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3 Mean Curvature Flow, Orbits, Moment Maps

Tommaso Pacini

Abstract: Given a compact Riemannian manifold together with a group
of isometries, we discuss MCF of the orbits and some applications: eg, finding
minimal orbits. We then specialize to Lagrangian orbits in Kaehler manifolds.
In particular, in the Kaehler-Einstein case we find a relation between MCF and
moment maps which, for example, proves that the minimal Lagrangian orbits
are isolated.

1 Introduction

If a given submanifold Σ in a Riemannian manifold (M, g) is not minimal, “mean
curvature flow” (MCF) provides a canonical way to deform it.

Ideally, the flow should exist until either a singularity develops, preventing
further flow, or the submanifold becomes minimal. In this sense, MCF should
be a useful tool in the search for minimal submanifolds.

A third, but exceptional, possibility that might occur is exemplified by the
“translating solitons” in Rn: submanifolds which, under MCF, simply flow by
translation and thus never converge to a limiting object.

However, MCF is a difficult topic with many open questions. In particular,
there is no general theory which can explain what will happen to all Σ ⊆ (M, g)
under MCF, or classify which singularities can arise. One is thus forced to
study each case individually, or at best to look for classes of submanifolds which,
under MCF, behave in the same way. Most often this leads to restrictions on the
dimension (eg: curves) or codimension (eg: hypersurfaces) of Σ, or on properties
of the immersion (eg: convex).

In general, the presence of symmetries in a problem reduces the number of
variables, hopefully making things easier. Regarding MCF, the “best” case is
when Σ is the orbit of a group of isometries of (M, g). It is simple to show that,
in this case, all Σt obtained by MCF are also orbits, and MCF basically reduces
to solving an ODE on the (finite-dimensional) space of orbits.

Group actions have been extensively studied. In particular, orbits of a (com-
pact, connected) Lie group G acting on a (compact, connected) manifold M can
be classified into three categories: “principal”, “exceptional” and “singular”.
This yields a simple and pretty picture of the geometry of the orbit space M/G.

The first goal of this paper is to fit MCF into this framework, analyzing
“what happens” to a principal (or exceptional, or singular) orbit under MCF.
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The final picture, presented in theorem 2, constitutes, for several reasons, a
good “example zero” of MCF. It is simple; it generalizes the standard example
of the “shrinking sphere” in Rn; it is (co)dimension-independent; and especially,
in the orbit setting, “everything we might want to be true for MCF, is true”.

We then restrict our attention to Lagrangian orbits. Using moment maps to
“get a grasp on them”, we prove that the set L(M ; G) of points belonging to
Lagrangian G-orbits constitutes a smooth submanifold in any compact Kaehler
ambient space. When (M, g) is a Kaehler-Einstein (KE) manifold, it was al-
ready known that the Lagrangian condition is preserved under MCF; we give an
independent proof of this in the orbit setting, and are then free to apply theorem
2 to study how Lagrangian orbits evolve under MCF. As a simple corollary, we
find that “backwards MCF” always leads to a minimal Lagrangian orbit.

Futaki proved that compact positive KE manifolds come with a “canonical”
moment map µ. In proposition 5 we show that µ is intimately related to the
mean curvature of Lagrangian orbits. As a corollary, we find that minimal
Lagrangian orbits (wrt fixed G) are isolated.

As already noted, MCF of Lagrangian submanifolds is not a new subject;
there is also some overlap, in the case of torus actions, with [G]. However, given
the number of known KE manifolds with large isometry groups, there seems
to be no a priori reason to limit oneself to tori. Our attempt is to develop a
“complete” picture of the general G case, relying only on the basic tools provided
by the general theory of G-actions, moment maps and transformation groups.
In this sense, we are not aware of any serious overlap with existent literature.

Acknowledgements: I wish to thank T. Ilmanen for a useful conversation
and P. de Bartolomeis and G. Tian for their long-term support, suggestions and
interest. I also gratefully acknowledge the generous support of the University
of Pisa and of GNSAGA, and the hospitality of MIT.

2 Smooth group actions on manifolds

This section is mostly a review of standard facts regarding manifolds with a
group action. We refer to [A] for further details.

We adopt the following conventions.

• M is a compact, connected, smooth manifold. Diff(M) will denote its
group of diffeomorphisms.

• G is a compact, connected, Lie group acting on M ; ie, we are given a
homomorphism i : G −→ Diff(M). The action of g ∈ G on p ∈ M will
be denoted g · p.

The action is “effective” if i is injective. Notice that, since Ker(i) is normal in
G, we may “reduce” any G-action to an effective G/Ker(i)-action.

Whenever a group H is not connected, H0 will denote the connected com-
ponent containing the identity element.
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The action of G on M induces an action of G on TM . If X ∈ TpM , it is
defined as follows:

g · X := g∗[p](X) ∈ TgpM

where g∗ denotes the differential of the map g = i(g) : M −→ M .
Letting g denote the Lie algebra of G, any X ∈ g induces a “fundamental

vector field” X̃ on M , defined as follows:

X̃(p) :=
d

dt
[exp(tX) · p]|t=0

where exp(tX) denotes the 1-dimensional subgroup of G associated to X .
For all p ∈ M , we define:
G · p := {g · p : g ∈ G} ⊆ M “orbit of p (wrt G)”
Gp := {g ∈ G : g · p = p} ≤ G “stabilizer of p (wrt G)”
Notice that Gp is a closed subgroup of G and that G · p ≃ G/Gp. A generic

orbit will often be denoted O. Thanks to the compactness hypotheses, every
orbit O is a smooth embedded submanifold of M .

