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On Bayesian nonparametric inference for
discovery probabilities

Sull’inferenza Bayesiana nonparametrica per le
probabilita di scoperta

Julyan Arbel, Stefano Favaro, Bernardo Nipoti and Yee Whye Teh

Abstract Given a sample of size n from a population of species with unknown pro-
portions, a common problem of practical interest consists in making inference on the
probability D, (I) that the (n+ 1)-th draw coincides with a species with frequency
[ in the sample, for any / > 0. Under the general framework of Gibbs-type priors
we show how to derive credible intervals for a Bayesian nonparametric estimator of
D,(1).

Abstract Dato un campione di ampiezza n da una popolazione di specie con pro-
porzioni ignote, un problema di interesse pratico consiste nel fare inferenza sulla
probabilita D, (I) che I’osservazione (n+ 1)-esima sia una specie con frequenza
I nel campione, per ogni / > 0. Per distribuzioni priori di tipo Gibbs, mostriamo
come derivare intervalli di credibilita per uno stimatore Bayesiano nonparametrico
di D,(1).
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1 Introduction

The problem of estimating discovery probabilities is associated to situations where
an experimenter is sampling from a population of individuals (X;);>; belonging to
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an (ideally) infinite number of species (X;);>; with unknown proportions (g;)i>1.
Given a sample X,, = (Xi,...,X,) interest lies in estimating the probability that
the (n+ 1)-th draw coincides with a species with frequency [ in X,,, for any / =
0,1,...,n. This probability is denoted by D, (/) and commonly referred to as the I-
discovery. In terms of the species proportions g;’s, one has D, (1) = ¥;> qilyy (Nin),
where N;, denotes the frequency of the species X;* in the sample. See [3] for an
up-to-date review on the full range of statistical approaches, parametric and non-
parametric as well as frequentist and Bayesian, for estimating the /-discovery and
related quantities.

A Bayesian nonparametric approach for estimating D, (/) was proposed in [5],
and it relies on the randomization of the unknown species proportions g;’s. Specif-
ically, consider the random probability measure Q = Y~ gi0x+, Where (g;);>1 are
nonnegative random weights such that };~, ¢; = 1 almost surély, and (X");> are
random locations independent of (g;);>1 and independent and identically distributed
according to a nonatomic probability measures Vg on a space X. Then, it is assumed
that

X0 X 0 i=1,..n (1)
Q ~ 2 ’

for any n > 1, where 2 takes on the interpretation of the prior distribution over the
unknown species composition of the population. Under the Bayesian nonparametric
model (1), the estimator of D, (1) with respect to a squared loss function, say D, (1),
arises directly from the predictive distributions characterizing the exchangeable se-
quence (X;);>1. Assuming 2 in the large class of Gibbs-type priors introduced in
[4], in this paper we consider the problem of deriving credible intervals for the esti-
mator D, (I).

Let X,, be a sample from a Gibbs-type random probability measure Q and featur-
ing K, = k species X{,...,Xg with frequencies (N1 s, ..., Nk, n) = (M1.n,---,1kn),
and let Ag := X\ {X[,...,Xg } and A; := {X]" : N;y =}, forany [ = 1,...,n. Since
D,(1) = E[Q(A;)|X,], the problem of deriving credible intervals for D,(I) boils
down to the problem of characterizing the distribution of Q(A;)|X,. Indeed this
distribution takes on the interpretation of the posterior distribution of D, () with re-
spect to X,,. We present an explicit expression for E,, (1) :=E[(Q(A;))" | X,], for any
r > 1. Due to the bounded support of Q(A;) | Xi,...,X,, the sequence (E, ,(I));>1
characterizes uniquely the distribution of Q(A;) | X, and, in principle, it can be used
to obtain an approximate evaluation of such a distribution. An illustration of our
results is presented.

