
Proceedings of the INLG 2016 Workshop on Computational Creativity and Natural Language Generation, pages 61–70,
Edinburgh, September 2016. c�2016 Association for Computational Linguistics

Combinatorics vs Grammar:
archeology of computational poetry in Tape Mark I

Alessandro Mazzei+ and Andrea Valle⇤
+Dipartimento di Informatica ⇤Dipartimento di Studi Umanistici

CIRMA: Centro Interdipartimentale di Ricerca Sulla Multimedialità e l’Audiovisivo
Università degli Studi di Torino

[alessandro.mazzei|andrea.valle]@unito.it

Abstract

The paper presents a reconstruction of the au-
tomatic poetry generation system realized in
Italy in 1961 by Nanni Balestrini to compose
the poem Tape Mark I. The major goal of the
paper is to provide a critical comparison be-
tween the high-level approach that seems to
be suggested by the poet, and the low-level
combinatorial algorithm that was actually im-
plemented. This comparison allows to assess
the relevance of how the available technology
constrained and shaped the work of the poet,
to reveal some of his aesthetic assumptions,
and to discuss some aspects of the relation be-
tween human and the machine in the creative
process.

1 Introduction

Systems for automatic poetry generation (APG) in-
troduce specific features when compared to sys-
tems for natural language generation (NLG). While
most of data-to-text NLG systems usually follow a
pipeline architecture (Reiter, 2007), a number of dif-
ferent architectures and techniques have been ap-
plied in APG (Gervás, Pablo, 2015). A crucial dif-
ference between APG and NLG is the nature of the
input, that unavoidably involves its evaluation. The
evaluation of a NLG system can be based on a ref-
erence corpus, on human evaluation or on the exe-
cution of a given task. However, all these evalua-
tion strategies rely on the reception/comprehension
of the message, that is, on the meaning units con-
tained in the input. In contrast, in the case of APG, a
clear notion of input content is not clearly available,
and the evaluation of the output is an opaque task,

as it depends on aesthetic (or more largely, cultural),
widely variable assumptions. In this sense, APG
are similar to other context-evaluated linguistic phe-
nomena such as metaphors. An example of quanti-
tative evaluation of APG based on human judgments
is reported in (Toivanen et al., 2012).

By following the classification proposed in (Ger-
vas, 2016), there are two main categories of APG
systems: the first category is composed by sys-
tems that reuse fragments of text from other poetic
texts; the second category is composed by systems
that generate a stream of text by using some proce-
dures that exploit word-to-word relations. APG sys-
tems from both these categories may use different
kinds of linguistic information since fragments fu-
sion, as well as word-to-word relations, can be based
on lexical, morpho-syntactical, semantic, rhetorical
or metrical theories. Indeed, fragments fusion can
be modeled as a string-based fusion in relation to
some combinatorial procedure or, in alternative, as a
more complex grammar-based fusion, in this case
accounting for more sophisticated linguistic theo-
ries. Only the detailed analysis of a certain specific
APG system, rooted on a reproducible implementa-
tion, i.e. algorithms and data structures, can help
us to understand the real linguistic creative nature of
the poetic generation process involved. Another im-
portant component in the analysis of the creative as-
pects of an APG concerns the non-algorithmic con-
tribution that the poet-programmer may introduce in
the final version of the poetic artwork. Indeed, often
the poet-programmer, especially in the earlier years
of APG, modifies the output provided by the APG
system in order to solve some linguistic issues of

61

the system, or in order to select one among various
possible outputs (Funkhouser and Baldwin, 2007).

The aim of this paper is to perform an experi-
ment in archeology of multimedia (Lombardo et al.,
2006): we first analyze, and then reproduce, the
poem Tape Mark I by strictly following the actu-
ally implemented algorithm (Balestrini, 1962). Tape
Mark I was a pioneering example of APG dating
from 1961, implemented in the assembler of an IBM
7070, one of the first commercial fully transistorized
computer. By reproducing the original algorithm we
have been able to understand: (1) the details of the
creative process related to the combinatorial fusion
of textual fragments; (2) the real contribution given
by the human poet to the final version of the artwork.