Notice also that Ghp = h · Gp · h−1; ie, Ghp is conjugate to Gp. Thus, to
each p ∈ M we may associate a conjugacy class of subgroups of G:

O 7→ (Gp) := conjugacy class of the stabilizer of any p ∈ O

This class is called the “type” of O.
Let O be any orbit and p ∈ O. Let V := TpM/TpO. The action of G on

TM restricts to an action of Gp on TpM , and TpO ≤ TpM is a Gp-invariant
subspace. Thus there is a natural action of Gp on V .

This induces an action of Gp on G × V , as follows:

h · (g, v) := (g h−1, h · v)

Let G ×Gp
V := (G × V )/Gp denote the quotient space. Then G ×Gp

V is a
vector bundle (with fiber V ) over G/Gp ≃ O and there is an action of G on
G ×Gp

V as follows:
g1 · [g2, v] := [g1 g2, v]

The following result shows that G×Gp
V contains complete information on the

local geometry of the group action near O.

Theorem 1 Let G, M be as above.
Then there exist a G-invariant neighborhood U of O in M and a G-invariant

neighborhood W of the zero section of G ×Gp
V such that U is G-equivariantly

diffeomorphic to W .

Corollary 1 Let M , G be as above.

1. For each fixed type, the union of all orbits of that type forms a (possibly
disconnected) submanifold of M .

2. There is only a finite number of orbit types.
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3. There is an orbit type (P ) whose orbits occupy an open, dense, connected
subset of M .

The types of the G-action can be partially ordered by the following relation:

α ≤ β ⇔ ∃H, K ≤ G : α = (H), β = (K), H ≤ K

If a given orbit O has type (K), any nearby orbit O′ ⊂ G×K V can be written
O′ = G · [1, v]; it is simple to show that the stabilizer of [1, v] is the stabilizer
Kv of v ∈ V wrt the K-action, so it is a subgroup of K. In other words,
type(O′) ≤ type(O).

In particular, the type (P ) defined by corollary 1 must be an absolute min-
imum:

(P ) ≤ (K), for all types (K)

It is also clear that dim O′ ≥ dim O (the dimension of orbits is a lower-
semicontinuous function on M) and that orbits of type (P ) have maximum
dimension among all orbits.

The final picture is thus as follows.
Given M, G as above, there are three categories of orbits:

1. “Principal orbits”, corresponding to the minimal type (P ).

They occupy an open, dense, connected subset of M .

2. “Exceptional orbits”, corresponding to those types (K) : K/P is finite.
Via the projection G×K V −→ G/K, any nearby principal orbit is a finite
covering of the exceptional orbit G/K.

In particular, exceptional orbits and principal orbits have the same di-
mension.

3. “Singular orbits”, corresponding to those types (K): dim K > dim P .
Their dimension is strictly smaller than that of principal orbits.

Example 1 S1 acts isometrically on S2 := {x2+y2+z2 = 1} ⊆ R3 by rotations
along the z-axis.

The orbits are the sets S2
⋂

πc, where πc := {z ≡ c}. The singular orbits,
of type (S1), are the poles; all other orbits are principal, of type (1).

Example 2 On S2 there is also an isometric Z2-action which identifies antipo-
dal points. Since the two actions commute, the S1-action passes to the quotient
RP2 ≃ S2/Z2.

There is one singular orbit, represented by S2
⋂

π1; one exceptional orbit,
represented by S2

⋂

π0 (the “equator”); all other orbits, represented by S2
⋂

πc,
0 < c < 1, are principle.

Together, principal and exceptional orbits constitute the set of “regular orbits”.
Any regular orbit O = G · q, q ∈ M reg is the image of an immersion

φ : G/P →֒ M, [g] 7→ [g] · q

4



Notice that, if O is principle, then O ≃ G/P , ie φ is an embedding. If O is
exceptional, of type (K), then O ≃ G/K and φ is a covering map of G/P over
G/K.

We may set Mpr := {p ∈ M : G · p is a principal orbit} ⊆ M and, analo-
gously, define M ex, M sing, M reg = Mpr

⋃

M ex.
Each of these subsets, generically denoted M∗, is a smooth submanifold

inside M and M∗/G also has a smooth structure.
Thus the set M/G, which is compact and Hausdorff with respect to the quo-

tient topology, has the structure of a “stratified smooth manifold”, the smooth
strata being the connected components of M∗/G. Once again, Mpr/G occupies
an open, dense, connected subset of M/G.

An interesting application of all the above is the following, simple, fact.

Corollary 2 Assume G acts on M , with principal type (P ).

1. If P is normal, then P ≤ Gp, ∀p ∈ M .

Thus, if the action is effective, P = {1}.

2. If P 0 is normal, then P 0 ≤ Gp, ∀p ∈ M .

Thus, if the action is effective, P is finite.

