1	Genomic and genetic variability of six chicken populations using single
2	nucleotide polymorphism and copy number variants as markers
3	M.G. Strillacci ¹ , M.C. Cozzi ¹ , E. Gorla ¹ , F. Mosca ¹ , F. Schiavini ² , S.I. Román-Ponce ³ ,
4	F.J. Ruiz López ³ , A. Schiavone ⁴ , M. Marzoni ⁵ , S. Cerolini ¹ and A. Bagnato ¹
5	
6	¹ Department of Veterinary Medicine. Universitá Degli Studi di Milano, via Celoria 10,
7	20133 Milano, Italy
8	² Department of Health, Animal Science and Food Safety (VESPA). Universitá degli
9	Studi di Milano, via Celoria 10, 20133 Milano, Italy
10	³ Centro Nacional de Investigación en Fisiología y Mejoramiento Animal. INIFAP.
11	Km.1 Carretera a Colón, Auchitlán, 76280 Querétaro, México
12	⁴ Department of Veterinary Science. Università degli Studi di Torino. Largo Paolo
13	Braccini 2, 10095 Grugliasco, Italy
14	⁵ Department of Veterinary Science. Università degli Studi di Pisa. Viale delle Piagge
15	2, 56124 Pisa, Italy
16	
17	Corresponding author: Maria Giuseppina Strillacci. Email: maria.strillacci@unimi.it
18	
19	Short Title: Genetic variability of six chicken breeds
20	
21	Abstract
22	Genomic and genetic variation among six Italian chicken native breeds (Livornese,
23	Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and
24	Siciliana) were studied using single nucleotide polymorphism (SNP) and copy
25	number variants (CNV) as markers. A total of 94 DNA samples genotyped with

Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) were used in the 26 27 analyses. The results showed the genetic and genomic variability occurring among the six Italian chicken breeds. The genetic relationship among animals was 28 established with a principal component analysis. The genetic diversity within breeds 29 was calculated using heterozygosity values (expected and observed) and with 30 Wright's F-statistics. The individual-based CNV calling, based on log R ratio (LRR) 31 and B allele frequency (BAF) values, was done by the Hidden Markov Model of 32 PennCNV software on autosomes. A hierarchical applomerative clustering was 33 applied in each population according to the absence or presence of definite CNV 34 35 regions (CNV were grouped by overlapping of at least 1 base pair). The CNV map was built on a total of 1003 CNV resulting in 564 unique CNV regions (344 gains, 213 36 losses and 7 complex), for a total of 9.43 Mb of sequence and 1.03% of the chicken 37 38 assembly autosome. All the approaches using SNP data showed that the Siciliana breed clearly differentiate from other populations, the Livornese breed separates into 39 40 two distinct groups according to the feather colour (i.e. white and black) and the Bionda Piemontese and Bianca di Saluzzo breeds resulted are closely related. The 41 genetic variability found using SNP is comparable to that found by other authors in 42 43 the same breeds using microsatellite markers. The CNV markers analysis clearly confirmed the SNP results. 44

45

46 **Key words:** SNP, Copy Number Variation, poultry, biodiversity, genetic variability

47

48 Implications

The aim of this study was to assess the genetic diversity of six Italian chicken breeds in order to define the status of in situ genetic collections and study their conservation 51 potential. The genetic and genomic structure of the six Italian native chicken 52 populations reported here will contribute to design coherent programs for in vivo and 53 in vitro conservation, valorisation and utilization of the breeds. As these breeds 54 represent a unique animal resource, these findings will impact the economic value 55 and environmental sustainability of traditional food production..

56

57 Introduction

Genetic makeup of populations is the result of a long-term process of adaptation to specific environments and ecosystems and, of artificial selection. Local populations are usually well adapted to environment and capable to express optimal functionality of life cycle events, as reproduction and resistance to diseases despite environmental challenges and, at the same time, to exhibit a good food production (i.e. meat and eggs).

The Food and Agricultural Organization of United Nation (FAO) definition of animal 64 65 genetic resources eligible for conservation includes animal populations with economic potential, scientific and cultural interest (FAO, 2009). In most of the World 66 about 50% of documented breeds have been classified as extinct, at critical survival 67 or endangered (Hammond, 1996); furthermore 31% of cattle breeds, 35% of pig 68 breeds and 38% of chicken breeds are at risk of extinction. Additionally especially in 69 70 poultry, local breeds have often been diluted by indiscriminate cross-breeding with imported stocks (FAO, 2009). As a consequence the conservation of domestic 71 72 animal biodiversity has become a priority to develop sustainable, safe and diversified products and production systems. Considering that the 68% of the 53 Italian chicken 73 breeds were classified as extinct (Zanon and Sabbioni, 2001), efforts for 74 75 conservation of the remaining local populations are urgently required. Recently,

national initiatives (Mosca *et al.*, 2015) have been undertaken in Italy to characterise
local populations for resilience and for the nutritional properties of their primary
production used as basis of regional food products often related to gastronomic
traditions.

In the last decades, microsatellite markers have been used to perform phylogenetic 80 analysis and studies on genetic variability in the chicken breeds (Strillacci et al., 81 2009; Al-Qamashoui et al., 2014; Ceccobelli et al., 2015). The availability of high-82 density Single Nucleotide Polymorphisms (SNP) arrays has opened the possibility to 83 investigate the genetic structure of a population on a very large number of markers 84 85 having uniform distribution on all chromosomes. Moreover, these arrays permit to identify and map copy number variants (CNV) on the genome. CNV are distributed 86 87 over the whole genome in all species and are defined as large-scale genome 88 mutations ranging from 50bp to several Mb (Mills et al., 2011) compared with a reference genome (insertions, deletions and more complex changes). Involving large 89 90 genomic regions, CNV may affect gene structure and determine expression and/or 91 regulation gene changes (Redon et al., 2006). Although CNV were recently mapped in several livestock species (Han et al., 2014; Schiavo et al., 2014; Bagnato et al., 92 2015), their use as markers to explain intra-breeds genetic diversity has been 93 explored only in few species (Gazave et al., 2011; Xu et al., 2016). 94

The aim of this study was to analyse the genomic and genetic variation in order to describe the existing variability among individuals of six Italian chicken breeds using both SNP and CNV as markers. We will then test the hypothesis that genetic variation exist among the six breeds considered in this study and highlighting that the new knowledge gained thanks to high throughput genotyping (SNP, CNV) strongly contribute to the characterization of genetic diversity among them.. The knowledge of the genetic structure of these breeds may be used to preserve the genetic variabilityand the phenotypic features peculiar of each population.

103

104 Material and methods

105

106 Sampling and genotyping

In this study, 6 Italian chicken breeds were used: Livornese (LI) from Tuscany, Milanino (MI) and Mericanel della Brianza (MB) from Lombardy, Bionda Piemontese (PI) and Bianca di Saluzzo (SA) from Piedmont, and Siciliana (SI) from Sicily (Supplementary Tables S1 and S2). All the populations are ancient Italian breeds except the composite MI. The MB is the only Italian bantam breed, with an official recognised standard.

113 Ninety-six blood samples (16 per breed) were randomly selected among blood biobanks (stored in 0.5 M EDTA at -20°C) representative of flock nucleus conserved 114 within the universities of Milano, Torino and Pisa. Genomic DNA was isolated using 115 the NucleoSpin® Blood kit (Macherey-Nagel) according to the manufacturer's 116 117 instructions. DNA concentration was determined with the Qubit® dsDNA HS Assay kit (Life Technologies) using the proper Qubit® fluorometer; purity was assessed 118 trough the evaluation of A260/280 and A260/230 ratios on the Infinite® 200 PRO 119 120 NanoQuant spectrophotometer (Tecan) and integrity verified running samples E-121 Gel® 48 Agarose Gels, 1% (Invitrogen).

All DNA samples were genotyped using the Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) including 580961 SNP markers, distributed across the genome with an average spacing of 1.7 Kb (galGal4 assembly). Axiom™ Analysis Suite software (Affymetrix) was used to run raw intensity data Quality Control and Genotyping Algorithms. Default quality control settings were applied to filter for low quality samples before running the genotyping analysis. Axiom CNV summary tool was used to generate input files for CNV prediction analysis software.

129

130 SNP analyses

SNP allele frequencies, expected (H_e) and observed (H_o) heterozygosity were computed separately for each breed using the PEAS software (Xu *et al.*, 2010). Genetic diversity within and among breeds was determined estimating the Wright's F-statistics fixation index (F_{ST}) and inbreeding coefficient of an individual relative to a subpopulation (F_{IS}) on SVS Golden Helix software 8.3.1 (Golden Helix Inc.) (SVS).The genetic structure of Italian chicken populations was analysed using:

i) SVS: Principal Component Analysis (PCA) based on SNP allele frequencies.

ii) ADMIXTURE ver. 1.3.0 software (Alexander *et al.*, 2009): population structure
analysis with a number of ancestral populations K that ranged from 2 to 8. To
evaluate optimal number of ancestors, cross-validation error values (CVE) were
computed for each K using a 5-fold cross-validation procedure, as reported by
Nicoloso *et al.*, (2015). Each inferred chicken population structure was visualized
using an R script.

iii) PEAS software: individual tree using Neighbor-Joining (NJ) algorithm. The NJ
tree, constructed based on the allele sharing distance (DAs) as the genetic distance
between individuals, was graphically represented using FigTree version 1.4.2
(Rambault, 2014).

148

149 CNV and CNVR Analyses

Both the Log R Ratio (LRR) and the B-Allele Frequency (BAF) values of each sample 150 151 were obtained from the Axiom® CNV Summary Tool software. LRR and BAF were used in the individual-based CNV calling performed by PennCNV software (Wang et 152 al., 2007) on chromosomes 1-28, using the default parameters of the Hidden Markov 153 154 Model (HMM): standard deviation of LRR < 0.30, BAF drift as 0.01 and waviness factor at 0.05. The CNV regions (CNVR) were defined in each breed using the 155 BedTools software, through merging overlapping CNV by at least 1bp, as described 156 157 by Redon et al., (2006).