The rest of the paper is organized as follows: Sec-
tion 2 historically introduces Tape Mark I; Section 3
and Section 4 report the computational descriptions
of the artwork from, respectively, a high- and low-
level perspective; Section 5 describes a simulation
experiment regarding the poem; Section 6 critically
considers the relation between the author and the al-
gorithm; Section 7 adds some critical conclusions on
the evaluation of the system.

2 Balestrini and computer-generated
poetry

Funkhauser has reconstructed a chronology of
the first attempts in computer-generated poetry
(Funkhouser and Baldwin, 2007):

1959: Theo Lutz (a student of the theorist of Informa-
tion aesthetics Max Bense) implements the first
programs for computing poems, Stochastische
Texte (a text generator);

1960: the French Oulipo group is founded (includ-
ing the notorious writers Queneau and Perec,
but also mathematicians, that were mostly con-
cerned with combinatorial approaches from an
anti-lyrical perspective);

1960: Brion Gysin composes his permutation poem I
am that I am, programmed by Ian Somerville;

1961: Nanni Balestrini produces Tape Mark I on an
IBM 7070;

1961: Rul Gunzenhäuser composes Weinachtgedicht
(automatic poems).

Thus, Tape Mark I is one of the first examples of
the use of a computer to generate poetry (Balestrini,

1962; Balestrini, 1968). In 1961 Balestrini (born
1935), while still a young poet, was already a fun-
damental figure in the Italian avantgarde movement.
His poems were included in the crucial anthology
I novissimi [the newest] (Giuliani, 1961) and he
later became a member of the experimental collec-
tive Gruppo ’63 (Alicicco et al., 2010). In his long
and still continuing career, he has also been the
recipient of a prize at Venice Biennale for his vi-
sual work, still related to the manipulation of lan-
guage. Since its inception, Balestrini’s work pro-
vided a specific version of the main aesthetic as-
sumption theorized by novissimi –language as a ma-
terial reality on which the poet operates– through
the extensive manipulation of textual fragments by
other authors, retrieved from disparate sources, e.g.
novels, essays, poetry, newspapers, popular mag-
azines. This kind of technique, that can be as-
sociated to the cutup processes by W. Burroughs
and to other collage-based avantgarde approaches
(Renello, 2010), was at the basis of Tape Mark I, and
was to be developed further by the author, leading
him to write an entirely computer-generated novel,
Tristano (1966, (Balestrini, 2016)). The relevance of
the poem was immediately recognized internation-
ally as Tape Mark I was featured in the first exhi-
bition dedicated (1968) to electronic and computer
art, Cybernetic Serendipity (Reichardt, 1968; Mac-
Gregor, 2002; Boden, 2015).

3 Tape Mark I: high-level model

Tape Mark I was included and extensively docu-
mented in the Almanacco Bompiani 1962, a yearly
publication by Bompiani publisher since 1925, that
in that year issued a special volume dedicated to
the “application of computers to moral sciences and
literature” (Morando, 1962). The contribution by
Balestrini featured the poem, a description of the
generative procedure, information on the implemen-
tation and the relative outputs.

Tape Mark I starts from three fragments
(“groups”) extracted from the following texts (here
we report the Italian titles of the first two):

1. Diario di Hiroshima by Michihito Hachiya
2. Il mistero dell’ascensore by Paul Goldwin
3. Tao te King, XVI, by Lao Tse

62

Figure 1 shows the three groups. Each line is an
“element” subdivided into “metrical units” (/) and
provided with one “head code” (codice di testa) and
one “tail code” (codice di coda), respectively on the
right and left side. Numbers are not to be read as
fractions, rather they represent couples of input and
output codes. The Almanacco provides a set of four

Figure 1: Source text organization in groups.