In particular, assume a torus T acts effectively on M . Then (P ) = {1}.

Proof : If P is normal, P ≤ Gp, ∀p ∈ Mpr. Since Mpr is dense in M , it is easy
to prove that P ≤ Gp, ∀p ∈ M .

The proof of (2) is similar.

Our last goal, in this section, is to “understand” convergence of orbits.
Assume given a curve of principal orbits Ot (corresponding to immersions

φt : G/P →֒ M) which, in the topology of M/G, converges to some limiting
orbit O. We must distinguish three cases.

1. Assume O ≃ φ : G/P →֒ M is principal, ie has minimal type (P ).

Since Mpr is open in M , each orbit near O must also have type (P ); thus,
wrt the local linearization M = G ×P V based at O, P acts trivially on
V and G×P V = G/P × V is the trivial bundle. In particular, this shows
that Ot → O smoothly in M , ie φt → φ.

2. Assume O ≃ φ is exceptional. Then, near O, there are either exceptional
or principal orbits and they are coverings of O. It is still true that φt → φ
smoothly, but the limit is not injective.

3. Assume O is singular. Let K be the stabilizer of p ∈ O.

Locally, M = G×K V, Ot = G·[1, vt] (for some vt ∈ V ) and Kvt
≤ K is the

stabilizer of [1, vt]. Since (Kvt
) ≡ (P ), all Kvt

have constant dimension q.
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The corresponding Lie algebras kvt
are thus points in the Grassmannian

Gr(q, k) of q-planes in k := Lie(K). By compactness of Gr(q, k), we may
conclude the following: any sequence On ⊆ Ot, On → O, contains a
subsequence Onk

such that knk
→ k0, for some k0 ∈ Gr(q, k).

Let {X1, . . . , Xr} span a complement of k0 in k, and let {Y1, . . . , Ys} span
a complement of k in g. Then TpO is generated by the fundamental vector

fields Ỹi and T[1,vnk
]Onk

is generated by X̃i, Ỹj . Since X̃i are smooth on

M and X̃i|O ≡ 0, we see that ‖X̃|Onk
‖ → 0 (wrt any invariant metric on

M).

In other words, convergence to a singular orbit is described, up to subse-
quences, by the vanishing of certain fundamental vector fields; which fields
vanish depends on the particular subsequence.

3 MCF of orbits

Let us now fix a compact, connected, Riemannian manifold (M, g) and a com-
pact, connected, Lie group of isometries, G ≤ Isomg(M). (P ) will denote the
minimal type of the G-action, and p the corresponding Lie algebra.

Recall that, to any immersion φ : Σ →֒ M , we may associate a volume

vol(φ) :=

∫

Σ

volφ∗g

Since any regular orbit O corresponds to an immersion φ : G/P →֒ M , we get
a function

vol : (M/G)reg −→ R, O 7→ vol(φ)

The quotient map π : M −→ M/G yields a pull-back map π∗vol : M reg −→
R. We will often write vol(O) instead of vol(φ) and vol instead of π∗vol.

Proposition 1 The volume function has the following properties:

1. vol : M reg −→ R is smooth.

2. It has a continuous extension to zero on M sing.

This defines a continuous function vol : M −→ R.

3. The function vol2 : M −→ R is smooth.

Proof : For any regular orbit O = φ : G/P →֒ M , φ∗g defines a G-invariant
metric on G/P . Let Z1, . . . , Zn be any basis of T[1]G/P , induced by the projec-
tion onto g/p of elements Zi ∈ g : Zi /∈ p. Let µ := Z∗

1 ∧ . . .∧Z∗
n be the induced

left-invariant volume form on G/P .
Since both volume forms are G-invariant, volg = c · µ, for some c = c(O).

Clearly, c =
√

det gij , where gij := φ∗g[1](Zi, Zj). Thus

vol(O) =

∫

G/P

volφ∗g =

∫

G/P

√

det gij · µ =
√

det gij ·

∫

G/P

µ
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Now let Ot be a curve of regular orbits, Ot = φt : G/P →֒ M . Assume that
Ot → O. If O is also regular, O = φ : G/P →֒ M , then pt := φt[1] → p := φ[1].
Choose Zi ∈ g such that the induced fundamental vector fields Z̃i span TpO.

Then Z̃i also span Tpt
Ot. Setting gt

ij := g[pt](Z̃i, Z̃j) and gij := g[p](Z̃i, Z̃j), we
find

vol(Ot) =
√

det gt
ij · constant −→

√

det gij · constant 6= 0

This shows that vol is smooth on M reg. If O is singular, we saw in section 2
that, for any sequence On ⊆ Ot : On → O, we may choose Zi so that, for some

subsequence, certain Z̃i vanish. This shows that
√

det gt
ij → 0, so vol extends

continuously to zero on M sing .
Since vol(Ot)

2 = det gt
ij · constant, vol2 is smooth on M .

Corollary 3 (cfr. [H]) Let G be any compact, connected Lie group acting by
isometries on a compact, connected Riemannian manifold (M, g).

Then there exists a regular minimal orbit of the G-action.

Proof : Since M is compact, the continuous function vol : M −→ R has a
maximum, which necessarily corresponds to a minimal (immersed) orbit.