Clustering analysis using CNVR. A clustering analysis for all samples was performed 158 159 considering the identified CNVR as genetic makers (Tian et al., 2013). A scoring 160 matrix of the CNVR data was built by encoding a value of "0" or "1" according to the absence or presence for each individual of any mapped CNV in the pertinent CNVR. 161 A hierarchical agglomerative clustering was applied on the scoring matrix using the 162 pvclust function from the pvclust R package (Suzuki and Shimodaira, 2006). 163 164 Multiscale bootstrap resampling was applied to calculate the Approximately Unbiased 165 P-value (AU) using 10000 bootstraps to assess the robustness of branches. Agglomerative method chosen was Unweighted Pair Group Method with Arithmetic 166 mean (UPGMA). 167

168

169 **Results and Discussion**

170

171 SNP analyses

SNP analyses and the CNV detection were performed on 94 quality-filtered samples, as two samples belonging to MB and PI breeds were discarded for low raw signal intensity. SNP with Minor Allele Frequency (MAF) value \leq 0.01, SNP with HardyWeinberg equilibrium (HWE) \leq 0.00001, SNP not on first 28 autosomal chromosomes and SNP having a call rate < 99% were excluded, reducing to 412336 SNP markers the number of loci used in the analysis. The number of polymorphic sites within breed ranged from 197099 (47.8%) to 383086 (92.8%) for SI and SA, respectively (Table 1).

180 For each breed, the effective number of heterozygous SNP (number of SNP in which at least one heterozygous individual was identified) represents more than 99% of 181 182 polymorphic sites (Table 1). The H_0 and H_e ranged from 0.210 and 0.170 (SI) to 0.345 and 0.320 (SA), whereas the Fis values ranged from -0.192 (SI) to 0.094 (LI). 183 184 The SI H_o and H_e values (0.210; 0.170) reflect the highest percentage of monomorphic SNP (52.2%) and the low variability within the breed. On the contrary, 185 the SA breed has a low F_{IS} value (-0.045) and the highest H_0 and H_e values 186 187 confirming results previously obtained by Sartore et al., (2014) using microsatellite 188 markers.

189 In the LI breed, despite the high percentage of polymorphic SNP (75.9%), the H_o and 190 He values are quite low (0.232 and 0.249), although the Fis value (0.094) indicates a 191 low level of inbreeding. Ceccobelli et al., (2015) reported for the same breed similar F_{IS} value and higher H_o and H_e values obtained using microsatellites data. The low 192 193 genetic variability measured in both LI and SI birds is suggested to be related to the 194 small size of the population under conservation for many years, situation generally 195 known to be associated with relevant value of inbreeding. The H₀ and H_e values for 196 the bantam breed MB (0.243 and 0.221) are lower than those obtained by Tadano et 197 al., (2008) on Japanese bantam breeds using a panel of 40 microsatellites. The Fis 198 value for MB (-0.060) is very low and quite similar to that identified in the Japanese 199 Bantam breed Tosa-Jidori (Tadano et al., 2008).

Except for LI and PI, the negative Fis values detected in all other breeds reflect an 200 201 excess (increasing) of heterozygosity, probably due to outbreeding (Tadano et al., 2007). The heterozygous SNP were classified into three classes according to the 202 number of individuals resulted heterozygous at the same locus: "01-05", "06-10" and 203 "11-16". In fact, for MB, MI, SA and SI breeds (MB=4.7%, MI=6.6%, SA=6% and 204 SI=7.4%) respect to LI and PI (LI=2.1%, PI=1.8%) a higher proportion of SNP were 205 heterozygous in more than 10 samples (class "11-16") (Figure 1). The same 206 207 distribution applies for class of individuals "6-10". On the contrary, if we consider the class of individuals "1-5" the two breeds LI and PI are those with the largest 208 209 proportion of heterozygous SNP. This behaviour in SNP heterozygous loci agree well with the Fis values found here. 210

The pairwise fixation indexes (Fst) among the six Italian chicken breeds are 211 212 presented in Figure 2. The F_{ST} values range from 0.082 (PI vs. SA) to 0.439 (SI vs. MB). The largest differences were between the SI breed and the other populations, 213 214 with F_{ST} values ranging from 0.290 (SA) to 0.439 (MB). The F_{ST} values greater than 215 zero can be related to the effect of genetic isolation respect to the other populations, which can lead to homozygous excess over time. As expected by their origin (i.e. 216 same geographical region), the PI and SA breeds are closely related (F_{ST}=0.082) and 217 their F_{ST} values against the other populations are very low. Sartore et al., (2016) 218 219 considered PI as the ancestral population of the present day SA. These authors also report a similar F_{ST} value for the same breeds using a panel of 32 microsatellite 220 221 markers.

The MI breed is relatively similar to PI and SA and differs from all other breeds in terms of genetic structure (Figure 2). The bantam breed MB differs from the MI and LI breeds (F_{ST} =0.356 and F_{ST} =0.324), but is relatively similar to the Piedmont PI and SA breeds ($F_{ST}=0.250$ and $F_{ST}=0.230$). MB is very common breed in north-east of Milan and it is still not possible to determine the period in which this breed appeared. The breeds anyhow is reported to derived from dwarf rural chickens diffused in small rural farms at the beginning of last century (Ceppolina, 2015).

The overall F_{ST} value found across all breeds is 0.253, indicating that 25.3% of the 229 genetic variation is explained by the breed differences, whereas the remaining 74.7% 230 of the variance describes the differences among individuals. This value is higher than 231 0.15 considered by Frankham et al., (2004) as an indicator of significant 232 differentiation among populations. The genetic variability of local breeds here 233 234 highlighted must be considered an important genetic resource as indicated by Muir et al., (2008). In fact, they reported in a recent analysis using SNP markers, that 235 236 commercial pure line showed a substantial decrease of genetic diversity compared 237 with non-commercial chicken populations.

The overall FST value identified here is similar to the previous reported using 238 239 microsatellites markers in commercial chicken lines (Tadano et al., 2007), British 240 (Wilkinson et al., 2011) and Mediterranean chicken breeds (Ceccobelli et al., 2015). In contrast, lower FST values were reported in Japanese, Italian and Swedish local 241 populations (Tadano et al., 2008, Zanetti et al., 2010; Abebe et al., 2015). The higher 242 chicken F_{ST} values, highlighted the larger genetic variability of chicken populations, 243 244 respect to the one found in other livestock species. For instance, Wang et al., (2015) reported a Fst value of 0.149 in Chinese pig breeds and Makina et al., (2014) a Fst 245 246 value of 0.149 in South Africa cattle breeds.

The PCA (Figure 3A) disclosed genetic differences among the six breeds and show that all individuals are well clustered by breed. The canonical variable plotted on the *y*-axis explained 1.93% of the overall SNP variance. On this axis, the LI breed is clearly separated in two different groups according to bird's feather colour (black upper group and white lower group) as well as the PI and SA breeds create two separated clusters closely related. The origin of LI breed is not so clear, probably from Central Italy, obtained from the selection of light chicken reared in Tuscany region. LI is worldwide spread with different colors of livery: black, white and brown (light and dark) (Ceppolina, 2015) and selected according to colour differences for decades.

The distinction among breeds was clearly displayed on the canonical variable plotted as *x-axis* representing 7.18% of the SNP variance. The SI breed is a distinct group, confirming results of F_{ST} values. In fact, this breed appears to derive from ancient inter-breeding of local Sicilian birds with North African sock (Ceppolina, 2015) The PCA plot shows the division of SI samples in three sub-groups. The major distance was identified between MI and SI breeds.

The results of the NJ analysis (Figure 3B), are consistent with those obtained by the PCA. The NJ dendrogram suggests the presence of three distinct clusters: cluster 1 includes the closely related PI and SA breeds (originating in Piedmont), cluster 2 includes the two varieties of LI breed and SI, and cluster 3 includes MI and MB breeds (originating in Lombardy).

An increasing number of assumed ancestors, from K=2 to 8 was used for global admixture analysis done by the ADMIXTURE software. The graphical representation of the estimated ancestor fractions in individual genomes is shown in Figure 3C. In fact, at K=2 two distinct ancestors are represented by SI and MB+MI, while LI, PI and SA genomes seem to include a major fraction of the MB+MI ancestor and a minor fraction the SI ancestor. K = 3 and 4 split MB from MI, and the above 3 composite breeds now had a major MI and minor MB and SI ancestor components. A similar albeit more complicate figure was kept by K=5. Based on agreement with the PCA
and CNV analyses, the ADMIXTURE software identified K=6 as the most probable
number of common ancestors of our samples. At K=6, MI, MB and SI breeds
grouped again into independent ancestors, and the LI breed appears to be divided
into two genetically distinguishable subgroups, confirming both PCA results and CNV
cluster analysis.

Independently of the K number, individuals belonging to the PI and SA breeds seem 281 282 to share the same ancestors composition, but when K increased to 7 they separated in two distinct groups, while retaining some common genetic features. At K=8 almost 283 284 all breeds (except for MB) returned to show the same genetic features identified at smaller Ks. It is interesting to note that all the grouping strategies identify the MI 285 breed as distinct from the other genetic groups: this is representative of the selection 286 287 history of the breed initiated at the beginning of 20th century by crossing Valdarnese 288 Bianca males to Horpington females (Mosca et al., 2015).

289

290 CNV and CNVR analyses

In Table 2 the frequency of CNV identified, the mean and median values, as well as 291 the CNV coverage per each breed compared to the chicken assembly autosomes are 292 293 reported. In all breeds, the number of losses (state 0 and 1) is higher than the 294 number of gains (state 3 and 4), except for the SA breed. This is indicated by the deletions/duplications ratios calculated as the total number of losses divided by 295 296 number of gains: 1.56, 2.14, 1.11, 1.63, 1.12 and 0.45 for LI, MB, MI, PI, SI and SA, 297 respectively. The majority of CNV (i.e. 91% among all breeds) identified in this study, 298 have a length between 1 Kb and 100 Kb representing a proportion over the total number of CNV of 87.7% in the MI to 95.4% in the SI. 299

A total of 564 unique CNVR (344 gains, 213 losses and 7 complex) were found 300 301 among all breeds. These CNVR covered a total of 9.43 Mb of sequence length 302 corresponding to 1.03% of the chicken galGal4 assembly autosome. The total 303 number of CNVR detected for each breed is 103 in LI, 57 in MB, 82 in MI, 174 in PI, 304 94 in SA and 123 in SI (Figure 4 and Supplementary Table S3). Table 3 shows the number of CNVR for each breed by chromosome. With the exception of chr21 and 305 chr24, which contain CNVR identified only in two breeds (LI-PI and MI-PI, 306 307 respectively), all other autosomes include CNVR from at least three breeds. CNVR on chromosomes 1, 2, 3, 4, 5, 8, 12, 14, 16 and 20 have been identified in all breeds. 308 309 In the PI breed, the identified CNVR map on all chromosomes, with the exception of the chr26, while the CNVR identified in the LI breed are distributed on only 12 310 311 autosomes.

