc

:=
(

Σk
j=0

∫
L |ρ

j∇jσ|pgρ−m volg

)1/p
.

Notice that at the scale ρ ≡ 1 these norms coincide with the standard norms.

Remark 4.1. Let us slightly change notation, using gL (respectively, gE) to denote the metric
on L (respectively, on E). The metric g used in the above norms to measure ∇jσ is obtained
by tensoring gL (applied to ∇j) with gE (applied to σ): let us write g = gL ⊗ gE . We then
find

|ρj∇jσ|gL⊗gEρ
−m volgL⊗gE = |∇jσ|(ρ−2gL)⊗gEvol(ρ−2gL)⊗gE .

Roughly speaking, the scaled norms thus coincide with the standard norms obtained via the
conformally equivalent metric ρ−2gL on L. It is important to emphasize, however, that we
are conformally rescaling only part of the metric. This can be confusing when E is a tensor
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bundle over L, endowed with the induced metric: it would then be natural to also rescale the
metric of E. We are also not changing the connections ∇. In general these connections are not
metric connections with respect to (ρ−2gL)⊗ gE . This has important consequences regarding
the Sobolev Embedding Theorems for scaled Sobolev spaces, as follows.

Naively, one might hope that such theorems hold under the assumptions:

i(ρ−2g) ≥ R1, Ric(ρ−2g) ≥ R2ρ
−2g.

Indeed, these assumptions do suffice to prove the Sobolev Embedding Theorems in the simplest
case, i.e. l = 1 and k = 0. However, the general case requires Kato’s inequality, Lemma 3.5,
which in turn requires metric connections. To prove these theorems we will thus need further
assumptions on ρ, cf. Theorem 4.7.

We now define rescaling to be an action of R+ on the triple (L, g, ρ), via t · (L, g, ρ) :=
(L, t2g, tρ). Recall that the Levi-Civita connection ∇ on L does not change under rescaling.
Using this fact it is simple to check that ‖σ‖W p

k;sc
, calculated with respect to t · (L, g, ρ),

coincides with ‖σ‖W p
k;sc

, calculated with respect to (L, g, ρ): in this sense the scaled norm is

invariant under rescaling.

Remark 4.2. As in Remark 4.1, our definition of rescaling requires some care. To explain this
let us adopt the same notation as in Remark 4.1. Our notion of rescaling affects only the
metric on L, not the metric on E. As before, this can be confusing when E is a tensor bundle
over L, endowed with the induced metric.

As in Section 3, it is important to find conditions under which (L, g, ρ) and (L, ĝ, ρ) define
equivalent norms.

Definition 4.3. Let (L, ρ) be a manifold endowed with a scale function. We say that two
Riemannian metrics g, ĝ are scaled-equivalent if they satisfy the following assumptions:

A1: There exists C0 > 0 such that

(1/C0)g ≤ ĝ ≤ C0g.

A2: For all j ≥ 1 there exists Cj > 0 such that

|∇j ĝ|ρ−2g⊗gE ≤ Cj ,

where ∇ is the Levi-Civita connection defined by g, E = T ∗L⊗ T ∗L and we are using
the notation introduced in Remark 4.1.

Remark 4.4. As in Remark 3.3, one can check that

|∇ĝ|ρ−2g⊗gE ≤ C1 ⇒ |A(ĝ)|ρ−2g⊗gE ≤ C1.

In turn this implies that |A|ρ−2g⊗gE ≤ C1, where now A denotes the difference ∇− ∇̂ of the
connections on TL and E = T ∗L⊗ TL.

Again as in Remark 3.3, one can check that if for all j ≥ 0 there exists Cj > 0 such that

|∇j(ĝ − g)|ρ−2g⊗gE ≤ Cj
and if C0 is sufficiently small then g, ĝ satisfy Assumptions A1, A2.

The following result is a simple consequence of Remark 4.1 and Lemma 3.4.

Lemma 4.5. Assume (L, g, ρ), (L, ĝ, ρ) are scaled-equivalent in the sense of Definition 4.3.
Then the scaled Sobolev norms are equivalent.



14 T. PACINI

We can also define the scaled spaces of Ck sections

(4.2) Cksc(E) :=
{
σ ∈ Ck(E) : ‖σ‖Cksc <∞

}
,

where we use the norm ‖σ‖Cksc :=
∑k

j=0 supx∈L |ρj∇jσ|g. Once again, these norms define
Banach spaces.

Remark 4.6. One can analogously define Ck,αsc spaces. Notice that Equation 4.2 implies that
C0
sc = C0. It is these spaces which are relevant to the generalization to higher derivatives of

Theorem 3.10. Specifically, bounds on the higher derivatives of Ric(g) yield Ck,αsc bounds on
φ∗xg − g̃ with respect to the (constant) scale factor r determined by the theorem.

We are now ready to study the Sobolev Embedding Theorems for scaled spaces. As men-
tioned in Remark 4.1, these theorems require further assumptions on ρ.

Theorem 4.7. Let (L, g) be a Riemannian manifold and ρ a positive function on L. Assume
there exist constants R1 > 0, R2 ∈ R, R3 > 1 and ζ > 0 such that:

A1: ∀x ∈ L, ix(g) ≥ R1ρ(x).
A2: ∀x ∈ L, Ricx(g) ≥ R2ρ(x)−2gx.
A3: ∀x ∈ L,∀y ∈ B(x, ζρ(x)),

(1/R3)ρ(x) ≤ ρ(y) ≤ R3ρ(x).

Then all parts of the Sobolev Embedding Theorems hold for scaled norms and for any metric
pair (E,∇). Furthermore, when kp > m, W p

k;sc is a Banach algebra.

Now let ĝ be a second Riemannian metric on L such that, for some C0 > 0, (1/C0)g ≤ ĝ ≤
C0g. Then the scaled Sobolev Embedding Theorems hold also for (L, ĝ, ρ) and for any metric
pair (E,∇). The Sobolev constants of ĝ depend only on the Sobolev constants of g and on C0.

Proof. Let us prove Part 1 for functions, assuming l = 1, k = 0. Choose x ∈ L. Set Bx :=
B(x, ζρ(x)). For y ∈ Bx, consider the rescaled metric h defined by hy := ρ(x)−2gy. Assumption
A1 shows that iy(g) ≥ R1ρ(y). Using Assumption A3 we find

iy(h) = ρ(x)−1iy(g) ≥ R1ρ(y)ρ(x)−1 ≥ R1/R3.

Now recall that the Ricci curvature Ric is invariant under rescaling, i.e. Ric(h) = Ric(g).
Then Assumptions A2 and A3 show that

Ricy(h) = Ricy(g) ≥ R2ρ(y)−2ρ(x)2h ≥ (R2/R
2
3)h.

We have thus obtained lower bounds on the injectivity radius and Ricci curvature of (Bx, h).
Notice that these bounds are independent of x. Recall from Remark 3.11 that Theorem 3.10
is essentially local. Specifically, set B′x := B(x, (1/2)ζρ(x)). Then for any ε > 0 there exists
r = r(p,R1, R2, R3, ε,m) such that, for any x ∈ L, there exist coordinates φx : Br → (B′x, h)
satisfying ‖φ∗xh− g̃‖C0 ≤ ε.

Exactly as in the proof of Theorem 3.9, we can now use the local Sobolev Embedding
Theorems for Br to conclude that

(4.3)

(∫
B′x

|u|p∗volh

)1/p∗

≤ C

(∫
B′x

(|u|p + |du|ph) volh

)1/p

.

Assumption A3 allows us, up to a change of constants, to replace the (locally) constant quantity
ρ(x) with the function ρ(y). Remark 4.1 shows how replacing ρ−2g with g leads to the scaled
norms. Proceeding as in the proof of Theorem 3.9, via double integration, we then get

(4.4) ‖u‖
Lp
∗
sc
≤ C‖u‖W p

1;sc
,
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where we are now using the metric g.
Now consider the case k = 1, i.e. assume u ∈ W p

2;sc. Then φ∗x|∇u|h ∈ W
p
1 (Br). As before,

we obtain

(4.5)

(∫
B′x

|∇u|p
∗

h volh

)1/p∗

≤ C

(∫
B′x

(|∇u|ph + |d(|∇u|h)|ph) volh

)1/p

.

Notice that the Levi-Civita connections of g and h coincide. We can thus apply Kato’s in-
equality, finding |d|∇u|h|h ≤ |∇2u|h = |ρ(x)2∇2u|g. This leads to
(4.6)(∫

B′x

|ρ(x)∇u|p∗g ρ(x)−mvolg

)1/p∗

≤ C

(∫
B′x

(|ρ(x)∇u|pg + |ρ(x)2∇2u|pg)ρ(x)−mvolg

)1/p

.

We can now proceed as before, using Assumption A3, to obtain

‖∇u‖
Lp
∗
sc
≤ C‖∇u‖W p

1;sc
.

Together with Equation 4.4, this implies W p
2;sc ↪→W p∗

1;sc.
The other cases and parts of the Sobolev Embedding Theorems can be proved analogously.
The claim that W p

k;sc is a Banach algebra can be proved as in Theorem 3.9, using Remark

4.1 to write the scaled norms in terms of standard norms. In this case the fact that the
connection ∇ is not a metric connection with respect to the rescaled metric ρ−2g is not a
problem: the proof only uses the Leibniz rule (together with Hölder’s inequality for Lp norms
and the Sobolev Embedding Theorems which we have just proved).

The proof of the Sobolev Embedding Theorems for (L, ĝ, ρ) is similar. For example, to prove

Part I with l = 1 and k = 0 we locally define ĥy := ρ−2(x)ĝy. Our assumption on ĝ allows us

to substitute h with ĥ in Equation 4.3. The proof then continues as before. Now consider the
case k = 1, i.e. assume u ∈W p

2;sc with respect to ĝ. Let ∇̂ denote the Levi-Civita connection

defined by ĝ. We can then study φ∗x|∇̂u|ĥ as before, obtaining the analogue of Equation 4.5

in terms of (ĥ, ∇̂) instead of (h,∇). Since the Levi-Civita connections of ĝ and ĥ coincide we
also obtain the analogue of Equation 4.6. The proof then continues as before. �

Remark 4.8. Compare the proof of Theorem 4.7 with the ideas of Remark 4.1. The main issue
raised in Remark 4.1 concerned Kato’s inequality for the rescaled metric ρ−2g. In the proof of
the theorem this problem is solved by Assumption A3, which essentially allows us to locally
treat ρ as a constant. Assumptions A1 and A2 are then similar to the assumptions of Remark
4.1.

Example 4.9. We now want to present two important examples of (L, g, ρ) satisfying As-
sumptions A1-A3 of Theorem 4.7.

(1) Let L be a smooth bounded domain in Rm, endowed with the standard metric g̃. Given
any x ∈ L we can define ρ(x) := d(x, ∂L). This function satisfies Assumption A1 with
R1 = 1 and Assumption A2 with R2 = 0. The triangle inequality shows that, for all
y ∈ B(x, (1/2)ρ(x)), (1/2)ρ(x) ≤ ρ(y) ≤ (3/2)ρ(x). This implies that Assumption A3
is also satisfied.

(2) Given a compact oriented Riemannian manifold (Σ, g′), let L := Σ × (0,∞) and g̃ :=
dr2 + r2g′. Let θ denote the generic point on Σ. There is a natural action

R+ × L→ L, t · (θ, r) := (θ, tr).

Given any t ∈ R+, it is simple to check that t∗g̃ = t2g̃. For any x ∈ L, notice that
itx(g̃) = ix(t∗g̃). We conclude that itx(g̃) = tix(g̃). Analogously, Rictx(g̃) = Ricx(g̃). It
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follows that, given any strictly positive f = f(θ), the function ρ(θ, r) := rf(θ) satisfies
A1 and A2. It is simple to check that it also satisfies Assumption A3. The simplest
example is f(θ) ≡ 1, i.e. ρ(θ, r) = r. In Section 6 we will extend this example to the
category of “conifolds”.

Remark 4.10. Since the norms ‖ · ‖W p
k;sc

are scale-invariant it is clear that if the Sobolev

Embedding Theorems hold for (L, g, ρ) then they also hold for (L, t2g, tρ) with the same
Sobolev constants. This is reflected in the fact that Assumptions A1-A3 of Theorem 4.7 are
scale-invariant.

5. Weighted Sobolev spaces

In Section 4 we mentioned that the finiteness condition determined by the standard Sobolev
norms is very restrictive. This problem can be addressed by introducing a weight function
w = w(x) > 0 into the integrand. Coupling weights with scale functions then produces very
general and useful spaces, as follows.