Example 2 of section 2 shows that the minimal orbit might be exceptional.
Let us now recall the notion of “mean curvature flow”.
Fix manifolds Σ and (M, g), and an immersion φ : Σ →֒ M .
A smooth 1-parameter family of immersions φt : Σ →֒ M is called a “solution

to the MCF of (Σ, φ)” if it satisfies the following equation

(MCF)

{

d
dtφt = H(φt)

φ0 = φ

where H(φt) denotes the “mean curvature vector field” of φt, defined as the
trace of the second fundamental form of the immersion. It is well-known that
H is, up to sign, the “L2-gradient” of the volume functional on immersions:

d

dt
vol(φt)|t=0 = −

∫

Σ

(H,
d

dt
φt|t=0

)

Locally, (MCF) can be written as a II-order quasi-linear parabolic system of
equations. In particular, solutions always exist for some short time interval
t ∈ [0, ǫ) and are unique.

We want to focus on solving (MCF) under the assumption that (Σ, φ) is an
orbit of a group of isometries.
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Consider the map H : p 7→ Hp, which associates to each p ∈ M the mean
curvature Hp of the orbit G · p. This defines a vector field on M .

The following lemma examines its continuity/smoothness.

Lemma 1 Let H be defined as above.

1. H is smooth along each submanifold given by orbits of the same type.

It is also smooth on M reg.

2. H is G-invariant.

Proof : The smoothness of H along orbits of the same type is clear. Smoothness
on M reg comes from the convergence properties of regular orbits: basically,
H is a local object and does not notice the difference between principal and
exceptional orbits.

(2) is a consequence of the fact that all ingredients in the definition of H are
G-invariant.

In particular, H descends to a vector field on M/G and is smooth along each
stratum. If O = φ : G/K →֒ M and p := φ([1]), we can consider the following
ODE on M :

(MCF’)

{

ṗ(t) = H [p(t)]
p(0) = p

Notice that, given a solution p(t) of (MCF’), the G-equivariant map

φ : G/K × [0, ǫ) −→ M, φ([g], t) := g · p(t)

solves (MCF) with the initial condition (Σ, φ) = O. By uniqueness of solutions
of (MCF), this shows that MCF of an orbit gives a curve of orbits.

In other words, if (Σ, φ) is an orbit, (MCF) is equivalent to the ODE on
M/G (or on M) determined by integrating H .

The reduction of the problem from a PDE to an ODE simplifies things
enormously. For example, MCF of orbits has the following properties:

• There exists a (unique) solution Ot defined on a maximal time interval
(α, β): this comes from standard ODE theory.

• (MCF) may be inverted; ie, t 7→ Q(t) := O(−t) solves the equation for
“backward MCF”:

d

dt
Qt = −HQt

, Q0 = O

This is true for any ODE of the type ẋ = f(x(t)), but is very atypical for
parabolic problems.

Another interesting feature of (MCF) on orbits is that it preserves types:

8



Proposition 2 For each orbit O, HO is tangent to the submanifold determined
by the type of O.

In particular, if Ot is the solution of (MCF) with initial condition O0 = O,
then type (Ot) ≡ type (O).

Proof : Let p ∈ M and let G · p have stabilizer K. Locally near G · p, M =
G ×K V , where V = Tp(G · p)⊥ and K acts isometrically on V .

This determines a decomposition of V into K-irreducible subspaces: V =
⊕V i. Since H is G-invariant, it is also K-invariant, so H ∈ V 0 := {v ∈ V :
k · v = v, ∀k ∈ K}.

Notice that G×K V 0 corresponds to the orbits near G · p of type (K). Thus
Hp is tangent to the set of such orbits.

Since this is true for each p ∈ M , (MCF) preserves types.

Corollary 4 (cfr. [HL]) Let (M, g) be as above.
If an orbit is isolated wrt all other orbits of the same type, then it is minimal.

We now want to show that, on M reg, (MCF) is actually a gradient flow; ie, for
some f ∈ C∞(M reg), H = ∇f .

Let pt be a curve in M reg and Ot := G · pt. We will let X denote both the
vector d

dtpt|t=0 at p0 and the G-invariant vector field d
dtOt|t=0 along O.

Since H, X and the metric on M are G-invariant, (H, X) also is. Thus:

d

dt
vol(pt)|t=0 =

d

dt
vol(Ot)|t=0 = −

∫

G/P

(H, X) volO = −vol(O) · (H, X)p0

This proves that

(H, X)p0
= −

d
dtvol(pt)|t=0

vol(p0)
= −

d

dt
log vol(pt)|t=0

In other words, H = −∇log(vol) on M reg.
We now have all the information we need to understand how MCF fits into

the framework set up in section 2.
Let O = φ : G/P →֒ M be a fixed principal orbit and let Ot = φt : G/P →֒

M be the maximal curve obtained by MCF, with initial condition O(0) = O
and t ∈ (α, β). Let pt = φt([1]), so that d

dtpt = H [pt].
Since M is compact, there is a sequence {pn} ⊆ {pt} and p̃ ∈ M such that

pn → p̃. Thus On := G · pn → Õ := G · p̃.
In general, however, different sequences may have different limits, so we

cannot hope that Ot → Õ. The following example of this was suggested to the
author by T. Ilmanen.
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Example 3 : Consider an embedding s : R →֒ {(x, y) ∈ R2 : x2 + y2 > 1} that
tends towards S1 = {x2 + y2 = 1} ⊆ R2 as t → ∞, spiralling around it.

