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MiROvaR, a microRNA-based panel to predict early relapse/progression of ovarian cancer 

patients: a Multicenter Italian Trial in Ovarian (MITO) retrospective translational study.  
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SUMMARY  

 

Background 

Despite the efficacy of first-line treatment, risk of relapse/progression remains a challenge for most 

epithelial ovarian cancer (EOC) patients and development of a molecular predictor could be a 

valuable tool for patients’ stratification. Considering that a master layer of gene expression 

regulation is provided by microRNAs (miRNAs), we aimed to develop a miRNA-based molecular 

classifier able to predict progression in EOC patients. 

Methods 

We analysed miRNA expression profiles in three case materials collected at diagnosis: 179 samples 

from a MITO (Multicenter Italian Trial in Ovarian cancer) trial (OC179) were used as training set; 

263 samples from two of our centres (OC263) and 452 samples from The Cancer Genome Atlas 

EOC series (OC452), were used as validation sets. We defined progression-free survival (PFS) as 

the primary clinical endpoint and adapted a semi-supervised prediction method to the miRNA 

expression profile to define the risk of progression. The predictor’s prognostic impact was evaluated 

by multivariable analysis using a Cox regression model. 

Findings 

We developed a 35 miRNAs-based predictor of Risk of Ovarian Cancer Relapse/progression 

(MiROvaR) able to classify OC179 patients into high-risk (89 patients, median PFS 18 months) and 

low-risk (90 patients, median PFS 38 months) (HR 1·85, 95% CI 1·29–2·60, P<0·001). MiROvaR 

prognostic value was also significant in the two validation sets and it maintained independent 

prognostic impact in multivariable analyses adjusting for relevant clinical covariates (HR 1·48, 95% 

CI 1·03–2·1; P=0·036; HR 3·09, 95% CI 2·23–4·28, P<0·0001; and HR 1·41, 95% CI 1·11–1·79, 

P=0·0047 for OC179, OC263, and OC452, respectively). MiROvaR performance was confirmed in 

all Type-II and in the subset of high-grade serous cases present in the OC263 samples thus 

supporting its value in stratifying patients according to risk of progression regardless of the clinical–

pathological characteristics of the tumours at presentation. 

Interpretation 

MiROvaR is a potential predictor of EOC progression with an independent prognostic impact. 

Funding: AIRC and CARIPLO Foundation. 
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INTRODUCTION 

Epithelial ovarian cancer (EOC) is a life-threatening disease characterised by late-stage presentation 

and high pathological and molecular heterogeneity.
1
 Standard treatment for EOC patients is 

aggressive primary surgery followed by platinum-based chemotherapy. Even for patients who 

achieve a pathologically complete response, maintaining a disease-free status remains a challenge. 

In fact, in most of the patients an incurable state of platinum-resistant progressive disease 

eventually restricts therapeutic options. Despite the impressive t advance in surgical approaches and 

drug development, EOC patients have experienced little improvement in overall survival in the last 

30 years,
2
 and the five-year survival rate for advanced-stage patients is still around 30%.

3
 Great 

efforts have been made to develop gene expression-based molecular signatures, but actually few 

molecular prognostic classifiers have been developed 
4-9

 even less have been externally validated 

and no one is clinically available for EOC. One reason lies in the fact that EOC is a genetically 

plastic disease evolving during progression with an impressive heterogeneity at the time of initial 

diagnosis. To classify EOC patients for risk of progression, we therefore decided to focus our 

attention to microRNAs (miRNAs) that act as a master layer of regulation for gene expression and 

whose number is at least one order of magnitude lower than that of genes. Indeed, despite seminal 

papers on EOC miRNA profiles have been published 
10-12

, no data on classification of EOC patients 

for risk of relapse/progression are at present available. With the assumption that relying on miRNA 

expression could be a feasible approach to develop a prognostic predictor, we analysed the miRNA 

expression profiles of 894 EOC samples (to our knowledge, the largest collection so far available) 

to develop a miRNAs-based predictor of risk of EOC relapse/progression. We further assessed 

predictor performance and validated its risk-predictive power in two independent case materials. 
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METHODS 

 

Study design and participants 

Three chemo-naive case materials were used for this study.  

The training set OC179 was derived from the MITO-2 clinical trial (NCT00326456).
13

 Paraffin 

blocks from the primary tumours of patients enrolled for the MITO-2 trial 
13

 were provided by 17 

out of 43 centres participating to the trial. Of these, 305/549 blocks were excluded for lack of 

sufficient amounts of tumour for RNA extraction, 18 for the poor quality of extracted RNA, 10 

because the tumours derived from metastatic lesions, 30 because they were not chemo-naive 

(samples were collected at interval debulking surgery after three cycles of chemotherapy), and one 

for hybridisation failure. After clinical-pathological revision of the available paraffin blocks, RNA 

extraction, quality control and profiling on human miRNA arrays, 179 cases were eligible for data 

analysis (Appendix page 2 and 10). The MITO2 sub-population examined in the miRNA study, in 

comparison with the overall MITO2-trial population, contained a slightly lower number of patients 

not operated at baseline or with stage IV disease at diagnosis (see Appendix page 4). Accordingly, 

OC179 showed a longer progression-free survival (PFS) time (22·8 months, 95% CI 18–29 months 

vs 17·1 months, 95% CI 16–19·4) and OS (not yet reached; 95% CI 63–NA vs 56·6 months, 95% 

CI 50–68·2).  