Let (L, g) be a Riemannian manifold endowed with two positive functions ρ and w. Given
any metric pair (E,∇), the weighted Sobolev spaces are defined by

(5.1) W p
k;w(E) := Banach space completion of the space

{
σ ∈ C∞(E) : ‖σ‖W p

k;w
<∞

}
,

where we use the norm ‖σ‖W p
k;w

:=
(

Σk
j=0

∫
L |wρ

j∇jσ|pgρ−m volg

)1/p
.

We can also define the weighted spaces of Ck sections

(5.2) Ckw(E) :=
{
σ ∈ Ck(E) : ‖σ‖Ckw <∞

}
,

where we use the norm ‖σ‖Ckw :=
∑k

j=0 supx∈L|wρj∇jσ|g. Once again, these norms define
Banach spaces.

Theorem 5.1. Let (L, g) be a Riemannian manifold endowed with positive functions ρ and w.
Assume ρ satisfies the assumptions of Theorem 4.7 with respect to constants R1, R2, R3 and
ζ. Assume also that there exists a positive constant R4 such that, ∀x ∈ L,∀y ∈ B(x, ζρ(x)),

(1/R4)w(x) ≤ w(y) ≤ R4w(x).

Then all parts of the Sobolev Embedding Theorems hold for the weighted norms defined by
(ρ, w) and for any metric pair (E,∇).

Now let ĝ be a second Riemannian metric on L such that, for some C0 > 0, (1/C0)g ≤ ĝ ≤
C0g. Then the weighted Sobolev Embedding Theorems hold also for (L, ĝ, ρ, w) and for any
metric pair (E,∇). The Sobolev constants of ĝ depend only on the Sobolev constants of g and
on C0.

Proof. The proof is a small modification of the proof of Theorem 4.7: one needs simply to take
into account the weights by multiplying Equations 4.3 and 4.6 by w(x). The assumption on
w allows us, up to a change of constants, to replace the (locally) constant quantity w(x) with
the function w(y). �

Remark 5.2. Choose any constant β ∈ R. Define rescaling to be an action of R+ on (L, g, ρ, w),
via t · (L, g, ρ, w) := (L, t2g, tρ, tβw). Then ‖σ‖W p

k;w
, calculated with respect to t · (L, g, ρ, w),

coincides with tβ‖σ‖W p
k;w

, calculated with respect to (L, g, ρ, w): this shows that these weighted

norms are in general not invariant under rescaling. However, if the Sobolev Embedding
Theorems hold for (L, g, ρ, w) then, multiplying by the factor tβ, we see that they hold for
(L, t2g, tρ, tβw) with the same Sobolev constant. This is reflected in the fact that the hypothe-
ses of Theorem 5.1 are t-invariant.
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6. Application: manifolds with ends modelled on cones and cylinders

We now introduce the category of “conifolds”. These Riemannian manifolds are a well-
known example for the theory of weighted Sobolev spaces. They will also provide a useful
framework for our study of desingularizations. It will also be useful to define the analogous
“cylindrical” category, both for its affinities to conifolds and as a tool for studying them.

Definition 6.1. Let Lm be a smooth manifold. We say L is a manifold with ends if it satisfies
the following conditions:

(1) We are given a compact subset K ⊂ L such that S := L \ K has a finite number of
connected components S1, . . . , Se, i.e. S = qei=1Si.

(2) For each Si we are given a connected (m−1)-dimensional compact manifold Σi without
boundary.

(3) There exist diffeomorphisms φi : Σi × [1,∞)→ Si.

We then call the components Si the ends of L and the manifolds Σi the links of L. We denote
by Σ the union of the links of L.

Definition 6.2. Let L be a manifold with ends. Let g be a Riemannian metric on L. Choose
an end Si with corresponding link Σi.

We say that Si is a conically singular (CS) end if the following conditions hold:

(1) Σi is endowed with a Riemannian metric g′i.
We then let (θ, r) denote the generic point on the product manifold Ci := Σi×(0,∞)

and g̃i := dr2 + r2g′i denote the corresponding conical metric on Ci.

(2) There exist a constant νi > 0 and a diffeomorphism φi : Σi × (0, ε]→ Si such that, as
r → 0 and for all k ≥ 0,

|∇̃k(φ∗i g − g̃i)|g̃i = O(rνi−k),

where ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

We say that Si is an asymptotically conical (AC) end if the following conditions hold:

(1) Σi is endowed with a Riemannian metric g′i.
We again let (θ, r) denote the generic point on the product manifold Ci := Σi×(0,∞)

and g̃i := dr2 + r2g′i denote the corresponding conical metric on Ci.

(2) There exist a constant νi < 0 and a diffeomorphism φi : Σi × [R,∞) → Si such that,
as r →∞ and for all k ≥ 0,

|∇̃k(φ∗i g − g̃i)|g̃i = O(rνi−k),

where ∇̃ is the Levi-Civita connection on Ci defined by g̃i.

In either of the above situations we call νi the convergence rate of Si.

Remark 6.3. Let (L, g) be a manifold with ends. Assume Si is an AC end as in Definition 6.2.
Using the notation of Remark 4.1 we can rewrite this condition as follows: for all k ≥ 0,

|∇̃k(φ∗i g − g̃i)|r−2g̃i⊗g̃i = O(rνi).

In particular there exist constants Ck > 0 such that

|∇̃k(φ∗i g − g̃i)|r−2g̃i⊗g̃i ≤ CkR
νi .

By making R larger if necessary, we can assume C0R
νi is small. This implies that φ∗i g and g̃i

are scaled-equivalent in the sense of Definition 4.3, cf. Remark 4.4. The above conditions are
stable under duality and tensor products so one can prove that, for any tensor σ on L and as
r →∞,

|σ|φ∗i g = |σ|g̃i (1 +O(rνi)) .
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If σ = df for some function f on L, we can multiply both sides by r to obtain an analogous
estimate in terms of the rescaled metrics:

|df |r−2φ∗i g
= |df |r−2g̃i (1 +O(rνi)) .

Furthermore, let A := ∇− ∇̃ denote the difference of the two connections defined by φ∗i g and
g̃i. Then, as in Remark 3.3, Definition 6.2 implies that |A|g̃i = O(rνi−1). This leads to

|∇2f |φ∗i g = |∇̃2f |g̃i (1 +O(rνi)) + |df |g̃iO(rνi−1),

|trφ∗i g∇
2f | = |trg̃i∇̃2f | (1 +O(rνi)) + |df |g̃iO(rνi−1).

Multiplying these equations by r2 we can re-write them as

|∇2f |r−2φ∗i g
= |∇̃2f |r−2g̃i +O(rνi)

(
|∇̃2f |r−2g̃i + |df |r−2g̃i

)
,

|r2∆φ∗i g
f | = |r2∆g̃if |+O(rνi)

(
|r2∆g̃if |+ |df |r−2g̃i

)
.

Analogous comments apply to higher derivatives and to CS ends.

Definition 6.4. Let (L, g) be a manifold with ends endowed with a Riemannian metric. We
say that L is a CS (respectively, AC ) manifold if all ends are conically singular (respectively,
asymptotically conical). We say that L is a CS/AC manifold if all ends are either conically
singular or asymptotically conical. We use the generic term conifold to indicate any CS, AC
or CS/AC manifold.

When working with a CS/AC manifold we will often index the CS (“small”) ends with
numbers {1, . . . , s} and the AC (“large”) ends with numbers {1, . . . , l}. Furthermore we will
denote the union of the CS links (respectively, of the CS ends) by Σ0 (respectively, S0) and
those corresponding to the AC links and ends by Σ∞, S∞.

Remark 6.5. It is useful to include smooth compact manifolds in the category of conifolds:
they are precisely those for which the set of ends is empty.

We now need to choose which function spaces to work with on conifolds. It turns out that
the most useful classes of function spaces are precisely those of Section 5. One needs only to
choose appropriate functions ρ and w satisfying the assumptions of Theorem 5.1, as follows.

Regarding notation, given a vector β = (β1, . . . , βe) ∈ Re and j ∈ N we set β + j :=

(β1 + j, . . . , βe + j). We write β ≥ β̂ iff βi ≥ β̂i for all i = 1, . . . , e.

Definition 6.6. Let L be a conifold with metric g. We say that a smooth function ρ : L →
(0,∞) is a radius function if φ∗i ρ = r, where φi are the diffeomorphisms of Definition 6.2.
Given any vector β = (β1, . . . , βe) ∈ Re, choose a function β : L → R which, on each end Si,
restricts to the constant βi. Then ρ and w := ρ−β satisfy the assumptions of Theorem 5.1, cf.
Example 4.9. We call (L, g, ρ,β) a weighted conifold.

Given any metric pair (E,∇) we define weighted spaces Ckβ(E) and W p
k,β(E) as in Section

5. We can equivalently define the space Ckβ(E) to be the space of sections σ ∈ Ck(E) such

that |∇jσ| = O(rβ−j) as r → 0 (respectively, r →∞) along each CS (respectively, AC) end.
In the case of a CS/AC manifold we will often separate the CS and AC weights, writing

β = (µ,λ) for some µ ∈ Rs and some λ ∈ Rl. We then write Ck(µ,λ)(E) and W p
k,(µ,λ)(E).

One can extend to these weighted spaces many results valid for standard Sobolev spaces.
Hölder’s inequality is one example.

Lemma 6.7 (Weighted Hölder’s inequality). Let (L, g) be a conifold. Then, for all p > 1 and
β = β1 + β2,

‖uv‖L1
β
≤ ‖u‖Lpβ1 · ‖v‖Lp

′
β2

.
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More generally, assume 1
q = 1

q1
+ 1

q2
. Then

‖uv‖Lqβ ≤ ‖u‖Lq1β1
· ‖v‖Lq2β2

.

Proof.

‖uv‖L1
β

=

∫
L

(ρ−β1uρ−m/p)(ρ−β2vρ−m/p
′
) volg

≤ ‖ρ−β1uρ−m/p‖Lp · ‖ρ−β2vρ−m/p
′‖Lp′

= ‖u‖Lpβ1 · ‖v‖Lp
′
β2

.

The general case is similar. �

Corollary 6.8. Let (L, g,β) be a weighted conifold. Then all parts of the weighted Sobolev
Embedding Theorems hold for any metric pair (E,∇).

Furthermore, assume kp > m. Then the corresponding weighted Sobolev spaces are closed
under multiplication, in the following sense. For any β1 and β2 there exists C > 0 such that,
for all u ∈W p

k,β1
and v ∈W p

k,β2
,

‖uv‖W p
k,β1+β2

≤ C‖u‖W p
k,β1
· ‖v‖W p

k,β2
.

Proof. Let (L, g) be a conifold. Write L = K ∪ S as in Definition 6.1 and let Ci denote the
cone corresponding to the end Si. Example 4.9 showed that the assumptions for the scaled
Sobolev Embedding Theorems hold for (Ci, g̃i, r). The same is true for the weighted Sobolev
Embedding Theorems. Using the compactness of K we conclude that these assumptions, thus
the theorems, hold for L with respect to any metric ĝ such that φ∗i ĝ = g̃i on each end. As in
Remark 6.3 one can assume that φ∗i g and g̃i are scaled-equivalent so there exists C0 > 0 such
that (1/C0)g̃i ≤ φ∗i g ≤ C0g̃i. Again using the compactness of K we may thus assume that
(1/C0)ĝ ≤ g ≤ C0ĝ. Theorem 5.1 now shows that the weighted Sobolev Embedding Theorems
hold for (L, g). The fact that weighted Sobolev spaces are closed with respect to products can
be proved as in Theorem 4.7, using Lemma 6.7. �

Remark 6.9. Let (L, g) be an AC manifold. Notice that for β̂ ≥ β there exist continuous
embeddings W r

k,β ↪→ W r
k,β̂

. The analogous statement is true for the weighted Ck spaces. By

composition Corollary 6.8 thus leads to the following statements:

(1) If lp < m then there exists a continuous embedding W p
k+l,β(E) ↪→W

p∗l
k,β̂

(E).

(2) If lp = m then, for all q ∈ [p,∞), there exist continuous embeddings W p
k+l,β(E) ↪→

W q

k,β̂
(E).

(3) If lp > m then there exists a continuous embedding W p
k+l,β(E) ↪→ Ck

β̂
(E).

Notice that if (L, g) is a CS manifold then the behaviour on the ends is studied in terms of
r → 0 rather than r → ∞. In this case the same conclusions hold for the opposite situation
β̂ ≤ β. Finally, let (L, g) be a CS/AC manifold with β = (µ,λ). Then the same conclusions

hold for all β̂ = (µ̂, λ̂) with µ̂ ≤ µ, λ̂ ≥ λ.

We now want to show that all the above notions and results are scale-independent, as long
as we rescale the weight function correctly to take into account the possibility of variable
weights. We start by examining the properties of (L, t2g).