Let S denote its image and f : S → R1 be a positive, decreasing function on
S such that f(t) ց c > 0 as t → ∞.

S may be “fattened” by a tubular neighborhood U (of decreasing width, as
t → ∞). At each point s ∈ S, f may be extended, with constant value f(s), in
the normal directions. This gives an extension of f : U −→ R such that ∇f|S
is tangent to S. A partition of unity argument now allows us to extend f to a
smooth function f̃ : R2 −→ R. Clearly, ∇f̃|S = ∇f|S and f̃|S1 ≡ c.

Since we’re only interested in what happens near S1, we may perturb f̃ so
that it extends to some compact (Σ2, g) containing a neighborhood of S1. We
have thus built a smooth gradient vector field on a compact manifold whose flow
does not converge to a unique point.

Now let M := Σ × S1, with the obvious S1-action. For each p ∈ Σ, let
{p} × S1 have an S1-invariant metric hp such that log vol({p} × S1) = f(p).

For each (p, q) ∈ M , let Tp,qM have the product metric g[p] × hp[q].
Since HO = −∇log vol(O) = −∇f , MCF of any orbit {s} × S1 with s =

s(t0) ∈ S yields the curve of orbits {s(t)} × S1, t ∈ [t0,∞). By construction,
these orbits have no limit as t → ∞.

We are thus interested in conditions ensuring the existence of limt→βOt.
The following lemma shows that, in the analytic context, things work nicely.

Lemma 2 Consider the ODE

ṗ = −∇f, p(0) = p0

with maximal solution p(t), t ∈ (α, β).
Assume that, for some subsequence tn → β, p(tn) → y and that f is analytic

in a neighborhood of y. Then p(t) → y.

Proof : Let s(t) :=
∫ t

0 ‖∇f(pτ )‖dτ . Since ‖∇f(pτ )‖ > 0, s is a diffeomorphism
between (α, β) and some (α′, β′).

Since f(pt) is monotone, it also gives a diffeomorphism between (α, β) and
some (a, b), where b = f(y). In particular, s can be written as a function of
f ∈ (a, b); ie, s = s(f).

Since df
dt = ∇f · dp

dt = −|∇f |2, we find df
ds = −|∇f | and ds

df = − 1
|∇f | .

It is simple to prove that p(t) → y ⇔ β′ < ∞.
We may assume that f(y) = 0. When f is analytic near y, the “Lojasiewicz

inequality” asserts that there exists a neighborhood U of y and δ > 1, c > 0
such that, on U , |f | ≤ c |∇f |δ. Thus 1

|∇f | ≤ c · |f |−
1

δ , so

β′ =

∫ f(y)

f(p0)

ṡ(f) df =

∫ f(p0)

b

1

|∇f |
df =

∫ f(p0)

0

1

|∇f |
df < ∞
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If (M, g) is analytic and vol(Ot) ≥ c > 0, we may apply this lemma to f :=
log vol, proving that O+ := limt→βO(t) exists and is regular. We may then
apply the following, classical lemma to N := M reg.

Lemma 3 Let H be a smooth vector field on a manifold N .
Let p(t) : t ∈ (α, β) −→ N be a maximal integral curve and assume that

there exists q ∈ N such that p(t) → q, as t → β.
Then β = ∞ and H(q) = 0.

Notice also that H = − 1
2∇log(vol2) = − 1

2
∇vol2

vol2 . In the analytic context, this
shows that if Ot → O and O is singular, then ‖HOt

‖ → ∞ (in the smooth
category, following the idea of example 3, one could build examples for which
such a limit does not exist). The following examples show that O may be
minimal or not.

Example 4 : Let S1 act on S2 as in example 1 of section 2. Any O which
is not the equator or a pole flows, under MCF, to the closest pole, which is a
singular, minimal, orbit. This happens in finite time.

Example 5 : The above action of S1 on S2 induces an action of S1 on S2×S2.
Let O ≃ S1 ×S1 be the product of a “small” orbit in S2 (ie: near a pole) and a
“large” orbit in S2. The flow Ot becomes singular as soon as the smaller orbit
collapses onto the pole, but this limiting curve, p× S1, is not minimal: its flow
exists until the second curve collapses.

Summarizing, we have proved the following result.

Theorem 2 Let (M, g) be a compact, Riemannian manifold and let G be a
compact group acting by isometries on M . Let O be a principal orbit. Then:

1. MCF preserves orbits and types.

Thus there exists a unique, maximal, curve of principal orbits Ot, t ∈
(α, β), solution of MCF with O0 = O.

2. Assume (M, g) is analytic and O+ := limt→βOt exists. Then:

• O+ is a regular orbit ⇔ β = ∞ ⇔ ‖H(t)‖ → 0.

In this case, O+ is minimal.

• O+ is a singular orbit ⇔ β < ∞ ⇔ ‖H(t)‖ → ∞.

In this case, O+ may be minimal or not.