312 Among the identified CNVR, 426 (75%) were present in a single individual (singleton), 61 (10%) in two individuals, 23 (4%) in three individuals, 14 (2%) in four 313 314 individuals, and 40 (7%) in more than five individuals. The high proportion of the 315 singleton has been previously reported by Yi et al., (2014) (68.8%) and by Han et al., (2014) (76.5%), confirming that segregating CNV exist among individuals. The CNVR 316 on chr16 at 215,410-330,020 bp was identified in 31 samples across all 6 chicken 317 breeds (at least 2 samples/breed) as well as in chicken populations analysed by the 318 319 latter above-cited authors.

Comparison of the CNVR in the six breeds (Figure 4) reveals that the number of CNVR shared among the breeds ranged from 15 (MI *vs* others) to 29 (PI *vs* others) whereas the number of intra-breed shared CNVR (mainly contributed by single sample variations) ranged from 41 (MB) to 145 (PI). Considering the CNVR identified by CNV common to individuals of different breeds, the most frequent combinations are: SI-PI (n=7) and SA-PI (n=6). Adding to these combinations those including other
breeds, it gives a total of 11 and 10 CNVR common to SI-PI and SA-PI, respectively
(Figure 4).

Despite recent studies on CNV in chicken have showed their role in metabolic pathways and their association with innate and adaptive immunity, morphological traits, developmental defects or disease susceptibility (Wang *et al.*, 2014; Yan *et al.*, 2015), the actual knowledge on CNV and their full role in the genomic expression is still limited and do not permit to understand the specific function of CNV here found.

Figure 5 shows the cluster-tree built for the six chicken breeds based on CNVR similarities. In the plot, the branch length is not directly proportional to the genetic distance estimated among samples. The Approximately Unbiased P-value (AU-P) and Bootstrap Probability value (BP-P) were shown for each node, as well as the Edge numbers. We focused on the AU-P because the BP-P is considered less accurate than AU-P and according to Suzuki and Shimodaira, (2006) the cluster (edges) with AU-P larger than 95% are the most plausible.

Edge numbers represent the order in which the clusters were built. More closely related samples have a smaller edge numbers, while higher edge numbers reflect clusters formed later in the breed evolutionary process. As shown in the plot, all samples of SI and almost all samples of MB were assigned to a single breed-cluster. The MI and LI samples are grouped in two distinct clusters each. Instead for PI and SA breeds, three and four clusters were identified respectively, two of which include samples belonging to both breeds.

347

348 Conclusion

350 This research represents a first approach to evaluate the genetic variability and 351 diversity within and between six Italian chicken populations using SNP and CNV markers. The results highlight the existence of genetic variability and a low 352 353 inbreeding coefficient in all Italian chicken breeds considered. Notably, the pairwise fixation indexes, the PCA and the NJ trees all show the clear separation of the SI 354 breed from the others and in the LI, the presence of two distinct groups 355 corresponding to the white and black varieties. In addition, PI and SA resulted closely 356 357 related, highlighting the geographic common origin. The genetic variability found using SNP is comparable to the one reported by other authors in the same breeds, 358 using microsatellite markers. In addition, the CNV markers analysis have well 359 separated the breeds in terms of genetic identity, according to their breeding history. 360 Some of the CNV interestingly maps in chromosomal regions where important 361 362 functional genes are annotated (e.g. the MHC region on chromosome 16). A follow up analysis may further investigate functional association between CNV and genes. 363

Results of this study represent a basis for the Italian chicken population's valorisation as an important reservoir of genetic diversity. In Italy, Avian Research Units within Academic infrastructures are currently involved in in situ conservation programs of Italian poultry populations. Efforts to maintain genetic variability have been implemented and the small poultry flocks available need to be continuously monitored to avoid the loss of biodiversity.

As a conclusion, this manuscript confirm the existence of genetic and genomic variability in the Italian chicken populations suitable for their maintenance and genetic improvement. To enhance this process it is advisable that other researches on a larger population sample disclose the association between SNP and CNV markers with phenotype expression of quantitative traits. 375

376

377 Acknowledgments

378 This study was Co-funded by project n° M01678 - Minister of Foreign affairs of Italy 379 and Mexico"

380

381 **References**

- Abebe AS, Mikko S and Johansson AM 2015. Genetic diversity of five local Swedish chicken
 breeds detected by microsatellite markers. PLoS ONE 10, e0120580.
- Alexander DH, Novembre J and Lange K 2009. Fast model-based estimation of ancestry in
 unrelated individuals. Genome Research 19, 1655-1664.
- Al-Qamashoui B, Simianer H, Kadim I and Weigend S 2014. Assessment of genetic diversity
 and conservation priority of Omani local chickens using microsatellite markers. Tropical
 Animal Health and Production 46, 747-752.
- Bagnato A, Strillacci MG, Pellegrino L, Schiavini F, Frigo E, Rossoni A, Fontanesi L,
 Maltecca C, Prinsen RTMM and Dolezal MA 2015. Identification and validation of copy
 number variants in Italian Brown Swiss dairy cattle using Illumina Bovine SNP50
 Beadchip. Italian Journal of Animal Science 14, 552-558.
- Ceccobelli S, Di Lorenzo P, Lancioni H, Monteagudo Ibáñez LV, Tejedor M, Castellini C,
 Landi V, Martínez Martínez A, Delgado Bermejo JV, Vega Pla JL, Leon Jurado JM,
 García M, Attard G, Grimal A, Stojanovic S, Kume K, Panella F, Weigend SGND and
 Lasagna E 2015. Genetic diversity and phylogeographic structure of sixteen
 Mediterranean chicken breeds assessed with microsatellites and mitochondrial DNA.
 Livestock Science 175, 27-36.
- 399 Ceppolina S. 2015. Standard Italiano delle Razze Avicole. FIAV Publisher, Sacile (PN), Italy.

Food and Agricultural Organization of United Nation 2009. Status and trends report on
animal genetic resources – 2008. CGRFA/WG-AnGR-5/09/Inf. 7. FAO Publisher,
Rome, Italy.

403 Frankham R, Ballou JD and Briscoe D A 2004. A primer of conservation genetics. Cambridge
404 University Press, Cambridge, United Kingdom.

405 Gazave E, Darré F, Morcillo-Suarez C, Petit-Marty N, Carreño A, Marigorta UM, Ryder OA,

- Blancher A, Rocchi M, Bosch E, Baker C, Marquès-Bonet T, Eichler EE and Navarro A
 2011. Copy number variation analysis in the great apes reveals species-specific
 patterns of structural variation. Genome Research 21, 1626-1639.
- Hammond K 1996. The status of global farm animal genetic resources. Paper presented at
 the Symposium on the Economics of Valuation and Conservation of Genetic
 Resources for Agriculture, Centre for International Studies on Economic Growth, 13-15
 May, Tor Vergata University, Rome, Italy.
- Han R, Yang P, Tian Y, Wang D, Zhang Z, Wang L, Li Z, Jiang R and Kang X 2014.
 Identification and functional characterization of copy number variations in diverse
 chicken breeds. BMC Genomics 15, 934.
- Makina SO, Muchadeyi FC, van Marle-Köster E, MacNeil MD and Maiwashe A 2014. Genetic
 diversity and population structure among six cattle breeds in South Africa using a
 whole genome SNP panel. Frontiers in Genetics 5, 333.
- Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, 419 Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari 420 421 F, lakoucheva LM, lgbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, 422 Lam HY, Leng J, Li R, Li Y, Lin CY, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, 423 Scally A, Shi X, Stromberg MP, Stütz AM, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Snyder M, Wang J, Ye 424 425 K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO and 1000 Genomes Project 2011. Mapping copy number variation by population-scale genome 426 sequencing. Nature 470, 59-65. 427

Mosca F, Madeddu M, Mangiagalli MG, Colombo E, Cozzi MC, Zaniboni L and Cerolini S
2015. Bird density, stress markers and growth performance in the Italian chicken breed
Milanino. Journal of Applied Poultry Research 24, 529-535.

Muir WM, Wong GK, Zhang Y, Wang J, Groenen MA, Crooijmans RP, Megens H J, Zhang
H, Okimoto R, Vereijken A, Jungerius A, Albers GA, Lawley CT, Delany ME,
MacEachern S and Cheng HH 2008. Genome-wide assessment of worldwide chicken
SNP genetic diversity indicates significant absence of rare alleles in commercial
breeds. PNAS 105, 17312-17317.

Nicoloso L, Bomba L, Colli L, Negrini R, Milanesi M, Mazza R, Sechi T, Frattini S, Talenti A,
Coizet B, Chessa S, Marletta D, D'Andrea M, Bordonaro S, Ptak G, Carta A, Pagnacco
G, Valentini A, Pilla F, Ajmone-Marsan P, Crepaldi P and Italian Goat Consortium
2015. Genetic diversity of Italian goat breeds assessed with a medium-density SNP
chip. Genetic Selection Evolution 4, 47-62.

441 Rambaut A. 2014. FigTree. Retrieved on 16 January 2016, from
442 <u>http://tree.bio.ed.ac.uk/software/figtree/</u>.

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Flegler H, Shapero MH,
Carson AR and Chen W 2006. Global variation in copy number in the human genome.
Nature 444, 444-454.

Sartore S, Sacchi P, Soglia D, Maione S, Schiavone A, De Marco M, Ceccobelli S, Lasagna
E, and Rasero R 2016. Genetic variability of two Italian indigenous chicken breeds
inferred from microsatellites marker analysis. British Poultry Science
DOI:10.1080/00071668.2016.1187714

Schiavo G, Dolezal MA, Scotti E, Bertolini F, Calò DG, Galimberti G, Russo V and Fontanesi
L 2014. Copy number variants in Italian Large White pigs detected using high-density
single nucleotide polymorphisms and their association with back fat thickness. Animal
Genetics 45, 745–749.

454 Strillacci MG, Marelli SP, Cozzi MC, Colombo E, Polli M, Gualtieri M, Cristalli A, Pignattelli,
455 P, Longeri M and Guidobono Cavalchini L 2009. Italian autochthonous chicken breeds
456 conservation: evaluation of biodiversity in Valdarnese Bianca breed (Gallus gallus
457 domesticus). Avian Biology Research 2, 229-233.

458 Suzuki R and Shimodaira H 2006. Pvclust: an R package for assessing the uncertainty in 459 hierarchical clustering. Bioinformatics 12, 1540-1542.

Tadano R, Nishibori M, Nagasaka N and Tsudzuki M 2007. Assessing genetic diversity and
 population structure for commercial chicken lines based on forty microsatellite
 analyses. Poultry Science 86, 2301-2308.

