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Abstract Given a sample of size n from a population of species with unknown pro-
portions, a common problem of practical interest consists in making inference on the
probability Dn(l) that the (n+ 1)-th draw coincides with a species with frequency
l in the sample, for any l ≥ 0. Under the general framework of Gibbs-type priors
we show how to derive credible intervals for a Bayesian nonparametric estimator of
Dn(l).
Abstract Dato un campione di ampiezza n da una popolazione di specie con pro-
porzioni ignote, un problema di interesse pratico consiste nel fare inferenza sulla
probabilità Dn(l) che l’osservazione (n + 1)-esima sia una specie con frequenza
l nel campione, per ogni l ≥ 0. Per distribuzioni priori di tipo Gibbs, mostriamo
come derivare intervalli di credibilità per uno stimatore Bayesiano nonparametrico
di Dn(l).
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1 Introduction

The problem of estimating discovery probabilities is associated to situations where
an experimenter is sampling from a population of individuals (Xi)i≥1 belonging to
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an (ideally) infinite number of species (X∗i )i≥1 with unknown proportions (qi)i≥1.
Given a sample Xn = (X1, . . . ,Xn) interest lies in estimating the probability that
the (n+ 1)-th draw coincides with a species with frequency l in Xn, for any l =
0,1, . . . ,n. This probability is denoted by Dn(l) and commonly referred to as the l-
discovery. In terms of the species proportions qi’s, one has Dn(l)=∑i≥1 qi1{l}(Ni,n),
where Ni,n denotes the frequency of the species X∗i in the sample. See [3] for an
up-to-date review on the full range of statistical approaches, parametric and non-
parametric as well as frequentist and Bayesian, for estimating the l-discovery and
related quantities.

A Bayesian nonparametric approach for estimating Dn(l) was proposed in [5],
and it relies on the randomization of the unknown species proportions qi’s. Specif-
ically, consider the random probability measure Q = ∑i≥1 qiδX∗i

, where (qi)i≥1 are
nonnegative random weights such that ∑i≥1 qi = 1 almost surely, and (X∗i )i≥1 are
random locations independent of (qi)i≥1 and independent and identically distributed
according to a nonatomic probability measures ν0 on a space X. Then, it is assumed
that

Xi |Q
iid∼ Q i = 1, . . . ,n (1)

Q ∼ Q,

for any n≥ 1, where Q takes on the interpretation of the prior distribution over the
unknown species composition of the population. Under the Bayesian nonparametric
model (1), the estimator of Dn(l) with respect to a squared loss function, say D̂n(l),
arises directly from the predictive distributions characterizing the exchangeable se-
quence (Xi)i≥1. Assuming Q in the large class of Gibbs-type priors introduced in
[4], in this paper we consider the problem of deriving credible intervals for the esti-
mator D̂n(l).

Let Xn be a sample from a Gibbs-type random probability measure Q and featur-
ing Kn = k species X∗1 , . . . ,X

∗
Kn

with frequencies (N1,n, . . . ,NKn,n) = (n1,n, . . . ,nk,n),
and let A0 :=X\{X∗1 , . . . ,X∗Kn

} and Al := {X∗i : Ni,n = l}, for any l = 1, . . . ,n. Since
D̂n(l) = E[Q(Al) |Xn], the problem of deriving credible intervals for D̂n(l) boils
down to the problem of characterizing the distribution of Q(Al) |Xn. Indeed this
distribution takes on the interpretation of the posterior distribution of Dn(l) with re-
spect to Xn. We present an explicit expression for En,r(l) :=E[(Q(Al))

r |Xn], for any
r ≥ 1. Due to the bounded support of Q(Al) |X1, . . . ,Xn, the sequence (En,r(l))r≥1
characterizes uniquely the distribution of Q(Al) |Xn and, in principle, it can be used
to obtain an approximate evaluation of such a distribution. An illustration of our
results is presented.