If vol(Ot) ≥ c > 0, then O+ always exists and is regular.

3. Assume (M, g) is analytic. Then O− := limt→αOt always exists. It
is a minimal regular orbit, α = −∞ and ‖H(t)‖ → 0. In particular,
“backwards MCF” always leads to a minimal regular orbit.
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To get an analogous statement for flows of exceptional or singular orbits, it
is sufficient to apply the theorem to the (smooth, compact) manifold M ′ defined
as the closure in M of the set of orbits of the type in question: these orbits will
be the principle orbits of the induced G-action on M ′.

Remark: Using “equivariant Morse theory” applied to the volume function,
it would be interesting to study the topology of Riemannian G-manifolds in
terms of its minimal orbits. In theory, theorem 2 would be useful in this.

4 Lagrangian orbits and moment maps

We now want to focus on Lagrangian orbits generated by isometry groups of
compact Kaehler manifolds. We start by recalling a few well-known facts con-
cerning transformation groups of Riemannian and Kaehler manifolds. We refer
to [K1] for proofs and further details.

Definition 1 Let (M, g) be a Riemannian manifold. A vector field X on M is
an “infinitesimal isometry” if LXg ≡ 0; equivalently, if the local flow generated
by X is a curve of isometries.

i(M) will denote the space of all infinitesimal isometries. When (M, g) is com-
plete, i(M) is the Lie algebra of Isomg(M).

Definition 2 Let (M, J) be a complex manifold. A (real) vector field X on
M is an “infinitesimal automorphism” if LXJ ≡ 0; equivalently, if the local
flow generated by X is a curve of automophisms of (M, J), or if X − iJX is a
holomorphic section of T 1,0M .

h(M) will denote the set of infinitesimal automorphisms. It is closed wrt J and,
when (M, J) is compact, it is the complex Lie algebra of the group AutJ (M) of
automorphisms of (M, J).

Theorem 3 Let (M, J, g, ω) be a compact Kaehler manifold. Then any in-
finitesimal isometry is an infinitesimal automorphism, so Isomg(M)0 ≤ AutJ(M)0.

This, in turn, implies that Isomg(M)0 ≤ Autω(M)0.

The following proposition, although very simple, is the key to understanding
Lagrangian orbits.

Proposition 3 Let (M2n, J, g) be a compact Kaehler manifold and let G ≤
Isomg(M) act on M with principal type (P ).

Assume there exists a regular Lagrangian G-orbit.
Then P is finite, so dim G = n and gp = Lie(Gp) = {0}, ∀p ∈ M reg.

Proof : Assume O is a Lagrangian orbit. Then J gives an isomorphism TO⊥ ≃
TO ≃ g/p which is equivariant wrt the natural P -action. Notice that, for each
p ∈ P , this action coincides with the differential of the map

p : G/P −→ G/P, p[g] := [pg] = [pgp−1]

12



In other words, the action of p on g/p is the differential of the adjoint action
of p on G/P . Taken all together, these maps form a group homomorphism
P −→ GL(g/p); the corresponding Lie algebra homomorphism is the map

p −→ gl(g/p), X 7→ [X, ·]

If O is principal, the P -action on TO⊥ is trivial. Thus P acts trivially on g/p

(ie, the action of each p ∈ P on g/p is the identity), so the map p −→ gl(g/p)
is trivial (ie, the action of each X ∈ p is the zero map), ie p is an ideal of g.
This implies that P 0 is normal in G and corollary 2 of section 2 proves that P
is finite.

Now assume O is an exceptional Lagrangian orbit of type (K). Locally,
M = G ×K V and K acts as a finite group on V = g/k, so a nbd of 1 ∈ K acts
trivially on g/k. This shows that K0 acts trivially on g/k.

As above, K0 is normal in G. Since K0 = P 0, P 0 is also normal and we
may conclude as above.

It is now convenient to introduce the concept of Hamiltonian group actions.
Again, we refer to [A] for further details.

Let (M, ω) be a symplectic manifold. Recall that a vector field X on M is
“Hamiltonian” if ω(X, ·) is an exact 1-form on M ; ie, ω(X, ·) = d f , for some
f ∈ C∞(M). We say that f is a “Hamiltonian function” for X .

Definition 3 The action of G on M is “Hamiltonian” if the following condi-
tions are satisfied:

1. There exists µ : M −→ g∗ such that < dµ[p](·), X >= ω[p](X̃, ·), where
< ·, · > denotes the natural pairing g∗×g −→ R. Equivalently, ∀X ∈ g, X̃
is Hamiltonian (with Hamiltonian function µX := p 7→< µ(p), X >).

2. µ is G-equivariant wrt the G-action on M and the coadjoint G-action on
g∗. Equivalently, µ[X,Y ](p) = ω[p](X̃, Ỹ ).

We say that µ is a “moment map” for the action.

Remarks:

1. Assume (M, J, g, ω) is a compact Kaehler manifold and that, for some
G ≤ Isomg(M)0, condition (1) above is satisfied. Then, ∀X ∈ g,

dµX = ω(X̃, ·) = g(JX̃, ·)

This shows that ∇µX = JX̃ , so ∇µX is an infinitesimal automorphism of
(M, J).