Tadano R, Nishibori M, Imamura Y, Matsuzaki M, Kinoshita K, Mizutani M, Namikawa T and
Tsudzuki M 2008. High genetic divergence in miniature breeds of Japanese native
chickens compared to Red Junglefowl, as revealed by microsatellite analysis. Animal
Genetics 39, 71-78.

467 Tian M, Wang Y, Gu X, Feng C, Fang S, Hu X and Li N 2013. Copy number variants in
468 locally raised Chinese chicken genomes determined using array comparative genomic
469 hybridization. BMC Genomics 14, 262.

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant S, Hakonarson H and Bucan M 2007.
PennCNV: an integrated hidden Markov model designed for high-resolution copy
number variation detection in whole-genome SNP genotyping data. Genome Research
17, 1665-1674.

Wang X and Byers S 2014. Copy number variation in chickens: a review and future
prospects. Microarrays 3, 24-38.

Wang Z, Chen Q, Yang Y, Liao R, Zhao J, Zhang Z, Chen Z, Zhang X, Xue M, Yang H,
Zheng Y, Wang Q and Pan Y 2015. Genetic diversity and population structure of six
Chinese indigenous pig breeds in the Taihu Lake region revealed by sequencing data.
Animal Genetics 46, 697–701.

- Wilkinson S, Wiener P, Teverson D, Haley CS and Hocking PM. 2011. Characterization of
 the genetic diversity, structure and admixture of British chicken breeds. Animal
 Genetics 43, 552–563.
- 483 Xu L, Hou Y, Bickhart DM, Zhou Y, Hay EH, Song J, Sonstegard TS, Van Tassell CP and Liu
- 484 GE 2016. Population-genetic properties of differentiated copy number variations in 485 cattle. Scientific Reports 6, 23161.
- 486 Xu S, Guputa S and Jin L. 2010. PEAS V1.0: A package for elementary analysis of SNP
 487 data. Molecular Ecology Resources 10, 1085-1088.
- Yan Y, Yang N, Cheng HH, Song J and Qu L 2015. Genome-wide identification of copy
 number variations between two chicken lines that differ in genetic resistance to Marek's
 disease. BMC Genomics 16, 843.
- 491 Yi G, Qu L, Liu J, Yan Y, Xu G and Yang N 2014. Genome-wide patterns of copy number
 492 variation in the diversified chicken genomes using next-generation sequencing. BMC
 493 Genomics 15, 962.
- Zanetti E, De Marchi M, Dalvit C and Cassandro M 2010. Genetic characterization of local
 Italian breeds of chickens undergoing in situ conservation. Poultry Science 89, 420–
 496 427.
- Zanon A and Sabbioni A 2001. Identificazione e salvaguardia genetica delle razze avicole
 italiane. Annali della Facoltà di Medicina Veterinaria Università di Parma XXI, 117-134.

Table 1 SNP statistics, observed heterozygosity (H_o), expected heterozygosity (H_e) and inbreeding coefficient (F_{IS}) values for the six Italian chicken populations (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda Piemontese,

Draad	Cine	No. of pol.	No. het			
Breed	Size	SNP*	SNP**	Πο	Πe	Γıs
LI	16	312823	310782	0.232	0.249	0.094
MB	15	263920	262346	0.243	0.221	-0.060
MI	16	270881	270039	0.258	0.237	-0.055
PI	15	366337	364921	0.312	0.304	0.008
SA	16	383086	382286	0.345	0.320	-0.045
SI	16	197099	196845	0.210	0.170	-0.192

503 SA=Bianca di Saluzzo and SI=Siciliana)

504

*= number of polymorphic SNP; **= number of heterozygote SNP

505

Brood	No. CNV	No. losses	No. gains	CNV min	CNV max	CNV mean	CNV median	Coverage	Coverage
Dieeu	(min-max)*	State 0/1	State 3/4	length (bp)	length (bp)	length (bp)	length (bp)	(bp)	(%)
LI	159 (3-17)	97	62	160	265647	17919.37	6535	2849180	0.31
MB	110 (5-10)	75	35	462	240256	17587.3	6381	1934603	0.21
MI	131 (4-29)	69	62	381	171360	15032.57	6133	1969267	0.21
PI	211 (6-28)	131	80	52	356281	19241.97	8497	4060057	0.44
SA	131 (5-11)	41	90	258	384766	35254.32	13306	4618316	0.50
SI	261 (7-46)	143	118	213	119253	16262.30	7910	4244461	0.46
Total	1003	556	447	52	384766	19617.03	7380	19675884	2.14

Table 2 Descriptive statistics of copy number variant (CNV) identified for each breed (LI=Livornese, MB=Mericanel della Brianza,

MI=Milanino, *PI=Bionda Piemontese*, *SA=Bianca di Saluzzo and SI=Siciliana*)

509 * min-max=minimum and maximum number of CNV for individual.

512	Table 3	Descriptive	statistics of	of copy	number	variant	region	(CNVR)	identified	for
-----	---------	-------------	---------------	---------	--------	---------	--------	--------	------------	-----

513 each breed (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda

			Bre	eds		
CHR	LI	MB	MI	PI	SA	SI
1	24	15	24	40	21	24
2	15	9	9	20	14	20
3	5	9	11	14	5	15
4	6	4	4	15	6	9
5	8	3	6	11	8	12
6	3	0	1	9	3	4
7	3	0	1	3	7	5
8	3	1	2	3	1	2
9	3	2	4	4	0	4
10	1	0	2	5	4	0
11	1	0	2	3	4	3
12	2	2	1	5	2	2
13	5	2	2	5	2	0
14	3	2	3	5	3	2
15	3	0	2	3	0	0
16	1	1	1	1	1	2
17	3	0	0	3	1	0
18	0	2	1	3	1	3
19	1	0	1	2	3	4
20	1	1	1	3	1	1
21	4	0	0	1	0	0
22	0	1	0	2	1	1

514 Piemontese, SA=Bianca di Saluzzo and SI=Siciliana) by chromosome (CHR)

Total	103	57	82	174	94	124
28	2	0	0	4	1	1
27	2	2	1	3	2	0
26	1	1	1	0	2	3
25	1	0	0	3	0	5
24	0	0	1	2	0	0
23	2	0	1	2	1	2

516 **Figure captions**

517

Figure 1 Proportion of heterozygous SNP classified into three classes according to the number of individuals resulted heterozygous at the same locus: "01-05", "06-10" and "11-16" (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda Piemontese, SA=Bianca di Saluzzo and SI=Siciliana).

522

Figure 2 Matrix of pairwise fixation index F_{ST} among the six Italian chicken breeds.
(LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda Piemontese,
SA=Bianca di Saluzzo and SI=Siciliana).

526

Figure 3 Population genetic analyses of the six Italian chicken breeds (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda Piemontese, SA=Bianca di Saluzzo and SI=Siciliana): A) Scatter plot (EV=Eigenvalues of canonical variables) from a PCA analysis based on SNP frequencies. B) Neighbour-Joining (NJ) dendrogram constructed using genetic sharing distances. C) Admixture plot for all Italian chicken breeds analysed based on different number of assumed ancestors (K).

534

Figure 4 Intra (Unique) and inter (Shared) breed variation of CNVR in the six Italian
chicken populations (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino,
PI=Bionda Piemontese, SA=Bianca di Saluzzo and SI=Siciliana).

538

539 **Figure 5** Dendrogram generated by clustering all individuals of the Italian chicken 540 breeds (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda

- 541 Piemontese, SA=Bianca di Saluzzo and SI=Siciliana) based on their CNV similarities.
- i) Approximate Unbiased (AU) p-value in dark grey colour, ii) Bootstrap Probability
- 543 (BP) value in grey colour, iii) edge in light gray colour.

Matrix of pairwise F_{ST}

Figure_4

Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers

M.G. Strillacci, M.C. Cozzi, E. Gorla, F. Mosca, F. Schiavini, S.I. Román-Ponce, F.J. Ruiz López, A. Schiavone, M. Marzoni, S. Cerolini and A. Bagnato

Supplementary Table S1 Origin and phenotypic characteristics in the six Italian chicken breeds Breed* Origin Region of Use Colour Comb Bird Plumage origin Beak Shank Ear-lobe size type LI-B white white full Ancient Tuscanv eggs vellow vellow simple LI-N white full Ancient Tuscany eggs black yellow simple black MB Lombardv broodiness yellow red&white Last century vellow simple bantam MI Composite Lombardy meat white yellow white simple full white reconstituted ΡI Ancient Piedmont eggs/meat golden/red vellow pink/vellow white simple full SA white full Ancient Piedmont eggs/meat white yellow pink/yellow simple SI Ancient Sicily Golden full eggs black green red&white crown

*LI-B= Livornese, white variety; LI-N=Livornese, black variety; MB=Mericanel della Brianza; MI=Milanino; PI=Bionda Piemontese; SA=Bianca di Saluzzo; SI=Siciliana

Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers

M.G. Strillacci, M.C. Cozzi, E. Gorla, F. Mosca, F. Schiavini, S.I. Román-Ponce, F.J. Ruiz López, A. Schiavone, M. Marzoni, S. Cerolini and A. Bagnato

Breed*	Females				Males					
	BW (g)	BL (cm)	SL (cm)	CC (cm)	WS (cm)	BW (g)	BL (cm)	SL (cm)	CC (cm)	WS (cm)
LI-B	1995	36.8	8.5	35.4	37.6	2524	42.3	11.0	40.8	45.0
LI-N	1877	37.3	8.7	34.3	38.2	2209	40.0	10.0	37.0	44.7
MB	761	28.1	5.5	24.9	27.4	1056	30.8	6.0	26.0	31.8
MI	2705	41.5	8.2	36.7	37.3	3199	47.8	9.0	37.0	43.7
PI	2140	40.6	7.9	32.6	36.2	2534	46.0	9.0	34.3	41.6
SA	2035	36.8	7.5	31.0	35.7	2747	45.0	8.9	37.0	44.4
SI	1672	37.5	8.5	32.1	37.2	1909	40.0	10.0	35.5	40.0

Supplementary Table S2 Means of phenotipic quantitative traits recorded in females and males chickens of the Italian breeds: body weight (BW), body length (BL), shank length (SL), chest circumference (CC) and wing span (WS)

*LI-B= Livornese, variety white; LI-N=Livornese, variety black; MB=Mericanel della Brianza; MI=Milanino; PI=Bionda Piemontese; SA=Bianca di Saluzzo; SI=Siciliana

Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers

M.G. Strillacci, M.C. Cozzi, E. Gorla, F. Mosca, F. Schiavini, S.I. Román-Ponce, F.J. Ruiz López, A. Schiavone, M. Marzoni, S. Cerolini and A. Bagnato

Supplementary Table S3 Copy Number Variant Regions (CNVR) mapped (chromosome (Chr) region start, end and length and CNVR state) for each of the six Italian chicken breed (LI=Livornese, MB=Mericanel della Brianza, MI=Milanino, PI=Bionda Piemontese, SA=Bianca di Saluzzo and SI=Siciliana). Individuals are reported in Breed_SampleID column.

