
STICK-BREAKING REPRESENTATIONS

OF 1/2-STABLE POISSON-KINGMAN MODELS

Stefano Favaro1, Maria Lomeli2, Bernardo Nipoti1 and Yee Whye Teh4
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ABSTRACT. We propose a novel constructive definition for a large class of random probability mea-
sures termed 1/2-stable Poisson-Kingman models. Our result extends a characterization recently pro-
posed in the literature and limited to a special case of this class.

1 INTRODUCTION

Random probability measures (RPMs) play a fundamental role in Bayesian nonparametrics
as their distributions act as nonparametric priors. The most notable example is the Dirich-
let process in Ferguson (1973). Many nonparametric priors used in practice admit different,
though equivalent in distribution, representations. Some of these are convenient to investigate
theoretical properties of the prior, others are more useful for modelling and computation. In
terms of the latter, the so-called stick-breaking representations certainly stand out. Indeed,
they allow to define efficient simulation algorithms. Furthermore, they represent a useful tool
for defining priors capable of incorporating certain forms of dependence for the observables
and hence, go beyond the exchangeability setting. The stick-breaking representation of the
Dirichlet process was proposed in Sethuraman (1994). In order to describe it, let P0 be a
nonatomic probability measure on a complete and separable metric space X equipped with
the Borel σ-field X , and let (Vi)i≥1 be independent random variables identically distributed
as a Beta distribution with parameter (1,θ). Based on such Vi’s define the random probabili-
ties (Pi)i≥1 as P1 =V1 and

Pi =Vi

i−1

∏
j=1

(1−Vj),

for any i > 1, and let (Zi)i≥1 be random variables, independent of (Pi)i≥1, and independent
and identically distributed as P0. Then, a Dirichlet process with parameter (θ,P0) coincides
in distribution with the RPM

Q̃θ(·) = ∑
i≥1

PiδZi(·),



where δa denotes the point mass at a. The name of this construction refers to the fact that, in
order to define the Pi’s, one can think of breaking a stick of length one in two parts of lengths
V1 and (1−V1), respectively. The first part is P1 whereas the second part is further split into
two parts of lengths V2(1−V1), that will coincides with P2, and (1−V2)(1−V1) that, in turn,
will be split to generate P3, and so on. Another noteworthy nonparametric prior admitting
a stick-breaking representation is the two parameter Poisson-Dirichlet process introduced in
Perman et al. (1992).

The stick-breaking representations of the Dirichlet process and the two parameter Poisson-
Dirichlet process naturally lead to define a general class of discrete RPMs, the so-called stick-
breaking priors, obtained by allowing independent stick-breaking random variables Vi’s with
an arbitrary probability distribution supported on the set (0,1). Such an issue has been ad-
dressed in Ishwaran and James (2001). Nonetheless, as discussed in detail in Favaro et al.
(2012), most of the nonparametric priors proposed in the literature are not part of the class
of stick-breaking priors introduced in Ishwaran and James (2001). Indeed, they do not admit
a stick-breaking representation in terms of a collection of independent Vi’s. As an exam-
ple, in Favaro et al. (2012) a stick-breaking representation is provided for the normalized
inverse Gaussian process introduced by Lijoi et al. (2005). To the best of our knowledge,
the normalized inverse Gaussian process is the first example of a discrete RPM admitting a
stick-breaking representation in terms of a collection of dependent Vi’s which are no more
distributed as Beta distributions.

In this paper we derive the stick-breaking representation for a large class of RPMs intro-
duced by Pitman (2003) and termed 1/2-stable Poisson-Kingman models. Such a representa-
tion leads to a novel constructive definition for 1/2-stable Poisson-Kingman models. In par-
ticular, due to the flexible definition of this class of nonparametric prior models, the proposed
stick-breaking representation allows to recover as special cases the stick-breaking represen-
tations of several RPMs well-known in the literature such as, the two parameter Poisson-
Dirichlet process with discount parameter equal to 1/2 and the normalized inverse Gaussian
process.

2 1/2-STABLE POISSON-KINGMAN MODELS

We start by recalling the concept of completely random measure (CRM) due to Kingman
(1967). A CRM µ̃ is a random element with values on the space of boundedly finite measures
on X and such that for any A1, . . . ,An in X , with Ai∩A j = /0 for i 6= j, the random variables
µ̃(A1), . . . , µ̃(An) are mutually independent. A CRM is uniquely characterized by a measure ν

on R+×X that is referred to as the Lévy intensity of µ̃. Kingman (1967) showed that a CRM
µ̃ is almost surely discrete and, accordingly, it can be represented by random masses (J̃i)i≥1
at random locations (Yi)i≥1, i.e.