“instructions” that allow to generate Tape Mark I
(and, in the poet’s ideas, possibly other poems) from
the groups (Balestrini, 1968):

I. Make combinations of ten elements out of the
given fifteen, without permutations or repeti-
tions.

II. Construct chains of elements taking into ac-
count the head-codes and tail-codes

III. Avoid juxtaposing elements drawn from the
same extract (i.e. group).

IV. Subdivide the chains of ten elements into six
lines of four metrical units each.

The algorithm reported the instructions in natural
language without any specifications about the data
structures. Step I introduces a constraint that is to-
tally opaque at this point (we will discuss it later).
Step II indicates how to sequence the elements. As
an example, an element ending with a tail code
= 1/2 can be concatenated only with elements hav-
ing 1 or 2 as head code. Step III specifies a con-
straint on sequencing, as only elements coming from
different groups may be concatenated. Step IV is a
grouping operation on the resulting sequence. Here
“metrical units” come into play, as the final chain is
subdivided into verses made up of 4 metrical units
(again, the number 10 is mysterious, more on this
later). The final poem has to be a sort of sestina
(Brancaleoni, 2007), as it is made up of six stanzas
of six lines. In order to study the system as pro-

giacquero/immobili/senza parlare

l'accecante/globo/di fuoco

cercando/di afferrare

trenta volte/più luminoso/del sole

si espande/rapidamente

la sommità/della nuvola

quando raggiunge/la stratosfera

i capelli/tra le labbra

assume/la ben nota forma/di fungo

malgrado/che le cose/fioriscano

io contemplo/il loro ritorno

mentre la moltitudine/delle cose/accade

esse tornano/tutte/alla loro radice

finché non mosse/le dita/lentamente

la testa/premuta/sulla spalla

Figure 2: Tape Mark I graph.

posed by the “instructions”, we first implemented a
program based on a graph model, as instructions de-
fine each element as having two predecessor and two
successors in the set of the 15 elements.

Figure 2 shows a plotting by the Graphviz pack-
age of the graph that results from the data structure
of predecessors/successors. Vertices represent ele-
ments, their color indicate the group they belong to,
edges link to successors, their color being related to
the predecessor. The graph is a direct, cyclic graph,
and while not totally connected, it still does not re-
veal a specific topology (e.g. it is not a power law

63

 I

 II

III

1 2 3 4 5 6

mentre la
moltitudine
delle cose
accade

1

2
i capelli
tra le labbra

3
quando
raggiunge
la
stratosfera

4
giacquero
immobili
senza
parlare

5
si espande
rapidament
e

6
io
contemplo
il loro
ritorno

7
assume
la ben nota
forma
di fungo

8
esse
tornano
tutte
alla loro
radice

9
la sommità
della nuvola

10
malgrado
che le cose
fioriscano

11
trenta volte
più
luminoso
del sole

Figure 3: Tape Mark I as a path on a graph.

graph, where some vertices are densely connected).
Such a topology seems to suggest a sort of uniform
distribution of the elements, that more or less share
the same rank. The graph represents all the virtual
sequencing possibilities of the system as it takes into
account also the Step II constraint on adjacent ele-
ments from different groups. An automatic visual-
ization (using the Python-based Nodebox package)
of a possible poem as a path on the graph is shown
in Figure 3, where the vertical axis represents groups
(the group is an attribute of vertices), the horizontal
one represents elements, and each vertex is labeled
on top with the sequence index (starting from 1 in
group III, element 3).

Such a modelization by means of a graph defines
a possible syntax, and explicitly aims at introduc-
ing a generative perspective, where each path on the
graph is a possible poem. Being the graph cyclic,
theoretically a path can be infinite, and the same
vertices may be traversed more times. Here Step
I comes into play, as it states (but this can be as-
sessed only taking into account the implementation,
as we will see) that no repetitions are possible. So
Figure 3 shows a path with no repetitions, as ver-
tices –once traversed– are no more available. This
constraint results in various valid paths for a maxi-
mum of 15 vertices, the shortest valid paths having
length = 8. Indeed, the graph model reported in Fig-
ure 2 can be thought as a grammar, as it falls in the
set of the regular grammars in the Chomsky hierar-
chy, i.e. the simplest form of generative grammar,
which is equivalent, in the recognition process, to a
finite state automaton (Hopcroft et al., 2006). Such
a simple grammar modelization poses an interest-
ing question: was Balestrini in need of a computer?