			CNVR		
Chr	Start (bp)	End (bp)	Length	Breed_SampleID	state
	Start (bp)		(bp)		State
1	9126940	9143601	16661	LI_7	GAIN
1	23812864	23817003	4139	LI_10	LOSS
1	25835971	25839970	3999	LI_6	LOSS
1	28444831	28448719	3888	LI_13	LOSS
1	28460553	28469033	8480	LI 13	LOSS
1	29649120	29656052	6932	LI 16	LOSS
1	32261418	32264785	3367	LI_4	GAIN
1	43445087	43450974	5887	LI 10	LOSS
1	73474060	73480039	5979	LI 9	GAIN
1	77610657	77617319	6662	LI_4	GAIN
1	88082730	88092227	9497	LI 4	GAIN
1	102931495	102966351	34856	LI 9	GAIN
1	105454801	105459538	4737	LI_7	LOSS
1	124424407	124425025	618	LI 16	GAIN
1	137262485	137266365	3880	LI_2	GAIN
1	139290303	139417687	127384	LI_7	GAIN
1	141493034	141501579	8545	LI_9	GAIN
1	151077811	151103187	25376	LI_11,LI_5	GAIN
1	151120104	151126098	5994	LI_14,LI_15	LOSS
1	160947041	160965926	18885	LI_2	LOSS
1	161230334	161231780	1446	LI_7	LOSS
1	165174530	165183916	9386	LI_3_R	GAIN
1	184911407	184915744	4337	LI_11,LI_13	LOSS
1	188915548	188920734	5186	LI_11	LOSS
2	2584064	2595497	11433	LI_4	GAIN
2	22957325	22958518	1193	LI_7	GAIN
2	25859462	25952423	92961	LI_3_R,LI_8_R,LI_2,LI_1	LOSS
2	57663103	57669441	6338	LI_15	GAIN
2	60096217	60109363	13146	LI_4	GAIN
2	61558638	61574562	15924	LI_9	GAIN
2	61831467	61848698	17231	LI_9	GAIN
2	63628602	63630632	2030	LI_10	LOSS
2	75782432	75789532	7100	LI_9	GAIN
2	77522436	77527196	4760	LI_12,LI_13	LOSS
2	87680240	87694251	14011	LI_10,LI_12,LI_13,LI_15,LI_16	LOSS
2	93132478	93157538	25060	LI_10,LI_12,LI_15	LOSS
2	93671386	93699066	27680	LI_3_R	GAIN
2	121130610	121142245	11635	LI_3_R	GAIN
2	141127635	141134337	6702	LI_16,LI_6,LI_7	LOSS

3	11654769	11661304	6535	LI_14,LI_5	GAIN
3	37240711	37238223	1/514	LI_5	GAIN
3	58097854	58102975	5121	LI_9	L055
3	/52035/6	75206622	3046		L055
3	9///5480	97778052	2000	LI_2,LI_4,LI_3,LI_6,LI_7	L033
4	5111388	5114996	3608		LUSS
4	13316392	13319428	3036	LI_15	GAIN
4	42076031	42080664	4633	LI_10,LI_13	LUSS
4	47202618	47205335	2/1/	LI_1,LI_16,LI_9	LUSS
4	63010731	63024133	13402	LI_4	GAIN
4	/6259/38	76278990	19252	LI_11	GAIN
5	18270982	18273279	2297		GAIN
5	19630190	19707342	77152	LI_11,LI_16,LI_10,LI_13	LUSS
5	21668927	21676808	7881	LI_3_R,LI_7	LUSS
5	22407746	22410680	2934	LI_2	LOSS
5	29070715	29073718	3003	LI_9	GAIN
5	40024565	40039414	14849	LI_9	GAIN
5	48851655	48858827	/1/2	LI_11	LUSS
5	49067692	49072565	4873	LI_2,LI_7	LOSS
6	7298525	7303004	4479	LI_12,LI_13,LI_14,LI_15,	LOSS
~	40004404	40007700		LI_3_R	
6	12304431	12307723	3292	LI_9	GAIN
6	34190817	34195158	4341	LI_13	LOSS
/	8119314	8120216	902	LI_10,LI_13	LOSS
/	29697191	29699187	1996		LOSS
7	31266237	31278978	12741	LI_2,LI_3_R,LI_5	LOSS
8	157378	202883	45505	LI_10,LI_11,LI_12,LI_4,LI_8_R	LOSS
8	15437515	15466850	29335	LI_7	GAIN
8	16570088	16580656	10568	LI_9	GAIN
9	5602283	5604846	2563	LI_9	GAIN
9	9156044	9160537	4493	LI_10,LI_15	LOSS
9	21327153	21327678	525	LI_8_R	LOSS
10	2053074	2056292	3218	LI_4	GAIN
11	13391667	13412283	20616	LI_12,LI_14,LI_15	LOSS
12	1407088	1672735	265647	LI_4	GAIN
12	2158256	2158611	355	LI_9	GAIN
13	1136171	1143178	7007	LI_16	LOSS
13	3647002	3647419	417	LI_4	LOSS
13	5377387	5381011	3624	LI_11	GAIN
13	7021881	7025909	4028	LI_4	LOSS
13	7202531	7206406	3875	LI_10,LI_13	LOSS
14	777214	798132	20918	LI_10	GAIN
14	8270701	8288943	18242	LI_5	GAIN
14	14169357	14183169	13812	LI_9	GAIN
15	5531575	5541371	9796	LI_13	GAIN
15	8554518	8555460	942	LI_10,LI_11	LOSS
15	10788530	10811194	22664	LI_4	GAIN
16	219031	306007	86976	LI_9,LI_3_R,LI_14,LI_6,LI_11, LI_13.LI_15.LI_16	GAIN
17	1863910	1864637	727	LI 1.LI 3 R	LOSS
17	1973371	1975564	2193	LI 6	LOSS
17	10386087	10407714	21627	LI 7	GAIN
19	9967973	9973808	5835	LI 16	GAIN
20	1946946	1950706	3760	LI 12.LI 15	LOSS
21	474196	477570	3374	 LI_14	GAIN
				-	

21	2752552	2757496	4944	LI_
21	3518438	3522020	3582	LI_'
21	3659215	3661071	1856	LI_'
23	1667735	1683487	15752	LI_
23	3178691	3189074	10383	LI_
25	1367825	1368519	694	LI_
26	628372	635367	6995	LI_
27	544009	730872	186863	LI_
27	3136238	3136779	541	LI_14,I
28	1514399	1517816	3417	LI_
28	3060312	3062116	1804	LI_10,LI_
1	9259807	9263237	3430	MB_
1	34232188	34242449	10261	MB_11,MB_13,
1	38278789	38289573	10784	MB_
1	42816757	42823179	6422	MB <u>.</u>
1	54569850	54571368	1518	MB_
1	77596019	77619334	23315	MB_
1	78851811	78931472	79661	MB_
1	78999223	79091079	91856	MB_
1	13/1/9950	13/18309/	3147	MD 4 M
1	139290303	139376850	86547	
1	177529984	170102040	7843	IVIB_
1	179107409	179193040	0439	IVID_
1	100949032	100907300	0320	IVID_
1	101700000	101742340	1293	IVID_ MD
ו ר	7704096	7705442	13900	IVID <u>.</u> MR 11
2	11622078	1162/630	1661	MR 14 MR
2	63303760	63326303	225/3	MB_14,MD_
2	71020233	71053128	22040	MB
2	72023267	72033615	9648	MB
2	86814986	86821326	6340	MB_ MB
2	117216281	117223458	7177	MB_
2	129267623	129269192	1569	MB
2	139983056	139987280	4224	MB
_	5000400	5005400	00070	MB 16.MB 6.M
3	5336469	5365139	28670	MB
				MB 3,MB 4,M
3	34095935	34101091	5156	MB
				MB_8,I
3	36114091	36119498	5407	MB_3,MB_4,I
3	36491792	36499933	8141	MB
3	36593046	36597882	4836	MB_5,I
3	36639251	36645136	5885	MB_5,I
3	40256767	40259368	2601	MB_
3	62353496	62354043	547	MB
3	107454355	107455846	1491	MB_
4	51219942	51231546	11604	MB_
4	56026210	56043376	17166	MB_11,
4	61027539	61080022	52483	MB_12,MB
4	73092714	73104673	11959	MB_
5	1954724	1961355	6631	MB
5	11921964	11925669	3705	MB
5	23910847	23918123	7276	MB_11,MB_12

117	GAIN
	L033
LI_15	LOSS
LI_6	GAIN
LI_7	GAIN
117	GAIN
	GAIN
	GAIN
LI_5	GAIN
LI_14,LI_16	LOSS
LI_7	GAIN
LI 10.LI 12.LI 15	LOSS
MR 14	GAIN
11 MR 12 MR 14 MR 9	
	L033
MB_14	LOSS
MB_9	LOSS
MB 10	LOSS
MB_13	GAIN
MB 16	CAIN
	GAIN
IMB_16	GAIN
MB_10	GAIN
MB_1,MB_10	GAIN
MB 13	LOSS
MB 14	2201
	LU33
MB_13	GAIN
MB_1	LOSS
MB 11.MB 4	LOSS
MB 14 MB 16 MB 2	LOSS
MP 1	CAIN
	GAIN
IVIB_7	GAIN
MB_12	GAIN
MB_11	LOSS
MB 16	GAIN
MB 8	LOSS
	LU33
_16,IMB_6,IMB_11,IMB_3,	GAIN
MB_2	0, 111
B_3,MB_4,MB_5,MB_6,	
MB 7.	LOSS
MB 8 MB 9	
	1000
	LU33
MB_8	LOSS
MB_5,MB_6	LOSS
MB_5,MB_6	LOSS
MB 14	LOSS
MB 6	1099
	L022
MB_2	GAIN
MB_11,MB_9	GAIN
MB_12,MB_9,MB_ 7	GAIN
MB 14	GAIN
MB 9	2201
MR 4	CVIN
	GAIN
_11,MB_12,MB_2,MB_3,	LOSS
MB_5,MB_6,MB_1	