Lemma 6.10. Let (L, g) be a conifold. For each AC end Si let φi : Σi × [R,∞)→ Si denote
the diffeomorphism of Definition 6.2. In particular, for all k ≥ 0 there exist Ck > 0 such that,
for r ≥ R,

|∇̃k(φ∗i g − g̃i)|r−2g̃i⊗g̃i ≤ Ckr
νi ≤ CkRνi .
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As seen in Remark 6.3, we can thus assume that φ∗i g, g̃i are scaled-equivalent.
Choose any t > 0. Define the diffeomorphism

φt,i : Σi × [tR,∞)→ Si, φt,i(θ, r) := φi(θ, r/t).

Then, for r ≥ tR and with respect to the same Ck, there are t-uniform estimates

|∇̃k(φ∗t,i(t2g)− g̃i)|r−2g̃i⊗g̃i ≤ Ck(r/t)
νi ≤ CkRνi .

Analogously, for each CS end Si let φi denote the diffeomorphism of Definition 6.2. Define
the diffeomorphism

φt,i : Σi × (0, tε]→ Si, φt,i(θ, r) := φi(θ, r/t).

Then there are t-uniform estimates as above.
In particular, with respect to these diffeomorphisms, (L, t2g) is again a conifold. If ρ is a

radius function for (L, g) then tρ is a radius function for (L, t2g).

Proof. Define the map

δt : Σi × R+ → Σi × R+, (θ, r) 7→ (θ, tr).

Since δt is simply a rescaling it preserves the Levi-Civita connection ∇̃. Notice that φt,i =
φi ◦ δ1/t. It is simple to check that δ∗1/t(t

2g̃i) = g̃i. Thus, for r ≥ tR,

|∇̃k(φ∗t,i(t2g)− g̃i)|g̃i⊗g̃i = |∇̃k(δ∗1/tφ
∗
i (t

2g)− g̃i)|g̃i⊗g̃i

= δ∗1/t

(
|∇̃k(φ∗i (t2g)− t2g̃i)|t2g̃i⊗t2g̃i

)
= δ∗1/t

(
|∇̃k(φ∗i g − g̃i)|t2g̃i⊗g̃i

)
≤ t−kCk(r/t)νi−k = Ck(r/t)

νir−k,

where in the last line the factor t−k comes from measuring ∇̃k using t2g̃i, cf. Remark 4.1.
These inequalities can be rescaled as in Remark 6.3 to obtain the desired t-uniform estimates.

Now notice that

φ∗t,i(tρ)|(θ,r) = tρ ◦ φt,i(θ, r) = tρ ◦ φi(θ, r/t) = tr/t = r,

so tρ is a radius function in the sense of Definition 6.6. CS ends can be studied analogously. �

The following result is a direct consequence of Theorem 5.1 and Remark 5.2.

Corollary 6.11. Let (L, g) be a conifold. Then, for all t > 0:

(1) Choose a constant weight β. Define weighted Sobolev spaces W p
k,β as in Section 5 using

the metric t2g, the scale function tρ and the weight function w := (tρ)−β. Then all
forms of the weighted Sobolev Theorems hold for (L, t2g, tρ, (tρ)−β) with t-independent
Sobolev constants.

(2) More generally, let β be a function as in Definition 6.6. Choose a constant “reference”
weight β′ and define weighted Sobolev spaces W p

k,β as in Section 5 using the metric t2g,

the scale function tρ and the weight function wt := (t
β′−β
β tρ)−β. Then the weighted

norms ‖ · ‖W p
k,β

, calculated with respect to these choices, coincide with t−β
′‖ · ‖W p

k,β
,

calculated with respect to (L, g, ρ, w := ρ−β). In particular, all forms of the weighted

Sobolev Embedding Theorems hold for (L, t2g, tρ, wt := (t
β′−β
β tρ)−β) with t-independent

Sobolev constants.
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Remark 6.12. Compare the weights used in parts (1) and (2) above. Basically, to deal with

variable weights we introduce a corrective factor of the form tβ−β
′
: since the exponent is

bounded, for fixed t this doesn’t affect the decay/growth condition on the ends. Its effect is
simply to yield estimates which are uniform with respect to t.

We conclude this section by summarizing the main definitions and properties of a second
class of manifolds with ends, modelled on cylinders. We will see that the corresponding theory
is closely related to that of conifolds.

Definition 6.13. Let L be a manifold with ends. Let g be a Riemannian metric on L. Choose
an end Si with corresponding link Σi. We say that Si is an asymptotically cylindrical (A.Cyl.)
end if the following conditions hold:

(1) Σi is endowed with a Riemannian metric g′i.
We then let (θ, z) denote the generic point on the product manifold Ci := Σi ×

(−∞,∞) and h̃i := dz2 + g′i denote the corresponding cylindrical metric on Ci.

(2) There exist a constant νi < 0 and a diffeomorphism φi : Σi × [R′,∞)→ Si such that,
as z →∞ and for all k ≥ 0,

|∇̃k(φ∗i g − h̃i)|h̃i = O(eνiz),

where ∇̃ is the Levi-Civita connection on Ci defined by h̃i.

We say that L is a A.Cyl. manifold if all ends are asymptotically cylindrical.

For the purposes of this paper the function spaces of most interest on A.Cyl. manifolds
are not the ones already encountered, cf. Section 3 and Example 3.12. Instead, we use the
following.

Definition 6.14. Let (L, h) be a A.Cyl. manifold. We say that a smooth function ζ : L →
[1,∞) is a radius function if φ∗i ζ = z, where φi are the diffeomorphisms of Definition 6.2.
Given any vector β = (β1, . . . , βe) ∈ Re, choose a function β on L which, on each end Si,
restricts to the constant βi. We call (L, h, ζ,β) a weighted A.Cyl. manifold. Given any metric
pair (E,∇) we define Banach spaces of sections of E in the following two ways.

The weighted spaces of Ck sections of E are defined by

(6.1) Ckβ(E) :=
{
σ ∈ Ck(E) : ‖σ‖Ckβ <∞

}
,

where we use the norm ‖σ‖Ckβ :=
∑k

j=0 supx∈L|e−β(x)ζ(x)∇jσ|.
The weighted Sobolev spaces are defined by

(6.2) W p
k,β(E) := Banach space completion of the space

{
σ ∈ C∞(E) : ‖σ‖W p

k,β
<∞

}
,

where p ∈ [1,∞), k ≥ 0 and we use the norm ‖σ‖W p
k,β

:=
(∑k

j=0

∫
L |e
−βζ∇jσ|p volh

)1/p
.

Both types of spaces are independent of the particular choices made.

Remark 6.15. It is simple to see that the norm ‖σ‖W p
k,β

is equivalent to the norm defined by∑k
j=0(

∫
L |∇

j(e−βζσ)|p volh)1/p. This leads to the following fact.

Let W p
k (E) denote the standard Sobolev spaces for (L, h) introduced in Section 3. Let

eβζ ·W p
k denote the space of all sections of E of the form σ = eβζτ for some τ ∈ W p

k (E),

endowed with the norm ‖σ‖ := ‖τ‖. Then W p
k,β(E) = eβζ ·W p

k (E) as sets and the norms are

equivalent. Analogously, the spaces Ckβ(E) are equivalent to the spaces eβζ · Ck(E), where

Ck(E) are the standard spaces of Ck sections used in Section 3.
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As before, weighted spaces defined with respect to A.Cyl. metrics and cylindrical metrics are
equivalent. Remark 6.15 allows us to reduce the weighted Sobolev Embedding Theorems for
A.Cyl. manifolds to the standard Sobolev Embedding Theorems, obtaining results analogous
to Corollary 6.8 and Remark 6.9. According to [4] Theorem 3.1 and Proposition 3.2 the spaces
C∞c are dense in the standard Sobolev spaces defined for manifolds whose ends are exactly
cylindrical. The same is then true for weighted Sobolev spaces on A.Cyl. manifolds.

Remark 6.16. It is interesting to compare Definitions 6.14 and 6.6. Assume (L, h) is an A.Cyl.
manifold with respect to certain diffeomorphisms φi = φi(θ, z) as in Definition 6.2. Since
the corresponding weighted Sobolev spaces are equivalent we may assume that h is exactly
cylindrical on each end, i.e. using the notation of Definition 6.2 it can be written h = dz2 +g′i.
Consider the conformally rescaled metric g := e2ζh. Using the change of variables r = ez it is
simple to check that g = dr2 + r2g′i. This implies that (L, g) is an AC manifold with respect
to the diffeomorphisms φi(θ, log z). Viceversa, any AC metric on L defines a conformally

equivalent A.Cyl. metric. Notice that if z ∈ (R′,∞) then r ∈ (R,∞) with R := eR
′

and that
r−mvolg = volh. Thus, by change of variables,

(6.3)

∫ ∞
R

∫
Σ
|r−βσ|pr−m volg =

∫ ∞
R′

∫
Σ
|e−βzσ|p volh.

This shows that the spaces Lpβ(E) of sections of E coincide for (L, g) and (L, h), while the

corresponding norms are equivalent (but again, as in Remark 4.1, one may need to take into
account which metric is being used on E in the two cases).

The same is true also for Sobolev spaces of higher order. Specifically, an explicit calculation
shows that the Levi-Civita connections defined by h and g are equivalent, i.e. the corre-
sponding Christoffel symbols coincide up to constant multiplicative factors. It thus makes no
difference which metric is used to define ∇. On the other hand, the norm inside the integral
does depend on the choice of metric. For example,

(6.4)

∫ ∞
R

∫
Σ
|r−β+j∇jfσ|pgr−m volg =

∫ ∞
R′

∫
Σ
|e−βz∇jσ|ph volh.

This proves that the spaces W p
k,β(E) are equivalent.

Analogous results hold for CS manifolds: if h is A.Cyl. then g := e−2ζh is CS. In this case

(6.5)

∫ ε

0

∫
Σ
|r−βf |pr−m volg =

∫ ∞
− log ε

∫
Σ
|eβzf |p volh,

so the space Lpβ for (L, g) coincides with the space Lp−β for (L, h).

These facts show, for example, that the Sobolev Embedding Theorems for conifolds and
A.Cyl. manifolds are simply two different points of view on the same result. They also show
that C∞c is dense in all weighted Sobolev spaces on conifolds because, as already seen, this
is true on A.Cyl. manifolds. Finally, they show that in Remark 6.3 we are really using the

cylindrical metric r−2g̃ = h̃ to “measure” ∇̃k (in the sense of Remark 4.1).

Part 2. Elliptic estimates

We now turn to the theory of elliptic operators via weighted Sobolev spaces, focusing on
Fredholm and index results for the manifolds discussed in Section 6. Results of this kind have
been proved by various authors, e.g. Lockhart-McOwen [11], Lockhart [10] and Melrose [13].
We will follow the point of view of Lockhart and McOwen to which we refer for details, see
also Joyce-Salur [8].
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7. Fredholm results for elliptic operators on A.Cyl. manifolds

We start with the case of A.Cyl. manifolds. The theory requires appropriate assumptions
on the asymptotic behaviour of the operators, which we roughly summarize as follows.

Definition 7.1. Given a manifold Σ, consider the projection π : Σ×R→ Σ. A vector bundle
E∞ on Σ×R is translation-invariant if it is of the form π∗E′, for some vector bundle E′ over
Σ. We define the notion of translation-invariant metrics and connections analogously.

Let P∞ : C∞(E∞) → C∞(F∞) be a differential operator between translation-invariant
vector bundles. We say that P∞ is translation-invariant if it commutes with the action of R
on Σ × R determined by translations; equivalently, writing P∞ =

∑
A∞k · ∇k with respect to

a translation-invariant ∇, if the coefficient tensors A∞k are independent of z.
Let (L, h) be an A.Cyl. manifold with link Σ = qΣi. Let E, F be vector bundles over L.

Assume there exist translation-invariant vector bundles E∞, F∞ over Σ× R such that, using
the notation of Definition 6.13, φ∗i (E|Si) (respectively, φ∗i (F|Si)) coincides with the restriction

to Σi × (R′,∞) of E∞ (respectively, F∞). Let P∞ =
∑
A∞k · ∇k : C∞(E∞) → C∞(F∞)

be a translation-invariant linear differential operator of order n. Consider a linear operator
P : C∞(E)→ C∞(F ). We say that P is asymptotic to P∞ if on each end there exists νi < 0
such that, writing P =

∑
Ak · ∇k (up to identifications) and as z →∞,

|∇j(Ak −A∞k )| = O(eνiz),

where | · | is defined by the translation-invariant metrics. We call νi the convergence rates of
the operator P .