µ̃(·) = ∑
i≥1

J̃iδYi(·).

CRMs provides a fundamental tool to define almost surely discrete RPMs through a normal-
ization approach. See, e.g., Pitman (2003), James et al. (2009) and references therein for a
detailed account.



The class of 1/2-stable Poisson-Kingman models is defined hierarchically in terms of an
underlying normalized 1/2-stable CRM µ̃1/2 which is suitably mixed with respect to the nor-
malizing total mass. Specifically, let µ̃1/2 be a 1/2-stable CRM, that is a CRM characterized by
the Lévy intensity

ν(ds,dy) = ρ1/2(s)dsP0(dy) =
s−3/2

2
√

π
dsP0(dy),

and let T1/2 = ∑i≥1 J̃i be the total mass of µ̃1/2. Hence T1/2 is a positive 1/2-stable random
variable with density function

f1/2(x) =
1

2
√

π
x−

3
2 e−

1
4x .

Intuitively one can define an almost surely discrete RPM P̃1/2 by normalizing µ̃1/2 with respect
to T1/2. Formally, one obtains

P̃1/2(·) =
µ̃1/2(·)

T1/2
= ∑

i≥1
P̃iδYi(·),

with P̃i = J̃i/T1/2 and where (Yi)i≥1 are random variables, independent of (P̃i)i≥1, and indepen-
dent and identically distributed as P0. The RPM P̃1/2 is termed normalized 1/2-stable process
with base distribution P0. See, e.g., Pitman (2003) and references therein for details on the
RPM P̃1/2.

A 1/2-stable Poisson-Kingman model is defined as a generalization of P̃1/2 obtained by
suitably deforming (tilting) the distribution of T1/2. Let (P(i))i≥1 be the decreasing rearrange-
ment of (P̃i)i≥1 and let T1/2,h be a nonnegative random variable with density function of the
form h f1/2 for a nonnegative measurable function h. Denoting by PK(ρ1/2 | t) the conditional
distribution of (P(i))i≥1 given T1/2,h, let

PK
(
ρ1/2,h f1/2

)
=

∫ +∞

0
PK
(
ρ1/2 | t

)
h(t) f1/2(t)dt

be a mixture distribution which we refer to as the 1/2-stable Poisson-Kingman distribution
with parameter h as in Pitman (2003). Then, a 1/2-stable Poisson-Kingman model with pa-
rameter h and base distribution P0 is defined as an almost surely discrete RPM P̃1/2,h of the
form

P̃1/2,h(·) = ∑
i≥1

P(i)δYi(·),

where (P(i))i≥1 are random probabilities distributed as a 1/2-stable Poisson-Kingman distri-
bution with parameter h, and (Yi)i≥1 are random variables, independent of (P(i))i≥1, and inde-
pendent and identically distributed as P0. Suitable choices of h allows us to recover as special
cases of P̃1/2,h some well-known RPMs such as, for instance, the normalized 1/2-stable pro-
cess, the two parameter Poisson-Dirichlet process with a discount parameter equal to 1/2 and
the normalized inverse Gaussian process.



3 MAIN RESULT

The next result can be read from Theorem 2.1 in Perman et al. (1992) and it provides a stick-
breaking representation for the class of 1/2-stable Poisson-Kingman models. See also Pitman
(2003) for details.

LEMMA 1 Let P̃1/2,h be a 1/2-stable Poisson-Kingman model and let (P(i))i≥1 be the charac-
terizing decreasing ordered random probabilities. Then,

P̃1/2,h(·) = ∑
i≥1

PiδZi(·),

where (Pi)i≥1 is the size-biased random permutation of (P(i))i≥1 and (Zi)i≥1 are independent
random variables identically distributed as P0. Moreover, one has

Pi =Vi

i−1

∏
j=1

(1−Vj),

where (Vi)i≥1 are random variables such that the conditional distribution of Vi given T1/2,h
and (V1, . . . ,Vi−1) has a density function on (0,1) of the form

gVi|V1,...,Vi−1,T1/2,h
(vi |v1, . . . ,vi−1, t) =

1
2
√

π

exp
{
− vi

4twi(1−vi)

}
(1− vi)

3
2 (tviwi)

1
2
, (1)

with respect to the Lebesgue measure, for any index i ≥ 1 and where we defined wi =

∏
i−1
j=1(1− v j) with w1 = 1. Finally, (Pi)i≥1 is independent of (Zi)i≥1.