8	157378	202883	45505	MB_11,MB_13,MB_3,MB_4,
				MB 1 MB 2 MB 3 MB 5
9	8133230	8138012	4782	MB_13
Ũ	0100200	0100012		MB 16.MB 6
9	21327153	21328896	1743	MB 9
12	10922550	10923116	566	MB 7
12	14395236	14395698	462	MB 14.MB 9
13	4310530	4312716	2186	MB_1,MB_10,MB_13
13	7202082	7203839	1757	MB_13,MB_1,MB_10,MB_7
14	8271822	8276372	4550	MB_11,MB_8
14	15124958	15132783	7825	MB_2
16	245855	330020	84165	MB_12,MB_2,MB_11
18	693906	695111	1205	MB_11
18	699667	706189	6522	MB_11
20	6408986	6410289	1303	MB_10
22	3527384	3534897	7513	MB_12,MB_16,MB_3
26	1823618	1829006	5388	MB_9
27	463174	483459	20285	MB_14
27	533750	774006	240256	MB_12,MB_2
1	1317654	1324805	7151	MI_10
1	3224832	3246090	21258	MI_15,MI_7,MI_8,MI_8
1	4013951	4044109	30158	MI_13,MI_11,MI_1
1	11634775	11639454	4679	MI_2
1	20473440	20474632	1192	MI_9
				MI_1,MI_10,MI_13,MI_14,
1	23812864	23817003	4139	MI_6,
				MI_9
1	32372412	32376897	4485	MI_12,MI_2
1	32463008	32546752	83744	MI_4_2
1	43001844	43066722	64878	MI_5,MI_6,MI_7,MI_14,MI_9
1	55013914	55020128	6214	MI_2
1	62279659	62285139	5480	MI_14
1	72345535	72351290	5755	MI_5
1	75709646	75719210	9564	MI_15
1	79024615	79030474	5859	MI_4_2
1	94564270	94566171	1901	MI_4_2
1	95963827	95965305	1478	MI_3
1	109100362	109108759	8397	MI_15
1	134253652	134257407	3755	MI_4_2
1	146282800	146286641	3841	MI_14
1	147717421	147773690	56269	MI_4_2
1	149877721	149880263	2542	MI_7
1	150669350	150840710	171360	MI_4_2
1	160947041	161061487	114446	MI_7
1	165869717	165871075	1358	MI_3
2	2680117	2681152	1035	MI_6
2	11209864	11275503	65639	MI_4_2
2	28849148	28857742	8594	MI_15,MI_16
2	61903581	61906355	2774	MI_4_2,MI_5
2	79145360	79168177	22817	MI_14
2	79680088	79703232	23144	MI_4_2
_	101000000	10101	0	• • • • • •
2	131836214	131845973	9759	MI_10
2 2	131836214 132550262	131845973 132555172	9759 4910	MI_10 MI_4_2,MI_12,MI_2,MI_5

LOSS

LOSS

LOSS GAIN LOSS LOSS

LOSS GAIN GAIN GAIN LOSS LOSS LOSS LOSS LOSS GAIN GAIN LOSS LOSS GAIN LOSS GAIN

LOSS

LOSS GAIN

GAIN GAIN LOSS GAIN GAIN GAIN GAIN LOSS LOSS GAIN GAIN GAIN LOSS GAIN LOSS GAIN GAIN GAIN GAIN LOSS GAIN GAIN GAIN

LOSS GAIN

3	6261877	6263795	1918	MI_10,MI_15	LOSS
3	22817122	22824497	7375	MI_11	GAIN
3	30251485	30260622	9137	MI_4_2	GAIN
3	34352233	34363532	11299	MI_4_2	GAIN
3	36801293	36822942	21649	MI_4_2	GAIN
3	56773444	56810263	36819	MI_4_2	GAIN
3	59406354	59411276	4922	MI_4_2	GAIN
3	64211482	64214927	3445	MI_4_2	GAIN
3	83221366	83265188	43822	MI_4_2	GAIN
3	102224929	102246295	21366	MI_5,MI_6,MI_9	LOSS
3	104628962	104649974	21012	MI_1	GAIN
4	10452517	10476672	24155	MI_4_2	GAIN
4	18972227	18975272	3045	MI_2	LOSS
4	39852446	39853779	1333	MI_7	GAIN
4	82566185	82575845	9660	MI_4_2	GAIN
5	6980375	6982401	2026	MI_4_2	GAIN
5	9160978	9164588	3610	MI_4_2	LOSS
5	30836594	30904211	67617	MI_4_2	GAIN
5	34488308	34617188	128880	MI_4_2	GAIN
5	42318001	42353346	35345	MI_4_2	GAIN
5	55701139	55705607	4468	MI_7	GAIN
6	1361	42885	41524	MI_4_2,MI_1	GAIN
7	35030551	35036989	6438	MI_8	LOSS
8	16510295	16517358	7063	MI_7	GAIN
8	26060670	26063448	2778	MI_13	GAIN
9	753605	763648	10043	MI_2	GAIN
9	1891690	1895268	3578	MI_11	GAIN
9	6114018	6121595	7577	MI_16,MI_6	LOSS
9	8133230	8138012	4782	MI_12	LOSS
10	9223993	9242432	18439	MI_4_2	GAIN
10	17944255	17945851	1596	MI_7	LOSS
11	4962435	4965379	2944	MI_14	LOSS
11	13051825	13066669	14844	MI_12,MI_16,MI_2,MI_3,MI_6	LOSS
12	2081163	2090078	8915	MI_12,MI_15,MI_8	GAIN
13	1126898	1143178	16280	MI_10,MI_5	GAIN
13	4312184	4312716	532	MI_1,MI_10,MI_14,MI_5	LOSS
14	1514372	1515896	1524	MI_5	LOSS
14	8195675	8198667	2992	MI_2	LOSS
14	15145902	15148673	2771	MI_14	GAIN
15	4390371	4398451	8080	MI_4_2	LUSS
15	8711904	8720968	9064		GAIN
16	251597	298221	46624		GAIN
18	888250	888631	381	IVII_1,IVII_1U,IVII_11,IVII_12, MI_14_MI_2_MI_3_MI_6	LOSS
10	1000676	2004067	/301	MI = 10 MI = 4, IVII = 2, IVII = 3, IVII = 0	2201
20	8646822	8655741	8010	MI 11 MI 10 MI 3	
20	1502366	1503082	716	MI 11	CAIN
20	3438826	3440881	2055	ML 3	LOSS
26	4891341	4898142	6801	MI_0 MI_16	LOSS
27	467647	472507	4860	ML 6	LOSS
21	10/01/	112001	1000	PI 10 PI 11 PI 5 PI 8	2000
1	3218895	3246090	27195	PI 9.PI 5	LOSS
1	11441978	11447557	5579	PI_12	LOSS
1	11724225	11728415	4190	PI_14	LOSS
1	13205120	13206656	1536	PI 14	LOSS

1	15896361	15926518	30157	PI_9	GAIN
1	18180690	18183579	2889	PI 13	GAIN
1	20037753	20042920	5167	PI_14	LOSS
1	23247889	23252232	4343	PI 11	GAIN
1	32503622	32511387	7765	PI 14	GAIN
1	36840282	36889950	49668		GAIN
1	20726947	20720062	-3000	DI 12	
1	40024626	10240200	14662		
1	40234020	40249200	14002		GAIN
1	41002091	41090727	10130	FI_4	GAIN
1	57964239	57960699	10000	PI_I5	GAIN
1	64361722	64367347	5625	PI_9	GAIN
1	64876486	64884121	7635	PI_4	LUSS
1	68551124	68552422	1298	PI_13	LOSS
1	71486860	71522594	35734	PI_15	GAIN
1	75516142	75520450	4308	PI_14	GAIN
1	76098060	76113281	15221	PI_4	LOSS
1	77596019	77617319	21300	PI_3	GAIN
1	82035758	82049063	13305	PI_11	GAIN
1	90915258	90925139	9881	PI_2	LOSS
1	93609076	93618668	9592	PI_8	GAIN
1	94209271	94214144	4873	PI_14	LOSS
1	101250973	101269092	18119	PI_4	GAIN
1	130884485	130908797	24312	PI_4	GAIN
1	139290303	139417687	127384	PI_1,PI_10	GAIN
1	139935853	139939921	4068	PI_2	LOSS
1	153533922	153537110	3188	PI_13	LOSS
1	154369977	154380331	10354	PI_11	GAIN
1	155623091	155629031	5940	PI_14	GAIN
1	163164808	163521089	356281	PI_16	LOSS
1	178962865	178964753	1888	PI_1,PI_13	LOSS
1	181720987	181754708	33721	PI_14,PI_3	GAIN
1	181864092	181870278	6186	PI_14	GAIN
1	184907096	184914376	7280	PI_10	LOSS
1	187648204	187657075	8871	PI 9	LOSS
1	189464714	189465405	691	PI 12	GAIN
1	194347634	194467211	119577	PI 16,PI 3	GAIN
2	15674407	15680332	5925	PI 10	LOSS
2	20679230	20682669	3439	PI_13	LOSS
2	25868266	25876407	8141	PI_12	GAIN
2	29089897	29096904	7007	PI 1	LOSS
2	46854428	46861745	7317	PI_7	LOSS
2	47107428	47113922	6494	PI 11	GAIN
2	54188096	54216108	28012	PI_14	GAIN
2	57565703	57570258	4555	PI_13	GAIN
2	61223815	61234190	10375	PL 13	GAIN
2	63596395	63606171	9776	PI 16 PI 3	LOSS
2	70070949	70080701	9752	PI 12	GAIN
2	108035821	108043134	7313	PI 11	LOSS
2	108420471	108433824	13353	PI 4	GAIN
2	116777703	116781914	4211	PL 3	1055
2	118393587	118442146	48559	PI 4	GAIN
2	122097779	122104510	6731	PI 4	1055
2	122333875	122338510	4644	PI 11	GAIN
2	129104580	129169307	64727		GAIN
2	138451360	138463990	12630	PI 11	GAIN
-			.2000	••_••	C / III I