In what follows, to define the spaces W p
k,β(E), we will assume that E is endowed with a

metric and a metric connection which are asymptotic to the translation-invariant data on E∞,
in the appropriate sense.

Assume P is a linear operator of order n with bounded coefficients Ak. It follows from
Definition 6.14 that, for all p > 1, k ≥ 0 and β, P extends to a continuous map

(7.1) P : W p
k+n,β(E)→W p

k,β(F ).

Remark 7.2. It will sometimes be useful to denote by Pβ the extended operator of Equation
7.1, so as to emphasize the particular weight being used.

Now assume P is asymptotic to a translation-invariant operator P∞. Then Equation 7.1
holds also for the operator e−νζ(P − P∞), where ν < 0 denotes the convergence rates of P as
in Definition 7.1. This implies that the operator P − P∞ extends to a continuous map

(7.2) P − P∞ : W p
k+n,β(E)→W p

k,β+ν(F ).

Notice that if β < β′ then W p
k+n,β(E) ⊂ W p

k+n,β′(E) and that the operator Pβ′ extends the

operator Pβ. Notice also that C∞c (E) ⊂ W p
k,β(E) as a dense subset. Dualizing this relation

allows us to identify the dual space (W p
k,β(E))∗ with a subspace of the space of distributions

(C∞c (E))∗. It is customary to denote this space W p′

−k,−β(E). Endowed with the appropriate

norm, it again contains C∞c (E) as a dense subset. The duality mapW p′

−k,−β(E)×W p
k,β(E)→ R,

restricted to this subset, coincides with the map

(7.3) C∞c (E)×W p
k,β(E)→ R, < σ, σ′ >:=

∫
L

(σ, σ′)E volh.

This map extends by continuity to a map defined on W p′

l,−β(E)×W p
k,β(E) for all l ≥ 0, showing

that W p′

−k,−β(E) also contains all spaces W p′

l,−β(E). It can be shown that P admits continuous

extensions as in Equation 7.1 for any k ∈ Z.
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Lemma 7.3. Let P : C∞(E)→ C∞(F ) be a linear differential operator of order n, asymptotic
to a translation-invariant operator P∞. Let P ∗ : C∞(F )→ C∞(E) denote its formal adjoint.
Consider the continuous extension of P ∗ to the spaces

(7.4) P ∗ : W p′

−k,−β(F )→W p′

−k−n,−β(E).

Under the identification of Sobolev spaces of negative order with dual spaces, this operator
coincides with the operator dual to that of Equation 7.1,

(7.5) P ∗ : (W p
k,β(F ))∗ → (W p

k+n,β(E))∗.

Furthermore if E = F and P is self-adjoint, i.e. P = P ∗ on smooth compactly-supported
sections, then P = P ∗ on any space W p

k,β.

Proof. The formal adjoint of P is asymptotic to the formal adjoint of P∞, so the extensions
exist as specified. The statement of this lemma can be clarified by adopting the notation of
Remark 7.2: the claim is then that (P ∗)−β = (Pβ)∗, where on the left the superscript ∗ denotes
the formal adjoint and on the right it denotes the dual map.

Since both maps are continuous, it is sufficient to show that they coincide on a dense
subset: in particular that (P ∗)−β(τ) = (Pβ)∗(τ), for all τ ∈ C∞c (F ). Since we are identifying
(P ∗)−β(τ) with an element of the dual space (W p

k+n,β(E))∗, we can again invoke continuity to

claim that it is sufficient to prove that, for all e ∈ C∞c (E),

(7.6) 〈(P ∗)−β(τ), e〉 = 〈(Pβ)∗(τ), e〉.
This claim is now a direct consequence of the definitions and of Equation 7.3.

The claim concerning self-adjoint operators is a simple consequence of continuity. �

Remark 7.4. As already remarked, β′ > β implies Pβ′ extends Pβ. This shows that the spaces
Ker(Pβ) grow with β. On the other hand, as a vector space, the cokernel of P in Equation
7.1 is not canonically a subspace of W p

k,β(F ) so there is no canonical way of relating cokernels

corresponding to different weights. However, consider the following construction, for which we
assume P , P ∗ are Fredholm. Pick τ1 ∈ W p

k,β(F ) such that 〈σ, τ1〉 6= 0, for some σ ∈ Ker(P ∗).

According to Remark 2.3 this implies that τ1 does not belong to Im(P ). By density we can
then find τ̃1 which is smooth and compactly-supported and does not belong to Im(P ). Now
choose τ2 satisfying 〈σ, τ2〉 6= 0 for some σ ∈ Ker(P ∗) and which is linearly independent of τ1,
etc. After a finite number of steps we will have found a vector space spanned by τ̃1, . . . , τ̃k
which defines a complement to Im(P ) and thus is isomorphic to Coker(P ). Notice that by
construction τ̃i belong to all spaces W p

k,β(F ). On the other hand, as β decreases the dual

weight −β increases, so Ker(P ∗) increases, so the τ̃i chosen for the weight β can be used
also for any weight β′ < β. The conclusion is that we can construct spaces representing the
cokernel which grow as β decreases, i.e. as the function spaces become smaller.

Now assume P is elliptic. We are interested in conditions ensuring that the extended map
of Equation 7.1 is Fredholm.

Definition 7.5. Let Σ be a compact oriented Riemannian manifold with connected com-
ponents Σ1, . . . ,Σe. Let P∞ be a translation-invariant operator on Σ × R. Consider the
complexified operator P∞ : E∞ ⊗ C → F∞ ⊗ C. Choose a connected component Σj × R
and fix γ + iδ ∈ C. Let us restrict our attention to the space of sections of E∞ ⊗ C of the

form e(γ+iδ)zσ(θ). Consider the subspace V j
γ+iδ determined by the solutions to the problem

P∞(e(γ+iδ)zσ(θ)) = 0 on Σj × R. We define the space CjP∞ ⊆ C to be the space of all γ + iδ

such that V j
γ+iδ 6= 0. We then define the space of exceptional weights for P∞ on Σj × R to be

the corresponding set of real values, DjP∞ := Re(CjP∞) ⊆ R.
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Now fix a multi-index γ + iδ ∈ Ce. Let Vγ+iδ := ⊕ej=1V
j
γj+iδj

. We define the space of

exceptional weights for P∞ on Σ × R, denoted DP∞ ⊆ Re, to be the set of multi-indices

γ = (γ1, . . . , γe) such that, for some j, γj ∈ DjP∞ .

Remark 7.6. Definition 7.5 introduces the exceptional weights via the kernel of P∞ and the
space of sections with exponential growth. Along the lines of [11], the exceptional weights can
equivalently be defined as follows. Separating the ∂θ derivatives from the ∂z derivatives and
setting Dz = −i∂z, we can write

(7.7) P∞ =
∑

Ak(θ, ∂θ)(∂z)
k =

∑
Ak(θ, ∂θ)i

k(Dz)k,

where, to simplify the notation, ∂θ denotes any combination of derivatives in the θ variables.
For any λ ∈ C, set Pλ :=

∑
Ak(θ, ∂θ)i

kλk. Notice that

(7.8) P∞(eiλzσ(θ)) =
∑

Ak(θ, ∂θ)(iλ)kσeiλz = (Pλ(σ))eiλz

so P∞(eiλzσ(θ)) = 0 iff Pλ(σ) = 0. We view the latter as a generalized eigenvalue problem on
Σ and say that λ is an eigenvalue iff the corresponding generalized eigenvalue problem admits
non-trivial solutions. It follows from the above calculations that a weight γ ∈ R is exceptional
in the sense of Definition 7.5 iff −γ = Im(λ), for some eigenvalue λ.

For elliptic operators it turns out that the exceptional weights of P∞ determine the possible
Fredholm extensions of any P asymptotic to P∞.

Theorem 7.7. Let (L, h) be an A.Cyl. manifold with link Σ = qΣi. Let P : C∞(E)→ C∞(F )
be a linear elliptic operator of order n, asymptotic to an elliptic operator P∞.

Then each DjP∞ is discrete in R so DP∞ defines a discrete set of hyperplanes in Re. Fur-

thermore, for each p > 1 and k ≥ 0, the extended operator Pγ : W p
k+n,γ(E) → W p

k,γ(F ) is

Fredholm iff γ /∈ DP∞.

In a similar vein, we can compute how the index of P depends on γ.

Definition 7.8. Consider the complexified operator P∞ : E∞ ⊗ C → F∞ ⊗ C. Choose a

connected component Σj ×R of Σ×R and fix γ + iδ ∈ CjP∞ . We denote by Ṽ j
γ+iδ the space of

solutions to the problem P∞(e(γ+iδ)zσ(θ, z)) = 0 on Σj × R, where σ(θ, z) is polynomial in z.

We can extend this definition to all γ + iδ by setting Ṽ j
γ+iδ = {0} if γ + iδ /∈ CjP∞ . Notice that

V j
γ+iδ ≤ Ṽ

j
γ+iδ. Given any γ ∈ R we now set Ṽ j

γ :=
⊕

δ∈R Ṽ
j
γ+iδ, then define the multiplicity of

γ on Σj × R by mj
P∞

(γ) := dim(Ṽ j
γ ).

Now fix a multi-index γ ∈ Re. We define the multiplicity of γ on Σ × R to be mP∞(γ) :=∑e
j=1m

j
P∞

(γj).

Theorem 7.9. In the setting of Theorem 7.7, each multiplicity mP∞(γ) is finite. Furthermore,
choose γ1,γ2 ∈ Re \ DP∞ with γ1 ≤ γ2. Then

iγ2
(P )− iγ1

(P ) =
∑

γ∈DP∞ ,γ1≤γ≤γ2

mP∞(γ).

Remark 7.10. Assume we can compute the value of iγ(P ) for a specific good choice of non-
exceptional γ. Theorem 7.9 then allows us to compute iγ(P ) for all non-exceptional γ in terms
of data on the link.

The following result is proved in [11] Section 7, cf. also [8], as a consequence of the Sobolev
Embedding and change of index theorems.
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Proposition 7.11. In the setting of Theorem 7.9, assume γ and γ ′ belong to the same con-
nected component of Re \ DP∞. Then iγ(P ) = iγ′(P ) and Ker(Pγ) = Ker(Pγ′). Furthermore,
the index and kernel are independent of the choice of p and k.

Example 7.12. Assume (L, h) is an A.Cyl. manifold with one end with link (Σ, g′). Let
P := ∆h denote the positive Laplace operator on functions. Then P is asymptotic to the
Laplace operator ∆h̃ defined on the product (Σ × R, h̃ := dz2 + g′). One can check that

∆h̃ = −(∂z)2 + ∆g′ and that ∆h̃e
(γ+iδ)zσ(θ) = 0 iff δ = 0 and ∆g′σ = γ2σ. In other words,

the harmonic functions on the cylinder which have exponential growth are generated by the
eigenvalues of ∆g′ . In particular, the exceptional weights for ∆h are of the form ±√en, where
en are the eigenvalues of ∆g′ .

8. Weight-crossing

Let (L, h) be an A.Cyl. manifold. Let P : C∞(E) → C∞(F ) be a linear elliptic operator
asymptotic to some P∞ as in Definition 7.1. Consider the extension of P to weighted Sobolev
spaces as in Equation 7.1. When β changes value crossing an exceptional weight the change
of index formula given in Theorem 7.9 leads us to expect that the kernel and/or cokernel of
P will change. Specifically, when β increases we expect the kernel of P to increase and the
cokernel to decrease. The process by which this occurs can be formalized using the Fredholm
and index results stated in Section 7. The notation we rely on was introduced in Definitions
7.5 and 7.8. To simplify the notation, throughout this section we forgo the distinction between
bundles (or operators) and their complexifications.

Literally speaking, given any index γ ∈ R and end Sj , the sections in each Ṽ j
γ are defined

on Σj ×R. Using the identification φj , we can alternatively think of them as being defined on
Sj . However, we can also think of them as being globally defined on L by first choosing a basis

of sections σji for each Ṽ j
γ , then interpolating between them so as to get smooth extensions

σji over L. In particular it may be useful to choose the extension of each σji so that it is

identically zero on the other ends. The construction implies that each P∞(σji ) has compact

support. By choosing the extensions generically over L \ S we can assume that all P (σji ) are

linearly independent. This implies that P is injective on Ṽγ .
Now assume γ ∈ Re is exceptional. Then, for any ν < 0 with |ν| << 1,

(8.1) P : W p
k+n,γ+ν(E)→W p

k,γ+ν(F )

is Fredholm. In particular, let ν < 0 be the convergence rates of P as in Definition 7.1. We will
assume that |ν| << 1 as above. Writing P (σ) = (P −P∞)(σ)+P∞(σ) and using Equation 7.2

then shows that P (Ṽγ) ⊂W p
k,γ+ν(F ). Since P is injective on Ṽγ we can define a decomposition

(8.2) Ṽγ = Ṽ ′γ ⊕ Ṽ ′′γ

by defining P (Ṽ ′γ) := P (Ṽγ) ∩ Im(Pγ+ν) and choosing any complement Ṽ ′′γ . By definition,

P (Ṽ ′′γ )∩ Im(Pγ+ν) = 0. In other words, we can think of P (Ṽ ′′γ ) as belonging to the cokernel of

Pγ+ν . On the other hand, P (Ṽ ′′γ ) belongs to the image of Pγ−ν because Ṽγ ⊂W p
k+n,γ−ν(E) .