By drawing a graph on a paper sheet, the handmade
generation of sequences is not a big deal. The key
point is that Balestrini is not thinking in terms of
a grammar-based model1. So, even if Balestrini’s
algorithm as provided by the “instructions” can be
easily modeled as a generative procedure, it was not
thought in these terms. Rather than in a generative,
syntactic fashion, Balestrini was thinking in a com-
binatorial one. The graph model indicates that the
maximum length of a sequence is 15. But the final
poem is much longer (six stanzas of six verses). This
can be understood only by inspecting the low level
algorithm, that explains instruction I.

4 Tape Mark I: low-level model

Apart from the “instructions” section, the descrip-
tion of Tape Mark I reported in the Almanacco Bom-
piani (Morando, 1962) contains a section called
Elaborazione del Calcolatore [computer process-
ing]. It shows a complex flowchart (see Figure 4)
that was probably completely opaque to the readers
and intended only to document the “esoteric” low-
level machine level, while the plain language “in-
structions” were its “exoteric”, high-level side. Nev-
ertheless, the flowchart allowed us for a more precise
reconstruction of the original system2.

The original program for Tape Mark I was written
in the IBM 7070 assembler called AUTOCODER
(IBM, 1961). From the description and by inspect-
ing the flowchart of the low-level algorithm, we
can reconstruct the memory organization adopted by
the programmer (the engineer Alberto Nobis). The
memory was organized in four tables, called Table-
A, Table-B, Table-C and, not mentioned in the text,
Table-(d) (see Figure 5). Table-A contains the orig-
inal text fragments, i.e. each cell contains an ele-
ment (1 ! 15). A notable consequence is that each
cell has a variable length. Table-B contains point-
ers, i.e. each cell contains two pointers to the begin-
ning and to the end positions in Table-A (in Table-
B, Bn and En respectively indicating BEGIN and
END), of a specific element. Table-C contains four

1It might be noted that Chomsky’s Syntactic structures
was published only four years before (1957). Nevertheless,
Balestrini (Morando, 1962) explicitly mentions grammars as a
future reference for his work.

2Other information on the technical aspects, probably from
an interview to Nobis, are reported by (Comai, 1985).

64

Figure 4: Flowchart by A. Nobis showing the memory proce-
dures for table filling and result testing in the AUTOCODER
implementation.

distinct data: (i) the head code of a specific element
(HC); (ii) the tail code of the element (TC); (iii) the
group to which the fragment belongs to (Gr); (iv) the
position in Table-B of the pointer (BnEn). Finally,
Table-(d) contains the combination of the positions
of the Table-C, which correspond to the combination
that has been initially extracted from a permutation
of 10 over 15 elements. That is, Table-(d) contains
a serie of indexes [1, . . . 15] that represents the ele-
ments to be permuted at the initialization phase of
each cycle.

By this organization of the memory we under-
stand that the low-level algorithm essentially works
on pointers, i.e. the permutation of the fragments
essentially consists of a permutation of memory po-
sitions of Table-C, and each possible combination
extracted from this permutation is essentially a se-
quence of 10 positions (pointers) of the Table-C.

1 B1 | E1

B15 | E15

HC|TC|Gr|B1E1

HC|TC|Gr|B15E15

1 2 9

7 12 5

A B C (d)

15

...

...

9 B9 | E9 HC|TC|Gr|B9E9

Figure 5: Memory organization of Tape Mark I implemented
algorithm.

Here the number 10 comes into play, the one that
was mysteriously mentioned by Balestrini in the “in-
structions”. It is not clear why Balestrini introduces
this constraint, and both aesthetic (high-level) and
technical (low-level, due to pressing memory con-
straints on the IBM 7070) explanations are possi-
ble. This means that the whole process at each run
takes into account (and generates) a 10�element se-
quence. This memory organization probably also
explains why elements are always provided with two
head and two tail codes. The latter feature may be
seen as a feedback constraint from low- to high-level
(i.e. the “instructions”). To have a variable number
of head and tail codes would have meant to define a
further pointer table to take into account their vari-
able length.