2	143235268	143238971	3703	PI_7	GAIN
3	4643013	4662485	19472	PI_13	GAIN
3	19091474	19120795	29321	PI_16	GAIN
3	34694086	34695062	976	PI 9	LOSS
3	35493517	35501706	8189	PI 10	GAIN
3	36667591	36668879	1288	PI_10	GAIN
3	38249302	38253923	4621	PI 7	GAIN
3	46991968	46995596	3628	PI_1	GAIN
3	54087820	54093710	5890	PI ⁻ 4	GAIN
3	60637923	60641744	3821	PI 16	GAIN
3	61112549	61114138	1589	PI_16	GAIN
3	61688227	61704997	16770	PI_15	GAIN
3	66272850	66279076	6226	PI_15	LOSS
3	98290080	98291559	1479	PI_10	GAIN
3	106305069	106306023	954	PI_16	GAIN
4	8607594	8629823	22229	PI_11	GAIN
4	30843777	30888475	44698	PI_11	GAIN
4	32038130	32045970	7840	PI 1	LOSS
4	37876329	37886316	9987	PI 13	GAIN
4	60584245	60604379	20134	PI 11	GAIN
	04000000	01001015		PI 3.PI 4.PI 1.PI 14.	
4	61823268	61834915	11647	PI 16. PI 5	LOSS
4	65420193	65438719	18526	PI 10	LOSS
4	66546653	66561413	14760	PI 16	GAIN
4	69780004	69783759	3755	PI_14	GAIN
4	77000679	77001964	1285	PI 9	GAIN
4	77667355	77681253	13898	PI 9	GAIN
4	79270341	79281903	11562	PI 8	GAIN
4	81409594	81425814	16220	PI 8	GAIN
4	85254962	85395894	140932	PI 13.PI 5.PI 1	GAIN
4	86222920	86258708	35788	PI 4	GAIN
5	240948	310523	69575	PI_4	GAIN
5	5183559	5190380	6821	PI ⁻ 3	GAIN
5	11815839	11822303	6464	PI_1	LOSS
5	19718770	19721817	3047	PI_4	GAIN
5	20474613	20478312	3699	PI 10	GAIN
5	36018763	36030838	12075	PI 1	GAIN
5	48921509	48936803	15294	PI 10,PI 13,PI 8	LOSS
5	49072565	49084257	11692	PI 5,PI 9	LOSS
5	55934915	55988044	53129	PI 4	GAIN
5	56614989	56766967	151978	PI 4,PI 15,PI 12	GAIN
5	58823251	58823303	52	PI 7	GAIN
6	1715628	1722140	6512	PI 13	GAIN
6	3089155	3102715	13560	PI 1	GAIN
6	3245000	3248341	3341	PI [_] 2	LOSS
6	4588275	4608888	20613	PI 12	LOSS
6	15410672	15418016	7344	PI_12	LOSS
6	16571491	16578846	7355	PI 12	LOSS
6	17141315	17144773	3458	PI 9	LOSS
6	25614355	25623899	9544	PI 16	GAIN
6	27241761	27244509	2748	PI 9	LOSS
7	23994881	23998014	3133	PI 1	LOSS
7	24023402	24035680	12278	PI 11	GAIN
7	34266357	34285445	19088	PI_13	GAIN
8	4472273	4479576	7303	PI_14	GAIN

8 8 9	8734809 11941233 8133230	8910898 11955539 8138012	176089 14306 4782	PI_9 PI_4 PI_11,PI_2	LOSS GAIN LOSS
9	17383018	17384534	1516	PI_13,PI_4	COMPLE X
9 9 10 10 10 10 10 11 11	19132182 22082371 589629 8345612 16460511 18235411 19862709 5478524 9223312 18005900	19134581 22084901 608449 8354399 16464740 18238416 19866067 5481519 9232374 18013411	2399 2530 18820 8787 4229 3005 3358 2995 9062 7511	PI_4 PI_16 PI_9 PI_7 PI_3 PI_3 PI_8 PI_15 PI_1 PI_16 PI_4	GAIN GAIN GAIN LOSS LOSS GAIN GAIN GAIN GAIN
12	1122474	1223234	100760	PI_16,PI_3,PI_1,PI_14,PI_5,	GAIN
12 12 12 12 13 13 13 13 13 13 14 14 14 14 15 15	4214092 4360784 5138363 15102030 1120443 7306384 8564174 9282142 9497347 6295255 6455192 7308112 8195675 9755259 910061 2354124 2804884	4215737 4371186 5152260 15106137 1128603 7307816 8569610 9282445 9497640 6300266 6463527 7312732 8198667 9759074 913281 2362299 2809037	1645 10402 13897 4107 8160 1432 5436 303 293 5011 8335 4620 2992 3815 3220 8175 4153	PI_9,PI_2,PI_12 PI_16,PI_3 PI_9 PI_12 PI_5 PI_13 PI_14 PI_13 PI_14 PI_15 PI_14 PI_15 PI_14 PI_4 PI_4 PI_4 PI_4 PI_4 PI_4 PI_23 PI_4 PI_12 PI_4 PI_12 PI_4 PI_12 PI_4 PI_12 PI_4 PI_12 PI_4 PI_12 PI_4 PI_12 PI_12 PI_14 PI_14 PI_15 PI_15 PI_15 PI_15 PI_15 PI_16 PI_16 PI_16 PI_16 PI_17 PI	LOSS GAIN GAIN GAIN LOSS GAIN GAIN GAIN GAIN LOSS GAIN GAIN GAIN GAIN GAIN GAIN GAIN
10	215410 4509860	315114	3062	PI_13,PI_7,PI_5,PI_1 PI_14	
17 17 18 18 19 19 20 20 20 20 20 21 22 22 23 23 24 24	5611710 8822007 2560868 3518846 5960569 2482316 8440799 7179441 7452654 8648685 2854020 3898 486545 3537025 5256953 446179 5460205	5614167 8826934 2564292 3519650 5963938 2489696 8450059 7211282 7454307 8655741 2854666 9154 489696 3552310 5257940 459648 5476146	2457 4927 3424 804 3369 7380 9260 31841 1653 7056 646 5256 3151 15285 987 13469 15941	PI_13 PI_3 PI_11 PI_7 PI_4 PI_9 PI_14 PI_4 PI_4 PI_14 PI_9 PI_1 PI_1 PI_1 PI_7 PI_1 PI_7 PI_4 PI_4 PI_4 PI_2	GAIN LOSS GAIN GAIN GAIN GAIN GAIN LOSS GAIN LOSS GAIN GAIN GAIN GAIN
25	75666	76674	1008	PI_13	GAIN

25	800162	801901	1739	PI_14	LOSS
20	988739	989777	1038	PI_9	L055
27	467647	472507	4860	PI_15	L055
27	912632	913923	1291	PI_13	LOSS
21	1926235	1929503	3268		GAIN
28	425658	428045	2387	PI_16,PI_7	LUSS
28	1184191	1196218	12027	PI_16	GAIN
28	2618390	2618786	396	PI_15	LUSS
28	3100523	3108956	8433	PI_13	GAIN
1	712002	/38339	26337	SA_2,SA_3,SA_5	GAIN
1	3927484	3931561	4077	SA_9	GAIN
1	4006738	4044109	3/3/1	SA_16,SA_3,SA_13	GAIN
1	35792995	35796117	3122	SA_11	LOSS
1	42054978	42064075	9097	SA_9	GAIN
1	44015316	44024068	8752	SA_11	LOSS
1	77596019	77621395	25376	SA_13	GAIN
1	86103785	86111630	7845	SA_1	GAIN
1	88087545	88092227	4682	SA_4	GAIN
1	91897368	91909088	11720	SA_3	LOSS
1	98042613	98046884	4271	SA_4	GAIN
1	98616097	98621166	5069	SA_9	LOSS
1	133550038	133566314	16276	SA_9	GAIN
1	135000914	135002598	1684	SA_5	LOSS
1	139290303	139384505	94202	SA_13,SA_2,SA_3,SA_6	GAIN
1	160947041	161110014	162973	SA_16	GAIN
1	161374003	161376417	2414	SA_5	GAIN
1	163136323	163521089	384766	SA_1,SA_14,SA_10,SA_16	LOSS
1	1/5263/46	1/5284/78	21032	SA_2	GAIN
1	184911407	184915122	3715	SA_12,SA_4	LOSS
1	188586941	188592484	5543	SA_12	LOSS
2	27799754	27801335	1581	SA_14	LOSS
2	54/3/8/2	54749833	11961	SA_7,SA_12,SA_4	LOSS
2	61903581	61906355	2774	SA_8	LOSS
2	71929233	/1954/14	25481	SA_10	GAIN
2	73831264	73847626	16362	SA_10,SA_6	GAIN
2	76880818	76893143	12325	SA_6	GAIN
2	78844264	78854658	10394	SA_10	LOSS
2	82274348	82283458	9110	SA_4	GAIN
2	82326757	82331888	5131	SA_5	GAIN
2	97088838	97099282	10444	SA_7	GAIN
2	102386064	102396900	10836	SA_11	GAIN
2	113623482	113643659	20177	SA_5	GAIN
2	122101503	122103098	1595	SA_6	LOSS
2	129085437	129172949	87512	SA_1,SA_14,SA_4,SA_13	GAIN
3	4305248	4321508	16260	SA_9	GAIN
3	78020691	78026532	5841	SA_16	LOSS
3	78513742	78517962	4220	SA_11	GAIN
3	89541217	89547453	6236	SA_7	GAIN
3	95499094	95517006	17912	SA_11	GAIN
4	6459515	6464278	4/63	SA_14	GAIN
4	24898015	24916382	18367	SA_15	GAIN
4	30102774	30163522	60748	SA_14,SA_9	LOSS
4	33502139	33509354	/215	SA_16	GAIN
4	59237251	59238335	1084	SA_15	LOSS
4	81412294	81431796	19502	SA_7	GAIN