Roughly speaking, P (Ṽ ′′γ ) thus describes the portion of the cokernel of P which “disappears”
when crossing the exceptional weight γ.

By construction, for any σ ∈ Ṽ ′γ there exists uσ ∈ W p
k+n,γ+ν(E) such that P (σ) = P (uσ).

Notice that uσ is not necessarily uniquely defined. However it is sufficient to fix a choice of uσ
for each element of a basis of Ṽ ′γ to obtain a unique choice of uσ for any σ ∈ Ṽ ′γ . Notice also
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that σ − uσ ∈W p
k+n,γ−ν(E). We have thus defined a map

(8.3) Ṽ ′γ → Ker(Pγ−ν), σ 7→ σ − uσ /∈W p
k+n,γ+ν(E).

The image of the map of Equation 8.3 thus defines a space of “new” elements in Ker(P ),
generated by crossing the exceptional weight γ. Notice that uσ is of strictly lower order of
growth compared to σ. This shows that the map of Equation 8.3 is injective and that the
elements in its image admit an asymptotic expansion of the form eγζ + lower order. The
following result shows that every new element in Ker(P ) arises this way.

Lemma 8.1. Let us identify Ṽ ′γ with its image under the map of Equation 8.3. Then

Ker(Pγ−ν) = Ker(Pγ+ν)⊕ Ṽ ′γ .

Proof. By injectivity, the inequality ⊇ is clear. To prove the lemma it is thus sufficient to

prove that the inverse inequality holds on the corresponding dimensions. Choose any σ ∈ Ṽ ′′γ .
According to Remark 2.3,

P (σ) ∈ Im(Pγ−ν)⇔ 〈τ, P (σ)〉 = 0, ∀τ ∈ Ker(P ∗−γ+ν),

P (σ) ∈ Im(Pγ+ν)⇔ 〈τ, P (σ)〉 = 0, ∀τ ∈ Ker(P ∗−γ−ν).

From the definition of Ṽ ′′γ we know that P (σ) ∈ Im(Pγ−ν) and that P (σ) /∈ Im(Pγ+ν) unless
σ = 0. Notice also that Ker(P ∗−γ+ν) ⊆ Ker(P ∗−γ−ν). We conclude that the following map is
well-defined:

(8.4)
Ker(P ∗−γ−ν)

Ker(P ∗−γ+ν)
× Ṽ ′′γ , ([τ ], σ) 7→ 〈τ, P (σ)〉,

and that the corresponding map

(8.5) Ṽ ′′γ →

(
Ker(P ∗−γ−ν)

Ker(P ∗−γ+ν)

)∗
is injective. This proves that

(8.6) dim(Ṽ ′′γ ) ≤ dim(Ker(P ∗−γ−ν))− dim(Ker(P ∗−γ+ν)).

On the other hand, the change of index formula shows that

dim(Ṽ ′γ) + dim(Ṽ ′′γ ) = dim(Ker(Pγ−ν))− dim(Ker(P ∗−γ+ν))(8.7)

− dim(Ker(Pγ+ν)) + dim(Ker(P ∗−γ−ν)).

Subtracting Equation 8.6 from Equation 8.7 proves the desired inequality. �

9. Fredholm results for elliptic operators on conifolds

We now want to see how to achieve analogous results for certain elliptic operators on coni-
folds. In parallel with Section 7 it is possible to develop an abstract definition and theory
of asymptotically conical operators, analogous to that of asymptotically translation-invariant
operators on A.Cyl. manifolds. For simplicity, however, we will limit ourselves to the special
case of the Laplace operator acting on functions. This already contains the main ideas of the
general theory.

Let (L, g) be a conifold. Consider the weighted spaces introduced in Definition 6.6. As in

Section 7 we denote the dual space (W p
k,β)∗ by W p′

−k,−β−m. This choice of weights is compatible

with the identifications of Remark 6.16, and the properties of these dual spaces are analogous
to those seen in Section 7. It follows directly from the definitions that

∇ : W p
k,β →W p

k−1,β−1
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is a continuous operator. Equation 2.3 then implies that ∆g extends to a continuous map

(9.1) ∆β : W p
k,β →W p

k−2,β−2.

The following result is closely related to Lemma 7.3 and uses the fact that ∆g is formally
self-adjoint.

Lemma 9.1. Let (L, g) be a conifold. Choose u ∈W p
k,β, v ∈W p′

2−k,2−β−m. Then

(9.2) 〈v,∆gu〉 = 〈dv, du〉 = 〈∆gv, u〉.

Proof. Using the appropriate dualities, each expression in Equation 9.2 defines by composition

a continuous bilinear map (u, v) ∈ W p
k,β ×W

p′

2−k,2−β−m → R. Since ∆g = d∗d the equalities

hold on the dense subsets C∞c × C∞c . By continuity the equalities thus continue to hold on
the full Sobolev spaces. �

We now want to investigate the Fredholm properties of ∆β. It is initially useful to distinguish
between the AC and CS case. To begin, let (L, g) be an AC manifold with ends Sj and links
Σj . The starting point for the Fredholm theory is then the following observation.

Lemma 9.2. Let (Σ, g′) be a Riemannian manifold. Let the corresponding cone C := Σ ×
(0,∞) have the conical metric g̃ := dr2 + r2g′. Let ∆g̃ denote the corresponding Laplace
operator on functions. Then, under the substitution r = ez, the operator r2∆g̃ coincides with
the translation-invariant operator

(9.3) P∞ := −(∂z)2 + (2−m)∂z + ∆Σ

on the cylinder Σ× R.

Proof. Recall that in any local coordinate system the Laplace operator on functions is given
by the formula

(9.4) ∆g = − 1
√
g
∂j(
√
ggij∂i).

Let U be a local chart on Σ so that U × (0,∞) is a local chart on C. Equation 9.4 then shows
that

(9.5) ∆g̃ = −(∂r)2 − m− 1

r
∂r + r−2∆Σ.

The substitution r = ez implies r∂r = ∂z. The claim is then a simple calculation. �

Lemma 9.2 allows us to study the Fredholm properties of ∆g by building an equivalent
problem for an A.Cyl. manifold, as follows. We use the notation of Section 7.

Multiplication by ρ2 defines an isometry W p
k−2,β−2 ' W p

k−2,β. Thus ∆β in Equation 9.1 is

Fredholm iff the operator

(9.6) ρ2∆β : W p
k,β →W p

k−2,β

is Fredholm. Now consider the A.Cyl. manifold (L, h), where h = ρ−2g. It follows from
Equation 2.3 and Lemma 9.2 that the operator P := ρ2∆g is asymptotic in the sense of
Definition 7.1 to the translation-invariant operator P∞ of Equation 9.3. One can check that
the convergence rate ν of P coincides with the convergence rate ν of the AC manifold, cf.
Definition 6.2.

It is simple to verify that the equation P∞(e(γ+iδ)zσ(θ)) = 0 is equivalent to the following
eigenvalue problem on the link:

(9.7) ∆Σjσ = [(γ + iδ)2 + (m− 2)(γ + iδ)]σ.
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Using the fact that the eigenvalues ejn of ∆Σj are real and non-negative, it follows that δ = 0

and that γ satisfies γ2 + (m− 2)γ = ejn for some n, i.e.

(9.8) γ =
(2−m)±

√
(2−m)2 + 4ejn

2
.

This shows that, for this particular operator, CjP∞ = DjP∞ . It also follows from Lemma 9.2
that the equation P∞(eγzσ(θ)) = 0 is equivalent to ∆g̃(r

γσ) = 0. Thus

(9.9) V j
γ = {rγσ(θ) : ∆g̃(r

γσ) = 0},

i.e. V j
γ coincides with the space of homogeneous harmonic functions of degree γ on the cone

Σj × (0,∞).

Varying the choice of eigenvalue ejn gives the set of exceptional weights for P∞ on the end
Sj . Repeating this for each end defines the set DP∞ ⊂ Re. According to Theorem 7.7 these
are the weights for which the operator P is not Fredholm with respect to the Sobolev spaces of
(L, h). However, recall from Remark 6.16 that the Sobolev spaces of (L, g) and (L, h) coincide.
Thus DP∞ ⊂ Re are also the weights for which the operators of Equations 9.6, 9.1 are not
Fredholm.

Remark 9.3. Notice that in this particular case (and in the analogous case presented in Example
7.12) the generalized eigenvalue problem introduced in Remark 7.6 has reduced to an eigenvalue
problem in the usual sense.

It is also fairly straight-forward to verify that, for this operator P∞, the spaces Ṽ j
γ+iδ and

V j
γ+iδ coincide, cf. Joyce [5] Proposition 2.4 for details. This allows us to simplify the definition

of the multiplicity m(γ).

The situation for CS manifolds is similar. The change of variables r = e−z introduces
a change of sign in Equation 9.3. This sign is later cancelled by a change of sign in the
identification of Sobolev spaces of (L, g) and (L, h). The final result is thus identical to the
AC case. Combining these results leads to the following conclusion.

Corollary 9.4. Let (L, g) be a conifold with e ends. For each end Sj with link Σj let ejn denote
the eigenvalues of the positive Laplace operator ∆Σj and define the set of “exceptional weights”

Dj := {γj} ⊆ R as in Equation 9.8. Given any weight γ ∈ R define V j
γ as in Equation 9.9

and let mj(γ) denote its dimension. Given any weight γ ∈ Re set m(γ) :=
∑e

j=1m
j(γj). Let

D ⊆ Re denote the set of weights γ for which m(γ) > 0. Then each multiplicity m(γ) is finite
and the Laplace operator

(9.10) ∆g : W p
k,β →W p

k−2,β−2

is Fredholm iff β /∈ D.
The analogue of Theorem 7.9 also holds. For example, assume L is a CS/AC manifold and

write β = (µ,λ). Choose (µ1,λ1), (µ2,λ2) ∈ Re \ D with µ1 ≥ µ2, λ1 ≤ λ2. Then

iµ2,λ2(∆g)− iµ1,λ1(∆g) =
∑

m(µ,λ),

where the sum is taken over all (µ,λ) ∈ D such that µ1 ≥ µ ≥ µ2, λ1 ≤ λ ≤ λ2.

In the same way one can also prove the analogue of Proposition 7.11.
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10. Application: harmonic functions on conifolds

We can use the results of Sections 8 and 9 to reach a good understanding of the properties
of the Laplace operator acting on functions on conifolds. Specifically, we will be interested in
the kernel and cokernel of ∆g.

Smooth compact manifolds. Let (L, g) be a smooth compact Riemannian manifold. Let ∆g

denote the positive Laplace operator on functions. Consider the map

(10.1) ∆g : W p
k (L)→W p

k−2(L).

For all p > 1 and k ∈ Z, standard elliptic regularity shows that any f ∈ Ker(∆g) is smooth.
The maximum principle then proves that f is constant. Thus Ker(∆g) = R, independently of
the choice of p, k.

As seen in Section 2, f ∈ Im(∆g) iff < u, f >= 0, for all u ∈ Ker(∆∗g), where ∆∗g is the
operator dual to that of Equation 10.1. As in Lemma 7.3 we can identify this with the formal
adjoint operator. However, ∆g is formally self-adjoint, i.e. the operators ∆g and ∆∗g coincide
on smooth functions. By continuity they continue to coincide when extended to any Sobolev
space. Thus Ker(∆∗g) = Ker(∆g) = R. As in Equation 7.3 we find < u, f >=

∫
L uf volg. It

follows that Im(∆g) = {f ∈W p
k−2(L) :

∫
L f volg = 0}. In particular, ∆g has index zero.

AC manifolds. Let (L, g) be a AC manifold with convergence rate ν < 0 as in Definition 6.2.
Let ∆g denote the positive Laplace operator on weighted Sobolev spaces of functions, as in
Equation 9.1. For simplicity, we will restrict our attention to the case of L with 2 ends.