Lemma 1 provides the distribution of the stick-breaking random variables Vi’s given the
total mass T1/2,h. This is coherent with the hierarchical definition of Poisson-Kingman distri-
butions. In particular, after specifying the parameter h, the conditional distribution of Vi given
(V1, . . . ,Vi−1) can be derived from (1) by integrating out the random variable T1/2,h with den-
sity function h f1/2. Lemma 1 leaves open the problem of finding a straightforward description
for the distribution of the stick-breaking random variables Vi’s. Here we present a characteri-
zation of density function (1) in terms of a suitable transformation (normalization) involving
a Gamma random variable and an inverse Gamma random variable. Specifically, let (V1/2,i)i≥1
be a sequence of random variables defined as

(V1/2,i |V1/2,1, . . . ,V1/2,i−1,T1/2,h)
d
=

X
1
2

i

X
1
2

i +Y
1
2

i

, (2)

where, for any index i≥ 1, the random variables Xi and Yi are assumed to be independent and
distributed as

Xi ∼ G
(

3
4
,1
)

(3)



and

Yi ∼ I G

1
4
,

1

43
(

T1/2,h

)2

∏
i−1
j=1(1−V1/2, j)2

 , (4)

with the proviso that the empty product is defined to be unity and with G and I G denoting
the Gamma distribution and the inverse Gamma distribution, respectively. The next theorem
introduces a novel constructive definition for the class of 1/2-stable Poisson-Kingman models.
In particular, it provides a generalization of Proposition 1 in Favaro et al. (2012) to the entire
class of 1/2-stable Poisson-Kingman models.

THEOREM 1 Let (V1/2,i)i≥1 be the sequence of random variables introduced in (2). Then,
one has

P̃1/2,h(·) = ∑
i≥1

V1/2,i

i−1

∏
j=1

(1−V1/2, j)δZi(·),

where (Zi)i≥1 are independent random variables identically distributed as P0 and indepen-
dent of (V1/2,i)i≥1.

Proof. We start by focusing on the distribution of the random variable V1/2,1 |T1/2,h. In this
case (1) simplifies to

gV1
2 ,1
|T1

2 ,h
(v1 | t) =

1
2
√

π

exp
{
− v1

4t(1−v1)

}
(1− v1)

3
2 (tv1)

1
2
. (5)

We need to proove that the density function (5) coincides with the density function of the
random variable

S1
d
=

X
1
2

1

X
1
2

1 +Y
1
2

1

, (6)

where X1 and Y1 are the random variables in (3) and (4), respectively. Recall that Y1 is in-
dependent X1. Then, by making the transformation (6), the density function of S1 coincides
with

gS1(s1) = 4
s

1
2
1 (1− s1)

− 3
2
(
43t2

)− 1
4

Γ
( 3

4

)
Γ
( 1

4

) ∫ +∞

0
exp

{
−

(
(zs1)

2 +
1

43t2

(z(1− s1))2

)}
dz

= 4
s

1
2
1 (1− s1)

− 3
2
(
43t2

)− 1
4

Γ
( 3

4

)
Γ
( 1

4

) √
π

2s1
exp
{
− s1

4t(1− s1)

}

=
1

2
√

π

exp
{
− s1

4t(1−s1)

}
(1− s1)

3
2 (ts1)

1
2
. (7)



The resulting expression for gS1 coincides with the density function of the random variable
V1/2,1 |T1/2,h in (5). According to (1), for any index i > 1 the density function of the random
variable

V1/2,i |V1/2,1, . . . ,V1/2,i−1,T1/2,h

coincides with the density function (7) in which t is replaced by the term t ∏
i−1
j=1(1− v j).

Therefore, such a density function will coincide with the density function of the random
variable

Wi
d
=

X
1
2

i

X
1
2

i +Y
1
2

i

, (8)

for any index i > 1, where the random variables Xi and Yi in (8) have the same distributions
of X1 and Y1 in (6), respectively, with t replaced by the term t ∏

i−1
j=1(1− v j). The proof is

completed. ut

4 CONCLUSIONS

Our result is interesting from both theoretical, modelling and computational points of view.
Firstly, it completes the study of the well-known class of 1/2-stable Poisson-Kingman models,
by providing a constructive definition in terms of a latent random variable and a collection of
dependent stick-breaking weights defined by means of Gamma and inverse Gamma random
variables. Secondly, it suggests a simple way to define new Bayesian nonparametric mod-
els based on the class of 1/2-stable Poisson-Kingman models by modifying well-established
models based on the stick-breaking definition of the Dirichlet process. Finally, our represen-
tation allows to extend to the class of 1/2-stable Poisson-Kingman models various recently
proposed simulation algorithms such as, for instance, the slice sampling and the retrospec-
tive sampling. Indeed, both of these simulation algorithms assume to have access to a stick
breaking representation of the underlying RPM.
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