2 Credible intervals for D, (I)

We start by recalling the predictive distribution characterizing a Gibbs-type prior.
Let X,, be a sample from a Gibbs-type random probability measure Q and featur-
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ing K, = k species X, ..., Xg with corresponding frequencies (Nt sNgypn) =
(R1n,...,nky). According to the celebrated de Finetti’s representation theorem, the
sample X, is part of an exchangeable sequence (X;);>1 whose distribution has been
characterized in [4] as follows: for any set A in the Borel sigma-algebra of X, one
has

v, v, k
PXoi1 € Al X)) = 2y (4) 4 Y (1, — 0) 8y (A) )
Vn,k Vn,k i=1 i
where ¢ € [0,1) and (V},x)k<nn>1 are nonnegative weights such that V| ; = 1 and

Vak = (n—0k)V,11 k +Vut1 x+1- The conditional probability (2) is typically referred
to as the predictive distribution of Q. For any a > 0 and nonnegative integer n,
let (a), := [To<i<y—1(a+i) with (a)g := 1. The two parameter Poisson-Dirichlet
prior in [6] is an example of Gibbs-type prior corresponding to the choice V, 1 =
[To<i<k—1(0 +i0)/(0),, for any 6 € [0,1) and 6 > —c. We refer to [5] for other
examples.

Let M; , be the number of species with frequency / in the sample X, and by m; ,,
the corresponding observed value. The predictive distribution of Q plays a funda-
mental role in determining the Bayesian nonparametric estimator D, (1) of D,(l),
as well as the corresponding credible intervals. Indeed, recalling the definition of A;
provided in the Introduction, by a direct applications of (2) one obtains the following
expressions

r _ a r lVl’l lk .
£ 0) =Bl 1% = £ () 0 -t
and r Vn+r,k
En D) = EIQUAN) 1X,] = 22 (1= ) @

We refer to Theorem 1 in [1] for details. Equations (3) and (4) take on the in-
terpretation of the r-th moments of the posterior distribution of D, (0) and D, (/)
under the assumption of a Gibbs-type prior. In particular for » = 1, by using the
recursion the V,,;’s, the posterior moments (3) and (4) reduce to V,,4 x11/V,x and
(I — ©)my ,Vui1k/Vai, respectively, which are the Bayesian nonparametric estima-
tors of the /-discovery.

The distribution of Q(A;)|X, is on [0,1] and, therefore, it is characterized by
(Enr(1))r>1. The approximation of a distribution given its moments, is a longstand-
ing problem which has been tackled by various approaches such as expansions in
polynomial bases, maximum entropy methods and mixtures of distributions. For in-
stance, the polynomial approach consists in approximating the density function of
0O(A;)|X,, with a linear combination of orthogonal polynomials, where the coef-
ficients of the combination are determined by equating E, ,(I) with the moments
of the approximating density. The higher the degree of the polynomials, or equiv-
alently the number of moments used, the more accurate the approximation. As a
rule of thumb, ten moments turn out to be enough in most cases. The approximating
density function of Q(A;)|X, can then be used to obtain an approximate evaluation
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of the credible intervals for D, (1). This is typically done by generating random vari-
ates, via rejection sampling, from the approximating distribution of Q(4;) | X,. See
[2] for details.

Under the assumption of the two parameter Poisson-Dirichlet prior, moments
(3) and (4) lead to explicit and simple characterizations for the distributions of
0O(A)) | X,,. We refer to [1] for an other example of Gibbs-type priors lading to ex-
plicit characterizations of Q(A;)|X,,. In particular, for any a,b > 0 let B, , be a ran-
dom variable distributed according to a Beta distribution with parameter (a,b). By
combining (3) and (4) with V,, ; = [To<i<x—1(0 +i0)/(0),, it can be easily verified
that

Q(A0) |Xn < Bo-otn—ok 5)

and

[l

Q(Al> | Xn i B(l—c)ml_,,,n—akf(lfc)ml,n(1 - B9+Gk,n76k) B(lf(r)mlﬂ,9+n7(lfo')mlﬂ'
(6)
According to the distributional identities (5) and (6), credible intervals for the
Bayesian nonparametric estimator D, (/) can be determined by performing a nu-
merical (Monte Carlo) evaluation of appropriate quantiles of the distribution of
0O(A)) | X,,. Note that, in the special case of the Beta distribution, quantiles can be
also determined explicitly as solutions of a certain class of non-linear ordinary dif-
ferential equations. See [7] and references therein for a detailed account on this

approach.
3 Ilustration
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