Each end defines exceptional weights, plotted as points on the horizontal and vertical axes
of Figure 1. Each exceptional weight gives rise to an exceptional hyperplane, plotted as a
vertical or horizontal line. The Laplacian is Fredholm for weights β = (β1, β2) which are non-
exceptional, i.e. which do not lie on these lines. The arrow indicates the direction in which
the corresponding Sobolev spaces, thus the kernel of ∆g, become bigger.

Choose β non-exceptional. For all p > 1 and k ∈ Z, standard elliptic regularity proves
that any f ∈ Ker(∆g) is smooth. Furthermore, since Ker(∆g) is independent of p and k, the

Sobolev Embedding Theorems show that f has growth of the order O(rβ). If β < 0 we can
thus apply the maximum principle to conclude that f ≡ 0. In other words, ∆g is injective
throughout the quadrant defined by the lower shaded region. Since ∆g is formally self-adjoint,
the same holds for ∆∗g. Recall from Section 9 how weights on AC manifolds change under
duality. We conclude, following Section 2, that Coker(∆g) = 0 for β > 2−m. In other words,
∆g is surjective throughout the quadrant defined by the upper shaded region. In particular,
the map of Equation 9.1 is an isomorphism and has index zero for 2−m < β < 0, i.e. in the
region marked by A.

When β > 2 − m the cokernel is independent of the weight. Thus, any change of index
corresponds entirely to a change of kernel. Furthermore, Ker(∆g) = Ker(ρ2∆g). We can thus
use the results of Section 8 to study how the kernel changes as β increases. For example,
assume we are interested in harmonic functions for some (thus any) β in the region B. We can
reach this region by keeping β2 fixed and repeatedly increasing β1, starting from the region A.
Each time we cross an exceptional line x = γ, new harmonic functions on (L, g) are generated
by elements rγσ(θ) ∈ V 1

γ . Specifically, these new harmonic functions will be asymptotic to
rγσ on the first end and to zero on the second end. Using the ideas of Section 8 we can further
show that the lower-order terms will have rate O(rγ+ν1) on the first end and O(rν2) on the
second. Analogous results hold for harmonic functions for β in the region C. The construction
shows that the harmonic functions in the regions B and C are linearly independent. We can
thus apply the change of index formula to show that harmonic functions in the generic region
D are generated by linear combinations of harmonic functions in the regions B, C.
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Figure 1. Harmonic functions on AC manifolds

It may be good to emphasize that the above constructions depend on the specific (L, g) only
in terms of the specific exceptional weights, but are otherwise completely independent of (L, g).
However, these constructions fail if D is chosen outside the region where ∆g is surjective.

CS manifolds. Let (L, g) be a CS manifold with convergence rate ν > 0 as in Definition 6.2.
As before, let ∆g denote the positive Laplace operator on weighted Sobolev spaces of functions,
as in Equation 9.1. We again restrict our attention to the case of L with 2 ends.

Figure 2 plots the exceptional weights and lines in this case. Once again the arrow indicates
the direction in which the corresponding Sobolev spaces, thus the kernel of ∆g, become bigger.

Choose β non-exceptional. As before, any f ∈ Ker(∆g) is smooth with growth of order O(rβ).
If β > 0 the maximum principle shows that f = 0. Now assume β = 2−m

2 . In this case

(W 2
k−2,β−2)∗ = W 2

2−k,β. Choose f ∈ W 2
k,β and assume ∆gf = 0. Then, choosing u = v = f in

Lemma 9.1 and using regularity, we can conclude df = 0 so f is constant. This shows that,
for any weight in the region A, Ker(∆g) = R. As before we also find that, in this region,
Im(∆g) = {f ∈W p

k−2,β−2 :
∫
L f volg = 0}. In particular, the index of ∆g is zero.

Now assume (β1, β2) > (0, 2−m
2 ). Then W p

k,β ⊂ W p

k,( 2−m
2
, 2−m

2
)

so our integration by parts

argument remains valid. On the other hand the only constant function in W p
k,β is zero so in

this case we find that ∆g is injective. The same holds for (β1, β2) > (2−m
2 , 0). Thus ∆g is

injective in the upper shaded region. By duality we deduce that ∆g is surjective in the lower
shaded region.

Now assume β crosses from A to B. In this particular case the method used above for AC
manifolds fails, because it would require ∆g to be surjective in the region A. We can however
bypass this problem as follows: the change of index formula shows that the index increases by
one and we know that the Laplacian is surjective in B, so Ker(∆g) = R in B. The same is true
for the region C. We can use Section 8 to study the harmonic functions in the lower shaded
region. For example, the harmonic functions in D will be generated by functions which are of



32 T. PACINI

Figure 2. Harmonic functions on CS manifolds

the form rγσ +O(rγ+ν1) on the first end and of the form O(rν2) on the second end. Notice a
difference with respect to AC manifolds: harmonic functions in B and C (more generally, in
D and E) are not necessarily linearly independent. Thus we cannot write harmonic functions
in F as the direct sum of harmonic functions in D and E, as in the AC case. Once again,
harmonic functions elsewhere will be heavily dependent on the specific (L, g).

We may also be interested in the cokernel of ∆g. The change of index formula shows that
the dimension of the cokernel increases with β. For example, the index is -1 in the regions
G,H. Since ∆g is injective here this implies that the cokernel has dimension 1. More generally,
the change of index formula allows us to compute the dimension of the cokernel wherever ∆g

is injective. We can also use the ideas of Remark 7.4 to build complements of Im(∆g) which
grow with β.

CS/AC manifolds. Let (L, g) be a CS/AC manifold with convergence rate ν. Following the
same conventions as before, we now turn to Figure 3. Here, the horizontal axis corresponds
to the CS end with weight µ and the vertical axis corresponds to the AC end with weight λ.

When λ < 0 and µ > 2 −m, the maximum principle and integration by parts show that
∆g is injective. Dually, when λ > 2 − m and µ < 0, ∆g is surjective. In the region A,
∆g is an isomorphism with index zero. Harmonic functions in the region B are of the form
rγσ + O(rγ+ν2) on the AC end and of the form O(rν1) on the CS end. Harmonic functions
in the region C are of the form rγσ +O(rγ+ν1) on the CS end and of the form O(rν2) on the
AC end. Since these functions are linearly independent, their linear combinations give the
harmonic functions in the region D.

Example 10.1. Rm with its standard metric can be viewed as a CS/AC manifold, the CS
end being a neighbourhood of the origin. In this case all harmonic functions can be written
explicitly, so in this case we have exact information on their asymptotics.
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Figure 3. Harmonic functions on CS/AC manifolds

Part 3. Conifold connect sums and uniform estimates

Ths is the main part of the paper. Our goal is to introduce a certain “parametric connect
sum” construction between conifolds; as mentioned in the Introduction, this is the abstract
analogue of certain desingularization procedures used in Differential Geometry, in which an
isolated conical singularity is replaced by something smooth or perhaps by a new collection of
AC or CS ends. We will show that careful choices of parameters and weights lead to uniform
estimates concerning both Sobolev Embedding Theorems and the Laplace operator. These
estimates are at the heart of the paper [15]. Readers interested in specific applications of these
estimates can thus refer there for details.

11. Conifold connect sums

The goal of this section is to define the “parametric connect sum” construction and prove
that the scaled and weighted Sobolev constants are independent of the parameter t. For
simplicity we start with the non-parametric version.

Definition 11.1. Let (L, g) be a conifold, not necessarily connected. Let S denote the union
of its ends. A subset S∗ of S defines a marking on L. We can then write S = S∗ q S∗∗, where
S∗∗ is simply the complement of S∗. We say S∗ is a CS-marking if all ends in S∗ are CS; it is
an AC-marking if all ends in S∗ are AC. We will denote by d the number of ends in S∗.

If L is weighted via β we require that βi = βj if Si and Sj are marked ends belonging to
the same connected component of L.

Definition 11.2. Let (L, g, S∗) be a CS-marked conifold. Let Σ∗, C∗ denote the links and
cones corresponding to S∗, as in Definition 6.2. Given any end Si ⊆ S∗ let φi : Σi× (0, ε]→ Si
be the diffeomorphism of Definition 6.2.
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Let (L̂, ĝ, Ŝ∗) be an AC-marked conifold. Let Σ̂∗, Ĉ∗, φ̂i : Σ̂i × [R̂,∞) → Ŝi denote the
corresponding links, cones and diffeomorphisms, as above.

We say that L and L̂ are compatible if they satisfy the following assumptions:

(1) C∗ = Ĉ∗. Up to relabelling the ends, we may assume that C∗i = Ĉ∗i .

(2) R̂ < ε. We can then identify appropriate subsets of S∗ and Ŝ∗ via the maps φ̂i ◦ φ−1
i .

(3) On each marked AC end, the metrics φ̂∗i ĝ and g̃i are scaled-equivalent in the sense
of Definition 4.3. Analogously, on each marked CS end, the metrics φ∗i g and g̃i are
scaled-equivalent in the sense of Definition 4.3.

If L is weighted via β and L̂ is weighted via β̂ we further require that, on the marked ends,
the corresponding constants satisfy βi = β̂i and that β̂i = β̂j if Ŝi and Ŝj are marked ends in

the same connected component of L̂.

Remark 11.3. The condition R̂ < ε may seem rather strong. However, let (L, g, S∗) be CS-

marked, (L̂, ĝ, Ŝ∗) be AC-marked and C∗ = Ĉ∗. As seen in Remark 6.3, by making R̂ larger if

necessary it is possible to assume that the metrics φ̂∗i ĝ, g̃i on Σi× [R̂,∞) are scaled-equivalent

in the sense of Definition 4.3. Lemma 6.10 then shows that the metrics φ̂∗t,i(t
2ĝ), g̃i on Σi ×

[tR̂,∞) are also scaled-equivalent, with the same bounds. Analogously, by making ε smaller if
necessary, we can assume that the metrics φ∗i g, g̃i on Σi× (0, ε] are scaled-equivalent. By first

making R̂ large and ε small and then rescaling to satisfy the condition R̂ < ε we thus obtain
compatible conifolds in the sense of Definition 11.2.

Definition 11.4. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible marked conifolds. We define the

connect sum of L and L̂ as follows. We set

(11.1) L̂#L := (L̂ \ Ŝ∗) ∪ (Σ∗ × [R̂, ε]) ∪ (L \ S∗),

where the boundary of L̂ \ Ŝ∗ is identified with Σ∗ × {R̂} via the maps φ̂i and the boundary
of L \ S∗ is identified with Σ∗ × {ε} via the maps φi. We can endow this manifold with any

metric ĝ#g which restricts to ĝ on L̂ \ Ŝ∗ and to g on L \ S∗. Then L̂#L is a conifold. Its

ends are Ŝ∗∗ q S∗∗. We call Σ∗ × [R̂, ε] the neck region of L̂#L.

Given radius functions ρ on L and ρ̂ on L̂ we can endow L̂#L with the radius function

ρ̂#ρ :=

 ρ̂ on L̂ \ Ŝ∗
r on Σ∗ × [R̂, ε]
ρ on L \ S∗.

If L, L̂ are weighted via β, β̂ then L̂#L is weighted via the function

β̂#β :=

 β̂ on L̂ \ Ŝ∗
β|S∗ on Σ∗ × [R̂, ε]
β on L \ S∗.

Example 11.5. Let L be a smooth m-dimensional submanifold of Rn, endowed with the
induced metric. Assume that it is either compact or that it has AC ends: e.g., it could be a
collection of m-planes in Rn. Now assume it has transverse self-intersection points x1, . . . , xk ∈
Rn. For each xi choose a ball B(xi, ε) in Rn. Then L := L\{x1, . . . , xk} is a conifold with s CS
ends defined by the connected components of (B(x1, ε) ∪ · · · ∪B(xk, ε))∩L. The corresponding
cones are copies of Rm. Choose a pair S1, S2 of connected components of B(x1, ε)∩L and an

appropriately rescaled m-dimensional hyperboloid L̂ ⊆ Rn asymptotic to the corresponding
cones C1, C2. Then L, L̂ are compatible and L̂#L is an abstract Riemannian manifold which
we can think of as a desingularization of L. Our hypothesis in Definition 11.1 that L, L̂ are not



DESINGULARIZING ISOLATED CONICAL SINGULARITIES 35

necessarily connected allows us to extend this construction to intersection points of distinct
submanifolds and to desingularize all points simultaneously.

Since L̂#L is again a conifold it is clear that all versions of the Sobolev Embedding Theorems
continue to hold for it. Notice that Ŝ∗∗ ∪ S∗∗ might also be empty: in this case L̂#L is a
smooth compact manifold. We now consider the parametric version of this construction.