13



2. By definition, the differential dµ[p] : TpM −→ g∗ is the dual of the map

dµ[p]∗ : g −→ (TpM)∗, X −→ dµX [p]

Thus Im dµ[p] = (Ker dµ[p]∗)# = (gp)
#, where gp = Lie(Gp).

In particular, dµ[p] is surjective iff Gp is discrete.

Definition 4 Σ ⊆ (M, ω) is “isotropic” if ω|Σ ≡ 0; if dim Σ = n and dim
M = 2n, then isotropic submanifolds are called “Lagrangian”.

We are mainly interested in moment maps for the following reason.

Lemma 4 Assume the action of G on (M, ω) is Hamiltonian, with moment
map µ. Let p ∈ M . Then the following conditions are equivalent:

1. µ is constant on the orbit O = G · p.

2. O is isotropic.

3. µ(p) ∈ [g, g]#.

We now have all the elements necessary to prove the following

Corollary 5 Let (M, J, g) be a compact Kaehler manifold. Assume G ≤ Isomg(M)
acts in a Hamiltonian fashion. Then the set

L(M ; G) := {p ∈ M reg : G · p is a Lagrangian orbit}

either is empty or is a smooth submanifold of M reg, of dimension 2n−dim [g, g].

Proof : If there exists a regular Lagrangian orbit, then, by proposition 3, P is
finite and dim G=n. Thus every regular isotropic orbit has dimension n and is
Lagrangian. Lemma 4 now shows that, if we let µreg denote the restriction of
µ to M reg, then L(M ; G) = µ−1

reg([g, g]#). Since gp = 0, µreg is a submersion so

L(M, G) is smooth, of dimension n + dim [g, g]#.

Example 6 Assume G ≤ Isomg(M) is semisimple. Then the G-action on M
is Hamiltonian (cfr. [A]) and Lagrangian orbits are isolated.

Example 7 Assume that a torus T n ≤ Isomg(M) acts effectively on M and
that H1(M ; R) = 0. Then the action is Hamiltonian (cfr. [A]), P = 1, [g, g] = 0
and every regular orbit is Lagrangian. In other words, L(M, G) = M reg.

In particular, there exists a minimal, Lagrangian orbit (cfr. also [G]).
An example of this is provided by the standard T n-action on Pn.

14



5 MCF of Lagrangian orbits in KE manifolds

In this section, we will assume that (M, J, g, ω) is a KE manifold.
Since we are interested in group actions, we must recall (cfr. [K1]) some

basic facts concerning their transformation groups.

Theorem 4 Let M be a compact KE manifold such that Ric = c · g, c > 0.
For any (real) vector field X, let Z := X − iJX and ζ := g(Z, ·). Then

1. i(M) is totally real in h(M): ie, if X ∈ i(M), then JX /∈ i(M).

2. X ∈ h(M) ⇔ ζ = ∂f : f ∈ C∞(M ; C), ∆f = 2cf .

In particular,
∫

M
f = 0, so such an f is unique.

3. X ∈ i(M) ⇔ Re(f) = 0.

If we set E2c := {f ∈ C∞(M ; R) : ∆f = 2cf}, there is an isomorphism:

E2c ≃ i(M), f 7→ i∂f = ζ

4. h(M) = i(M) ⊕ J i(M).

It is possible (cfr. [K2]) to prove that positive compact KE manifolds are simply
connected. This implies that every fundamental vector field induced by G ≤
Isomg(M) is Hamiltonian. From our point of view, however, much more is true:

Proposition 4 (cfr. [F]) Let M be a compact positive KE manifold and G ≤
Isomg(M). Then the action of G on M is Hamiltonian.

Recall the correspondence and the notation from theorem 4 above:

X ∈ i(M) ↔ f : f ∈ C∞(M ; R), ∆f = 2cf, ζ = i∂f

Then µX := − 1
2f defines a moment map for M , G.

Moment maps are usually not unique: if µ is a moment map, µ + c also is, for
any c ∈ [g, g]# ≤ g∗. The proposition above suggests the following

Definition 5 The moment map defined in proposition 4 above will be called the
“canonical moment map” of the G-action.

Recall, however, that moment maps are uniquely defined on [g, g] because
µ[X,Y ] = ω(X̃, Ỹ ). Recall also lemma 4. Proposition 4 thus leads to the follow-
ing result:

Corollary 6 Let M be a compact KE manifold such that Ric = c · g, c > 0.

1. ∀X, Y ∈ i(M), ω(X̃, Ỹ ) ∈ E2c.

2. ∀f ∈ E2c, f restricted to L(M ; G) is G-invariant.
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Putting everything together and using the fact that KE metrics are analytic,
we can now prove the following result:

Theorem 5 Let M be a compact positive KE manifold and let G ≤ Isomg(M).
Assume L(M ; G) is not empty. Then H is tangent to L(M ; G), so MCF

preserves the Lagrangian condition and may be studied as in theorem 2.
Furthermore, there exists a minimal Lagrangian orbit.

Proof : Recall, for any Lagrangian submanifold Σ immersed in Kaehler M , the
isomorphism

(TΣ)⊥ ≃ Λ1(Σ), V ≃ ν := ω(V, ·)|Σ

It is well-known (cfr. [TY]) that if σH ∈ Λ1(Σ) denotes the 1-form corresponding
to the mean curvature vector field H under this isomorphism, then d σH = ρ|Σ,
where ρ(X, Y ) := Ric(JX, Y ) is the “Ricci 2-form” of M .