Two independent series: the OC263 case material (collected at the Istituto Nazionale dei Tumori - 

Milan (INT-MI), and at the Centro di Riferimento Oncologico (CRO) Aviano) and the OC452 

(from the EOC-TCGA data set https://tcga-data.nci.nih.gov/tcga/ and 
5 

for clinical data), were 

identified as validation sets. The OC263 study population was obtained by combining all of the 

EOC cases profiled by using the Illumina microchip platform at INT-MI, namely the OC130 case 

material (see 
14

 for details) and the OC133 case material collected at CRO Aviano. All experimental 

and clinical information for OC452 and OC130 has been described previously 
5,14

 and are publicly 

accessible through the GEO series for OC130 (superseries GSE25204 including GSE25202, 

GSE25203, and GSE67819) and the TCGA website for OC452 (https://tcga-data.nci.nih.gov/tcga/). 

For OC133, freshly frozen tumour samples were collected from patients with primary EOC who 

underwent surgical resection, before any chemotherapeutic treatment, at CRO Aviano. All clinical 

data and complete follow-up information were available. Tumour staging and grading were in 

accordance with the International Federation of Gynecology and Obstetrics (FIGO) and the World 

Health Organisation (WHO) criteria, respectively. A pathologist (VC-Aviano), with specialised 

expertise in gynaecological pathology reviewed all OC133 pathological data confirming the 

pathological diagnosis and the required representative percentage of tumor in each sample. None of 

the tumor samples included in our analysis was macrodissected. Tumor representation among the 
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three sample collections is similar. The TCGA collection included samples with > 70% of tumor 

and < 20% necrosis (https://tcga-data.nci.nih.gov/tcga/ and 
15

). The same sample characteristics 

have been adopted for training set OC179 and for the validation set OC263: > 70% of tumor 

cellularity and < 20% necrosis. 

Signed consent was obtained from all of the patients included in the study. For both OC179 and 

OC263, the investigation was approved by the institutional review boards of participating 

institutions. In the case of OC263, the study was approved by the Independent Ethics Committee of 

the INT-MI, where the miRNA profiling was performed. In the case of OC179 derived from the 

MITO-2 clinical trial,
13

 sample collection for translational research purposes was carried out 

following the approval of a study amendment in 2011. The characteristics of patients included in the 

study are summarised in Table 1. 

 

Procedures. 

The procedures for the RNA extraction and quality controls of OC179 and OC133 (included in the 

OC263 validation set) and for the miRNA expression profiling of all the case materials analysed, 

are described in detail in the Appendix page 2 and summarised in Figure 1. The Minimum 

Information About a Microarray Experiment (MIAME)-compliant data reported in this publication 

have been deposited in gene expression omnibus of the NCBI,
16

 and are accessible through the 

GEO series using the superseries accession number GSE73583, including GSE73581 (OC179) and 

GSE73582 (OC133). 

The prognostic model was developed using the OC179 data as training set and the OC263 and 

OC452 data as validation sets. Analyses were performed using R statistical language version 3.1.0 

(URL http://www.R-project.org) and R/Bioconductor packages (http://www.bioconductor.org/). 

OC263 is a microarray meta-analysis of miRNA microarray data sets generated at INT-MI. The 

OC263 contains three published data sets, (GSE25202, GSE25203, and GSE67819),
14

 listing 130 

cases as well as the OC133 data set (GSE73582), that were integrated through the virtualArray 

R/BioConductor package.
17

 The data sets shared the same microarray chip version (Illumina 

Human_v2 MicroRNA) identifying 1146 miRNAs annotated on miRBase v12.0. The ComBat 

algorithm 
18

 was applied to the normalised and log2-transformed data matrices to reduce the 

likelihood of non-biological technical experimental biases causing batch effects. The resulting 

integrated data set was named OC263. 

OC452 contains the ovarian cancer miRNA microarray profile from the TCGA consortium. The 

level 1 raw data were downloaded along with the clinical annotations in November 2014 from the 

TCGA website (https://tcga-data.nci.nih.gov/tcga/). The miRNA expression profiling was 

performed on Agilent 8 x 15K Human microarrays and identified 799 miRNAs annotated on 
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miRBase 10. Data were normalised using the robust multiarray average algorithm (RMA). log2-

transformed, and filtered using the AgiMicroRna R package as described for the training set 

(Appendix page 2).  

The data pre-processing performed to enable a comparison of the three case materials is described 

in the Results section.  

Progression-free survival (PFS) was defined as the primary clinical endpoint. A semi-supervised 

prediction method involving principal component analysis developed by Bair and Tibshirani 
19

 

(available through the R package superpc [http://www-stat.stanford.edu/~tibs/superpc]) and already 

successfully applied to transcriptome data,
20

 was adapted to the miRNA expression profiles to 

identify a prognostic model. Briefly, the significance of each miRNA was measured based on a 

univariate Cox proportional hazards regression analysis of PFS versus the miRNA log expression 

level. The miRNA entering into the model were not fixed a priori but were selected on the basis of 

their FDR (false discovery rate) that defines the expected proportion of false positive results for the 

balancing of competing demands of sensitivity and specificity, avoiding data overfitting. Imposing a 