Definition 11.6. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible marked conifolds with d marked

ends. Let (ρ,β), respectively (ρ̂, β̂), be corresponding radius functions and weights. Choose
parameters t = (t1, . . . , td) > 0 sufficiently small. We assume that t is compatible with the

decomposition of L̂ into its connected components: specifically, that ti = tj if Ŝi and Ŝj belong

to the same connected component of L̂. We then define the parametric connect sum of L and
L̂ as follows. We set

Lt := (L̂ \ Ŝ∗) ∪ (∪Σi⊆Σ∗Σi × [tiR̂, ε]) ∪ (L \ S∗),

where the components of the boundary of L̂ \ Ŝ∗ are identified with the Σi × {tiR̂} via maps

φ̂ti,i defined as in Lemma 6.10 and the components of the boundary of L \ S∗ are identified
with the Σi × {ε} via the maps φi. Choose τ ∈ (0, 1). If the ti are sufficiently small, we find

tiR̂ < tτi < 2tτi < ε. Choose any metric gt on Lt such that, for each Σi ⊆ Σ∗,

gt :=


t2i ĝ on the corresponding component of L̂ \ Ŝ∗
φ̂∗ti,i(t

2
i ĝ) on Σi × [tiR̂, t

τ
i ]

φ∗i g on Σi × [2tτi , ε]
g on L \ S∗

and such that, for all j ≥ 0 and as t→ 0,

sup
Σi×[tτi ,2t

τ
i ]
|∇̃j(gt − g̃i)|r−2g̃i⊗g̃i → 0.

We endow Lt with the radius function

ρt :=

 tiρ̂ on the corresponding component of L̂ \ Ŝ∗
r on Σi × [tiR̂, ε]
ρ on L \ S∗

and the weight

βt :=

 β̂ on L̂ \ Ŝ∗
βi on Σi × [tiR̂, ε]
β on L \ S∗.

We now need to define the weight function wt. As in Corollary 6.11, the simplest case is when
β̂ is constant on each connected component of L̂. We then define

wt := ρ
−βt
t =

 (tiρ̂)−β̂i on the corresponding component of L̂ \ Ŝ∗
r−βi on Σi × [tiR̂, ε]
ρ−β on L \ S∗.

For general weights β̂ we need to modify the weight function. As in Corollary 6.11, on the
i-th component of L̂ consider the constant “reference” weight β̂i. We then define

wt :=

 (t
β̂i−β̂
β̂

i tiρ̂)−β̂ on the corresponding component of L̂ \ Ŝ∗
r−βi on Σi × [tiR̂, ε]
ρ−β on L \ S∗.
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We may equivalently write this as

wt :=

{
tβ̂−β̂ii ρ

−βt
t on L̂ \ Ŝ∗

ρ
−βt
t elsewhere.

Using this data we now define weighted Sobolev spaces W p
k,βt

on Lt as in Section 5. We call

Σi × [tiR̂, ε] the neck regions of Lt.

Theorem 11.7. Let (L, g, S∗), (L̂, ĝ, Ŝ∗) be compatible weighted marked conifolds. Define
Lt, gt, ρt and βt as in Definition 11.6. Then all forms of the weighted Sobolev Embedding
Theorems hold uniformly in t, i.e. the corresponding Sobolev constants are independent of t.

Proof. The proof is similar to that of Corollary 6.8. Let us for the moment pretend that the
metrics g, ĝ are exactly conical on all ends of L, L̂. This allows us to assume that the metrics
gt are exactly conical on all ends and neck regions of Lt so the assumptions of Theorem 5.1
are satisfied in these regions. On L̂ \ Ŝ∗ we are using rescaled metrics, radius functions and
weights as in Corollary 6.11. As seen in Remark 5.2, the assumptions of Theorem 5.1 are
t-independent so they are verified here. These assumptions are also verified on L \ S∗ and on
the neck regions. We conclude that all forms of the weighted Sobolev Embedding Theorems
hold for these metrics, with t-independent Sobolev constants.

Let us now go back to the metric gt. Recall from Lemma 6.10 that we can assume that, on
each end of Lt, gt is a t-uniformly small perturbation of the conical metric. The same is true
also on the neck regions. Specifically, on Σi × [tiR̂, t

τ
i ] Lemma 6.10 shows that

sup |φ∗t,i(t2i ĝ)− g̃i| ≤ C0R̂
ν̂i .

On Σi × [tτi , 2t
τ
i ] our hypotheses imply

sup |gt − g̃i|r−2g̃i⊗g̃i ≤ C0.

The analogue is true also on Σi × [2tτi , ε], using the estimates provided by Definition 6.2.
These perturbations are all t-independent so according to Theorem 5.1 the weighted Sobolev

Embedding Theorems hold also for gt, with t-independent Sobolev constants. �

Remark 11.8. Notice that Theorem 11.7 actually requires only t-uniform C0-bounds over the
metrics gt. In Definition 11.6 we include control over the higher derivatives and the assumption
that the quantities in question tend to zero for use in later sections. The same is also true for
various other results, e.g. Corollary 6.8.

We conclude with the following result which serves to highlight certain properties of gt as
t→ 0. This is important for Section 12.

Lemma 11.9. Consider gt as in Definition 11.6. Choose a neck region in Lt and b ∈ (0, τ)

so that tiR̂ < tτi < 2tτi < tbi < ε. Then, on Σi× [tiR̂, t
b
i ], the metric gt converges to the rescaled

metric t2i φ̂
∗
t,iĝ in the following sense: for all j ≥ 0 and as t→ 0,

sup |rj∇̂j(gt − t2i φ̂∗t,iĝ)|t2i φ̂∗t,iĝ⊗t2i φ̂∗t,iĝ → 0,

where ∇̂ denotes the Levi-Civita connection defined by φ̂∗ti,iĝ on Σi × [tiR̂, t
b
i ].

Proof. Consider the map

δti : Σi × [R̂, tb−1
i ]→ Σi × [tiR̂, t

b
i ], (θ, r) 7→ (θ, tir).

We can use this map to pull the estimate back to Σi × [R̂, tb−1
i ]. We can then write it as

follows: for all j ≥ 0 and as t→ 0,

(11.2) sup |∇̂j(δ∗ti(t
−2
i gt)− φ̂∗i ĝ)|r−2φ̂∗i ĝ⊗φ̂∗i ĝ

→ 0,
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where ∇̂ denotes the Levi-Civita connection defined by φ̂∗i ĝ on Σi × [R̂, tb−1].
We choose to prove this form of the estimate.
On Σi × [R̂, tτ−1

i ] it follows from Definition 11.6 that δ∗ti(t
−2
i gt) = φ̂∗i ĝ so the equation is

trivially true.
On Σi × [tτ−1

i , 2tτ−1
i ],

|∇̃j(δ∗ti(t
−2
i gt)− g̃i)|r−2g̃i⊗g̃i = |∇̃j(δ∗ti(t

−2
i gt)− δ∗ti(t

−2
i g̃i))|δ∗ti (r/ti)−2δ∗ti

(ti−2g̃i)⊗δ∗ti (t
−2
i g̃i)

= δ∗ti

(
|∇̃j(t−2

i gt − t−2
i g̃i)|(r/ti)−2t−2

i g̃i⊗t−2
i g̃i

)
= δ∗ti

(
|∇̃j(gt − g̃i)|r−2g̃i⊗g̃i

)
→ 0,

where the last statement follows from Definition 11.6. Furthermore, it follows from Definition
6.2 that

|∇̃j(φ̂∗i ĝ − g̃i)|r−2g̃i⊗g̃i ≤ Cjti
(τ−1)ν̂i → 0,

using (τ − 1)ν̂i > 0. We have thus found that both metrics of interest converge to the same
metric g̃i. The conclusion is a simple computation.

On Σi × [2tτ−1
i , tb−1

i ], as above and using gt = φ∗i g,

|∇̃j(δ∗ti(t
−2
i gt)− g̃i)|r−2g̃i⊗g̃i = δ∗ti

(
|∇̃j(φ∗i g − g̃i)|r−2g̃i⊗g̃i

)
≤ Cjtbνii → 0,

using bνi > 0. Furthermore,

|∇̃j(φ̂∗i ĝ − g̃i)|r−2g̃i⊗g̃i ≤ Cj(2t
τ−1
i )ν̂i → 0.

Again, combining these estimates implies the claim. �

12. The Laplacian on conifold connect sums

Let (L, g, ρ, S∗), (L̂, ĝ, ρ̂, Ŝ∗) be compatible marked conifolds. As seen in Section 11, we

can define their connect sum (L̂#L, ĝ#g, ρ̂#ρ). This is a new conifold so we can study the
properties of its Laplace operator as in Section 10.

We start with the case in which Ŝ∗∗ ∪ S∗∗ 6= ∅, i.e. the set of ends is non-empty. This
case actually turns out to be easier than the alternative situation, where L̂#L is smooth and
compact, because we can use weights to force injectivity of the Laplacian.

Non-compact conifolds. Assume the set Ŝ∗∗ ∪ S∗∗ of ends of L̂#L is non-empty. If weights β,
β̂ are non-exceptional for ∆g, ∆ĝ then the weight β̂#β is non-exceptional for ∆ĝ#g so

∆ĝ#g : W p

k,β̂#β
→W p

k−2,β̂#β−2

is Fredholm. The same holds for the parametric connect sums (Lt, gt, ρt,βt).
We want to study the invertibility of the Laplace operator. The following result is obvious.

Lemma 12.1. Let (L̂, ĝ, ρ̂, β̂, Ŝ∗) be a weighted AC-marked conifold. Assume β̂ satisfies the
conditions {

β̂i < 0 for all AC ends Ŝi ∈ Ŝ
β̂i > 2−m for all CS ends Ŝi ∈ Ŝ

so that ∆ĝ is injective.
Let (L, g, ρ,β, S∗) be a weighted CS-marked conifold. Assume β satisfies the conditions{

βi < 0 for all AC ends Si ∈ S
βi > 2−m for all CS ends Si ∈ S.
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This is not yet sufficient to conclude that ∆g is injective because the set of AC ends might be
empty. To obtain injectivity we must furthermore assume that each connected component of L
has at least one end, e.g. S′, satisfying the condition{

β′ < 0 if S′ is AC
β′ > 0 if S′ is CS.

Now assume that L, L̂ are compatible. Then, for all ends Si ∈ S∗, 2 −m < βi < 0. This
implies that S′ ∈ S∗∗ so L̂#L has at least one end. Furthermore, β̂#β satisfies the conditions{

β̂#β|Si < 0 for all AC ends Si ∈ Ŝ∗∗ ∪ S∗∗

β̂#β|Si > 2−m for all CS ends Si ∈ Ŝ∗∗ ∪ S∗∗.

Together with the condition on S′, this implies that ∆ĝ#g is injective.

If furthermore β, β̂ are non-exceptional for ∆g, ∆ĝ then

∆ĝ#g : W p

k,β̂#β
→W p

k−2,β̂#β−2

is a topological isomorphism onto its image so there exists C > 0 such that, for all f ∈W p

k,β̂#β
,

‖f‖W p

k,β̂#β
≤ C‖∆f‖W p

k−2,β̂#β−2
.

For the constant C in Lemma 12.1 one can choose the norm of the inverse map (∆ĝ#g)
−1, as

in Equation 2.4. The analogous result holds also for parametric connect sums. We now want
to show that, in this case, the invertibility constant C can be chosen to be t-independent. In
other words, there exists a t-uniform upper bound on the norms of the inverse maps (∆gt)

−1.

Theorem 12.2. Let (L, g, ρ,β, S∗), (L̂, ĝ, ρ̂, β̂, Ŝ∗) be marked compatible conifolds satisfying
all the conditions of Lemma 12.1. Define (Lt, gt, ρt,βt) as in Definition 11.6. Then there
exists C > 0 such that, for all f ∈W p

k,βt
(Lt),

‖f‖W p
k,βt
≤ C‖∆gtf‖W p

k−2,βt−2
.

Proof. To simplify the notation let us assume that all ti coincide: we can then work with a
unique parameter t. The general case is analogous.

Let Cg denote an invertibility constant for ∆g on L, i.e. for all f ∈W p
k,β(L),

‖f‖W p
k,β
≤ Cg‖∆gf‖W p

k−2,β−2
.

Let Cĝ denote an analogous constant for ∆ĝ on L̂.
Choose constants a, b satisfying 0 < b < a < τ and a smooth decreasing function η :

R → [0, 1] such that η(s) = 1 for s ≤ b and η(s) = 0 for s ≥ a. Then the function ηt(r) :=
η(log r/ log t) : (0,∞)→ [0, 1] has the following properties:

(1) ηt is smooth increasing, ηt(r) = 0 for r ≤ ta, ηt(r) = 1 for r ≥ tb.
(2) For all k ≥ 1 there exists Ck > 0 such that∣∣∣∣rk ∂kηt(∂r)k

(r)

∣∣∣∣ ≤ Ck
| log t|

→ 0 as t→ 0.