5 5	6791975 14852222	6807441 14865343	15466 13121	SA_9 SA_11	GAIN LOSS
5	19630190	19707342	77152	SA_8,SA_10,SA_12	
5	29069437	29080034	10597	SA_7	GAIN
5	41923441	42121531	198090	SA_14,SA_2,SA_8, SA_10, SA_11	GAIN
5	43482910	43497003	14093	SA_8	GAIN
5	45230370	45232473	2103	SA_11	LOSS
5	56625359	56766967	141608	SA_4	GAIN
6	10654524	10680799	26275	SA_6	GAIN
6	10/04/86	10731614	20828	SA_5	GAIN
0	124/0090	12004004	07400 12206		LOSS
7	2030000	2001394	13300	SA_0 SA_12	LOSS
7	17668002	17678086	000/		CAIN
7	18624373	18631083	6710	SA 11	LOSS
7	20060536	20064374	3838	SA 10	LOSS
7	23432696	23438586	5890	SA 7	LOSS
7	34736224	34747585	11361	SA 13	GAIN
8	25577287	25582258	4971	SA 16	LOSS
10	7162636	7165946	3310	SA_1	GAIN
10	15613783	15644242	30459	SA_12	LOSS
10	16768901	16771909	3008	SA_6	GAIN
10	18103633	18106871	3238	SA_3	LOSS
11	9226448	9235695	9247	SA_16	GAIN
11	12666424	12670482	4058	SA_16	LOSS
11	13050902	13072246	21344	SA_3	LOSS
11	17771921	17780560	8639	SA_7	GAIN
12	1122474	1223234	100760	SA_2,SA_3,SA_12,SA_15, SA 8.SA 10	GAIN
12	8979651	9006779	27128	SA_7,SA_6	GAIN
13	14577833	14581514	3681	SA_13	LOSS
13	16995864	16998627	2763	SA_9	GAIN
14	777214	798132	20918	SA_12,SA_4	GAIN
14	1661995	1664367	2372	SA_3	LOSS
14	8271822	8287465	15643	SA_14	GAIN
16	216711	330020	113309	SA_6,SA_13,SA_10,SA_7	GAIN
17	1891058	1898872	7814	SA_13	LUSS
10	10220101	10229039	0241	SA_1 SA 2 SA 15	LUSS GAIN
10	2404003	2493424 3/156//	1320	SA_3,SA_15 SA_7	GAIN
19	6175580	6198717	23137	SA 9 SA 12	GAIN
20	9380018	9382079	2061	SA 4	GAIN
22	3824813	3825071	258	SA 15	GAIN
23	19365	41759	22394	SA 5	GAIN
26	3549636	3555452	5816	SA 9	GAIN
26	4939026	4945581	6555	SA_13	GAIN
27	655362	730872	75510	SA_4,SA_6	GAIN
27	2763442	2767149	3707	SA_9	GAIN
28	900944	916233	15289	SA_6	GAIN
1	3220733	3251128	30395	SI_10,SI_13,SI_14,SI_15, SI_14	LOSS
1	17974844	17983725	8881	SI 6	GAIN
1	21065469	21099951	34482	SI_2	GAIN

1	28379369	28382637	3268	SI_1	LOSS
1	30456065	30464380	8315	SI_11	GAIN
1	32824810	32826891	2081	SI_13	GAIN
1	36236367	36252075	15708	SI_2	GAIN
1	43337259	43343246	5987	SI_1	LUSS
1	46954348	46977988	23640		GAIN
1	/1481449	71522594	41145	SI_9,SI_1	GAIN
1	90706897	90710453	3556	SI_2,SI_6	LOSS
1	93479822	93516055	36233	SI_2,SI_13	GAIN
1	93775729	93803110	27381	SI_2	GAIN
1	99088395	99094316	5921	SI_11	GAIN
1	105233539	105238985	5446	SI_5	GAIN
1	112231619	112236512	4893	SI_15	GAIN
1	113433478	113477304	43826	SI_1,SI_3,SI_5,SI_9	GAIN
1	113527039	113659727	132688	SI_3,SI_5,SI_9,SI_1	GAIN
1	114412511	114435091	22580	SI_2	GAIN
1	116545042	116592957	47915	SI_2	GAIN
1	133202223	133207506	5283	SI_2	GAIN
1	148324090	148328215	4125	SI_3	LOSS
1	158145819	158158411	12592	SI_11	GAIN
				SI_10,SI_6,SI_12_R,	
1	181731621	181752254	20633	SI_13,SI_14,	GAIN
				SI_15,SI_7,SI_8	
2	928384	942023	13639	SI_13,SI_14	LOSS
2	25859462	25952423	92961	SI_1,SI_11,SI_12_R,SI_5,	1055
2	20000402	20002420	52501	SI_8,SI_9,SI_2	2000
2	27335793	27360988	25195	SI_1,SI_14,SI_5	GAIN
2	27471883	27478356	6473	SI_12_R,SI_9	GAIN
2	28266857	28321381	54524	SI_2,SI_13	GAIN
2	32190085	32255964	65879	SI_2	GAIN
2	51709054	51749553	40499	SI_2	GAIN
2	55063690	55095520	31830	SI_9	GAIN
2	66013851	66065937	52086	SI_2	GAIN
2	81952642	81962048	9406	SI_1,SI_4_R,SI_5	LOSS
2	83674703	83695919	21216	SI_2,SI_10	GAIN
2	85115029	85119510	4481	SI_11	GAIN
2	86849998	86856411	6413	SI_1,SI_5	GAIN
2	90305163	90314923	9760	SI_16,SI_5	GAIN
2	94041568	94135075	93507	SI_2	GAIN
2	99727585	99734823	7238	SI_13	GAIN
2	122417706	122433674	15968	SI_15,SI_16	LOSS
2	125351754	125354703	2949	SI_11	GAIN
2	129477998	129478452	454	SI_13,SI_15,SI_16	LOSS
2	138731319	138759199	27880	SI_6	GAIN
3	2437089	2441423	4334	SI_2	GAIN
3	9015436	9021140	5704	SI_1	GAIN
3	11556397	11570561	14164	SI_13	GAIN
3	19456437	19474613	18176	SI_2	GAIN
3	25213329	25249979	36650	SI_11	GAIN
3	38030440	38042818	12378	SI_11	GAIN
3	39426685	39431324	4639	SI_1	GAIN
2	10116751	10171200	24620	SI_11,SI_2,SI_12_R,	1000
3	40440704	4041 1392	24030	SI_13,SI_6,SI_7	L032
2	62560540	62570264	10054	SI_13,SI_10,SI_14,	1000
3	01000000	03379304	10004	SI 15.SI 16	L022

3 3	66522713 73712844	66529906 73719632	7193 6788	SI_6 SI_11 SI_10 SI_11 SI_13	GAIN LOSS
3	79572513	79583555	11042	SI_14,SI_15, SI_14,SI_15, SI_16,SI_2,SI_3,SI_4_R,	LOSS
3	92316897	92317634	737	SI_5,SI_7,SI_8,SI_9 SI_1	LOSS
3	103364349	103366668	2319	SI_11,SI_12_R,SI_16,	LOSS
3	104851927	104866866	14939	SI_7,SI_9 SI_11	GAIN
4	1169607	1216538	46931	SI_11	GAIN
4	9088302	9096261	7959	SI_4_R	LOSS
4	39804638	39808060	3422	SI_11	GAIN
4	39975564	39992341	16777	SI_2	GAIN
4	48309951	48341896	31945	SI_2,SI_13	GAIN
4	58771139	58787472	16333	SI_11,SI_2	GAIN
4	63435279	63442498	7219	SI_14,SI_16	GAIN
4	69976217	69979968	3751	SI_3	GAIN
4	85226873	85292322	65449	SI_6	GAIN
5	3091754	3109737	17983	SI_1	LOSS
5	23910847	23918123	1216	SI_13	L055
5 5	29092880	29594502	1010	SI_7	LUSS
э 5	40021702	40029943	7190	SI_11,SI_1,SI_13,SI_2,	GAIN
5	43030023	43003003	1100	SI_3,SI_8	L000
5	47420680	47433235	12555	SI_2 SI_1 SI_10 SI_11 SI_12 P	GAIN
5	48921509	48936803	15294	SI_1,SI_10,SI_11,SI_12_1(,	LOSS
Ũ	10021000	10000000	10201	SI 3.SI 6.SI 7.SI 8.SI 9	2000
5	50151867	50159015	7148	SI 1	GAIN
5	54073626	54075872	2246	SI 16	GAIN
5	54998413	55022936	24523	SI_2	GAIN
_	50700005	50705400	4004	SI_15,SI_10,SI_12_R,SI_13,	
5	58790805	58795489	4684	SI_14,SI_16,SI_2,SI_6, SI_7 SI_8 SI_9	L055
				SI 10,SI 13,SI 15,SI 16,	
5	59253017	59256313	3296	SI_2,SI_6,SI_8,SI_12_R,	LOSS
				SI_14,SI_7,SI_9,SI_9	
6	040246	062022	12697	SI_10,SI_13,SI_14,SI_15,SI_1	1000
0	949340	903033	15007	6	L033
6	3447947	3486942	38995	SI_13	GAIN
6	4395786	4399822	4036	SI_15	LOSS
6	17141315	17144773	3458	SI_10,SI_13,SI_14,SI_15, SI_16 SI_4 _R SI_7	LOSS
7	3990089	3996538	6449	SI 6	GAIN
7	5661560	5726624	65064	SI 5	GAIN
7	24558429	24562846	4417	SI 2	GAIN
7	27756301	27769436	13135	SI_12_R	GAIN
7	34262022	34285445	23423	SI_2	GAIN
8	3426059	3430208	4149	SI_6	LOSS
8	8449020	8489515	40495	SI_2	GAIN
9	3429115	3463492	34377	SI_8	GAIN
9	3694268	3704433	10165	SI_6	GAIN
9	14851112	14866888	15776	SI_11	GAIN
9	17380217	17384534	4317	SI_10,SI_15,SI_13,	LOSS

				SI_14,SI_16	
11	1565290	1569986	4696		GAIN
11	6355091	6362007	6916	SI_11,SI_13	LOSS
11	17216551	17230323	13772	SI_13	GAIN
12	1181561	1212051	30490	SI_1	GAIN
12	2422961	2425174	2213	SI_2	GAIN
14	8418295	8422378	4083	SI_11	GAIN
14	14406520	14419809	13289	SI_2	GAIN
16	60835	101809	40974	SI_2	GAIN
				SI_11,SI_2,SI_10,SI_12_R,	
16	233569	330020	96451	SI_13,	
				SI_14,SI_15,SI_16,SI_5,SI_8	^
18	537037	557577	20540	SI_11,SI_2	GAIN
18	699667	706189	6522	SI_11,SI_2	LOSS
18	735315	742868	7553	SI_11,SI_2	LOSS
19	3679079	3686041	6962	SI_2	GAIN
19	5028683	5033359	4676	SI_4_R	GAIN
19	7457093	7474834	17741	SI_2	GAIN
19	8159262	8165868	6606	SI_1	GAIN
20	8693844	8696998	3154	SI_11	GAIN
22	3757673	3764333	6660	SI_1,SI_11,SI_12_R,SI_15,	LOSS
				SI_4_R,SI_5,SI_8	
23	2947239	2954827	7588		GAIN
23	3710926	3726715	15789	SI_4_R,SI_5,SI_7,SI_1	GAIN
25	319961	329270	9309	SI_2	GAIN
25	743116	744762	1646	SI_13	LOSS
25	1365792	1369882	4090	SI_2	GAIN
25	1471515	1471746	231	SI_3	LOSS
26	2115014	2120628	5614	SI_8	GAIN
26	2285168	2289168	4000	SI_2	GAIN
26	4585159	4610871	25712	SI_2	GAIN
28	1113623	1194121	80498	SI_2	GAIN