FDR < 0.1 corresponding to α<0.025, 35 miRNAs entered into the model then we expect a 

maximum of 4 miRNAs to be false positives. Subsequently, the principal component analysis was 

used to reduce the dimensionality of the miRNA included in the model. The first two principal 

components, capturing 74·2% of miRNA expression variability, were used to obtain a regression 

coefficient (weight) for each miRNA and develop a model (named MiROvaR) to calculate the 

prognostic risk score. The OC179 samples were classified as being at low or high risk of 

progression/relapse after a ten-time cross-validation approach as “internal validation”. Risk 

classification was based on the median index values obtained in the set comprising 90% of the cases 

(training), with the remaining 10% of the omitted cases (test) classified according to this value. All 

cases were stratified after reiteration of the entire procedure, omitting a different 10% of cases until 

each case was excluded. The miRNAs entered into the different cross-validation sets were reported 

as the percentage of cross-validation support, assessing the percentage in the 10-cross-validated set 

in which the specific miRNA was selected. 

The prognostic risk index for each patient can be computed by the following formula:  

∑iwi xi + 3·196617, 

where wi and xi are the weight and logged miRNA expression for the i-th miRNA, respectively. A 

new sample was predicted as being at high (low) risk if its prognostic index was larger than (smaller 

than or equal to) 0·07359 which is the median value obtained in cross-validation. 

The capability of the model to predict PFS was evaluated through Kaplan–Meier curves and the 

log-rank test. A 1000-permutations test following a procedure known as “random shuffling” was 

computed to assess the degree of overfitting in the development of our prognostic model.
21

 The 
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survival data were randomly reassigned among the cases and the entire survival risk prediction 

process was repeated, assessing the null-distribution of the log-rank test. The tail area of the null-

distribution beyond the log-rank statistic of the real data estimates the permutation significance to 

test the null-hypothesis of the absence of a relationship between PFS and miRNA expression.
22

 The 

permutation test based on 1000 permutations reached P value=0·001. 

Performance of MiROvaR was evaluated by ROC curves, details on method are reported in 

Appendix page 2. 

 

Outcomes  

PFS was defined as primary end-point since the main goal of the predictor was to identify early 

relapsing patients. PFS was defined as the time interval (in months) between the date of random 

assignment (OC179) or the date of surgery (OC263 and OC452) and the date of progression or 

death, whichever occurred first, or the date of last follow-up for patients alive without progression. 

The proportion of cases that relied on date of death for PFS was; 4 out of 124 events for the OC179 

training set: 7 out of 195 events for the OC263 validation set 1 and 2 out of 327events for the 

OC452 validation set 2. Since the training set OC179 derived from the MITO2 clinical trial (see 

Appendix page 10), for this analysis we used the same PFS definition which started from the date of 

randomization as an ascertained rule in randomized trials (see Appendix page 3 for details). For 

OC179 case material, time between randomization and surgery is 1 month (mean, SD=0·46, range 

0·23-2·56 months). 

Overall survival (OS) was defined as secondary endpoint and was defined as the time (in months) 

between the date of random assignment (for OC179) or the date of surgery (for validation sets) and 

the date of death or the date of last contact for surviving patients. Median follow-up times were 73, 

44, and 56 months for OC179, OC263, and OC452 case materials, respectively; see Table 1 and 

details in Appendix page 3.  

 

Statistical analysis 

PFS and OS curves were reported according to the Kaplan–Meier method and were compared with 

the log-rank test. Median estimates, with 95% confidence intervals (CI), were also reported. A Cox 

univariate model was used to estimate the hazard ratio (HR) for each relevant prognostic variable. 

Multivariable analysis using a Cox regression model was used to evaluate the prognostic impact of 

MiROvaR in the context of concomitant effects of other known prognostic factors (stage and 

residual disease). The validity of proportional hazards assumption for a Cox model fit has been 

tested by evaluation of scaled Schoenfeld residuals. The choice of the covariates to be used in the 
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model was based on several reasons. First, we tried to select, among the variables with known 

prognostic value, those considered as the stronger ones in terms of PFS prediction in order to have a 

number of covariates not too high, adequate to the limited sample size of the OC179 training set. 

Second, we tried to avoid variables with subgroups very small based on current definitions (eg 

grading). Third, we avoided subjective variables (eg. performance status). Fourth, we avoided 

variables not available in the validation sets (eg. performance status not available in OC263, 

histology not informative in the TCGA set where there are only high grade serous tumors). As for 

age, that in any case is not considered a prognostic factor, its eventual use would not significantly 

change the result.  

Eventually, the covariates that we used for multivariable analyses were FIGO stage and residual 

disease after primary surgery.  Based on the extent of residual disease after primary surgery, the 

patient population was divided into three groups: no evident residual disease (NED), minimal 

residual disease (mRD, residual tumour smaller than 1 cm), and gross residual disease (GRD, 

residual tumour larger than 1 cm). They were then classified into two categories for further analysis: 

optimal debulking (OD, includes patients NED or with mRD) and suboptimal debulking (SOD, 

residual tumour larger than 1 cm). We choose the codification OD vs. SOD to be consistent with the 

paper reporting the MITO2 clinical trial final analysis 
13

 and to avoid small subgroups that might 

derive from using a 3-category codification. For both univariate and multivariable analyses, stage 

and surgical debulking were coded as dichotomous indicator variables (stage III /IV vs stage I/II, 

SOD vs OD). However a multivariable analysis for PFS was performed also coding residual disease 

as a three-levels (NED, mRD, GRD) categorical variable. Patients were then grouped based on 

similar clinical and pathological characteristics (see Table 1). The chi-square test was used to 

analyse the distribution of MiROvaR high-risk and MiROvaR low-risk patients in relation to 

clinical and pathologic variables. A P value <0·05 was considered significant. 