We set η′t(r) := ∂ηt
∂r (r), η′′t (r) := ∂2ηt

(∂r)2
(r).

Using the diffeomorphisms φ̂t,i and φi we now extend ηt to a smooth function on Lt by setting

ηt ≡ 0 on (L̂ \ Ŝ∗) ∪ (Σ∗ × [tR̂, ta]) and ηt ≡ 1 on (L \ S∗) ∪ (Σ∗ × [tb, ε]).
For any f ∈W p

k,βt
,

‖f‖W p
k,βt
≤ ‖ηtf‖W p

k,βt
+ ‖(1− ηt)f‖W p

k,βt
.



DESINGULARIZING ISOLATED CONICAL SINGULARITIES 39

Notice that ηtf has support in (Σ∗ × [ta, ε]) ∪ (L \ S∗), where, up to identifications via the
diffeomorphisms φi, (gt, ρt) = (g, ρ), βt = β. Thus

‖ηtf‖W p
k,βt

(gt) = ‖ηtf‖W p
k,β(g)

≤ Cg‖∆g(ηtf)‖W p
k−2,β−2(g)

= Cg‖∆gt(ηtf)‖W p
k−2,βt−2(gt)

≤ Cg
(
‖ηt∆gtf‖W p

k−2,βt−2
+ ‖η′t∇f‖W p

k−2,βt−2
+ ‖η′′t f‖W p

k−2,βt−2

)
,

where we drop unnecessary constants. Applying the Leibniz rule to expressions of the form
∇j(ηt∆gtf) we find (again up to constants)

‖ηt∆gtf‖
p
W p
k−2,βt−2

≤
k−2∑
j=0

j∑
l=0

∫
|ρl∇lηt|pgt |ρ

2−βt+j−l∇j−l∆gtf |pgtρ
−mvolgt

≤
(

1 +

(
C

| log t|

)p)
‖∆gtf‖

p
W p
k−2,βt−2

.

We conclude that

‖ηt∆gtf‖W p
k−2,βt−2

≤ ‖∆gtf‖W p
k−2,βt−2

+
C

| log t|
‖f‖W p

k,βt
.

Analogously,

‖η′t∇f‖
p
W p
k−2,βt−2

≤
k−2∑
j=0

j∑
l=0

∫
|ρ1+l∇lη′t|pgt |ρ

1−βt+j−l∇j−l∇f |pgtρ
−mvolgt

≤
(

C

| log t|

)p
‖f‖p

W p
k,βt

.

Similar calculations apply to ‖η′′t f‖, ultimately showing that

‖η′t∇f‖W p
k−2,βt−2

≤ C

| log t|
‖f‖W p

k,βt
, ‖η′′t f‖W p

k−2,βt−2
≤ C

| log t|
‖f‖W p

k,βt
.

The function (1−ηt)f has support in (L̂\ Ŝ∗)∪ (Σ∗× [tR̂, tb]). On this space Definition 11.6

shows that βt = β̂. Furthermore, on the i-th component Σi× [tR̂, tb] and up to identifications

via the diffeomorphisms φ̂t,i, Lemma 11.9 shows that gt is scaled-equivalent to t2ĝ and ρt = tρ̂.
Using Corollary 6.11 we thus find

‖(1− ηt)f‖W p
k,βt

(gt,ρt) ' ‖(1− ηt)f‖W p

k,β̂
(t2ĝ,tρ̂)

= t−βi‖(1− ηt)f‖W p

k,β̂
(ĝ,ρ̂)

≤ t−βiCĝ‖∆ĝ((1− ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂)

= t2−βiCĝ‖∆t2ĝ((1− ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂)

= Cĝ‖∆t2ĝ((1− ηt)f)‖W p

k−2,β̂−2
(t2ĝ,tρ̂)

' Cĝ‖∆gt((1− ηt)f)‖W p
k−2,βt−2(gt,ρt),
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where ' replaces multiplicative constants. We now continue as above. Combining the above
results leads to an inequality of the form

‖f‖W p
k,βt
≤ (Cg + Cĝ)

(
‖∆gtf‖W p

k−2,βt−2
+

C

| log t|
‖f‖W p

k,βt

)
.

For t sufficiently small we can absorb the second term on the right hand side into the left hand
side, proving the claim. �

Smooth compact manifolds. Assume the set Ŝ∗∗ ∪ S∗∗ is empty, so that L̂#L is smooth and
compact. In this case the Laplace operator, acting on functions, always has kernel: the space
of constants R. We can thus achieve injectivity only by restricting ourselves to a subspace
transverse to constants. Furthermore, if we want the invertibility constant to be independent
of t we must allow the subspace to depend on t, as follows.

Theorem 12.3. Let (L, g, ρ, S∗), (L̂, ĝ, ρ̂, Ŝ∗) be marked compatible conifolds such that the
parametric connect sums (Lt, gt, ρt) are smooth and compact. Choose constant weights β =

β̂ ∈ (2−m, 0) and define βt as usual.

(1) Assume L has only one connected component. Then there exists a constant C > 0 and,
for each t sufficiently small, a subspace Et ⊂W p

k,t(Lt) such that

(12.1) W p
k,t(Lt) = Et ⊕ R

and, for all f ∈ Et,
‖f‖W p

k,βt
≤ C‖∆gtf‖W p

k−2,βt−2
.

Furthermore, the image of the restricted operator ∆gt|Et coincides with the image of
the full operator ∆gt.

(2) Assume L has k > 1 connected components. Then there exists a constant C > 0 and,
for each t sufficiently small, a codimension k subspace Et ⊂ W p

k,t(Lt) transverse to

constants such that, for all f ∈ Et,
‖f‖W p

k,βt
≤ C‖∆gtf‖W p

k−2,βt−2
.

Proof. Assume L has one connected component. Choose any closed subspace E ⊂ W p
k,β(L)

such that

W p
k,β(L) = E ⊕ R.

Define ηt as in the proof of Theorem 12.2. Extending it to zero on the CS ends of L, we can
think of it as an element of W p

k,β(L). One can check that ηt → 1 in the W p
k,β norm as t → 0

so, for small t, ηt /∈ E. The multiplication map

Pt : W p
k,βt

(Lt)→W p
k,β(L), f 7→ ηtf,

is linear and uniformly continuous with respect to the parameter t, so Et := P−1
t (E) is linear

and closed. Since ηt does not belong to E, constants do not belong to Et. To confirm that Et
has codimension 1, choose any linear function Q : W p

k,β(L)→ R such that E = Ker(Q). Then

Et = Ker(Q ◦ Pt), so it is defined by one linear condition. This proves Decomposition 12.1.
Consider ∆gt restricted to Et. It is clearly injective. One can check that it is uniformly

injective exactly as in Theorem 12.2.
Now assume L has multiple components L1, . . . , Lk. For each Li, choose a closed subspace

Ei ⊂W p
k,β(Li) as above. The multiplication map

W p
k,βt

(Lt)→
⊕

W p
k,βt

(Li), f 7→ ηtf,
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is again linear and uniformly continuous, so we can define Et as the inverse of E1 ⊕ . . . ,⊕Ek.
One can again check that it has codimension k and that, restricted to this space, ∆gt is
uniformly injective. �

Remark 12.4. Notice that, even though Lt is smooth and compact, the proof of Theorem 12.3
requires the use of radius functions and weights on the necks.

13. Further Sobolev-type inequalities on conifold connect sums

Given a conifold (L, g), we can also apply the theory of Section 9 to the elliptic operator

(13.1) Dg = d⊕ d∗g : W p
k,β(Λeven)→W p

k−1,β−1(Λodd),

defined from the bundle of all even-dimensional forms on L to the bundle of all odd-dimensional
forms. As for the Laplacian, it is possible to define and study the exceptional weights for this
operator. For any non-exceptional weight β, the operator Dg of Equation 13.1 is Fredholm.
This implies that

Dg : W p
k,β(Λeven)/Ker(Dg)→W p

k−1,β−1(Λodd)

is a topological isomorphism onto its image. Notice that W p
k,β(L)/Ker(Dg) is closed in

W p
k,β(Λeven)/Ker(Dg). It follows that d(W p

k,β(L)) = Dg(W
p
k,β(L)) = Dg(W

p
k,β(L)/Ker(Dg)) is

closed in Im(Dg), thus in W p
k−1,β−1(Λodd). We can conclude that the restricted operator

(13.2) d : W p
k,β(L)→W p

k−1,β−1(Λ1)

has closed image. Notice that Ker(d) can only contain constants. If the choice of weights is
such that constants do not belong to the space W p

k,β(L), the operator d of Equation 13.2 is a

topological isomorphism onto its image and can be inverted. In particular there exists C > 0
such that, for any f ∈W p

k,β(L),

‖f‖W p
k,β
≤ C‖df‖W p

k−1,β−1
.

We now want to show that, on conifolds obtained as parametric connect sums, such C can
chosen independently of t. For brevity, we restrict our attention to the non-compact case.

Theorem 13.1. Let (L̂, ĝ, ρ̂, β̂, Ŝ∗) be a weighted AC-marked conifold. Assume that β̂ is
non-exceptional for the operator

Dĝ : W p

k,β̂
(Λeven)→W p

k−1,β̂−1
(Λodd)

defined on the manifold L̂ and that β̂i < 0 for all ends Ŝi ∈ Ŝ∗.
Let (L, g, ρ,β, S∗) be a weighted CS-marked conifold. Assume β is non-exceptional for the

operator

Dg : W p
k,β(Λeven)→W p

k−1,β−1(Λodd)

defined on the manifold L and that each connected component of L has at least one end, e.g.
S′, satisfying the condition {

β′ < 0 if S′ is AC
β′ > 0 if S′ is CS.

Now assume that L, L̂ are compatible. Then, for all ends Si ∈ S∗, βi = β̂i < 0. This implies
that S′ ∈ S∗∗ so each connect sum Lt has at least one end.

There exists C > 0 such that, for all f ∈W p
k,βt

(Lt),

(13.3) ‖f‖W p
k,βt
≤ C‖df‖W p

k−1,βt−1
.
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Proof. As seen above, the assumptions prove that the operator d is a topological isomorphism
(onto its image) between Sobolev spaces on both manifolds L, L̂. This means that there exist
constants Cg, Cĝ satisfying the analogue of Equation 13.3 on both manifolds separately. We
can use Cg, Cĝ to build C satisfying Equation 13.3 on Lt using the same ideas introduced in
the proof of Theorem 12.2. There is only one difference, as follows. In the proof of Theorem
12.2 we use the equality

t−βiCĝ‖∆ĝ((1− ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂) = t2−βiCĝ‖∆t2ĝ((1− ηt)f)‖W p

k−2,β̂−2
(ĝ,ρ̂).

The factor t2−βi is then cancelled by rescaling. In particular, the above equality uses the fact
that the Laplacian depends on the metric and rescales in a specific way.

In the case at hand the operator d does not depend on the metric. However, notice that it
takes functions into 1-forms: it is this property that allows us to conclude. Specifically, setting
αt = d((1− ηt)f) and assuming β̂ is constant to simplify the notation, we find:

‖αt‖pW p

k−1,β̂−1
(ĝ,ρ̂)

=
∑
j

∫
L̂
|ρ̂1−β̂+j∇jαt|pĝ⊗ĝρ̂

−mvolĝ

= tpβ̂
∑
j

∫
L̂
|(tρ̂)1−β̂+j∇jαt|pt2ĝ⊗t2ĝ(tρ̂)−mvolt2ĝ

= tpβ̂‖αt‖pW p

k−1,β̂−1
(t2ĝ,tρ̂)

.

The proof can now continue as for Theorem 12.2. �

Combining Theorems 11.7 and 13.1 we obtain the following improvement of the weighted
Sobolev Embedding Theorems, Part 1, for parametric connect sums.

Corollary 13.2. Let (L, g, ρ,β, S∗), (L̂, ĝ, ρ̂, β̂, Ŝ∗) be marked compatible conifolds as in The-
orem 13.1. Define Lt as in Definition 11.6. Then there exists C > 0 such that, for all
1 ≤ p < m, t and f ∈W p

1,βt
(Lt) ,

‖f‖
Lp
∗
βt

≤ C‖df‖Lpβt−1
.

Remark 13.3. Following standard terminology in the literature we can refer to Equation 13.3
as a “uniform weighted Poincaré inequality” and to Corollary 13.2 as a “uniform weighted
Gagliardo-Nirenberg-Sobolev inequality”. Alternatively, following [4] Chapter 8, the latter is
a “uniform weighted Euclidean-type Sobolev inequality”.
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