2 Credible intervals for D̂n(l)

We start by recalling the predictive distribution characterizing a Gibbs-type prior.
Let Xn be a sample from a Gibbs-type random probability measure Q and featur-
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ing Kn = k species X∗1 , . . . ,X
∗
Kn

with corresponding frequencies (N1,n, . . . ,NKn,n) =
(n1,n, . . . ,nk,n). According to the celebrated de Finetti’s representation theorem, the
sample Xn is part of an exchangeable sequence (Xi)i≥1 whose distribution has been
characterized in [4] as follows: for any set A in the Borel sigma-algebra of X, one
has

P[Xn+1 ∈ A |Xn] =
Vn+1,k+1

Vn,k
ν0(A)+

Vn+1,k

Vn,k

k

∑
i=1

(ni,n−σ)δX∗i
(A) (2)

where σ ∈ [0,1) and (Vn,k)k≤n,n≥1 are nonnegative weights such that V1,1 = 1 and
Vn,k =(n−σk)Vn+1,k+Vn+1,k+1. The conditional probability (2) is typically referred
to as the predictive distribution of Q. For any a > 0 and nonnegative integer n,
let (a)n := ∏0≤i≤n−1(a+ i) with (a)0 := 1. The two parameter Poisson-Dirichlet
prior in [6] is an example of Gibbs-type prior corresponding to the choice Vn,k =

∏0≤i≤k−1(θ + iσ)/(θ)n, for any σ ∈ [0,1) and θ > −σ . We refer to [5] for other
examples.

Let Ml,n be the number of species with frequency l in the sample Xn, and by ml,n
the corresponding observed value. The predictive distribution of Q plays a funda-
mental role in determining the Bayesian nonparametric estimator D̂n(l) of Dn(l),
as well as the corresponding credible intervals. Indeed, recalling the definition of Al
provided in the Introduction, by a direct applications of (2) one obtains the following
expressions

En,r(0) = E[(Q(A0))
r |Xn] =

r

∑
i=0

(
r
i

)
(−1)i Vn+i,k

Vn,k
(n−σk)i (3)

and
En,r(l) = E[(Q(Al))

r |Xn] =
Vn+r,k

Vn,k
((l−σ)ml,n)r. (4)

We refer to Theorem 1 in [1] for details. Equations (3) and (4) take on the in-
terpretation of the r-th moments of the posterior distribution of Dn(0) and Dn(l)
under the assumption of a Gibbs-type prior. In particular for r = 1, by using the
recursion the Vn,k’s, the posterior moments (3) and (4) reduce to Vn+1,k+1/Vn,k and
(l−σ)ml,nVn+1,k/Vn,k, respectively, which are the Bayesian nonparametric estima-
tors of the l-discovery.

The distribution of Q(Al) |Xn is on [0,1] and, therefore, it is characterized by
(En,r(l))r≥1. The approximation of a distribution given its moments, is a longstand-
ing problem which has been tackled by various approaches such as expansions in
polynomial bases, maximum entropy methods and mixtures of distributions. For in-
stance, the polynomial approach consists in approximating the density function of
Q(Al) |Xn with a linear combination of orthogonal polynomials, where the coef-
ficients of the combination are determined by equating En,r(l) with the moments
of the approximating density. The higher the degree of the polynomials, or equiv-
alently the number of moments used, the more accurate the approximation. As a
rule of thumb, ten moments turn out to be enough in most cases. The approximating
density function of Q(Al) |Xn can then be used to obtain an approximate evaluation
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of the credible intervals for D̂n(l). This is typically done by generating random vari-
ates, via rejection sampling, from the approximating distribution of Q(Al) |Xn. See
[2] for details.

Under the assumption of the two parameter Poisson-Dirichlet prior, moments
(3) and (4) lead to explicit and simple characterizations for the distributions of
Q(Al) |Xn. We refer to [1] for an other example of Gibbs-type priors lading to ex-
plicit characterizations of Q(Al) |Xn. In particular, for any a,b > 0 let Ba,b be a ran-
dom variable distributed according to a Beta distribution with parameter (a,b). By
combining (3) and (4) with Vn,k = ∏0≤i≤k−1(θ + iσ)/(θ)n, it can be easily verified
that

Q(A0) |Xn
d
= Bθ+σk,n−σk (5)

and

Q(Al) |Xn
d
= B(l−σ)ml,n,n−σk−(l−σ)ml,n

(1−Bθ+σk,n−σk)
d
= B(l−σ)ml,n,θ+n−(l−σ)ml,n

.
(6)

According to the distributional identities (5) and (6), credible intervals for the
Bayesian nonparametric estimator D̂n(l) can be determined by performing a nu-
merical (Monte Carlo) evaluation of appropriate quantiles of the distribution of
Q(Al) |Xn. Note that, in the special case of the Beta distribution, quantiles can be
also determined explicitly as solutions of a certain class of non-linear ordinary dif-
ferential equations. See [7] and references therein for a detailed account on this
approach.

3 Illustration
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