All analyses were carried out using R statistical language version 3.1.0 (URL http://www.R-

project.org). Graphs were generated using R or GraphPad PRISM (version 5.02) software. 

 

Role of the funding source 

No sponsor was involved in the study design, data collection, analysis and interpretation, in writing 

the manuscript, and in the decision to submit for publication. The following author had access to the 

raw data: MB, SC, MDM, FP, SP, LDC and DM. The corresponding author had full access to all the 

data and the final responsibility to submit for publication.  

 

http://www.r-project.org/
http://www.r-project.org/
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RESULTS 

 

The case materials used to develop the miRNA-based molecular predictor of PFS are summarised in 

Figure 1. Patients’ characteristics and Kaplan–Meier curves are detailed in Table 1 and Appendix 

page 11, respectively. Overall, 894 EOC cases were analysed at the time of diagnosis. We 

performed accurate data pre-processing to allow the best comparison among the different platforms 

and chip arrays. The OC179, OC263, and OC452 miRNA array data were separately filtered to 

exclude miRNAs which were not detectable in all samples. Data matrices of 921, 706, and 661 

miRNAs, respectively were obtained. Since each data set was designed on different miRBase 

releases, each platform was re-annotated on miRBase release 21·0 (June 2014; 

http://www.mirbase.org/) at the sequence level. Putative miRNAs, sequences identifying virus 

miRNAs, non-mature miRNAs, or probe-sets unable to distinguish the members of a miRNA 

family and those discontinued through different miRBase versions were excluded. A list of 385 

unique miRNAs (Appendix page 5) was finally prepared and shared among the platforms and 

checked using the miRBase Traker tool (www.mirbasetracker.org) 
23

 to avoid confounding miRNA 

nomenclature.  

On the basis of the defined algorithm and after a 10-time cross validation, we developed a model 

containing 35 unique miRNAs whose expression significantly contributed to defining the risk of 

disease progression (Figure 2). Among the 35 identified miRNAs, 16 were associated with better 

prognosis (putative oncosuppressive miRNAs) and 19 with worse prognosis (putative oncogenic 

miRNAs) (Figure 2 and Table 2). The 35 miRNAs-based predictor of Risk of Ovarian Cancer 

Relapse/progression was named MiROvaR. 

MiROvaR applied to OC179 clearly separated 89 high- and 90 low-risk patients (HR 1·85, 95% CI 

1·29–2·6; P<0·0001) (Figure 3A and Table 3). ROC analyses were used to evaluate MiROvaR 

performance. The average AUC over 10-time cross-validation reaches a value of 0·68 with an 

acceptable standard deviation (+/- 0·02) confirming the good performance of our model in OC179 

(Appendix page 12). When challenged against validation sets, MiROvaR was able to stratify 

patients for their risk of progression with significantly different PFS times. One hundred and forty 

one MiROvaR high-risk (median PFS=12 months, 95% CI 10–13), and 122 MiROvaR low-risk 

(median PFS=34 months, 95% CI 26–45) patients were identified in the OC263 (Figure 3B) cohort 

while 283 MiROvaR high-risk (median PFS=15 months, 95% CI 14–18) and 169 MiROvaR low-

risk (median PFS=19 months, 95% CI 17–27) patients were detected in the OC452 cohort (Figure 

3C). The predictive value of MiROvaR was validated in both case materials: HR 3·16, 95% CI 2·3–

4·3, P<0·0001 for OC263 and HR 1·39, 95% CI 1·1–1·74, P=0·0047 for OC452 (Table 3) with 

AUC = 0·72 (SD ±0·01) and 0·58 (SD ±0·02) in OC263 and OC452, respectively (Appendix page 

http://www.mirbasetracker.org/
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12). In all three series, advanced stage at diagnosis and sub-optimal debulking after primary surgery 

were, as expected, significantly associated with progression in univariate analysis (Table 3). 

Importantly, MiROvaR maintained its independent prognostic impact in all series when analysed in 

multivariable analysis adjusting for these clinical covariates although its impact on OC452 was less 

impressive (Table 3 and Appendix page 6). MiROvaR ability to stratify patients’ OS in all case 

materials is reported in Appendix pages 7 and 13. No interactions were observed between 

MiROvaR and the type of treatment (carboplatin plus taxane vs carboplatin plus pegylated 

doxorubicine) in the OC179 set (p for interaction = 0·62). A significant association of MiROvaR 

high risk was observed with advanced stage in the OC179 data set and with residual disease in the 

OC263 series (Appendix page 8). 