5 The simulation experiment

The flowchart in Figure 6 is the conceptual schema
of Tape Mark I and formalizes the steps performed
both by the human (“author”) and by the machine.
In step I (“Generation”), the algorithm starts from

Generation

Filtering

Segmentation

Revision

- computer
- formalized

- author
- formalized

- author
- not formalized

I

II

III

IV

Assemblage
- author
- not formalized

V

Figure 6: The conceptual schema of the Tape Mark I artwork

65

a permutation of the 15 fragments (provided by the
programmer) and computes a specific combination.
This means that the algorithm follows a brute-force
approach, without any notion of valid sequence. In
step II (“Filtering”), the computer removes the com-
binations that do not respect the rules expressed by
the high-level algorithm. Step III is dedicated to
the assemblage of valid sequences. The previously
reconstructed methodology, strongly constrained by
memory allocation techniques on the IBM 7070 and
by AUTOCODER specifications, makes clear that
the whole poem cannot be generated in one single
run of the program, as the single run outputs a 10-
element sequence. Thus, the poem is an assem-
blage of various outputs, an operation executed by
Balestrini, that selects a number of combinations to
be used together to produce the final opera3. In step
IV (“Segmentation”), the author segments the com-
bination in order to respect the chosen metrical con-
straints, i.e. 6 stanzas of 6 verses; In step V (“Re-
vision”), the author adjusts a number of words in
order to satisfy morphosyntactic constraints in the
final text (e.g. verb-subject and number agreement).

One of the main goals of this paper is to under-
stand the effort of the author, in other words what is
the contribution of the poet in the Tape Mark I “elec-
tronic poem” (as computer-based poetry was called
at times).

The most unclear point in the Balestrini’s work
is step I. Indeed, this step consists of two sub-
processes: I-a) generate one permutation P of the
15 elements among the 15! possible permutations
(1.307.674.368.000); I-b) generate all the possible
combinations of 10 elements from P (i.e. with-
out repetitions and permutations (Mazur, 2010)): for
each P there are 3003 (C(15 : 10) where C is the
binomial coefficient) possible combinations4.

The total number of possible outputs of Tape
Mark I’s step I is huge: P (15) ⇤ C(15 : 10) =

3, 926, 946, 127, 104, 000. However, many of these
sequences are identical, since the number of dis-
tinct sequences is P (10) ⇤ C(15 : 10) =

3This is evident in the poem by comparing the final verse of
first stanza with the initial verse of the second one. They both
belong to the same group (II), so the non-adjacent constraint of
instruction II does not apply, as they are generated from two
runs.

4(Balestrini, 1962) incorrectly reports 3002.

10, 897, 286, 400. Finally, the total number of
“valid” sequences, i.e. sequences respecting the
constraints of instructions II and III, that we com-
puted by generation and test, is 65, 284, 636.

One of the goals of the simulation is to understand
how often the Tape Mark I was able to produce a
valid sequence of fragments in output. So, we have
implemented a program which reproduces the steps I
and II of the flowchart in Figure 6. The original Tape
Mark I program was able to generate the 3003 possi-
ble combinations of a single permutation in 660 sec-
onds on the IBM 7070. We have implemented an op-
timized version of the same process by using C++:
this program runs in 0.01 seconds on a modern lap-
top (4GB ram, i7 2GHz processor) to generate and
test the 3003 possible combinations of a single per-
mutation.5 However, also with this fast program, we
would need 414 years to test all the possible 15! per-
mutations. So we decided to perform an experiment
on ten millions random permutations of the 15 ele-
ments: for each permutation, we counted how many
of the 3003 combinations were valid, i.e. how many
combinations satisfy the constraints expressed in the
high-level model. In this way, we can figure how of-
ten the original program produced an output that the
poet could modify in the steps III and IV and V of
Figure 6.