When M is KE, ρ = c · ω, so this shows that σH is closed.
Now let p ∈ L(M ; G). Then TpL = {X ∈ TpM : dµ[p](X) ∈ [g, g]#}, so we

need to prove that dµ[p](H) ∈ [g, g]#.
Since H is G-invariant, σH also is; ie, σH ∈ g∗. Notice that dµ[p](H) =

ω[p](·, H) = −σH [p].
Recall that, for any 1-form α ∈ Λ1(Σ),

dα(X, Y ) = Xα(Y ) − Y α(X) − α[X, Y ]

Thus 0 = d σH(X, Y ) = −σH [X, Y ], ∀X, Y ∈ g, as desired.
(1) is now obvious. The properties of vol show that there is a Lagrangian

orbit O of maximum volume (which is minimal in L(M ; G)). Let Ot be a curve
in L(M ; G) such that O0 = O and d

dtOt = H . Then 0 = d
dtvol(Ot)|t=0 =

−
∫

M
(HO, HO), so HO ≡ 0.

Remark: When M is compact Kaehler Ricci-flat, one can show that Isomg(M)0

is a torus, so example 7 show that the analogous statement is trivially true.
When M is compact negative KE, Isomg(M)0 = {Id}, so these manifolds

are not interesting from our point of view. Cfr. [K1] for details.

Our final goal is to explore the relationship between MCF and the canonical
moment map.

Proposition 5 Let M2n be a compact KE manifold such that Ric = c ·g, c > 0.
Given G ≤ Isomg(M), assume L(M ; G) is not empty. Let µ : M −→ g∗ denote
the canonical moment map. Then, on L(M ; G),

1. ∀X ∈ g, HO · ∇µX = c µX.

2. ∀p ∈ L(M ; G), the natural (G-invariant) metric on G · p ⊆ M defines
metrics on g and g∗. For the induced norm (which depends on p),

d‖µ‖2[p](H) = 2c‖µ(p)‖2
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Proof : Let O ≃ G ·p/Gp denote any regular Lagrangian orbit. Let e1, . . . , en ∈
g ≃ TpO be a orthonormal basis wrt the induced metric. To simplify the
notation, we will denote the corresponding fundamental vector fields also by ei.
Then

(HO,∇µX) = (∇⊥
ej

ej ,∇µX) = (∇ej
ej ,∇µX) = −(ej,∇ej

∇µX)

In section 4, we saw that ∇µX is an infinitesimal automorphism of M . Thus

∇Jej
∇µX = ∇∇µX

Jej + [Jej ,∇µX ] = J(∇∇µX
ej + [ej ,∇µX ]) = J(∇ej

∇µX)

The definition of the canonical moment map now shows that

2(HO,∇µX) = −(ej ,∇ej
∇µX) − (Jej , J(∇ej

∇µX))

= −(ej ,∇ej
∇µX) − (Jej ,∇Jej

∇µX)

= −divM (∇µX) = ∆MµX = 2c µX

This proves (1). Applying (1) to X = ei, multiplying by 2µei
and summing wrt

i shows that
HO · ∇‖µ‖2 = 2c‖µ‖2

which is (2).

We can now prove

Theorem 6 Let M2n be a compact KE manifold such that Ric = c · g, c > 0.
For G ≤ Isomg(M), let µ denote the canonical moment map and let E2c(G) :=
{f ∈ E2c : f = µX , for some X ∈ g}.

Assume that regular orbits have dimension n. Then a Lagrangian orbit O
is minimal iff µ(O) = 0. In particular, minimal Lagrangian orbits are isolated.
Furthermore, the following are equivalent:

1. There exists a Lagrangian orbit.

2. There exists a minimal Lagrangian orbit.

3. 0 ∈ µ(M).

4. The set {p ∈ M : f(p) = 0, ∀f ∈ E2c(G)} is not empty.

Proof : By hypothesis, an orbit is regular iff it is n-dimensional. In particular,
every Lagrangian orbit O is regular. We may thus restrict our attention to
M reg.

If O is minimal, proposition 5 shows that µ(O) = 0. Viceversa, assume that
µ(O) = 0. Let Ot be obtained by MCF applied to O. Then proposition 5 shows
that f(t) := ‖µ‖2(Ot) satisfies

d

dt
f(t) = 2cf, f(0) = 0
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This implies that f(t) ≡ 0, so O(t) ⊆ µ−1(0). However, µ is a submersion, so
µ−1(0) is smooth of dimension n and, since P is finite, the elements of µ−1(0)/G
are isolated. Thus O(t) ≡ O, ie O is minimal.

Together with theorem 5, this shows that (1), (2) and (3) are equivalent.
The equivalence of (3), (4) comes directly from the definition of µ.

Remark: In the toric case, one can show that µ−1(0) is connected, so theorem
6 implies that the minimal Lagrangian orbit is unique. This result was obtained
also in [G], by lifting the T n-action from M to its canonical bundle KM and
studying the induced geometry.
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