When compared with the OC452 (EOC-TCGA) validation set selected for high-grade serous 

ovarian cancer (HGSOC), the OC263 validation set was more heterogeneous in histotype and 

grading (see Table 1). We confirmed the independent predictive value of MiROvaR by analysing 

the 230 Type-II (Figure 4A and Table 4), and the 185 HGSOC (Figure 4B and Table 5) cases 

present in OC263. MiROvaR performance was good also in these two sub-sets of patients with 

AUC 0·72 (SD ± 0·.02) and 0·71 (SD ± 0·01) for Type-II and HGSOC, respectively (Appendix 

page 12). The analysis of Type II sub-set was done taking into consideration the new proposed 

classification of EOC that, besides HGSOC, includes in this sub-set also endometroid high grade, 

undifferentiated and malignant mixed mullerian tumors 
24

.  
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DISCUSSION 

 

Identification of EOC patients with very unfavorable prognosis remains an urgent clinical need to 

improve the design of tailored therapy. The molecular predictor, MiROvaR, described in this study, 

and developed on a training set of 179 EOC cases, was able to stratify patients for their risk of 

relapse/progression with significantly different PFS. The identification of molecular classifiers like 

MiROvaR is based on an a priori choice of the outcome of interest. Since the main goal of our 

predictor was to identify early relapsing patients, we defined PFS as the more appropriated end 

point. PFS is widely accepted as a reasonable end-point in ovarian cancer 
25

, both clinically and in 

terms of new drug development, particularly in the first-line of treatment due to the fact that post-

progression survival may be quite long and affected also by different and heterogeneous second-line 

treatments diluting the differences eventually seen in PFS. MiROvaR was able to separate 

subgroups with different outcome in two independent validation sets, OC263 collected in our 

Institutions including both frozen and FFPE samples and TCGA relaying on frozen tissues only. We 

were however able to demonstrate that data obtained on frozen samples could be highly reproduced 

in FFPE samples and vice versa. 
14 

Although with a less impressive power, its value was confirmed 

also in the TCGA data set, the only so far available public collection with fully annotated clinical 

data that we use as second validation set, thus underlying MiROvaR ability to add significant 

prognostic information. 

Importantly, MiROvaR  retained its independent prognostic impact in multivariable analysis. In 

order to have a number of covariates adequate to the sample size of the OC179 training set, we 

selected among the known prognostic clinical variables for EOC those considered as the stronger 

ones in terms of PFS prediction (i.e. FIGO stage and residual disease). MiROvaR showed a good 

performance despite the criteria adopted for residual disease categorization and even if applied to 

heterogeneous populations of patients, thus supporting its value in stratifying patients according to 

their risk of progression, regardless of the clinical–pathological characteristics of their tumours at 

presentation.. With MiROvaR we aimed to develop a widely useful tool that could encompass the 

biological/molecular differences among the histological sub-types of ovarian cancers. For this 

reason we decided not to rely on possibly miRNA-driven patients segregation according to 

histological characteristic and MiROvaR validation in data sets with different mix of patient 

characteristics, strengthen its potential use. However, its validity in homogeneous sub-group of 

patients was confirmed in TCGA dataset that relies on HGSOC only, and in OC263 when 

considering HGSOC and type II patients which exclude low grade serous ovarian cancer, low grade 

endometrioid, clear cell and mucinous ovarian cancer. These tumor types (Type I) are rare and 

poorly represented and would rather benefit of a dedicated study. 
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The subgroup of patients with a very unfavorable prognosis identified by MiROvaR might be 

candidate to more aggressive strategies (possible addition of bevacizumab and/or maintenance 

treatment). However, the ability of more aggressive strategies to improve the prognosis of 

MiROvaR-high-risk patients should be independently demonstrated before saying that MiROvaR 

can guide treatment selection. For instance we could not predict response to therapeutic treatments 

in the analyzed case materials since interactions of potential predictive qualifiers and treatment can 

only be studied in randomized trials. In this study, OC179, derived from MITO2 randomized 

clinical trial, represents the only data set where such an analysis could be performed and yielded 

negative results. Within this dataset there is also a power issue related to the sample size, so we can 

only say that this analysis does not generate any hypothesis worth of further testing in terms of 

interaction with treatment arms (conceptually antracycline vs taxane). 

From a molecular point of view, one limit of the functional interpretation of miRNA profiles is due 

to their regulatory role, as each miRNA could regulates numerous genes and the fine tuning of each 

gene could be different and tissue specific. As specified below, for most of the miRNAs included in 

MiROvaR, their key role as central nodes in biological processes has been already identified. 

MiROvaR contains 35 unique miRNAs with an individually different relevance and different 

impact on patients’ prognosis. Among the 16 miRNAs that gave 100% of cross validation support 

to the MiROvaR predictor, 13 were associated with favourable prognosis and 3 with poor 

prognosis. Considering the increasing MiROvaR risk of progression, all of the 13 miRNAs 

individually associated with favourable prognosis and the 3 miRNAs associated with poor 

prognosis were down-modulated and up-modulated, respectively (see Figure 2). This suggests that 

the maintenance/loss of potentially oncosuppressive miRNAs has a greater impact on EOC 

prognosis than the expression/loss of potentially oncogenic miRNAs, in line with the observation 

that most miRNAs exert an oncosuppressive role and are consequently mostly down-regulated in 

cancer.
26

 Available literature data about their biological role in EOC essentially confirmed our 

assumptions, although confirmation of the roles of the 3 putative oncogenic miRNAs is limited. 