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

Tape Mark I - 10 milions of runs

X =Number of valid combinations

Y
 =

 L
O

G
1
0
 o

f
th

e

n
u
m

b
e
r

o
f
th

e
 o

c
c
o
u
re

n
c
e
s

Tape Mark I simulation: 10 Mln run

 MAX: 1126 / 3003

 ~5MLn -> 0

 22857 s -> ~6.5 h

Figure 7: The number of occurrences of valid combinations
found in 10 millions random permutations of the 15 elements.

We found that statistically half of the times all the
3003 combinations extracted from a permutation do
not satisfy the required constraints. However, we
also found that the maximum number of valid com-
binations from one single permutation was 1126 (see
the logarithmic graph in Figure 7). So, this simula-

5A first, non optimized version was implemented in Clojure
and required 0.1 seconds.

66

tion confirms that in order to produce Tape Mark I
the poet needed to run the program several times,
adopting a severe trial and test procedure. Figure
8 shows an excerpt of the raw output of the sys-
tem once printed on paper6. Three outputs of 10

elements are shown, the one on top is annotated to
allow the reader to follow the chaining mechanism
based on head and tail codes.

6 Balestrini vs computational creativity

In the light of the archaeological focus of our con-
tribution we will not directly question the notion
of computational creativity, rather we will discuss
some aspects of Balestrini’s work in relation to
his computational practice and its critical reception.
That is, we will address the question: what is (ante
litteram) computational creativity for Balestrini in
the Neo-avantgarde context of the ’60s? In the fol-
lowing we identify some key features.

Formalization and metalanguage: a metalin-
guistic tension is a defining element in Balestrini’s
work, as content is subordinate to the explicit op-
erations at the basis of its generation. The sec-
ond poem collection by Balestrini is titled Come si
agisce (“How to act”) and its final section is a table
that precisely specifies how the poems in the col-
lection were created, and thus how to possibly cre-
ate other, new poems: thus, “poetry is an operation,
the poet shows, precisely, how to act” (Brancale-
oni, 2007, 125). Not by chance, Tape Mark I has
been overtly described in the Almanacco. To for-
malize the poetic operation -as noted by Sanguineti,
poet but also prominent critic of the avantgarde-
the use of the computer is in some sense a natu-
ral consequence of such an aesthetics: “electronic
poetry is [...] the natural extreme outcome” of a
similar aesthetics (Sanguineti, 1965, 72)7; Materi-
ality of language: language, primarily on its ex-
pressive surface, and secondarily in relation to the
conveyed content, is the matter of poetry. The po-
etry is intended on the one hand to demystify lan-
guage by suspending its actual practicality, on the

6Initially, generated data were stored on magnetic tape,
hence the name of the work. The final print was on a 63.74
meter continuous roll (Morando, 1962).

7Interestingly, (Colton et al., 2014) argue the relevance for
the user to meta-linguistically document computational creative
processes.

other hand to drastically destroy meaning, in order
to reach Barthes’ “Degree Zero” of language, the
level of its materiality (Brancaleoni, 2007). Com-
puters allow to directly target this goal by efficiently
providing symbol manipulation;

Redefinition of the role of the reader: thanks
to digital printing, in the new Italian and English
editions of Balestrini’s novel Tristano (2015-16)
(Balestrini, 2015; Balestrini, 2016), each copy is dif-
ferent from any other, thus reaching his original pur-
pose, i.e. to escape “the rigid determinism of the
mechanical Gutenberg printing process” (Balestrini,
2015). In the preface of the novel, Eco has individ-
uated three radically different “roles of the reader”
(Eco, 1984) implied in such a literary device, that
indeed are at stake also in the case of Tape Mark I.

1. pick up a copy and read it as if it were original
and unchangeable;

2. find multiple copies and retrace the different
outcomes of combinatorics;

3. choose one among the many texts on the basis
of the reader’s evaluation criteria (Balestrini,
2015).