Indeed, miR-193a-5p and miR-30b-3p were up-modulated, respectively, in EOC refractory to neo-

adjuvant chemotherapy 
27

 and in low-grade serous EOC compared to fallopian tube.
28

 Although 

miR-29c-5p has been implicated in the regulatory network related to the mesenchymal subtype of 

HGSOC,
29

 information is currently not available concerning its prognostic role in EOC. An 

oncosuppressive role for miR-29c has, however, been described in colorectal cancer.
30

 In contrast, 

mature data are available for the majority of the 13 putative oncosuppressive miRNAs. In particular, 

we have previously shown that loss of a ChrXq27.3 miRNA cluster, totally included in the 

MiROvaR main contributors (miR-508-3p, miR-509-5p, 514a-3p, miR-506-3p, miR-507, miR-509-
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3p, miR-513b-5p and miR-513a-5p), is associated with EOC early relapse 
14

. This cluster also 

appears to be down-modulated in the majority of MiROvaR high-risk patients (see Figure 2). A 

deep functional characterisation of miR-506, a key node of the master miRNA regulatory network 

related to mesenchymal EOC subtype,
29,31

 linked its expression at tumor level 
29

 to: (i) inhibition of 

EOC proliferation and induction of senescence,
32

 (ii) suppression of the epithelial–mesenchymal 

transition (EMT),
33

 and (iii) an increase in the response to chemotherapy,
34

 thus confirming its 

oncosuppressive role. Besides the ChXq27.3 miRNA cluster, MiROvaR included almost all the 

members of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and miR-429), which 

are known EMT regulators,
35,36

 as main contributors and loss of miR-200c expression has been 

associated with relapse even in stage I EOC.
11

 Also this miRNA family appears to be down-

modulated in the majority of MiROvaR high-risk patients (see Figure 2). Only in the case of miR-

592 no data are available concerning its prognostic role in EOC, its expression was, however, 

predictive of improved outcome in three different cohorts of colorectal cancers 
37

 thus supporting an 

oncosuppressive role. 

Although definitive data about the biological and prognostic role of all of the miRNAs included in 

MiROvaR are not yet available in EOC, the main impact on the prediction of early recurrence 

appears to be associated with EMT regulation. The high number of miRNAs regulating EMT 

included in our predictor (miR-506 family and miR-200 family) underlines the relevance of cellular 

reprogramming to a more mesenchymal phenotype as an initiating event during EOC spread and 

progression. Furthermore, a very recent paper underlined the relevance of loss of miR-200 family 

members in contributing to recurrent lung metastases after chemotherapy in a breast cancer model, 

thus suggesting the potential for an EMT-targeting strategy associated with conventional therapy.
38

  

By applying a rigorous methodology, we have developed a strong predictor for EOC risk of 

progression/relapse by using three independent data sets for which mature follow-up data were 

available. We assessed its performance and validated its potency in two independent data sets with 

impressive results in the first validation set (OC263). We are aware that our analysis, by relying on 

the 385 miRNA shared by all the used platforms, may have lost other important miRNAs. However, 

our work is one of the few attempts in integrating the existing data building a single model that 

could be fully validated trying to overcome one of the limitation related to miRNA analysis which 

rely on the use of different platforms and different annotated lists. The applicability of MiROvaR as 

a useful clinical-grade assay needs further steps following the established framework 
39

 and 

guidelines 
40

 which include: i) the identification of an appropriate methodology (microarray, 

RTqPCR, Nanostring …); ii) design of specific probes based on the sequences tested in the 



15 
 

microarray chips; iii) validation on independent cohorts of patients with full clinical annotation 

available.  

We remark that our model is completely free to the scientific community and if other pivotal 

miRNAs will be indentified in future, they can be tested and integrated into MiROvaR. An 

opportunity to assess MiROvaR performance will be the availability of samples for translational 

purposes retrospectively collected in the MITO7 clinical trial 
41

 and prospectively collected in the 

MITO16 programs (NCT01706120 and NCT01802749); in the latter, tumor collection has become 

mandatory possibly avoiding attrition bias. 
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Table 1. 

Clinical and pathological characteristics of patients included in the three case materials 
 

  OC179 (MITO2) 
OC263 (INT-

CRO) 

OC452 (EOC-

TCGA) 

  N° (179) % N° (263) % N° (452) % 

Age, years 

 

          

     mean, median 58, 59 55, 56 59, 58 

     range 28-78 25-85 26-87 

Histology 
 

          

     Serous 124 69 190 72 452 100 

     Undifferentiated 10 6 23 9 na   

     Endometroid 24 13 26 10 na   

     Mucinous 0 0 1 0 na   

     Clear Cells 6 3 7 3 na   

     Others + Mixed 13 7 15 6 na   

Missing information 2 1 1 0 na   

Stage (FIGO) 
 

          

     I 17 9 16 6 11 2 

     II 15 8 9 3 27 6 

     III 123 69 212 81 350 77 

     IV 24 13 26 10 63 14 

Missing Information 
 

      1 0 

Grade 
 

          

     border line 0 0 3 1 1 
 

     1, well differentiated 5 3 7 3 5 1 

     2, moderately differentiated 27 15 51 19 55 12 

     3, poorly differentiated 126 70 177 67 382 84 

     Undifferentiated 10 6 23 9 0 0 

     GX 0 0 0 0 8 2 

Missing information 11 6 2 1 1   

Amount of residual disease 
 

          

     NED 73 41 76 29 102 23 

     <1 cm, mRD 42 23 85 32 208 46 

     >1 cm, GRD 53 30 101 39 100 22 

    not operated 11 6 0 0 0 0 

Missing information 0 0 1 0 42 9 

Median follow up (months) 73 (IQR 60-88) 44 (IQR 24-71) 56 (IQR 25-86) 

 

na=not applicable; FIGO=International federation of Gynecology and Obstetrics; NED=not 

evident disease; mRD=minimal residual disease; GRD=gross residual disease; 

IQR=interquartile range. 
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Table 2 

List of the 35 miRNAs entered into the prognostic model 

 

Unique ID P value 

% Cross 

Validation 

support 

Hazard ratio 0·95 CI Weight (wi) 

hsa-miR-193a-5p <0·0001  100 1·977 1·287-2·974 0·010396 

hsa-miR-508-3p <0·0001  100 0·747 0·756-0·958 –0·045965 

hsa-miR-509-5p <0·0001  100 0·684 0·731-0·918 –0·035031 

hsa-miR-514a-3p <0·0001  100 0·811 1·183-2·367 –0·058425 

hsa-miR-506-3p <0·0001  100 0·635 1·031-1·512 –0·032425 

hsa-miR-507 <0·0001  100 0·588 1·492-2·612 –0·026022 

hsa-miR-509-3p <0·0001  100 0·783 1·059-2·14 –0·049717 

hsa-miR-592 0·00015 100 0·255 1·126-2·356 –0·002782 

hsa-miR-29c-5p 0·00071 100 1·595 0·706-0·925 0·005566 

hsa-miR-513b-5p 0·00072 100 0·817 0·678-0·911 –0·028496 

hsa-miR-513a-5p 0·00074 100 0·766 0·694-0·905 –0·021663 

hsa-miR-200c-3p 0·0015 100 0·793 1·181-2·278 –0·027508 

hsa-miR-141-3p 0·0017 100 0·819 1·153-2·700 –0·032066 

hsa-miR-200b-3p 0·0027 100 0·786 1·232-2·065 –0·028151 

hsa-miR-423-5p 0·0029 90 1·765 1·241-3·165 0·005948 

hsa-miR-486-5p 0·0030 90 1·345 1·032-1·52 0·015239 

hsa-miR-200a-3p 0·0032 100 0·808 1·206-2·854 –0·032221 

hsa-miR-23a-5p 0·0052 80 1·641 1·226-2·537 0·006169 

hsa-miR-330-3p 0·0061 80 1·856 0·727-0·958 0·004021 

hsa-miR-30b-3p 0·0064 100 1·983 1·062-1·531 0·002938 

hsa-miR-484 0·0079 80 1·6 1·160-2·206 0·002136 

hsa-miR-769-5p 0·0082 70 1·762 1·121-1·612 0·002445 

hsa-miR-135b-5p 0·0089 80 0·851 0·479-0·841 –0·024577 

hsa-miR-100-3p 0·0090 90 1·958 0·429-0·805 0·003563 

hsa-miR-99b-5p 0·0094 70 1·35 0·637-0·874 0·007011 

hsa-miR-143-5p 0·0096 80 1·674 0·685-0·895 0·00264 

hsa-miR-429 0·012 60 0·835 0·555-0·843 –0·030913 

hsa-miR-151a-3p 0·013 60 1·363 0·662-0·886 0·004522 

hsa-miR-574-5p 0·016 50 1·283 0·732-0·912 0·005807 

hsa-miR-452-5p 0·017 60 1·276 0·726-0·907 0·00919 

hsa-miR-29a-5p 0·018 50 1·765 1·049-1·568 0·000855 

hsa-miR-195-3p 0·019 40 1·629 0·099-0·661 0·005412 

hsa-miR-890 0·023 40 0·085 1·186-2·614 –0·000287 

hsa-miR-30d-5p 0·023 40 1·253 0·010-0·717 0·000766 

hsa-miR-193b-5p 0·024 60 1·506 1·075-1·695 0·005293 

 

The unique miRNA ID according to miRBase 21·0, p values, percentages of cross validation 

support, individual hazard ratios, 0·95 Confidence Interval (CI) and weights are reported. 

miRNAs whose expression is associated with poor prognosis are shown in red, while those 

whose expression is associated with favourable prognosis are shown in blue. 
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Table 3 

Univariate and multivariable analysis (Cox regression) of progression-free survival for clinical 

and biological variables in the test set (OC179) and validation sets (OC263 and OC452). 

 

HR=hazard ratio; CI=confidence interval; OD=optimal debulking; SOD=suboptimal debulking. 
 

  

Datasets Variables 
Univariate analysis Multivariable analysis 

HR 95% CI P value HR 95% CI P value 

OC179 

(n=179, 

events=124) 

Stage       

III–IV vs I–II 4·74 2·40–9·36 <0·0001 3·70 1·83–7·49 <0·00028 

Surgical debulking       

SOD vs OD 2·10 1·46–3·00 <0·0001 1·46 1·01–2·12 0·043 

miRNA predictor       

High vs Low risk 1·85 1·29–2·64 <0·00082 1·48 1·03–2·13 0·036 

OC263 

(n=262, 

events=194) 

Stage       

III–IV vs I–II 2·16 1·25–3·73 <0·0057 2·16 1·21–3·90 0·0097 

Surgical debulking       

SOD vs OD 2·23 1·67–2·97 <0·0001 1·53 1·13–2·08 0·0060 

miRNA predictor       

High vs Low risk 3·16 2·33–4·29 <0·0001 3·09 2·24–4·28 <0·0001 

OC452 

(n=409, 

events=300) 

Stage       

III–IV vs I–II 1·68 1·02–2·78 0·04 1·79 1·04–3·08 0·035 

Surgical debulking       

SOD vs OD 1·37 1·07–1·75 0·012 1·27 0·99-1·63 0·059 

miRNA predictor       

High vs Low risk 1·39 1·11–1·74 0·0047 1·41 1·11-1·79 0·0047 



23 
 

Table 4 

Univariate and multivariable analysis (Cox regression) of progression-free survival for 

clinical and biological variables in Type-II cases (n=230) of OC263 case materials 
 

 

 

 

 

HR=hazard ratio; CI=confidence interval; OD=optimal debulking; SOD=suboptimal 

debulking. 