Such a dispersion of roles is possible only in case of
usage of computer-controlled generative processes;

System vs text as a value for the open work:
while poetry is typically placed at the text level, in
Balestrini’s approach it is the (generative) system at
its origin that is considered in itself as a value, as
the project is to undermine the dogma of the origi-
nal, unique and definitive literary work. As noted by
Eco,“the whole work resides in its variations, even
in its variability. The electronic brain has made an
attempt to create an open work” (Eco, 1962, 185)8.
Hence the relevance of permutation, made possible
only by computational means, as an exhaustive de-
ployment of all the possible outcomes. Another his-
torical example of such a permutative fury is Que-
neau’s Cent mille milliards de poèmes, that was pub-
lished exactly in the same year of Balestrini’s Tape
Mark I. Queneau, one of the founders of Oulipo,
devised a typographical setting in which each sheet
was cut into stripes. By turning the stripes, new po-
ems emerge from the combinations of various lay-

8Here Eco is referring to his notion of “open work” as a sys-
tem of interpretative possibilities, that was originally published
exactly in 1962 (Eco, 1989).

67

I 5

III 1 II 2 I 3II 3 III 3
I 2 II 3 I 1

III 4

Figure 8: An excerpt of the raw output (four 10 element runs). On top, an annotated sequence showing the group and relative
element index.

ers. It is interesting to note that Queneau aimed
at creating “une sorte de machine à fabriquer des
poèmes” (Queneau, 1961).

Poet as a distributed demiurge: as noted by
Sanguineti, “the divine fury of the poet [...] is
converted into the infinite technical possibilities of
the electronic instrument, elected both as the imag-
inative stimulus and as the practical manufacturer”
(Sanguineti, 1965, 75). Hence the subject gains a
role of mediator, and it is distributed at various lev-
els, in a shared association with machine’s symbolic
agency. Subjectivity thus emerges:

• in the choice of materials, both in terms of the
source texts and their cutup;

• at the syntactic level (the definition of the gram-
mar, even if the term does not properly apply);

• in the selection and assemblage of the outputs
and in the final revision (punctuation and syn-
tactic agreement)9.

To sum up, it is worth emphasizing again San-
guineti’s observation: computational poetry is the
natural extreme outcome of such an aesthetics. In
the case of Tape Mark I creativity is intrinsically
computational as it is intrinsically shared between
man and the machine.

7 Conclusions

Our aim was to inspect into details a substantially
well documented example of computer-generated
poetry. A first interesting result is that low-level
features, that depends on available technology at a
certain historical time, have a crucial impact on the

9In any case, Balestrini was positive on a future automatiza-
tion of the Revision step (Morando, 1962).

output, as evident in the friction, so to say, between
high- and low-level algorithms. Is Tape Mark I a
good example of computer-generated poem? The
answer to this question is simply yes, as Tape Mark
I, far from being an experiment, is a crucial case,
highly considered in literature (hence, its interest).
And, thus, can the operations at its basis be consid-
ered relevant for a general model of computer po-
etry? The procedures devised by Balestrini are in-
trinsically local to his aesthetic vision and to the his-
torical context (including the technological one, as
we discussed). In this sense, our study seems to
suggest that, differently from natural language, the
results of poetry (and of all aesthetic objects) must
be assessed in relation to its Wirkungsgeschichte
(Gadamer, 2004), that is, the history of its effects
on a certain community.

References
Oscar Alicicco, Laura Mastroddi, and Federica Ro-

manò, editors. 2010. I novissimi. Ricostruzione del
fenomeno editoriale. Oblique Studio, Roma.

Nanni Balestrini. 1962. Tape Mark I. In Ser-
gio Morando, editor, Almanacco letterario Bompiani
1962: le applicazioni dei calcolatori elettronici alle
scienze morali e alla letteratura. Bompiani.

Nanni Balestrini. 1968. Tape Mark I. In J. Reichardt,
editor, Cybernetic Serendipity: The Computer and the
Arts : a Studio International Special Issue, Studio in-
ternational. Special issue. Studio International.

Nanni Balestrini. 2015. Tristano. DeriveApprodi,
Roma.

Nanni Balestrini. 2016. Tristano. Verso, London –New
York.