  

 
Variables 

Univariate analysis Multivariable analysis 

 HR 95% CI P value HR 95% CI P value 

OC263 

(n=230, 

events=172)  

Stage       

III–IV vs I–II 2·45 1·20–5·00 0·013 2·37 1·10–5·12 0·028 

Surgical debulking       

SOD vs OD 2·07 1·53–2·81 <0·0001 1·50 1·10–2·06 0·011 

miRNA predictor       

High vs Low risk 3·25 2·34–4·51 <0·0001 3·16 2·24–4·45 <0·0001 
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Table 5 

Univariate and multivariable analysis (Cox regression) of progression-free survival for clinical 

and biological variables in HGSOC cases (n=185) of OC263 case materials 

 

HR=hazard ratio; CI=confidence interval; OD=optimal debulking; SOD=suboptimal debulking. 
 

 

  

 
Variables 

Univariate analysis Multivariable analysis 

 HR 95% CI P value HR 95% CI P value 

OC263 

(n=185, 

events= 140) 

Stage       

III–IV vs I–II 2·81 1·15–6·90 0·023 2·67 0·96–7·38 0·058 

Surgical debulking       

SOD vs OD 2·10 1·50–2·95 <0·0001 1·62 1·14–2·29 0·0071 

miRNA predictor       

High vs Low risk 3·00 2·09–4·3 <0·0001 2·96 2·03–4·31 <0·0001 
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FIGURE LEGENDS 

Figure 1. Characteristics of the case materials, miRNA platforms and Chip arrays used for 

development of a miRNA classifier able to predict EOC patients’ risk of relapse. FFPE = formalin-

fixed paraffin embedded samples. The inter-platform reproducibility of miRNA microarray profiles 

was demonstrated by our previous study by Callari et al. 
42

. 

Figure 2. Expression heat map of the 35 miRNAs entering into the predictive model. Columns = 

patients (179) and rows = miRNAs (35), sorted on the basis of the established index. The plot above 

summarises the specific MiROvaR risk-score index for each sample. Blue: miRNAs whose 

expression is associated with a good prognosis. Red: miRNAs whose expression is associated with 

a poor prognosis.  

Figure 3. Kaplan–Meier curves of patients stratified according to the miRNA predictor. A. 

MiROvaR stratification of patients included in the OC179 training set. MiROvaR high-risk (red 

line) and MiROvaR low-risk (blue line) curves were compared using a log-rank test. Nyr = not yet 

reached. B, C. The ability of MiROvaR to classify EOC patients for risk of progression was 

validated in two independent data sets. Kaplan–Meier curves of OC263 (B) and OC452 (C) patients 

stratified according to the miRNA predictor are shown. Blue lines = MiROvaR low-risk patients; 

red lines = MiROvaR high-risk patients. 

Figure 4. Ability of MiROvaR to predict the risk of progression in Type-II (A) and high-grade 

serous ovarian cancer (HGSOC), B) subpopulations of the OC263 validation set. Blue lines = 

MiROvaR low-risk patients; red lines = MiROvaR high-risk patients.  
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Figure 3 A-C
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log-rank p<0.0001
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TCGA

time (months)

CA

Risk 

prediction

N°

patients

Events Median 

PFS

95%CI

Low 90 52 38 24-nyr

High 89 72 18 15-22

Risk 

prediction

N°

patients

Events Median 

PFS

95%CI

Low 122 73 34 26-45

High 141 122 12 10-13

Risk 

prediction

N°

patients

Events Median 

PFS

95%CI

Low 169 115 19 17-27

High 283 212 15 14-18

90 58 43 31 15 4 1

89 40 22 17 10 3 1

121 77 32 14 8 5 2

141 26 8 4 0 0 0

169 62 25 12 4 2 0

283 83 24 11 6 2 2

Number  at risk

Low
High

time (months) time (months)

Censored

Low
High

0 0 2 8 24 35 38

0 0 1 2 9 15 17

0 9 27 38 43 45 49

0 14 17 19 19 19 19

0 33 40 45 52 54 54

0 46 54 61 67 70 71
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Figure 4 A-B

time (months)
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Risk 

prediction

N°

patients

Events Median 

PFS

95%CI

Low 102 62 34 26-42

High 128 111 12 10-13

Risk 

prediction

N°

patients

Events Median 

PFS

95%CI

Low 79 50 32 25-39

High 106 91 12 11-13

log-rank p<0.0001 log-rank p<0.0001 

TypeII HGSOC

102 65 27 12 7 6 3

128 22 6 3 0 0 0

79 49 21 9 6 6 2

106 18 5 3 0 0 0

Number at risk

Low
High
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Censored

Low
High

0 7 21 31 34 36 40

0 13 15 17 17 17 17

0 5 15 22 24 26 29

0 12 14 15 15 15 15