Margaret A. Boden. 2015. Foreword: How Com-
putational Creativity Began. In Tarek R. Besold,

68

Marco Schorlemmer, and Alan Smaill, editors, Com-
putational Creativity Research: Towards Creative Ma-
chines, volume 7. Atlantis Press.

Claudio Brancaleoni, 2007. Re-lab: immagini parole,
chapter “La rivoluzione in forma di parole”: Nanni
Balestrini, pages 125–136. Morlacchi, Perugia.

Simon Colton, Michael Cook, Rose Hepworth, and Ali-
son Pease. 2014. On acid drops and teardrops: Ob-
server issues in computational creativity. In Proceed-
ings of the 50th Anniversary Convention of the AISB.
Society for the Study of Artificial Intelligence and
Simulation of Behaviour.

Adriano Comai. 1985. Poesie elettroniche. L’esempio
di Balestrini. Master’s thesis, Università di Torino,
Torino.

Umberto Eco. 1962. La forma del disordine. In
Sergio Morando, editor, Almanacco letterario Bom-
piani 1962: le applicazioni dei calcolatori elettronici
alle scienze morali e alla letteratura, pages 175–188.
Bompiani.

Umberto Eco. 1984. The Role of the Reader. Indiana
UP, Bloomington.

Umberto Eco. 1989. The Open Work. Harvard UP, Cam-
bridge, Mass.

Christopher T. Funkhouser and Sandy Baldwin. 2007.
Prehistoric Digital Poetry: An Archaeology of Forms,
1959-1995. Modern & Contemporary Poetics. Univer-
sity of Alabama Press.

Hans-Georg Gadamer. 2004. Truth and Method. Contin-
uum, New York.

Gervás, Pablo. 2015. Deconstructing Computer Po-
ets: Making Selected Processes Available as Services.
Computational Intelligence.

Pablo Gervas. 2016. Constrained creation of poetic
forms during theme-driven exploration of a domain
defined by an n-gram model. Connection Science,
28(2):111–130, April.

Alfredo Giuliani, editor. 1961. I novissimi. Poesie per gli
anni ’60. Rusconi e Paolazzi, Milano.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

IBM. 1961. Reference manual ibm 7070 series program-
ming systems autocoder. Technical report, IBM, New
York.

Vincenzo Lombardo, Andrea Valle, Fabrizio Nunnari,
Francesco Giordana, and Andrea Arghinenti. 2006.
Archeology of multimedia. In Proceedings of the 14th
ACM International Conference on Multimedia, MM
’06, pages 269–278, New York, NY, USA. ACM.

Brent MacGregor. 2002. Cybernetic serendipity revis-
ited. In C&C ’02: Proceedings of the 4th Conference
on Creativity & Cognition, pages 11–13, New York,
NY, USA. ACM.

D.R. Mazur. 2010. Combinatorics: A Guided Tour.
MAA textbooks. Mathematical Association of Amer-
ica.

Sergio Morando, editor. 1962. Almanacco letterario
Bompiani 1962: le applicazioni dei calcolatori elet-
tronici alle scienze morali e alla letteratura. Bom-
piani.

Raymond Queneau. 1961. Cent mille milliards de
poèmes. Gallimard, Paris.

Jasia Reichardt, editor. 1968. Cybernetic Serendipity.
The computer and the arts. Number Special Issue.
Studio International, New York.

Ehud Reiter. 2007. An architecture for data-to-text sys-
tems. In Proceedings of the Eleventh European Work-
shop on Natural Language Generation, ENLG ’07,
pages 97–104, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Gian Paolo Renello. 2010. Machinae. Studi sulla poetica
di Nanni Balestrini,. Il Castello di Atlante. Bologna,
CLUEB.

Edoardo Sanguineti. 1965. Ideologia e linguaggio. Fel-
trinelli, Milano.

Jukka M. Toivanen, Hannu Toivonen, Alessandro Vali-
tutti, and Oskar Gross. 2012. Corpus-based genera-
tion of content and form in poetry. In Proceedings of
the Third International Conference on Computational
Creativity, page 211–215, Dublin, Ireland, may.

69

