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Abstract. The management of non-functional features (performance,
security, power management, etc.) is traditionally a difficult, error prone
task for programmers of parallel applications. To take care of these non-
functional features, autonomic managers running policies represented
as rules using sensors and actuators to monitor and transform a run-
ning parallel application may be used. We discuss an approach aimed
at providing formal tool support to the integration of independently
developed autonomic managers taking care of different non-functional
concerns within the same parallel application. Our approach builds on
the Behavioural Skeleton experience (autonomic management of non-
functional features in structured parallel applications) and on previous
results on conflict detection and resolution in rule-based systems.

1 Introduction

When designing, implementing and debugging parallel applications a number of
non-functional concerns typically have to be taken into account and properly
managed. A non-functional concern (sometimes referred to as extra functional
concern and more recently referred to as quality attribute) is a feature not directly
affecting what the parallel application computes, that is the parallel application
result. Rather, it is a feature affecting how the parallel application result is
computed. Notable examples of non-functional concerns in parallel applications
are performance, fault tolerance, security, power management, with performance
often being the most important.

Properly managing a non-functional concern usually requires the design, im-
plementation and tuning of code additional to that needed to compute the results
of a parallel application (the so-called business code). The kind of code needed
to manage a non-functional concern poses additional requirements on the appli-
cation programmer, as correct management of non-functional concerns usually
requires a quite deep understanding of the target architecture, which is not usu-
ally required when writing business code (only). As an example, performance
optimization requires a clear vision of target architecture features in order to be
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effective. Moreover, the non-functional code is often deeply interwoven with the
business logic code, thus resulting in much more difficult debugging and tuning
of both business logic and non-functional concern management code.

Radically different approaches may be taken to manage non-functional con-
cerns if we recognize that non-functional concern management is a completely
independent activity w.r.t. business logic (functional code) development. In fact,
non-functional concern management can be organized as a policy insurance pro-
cedure piggy backed onto business logic code. The policies used while managing
non-functional concerns are the non-functional programs and the mechanisms
used to implement these programs–typically those mechanisms used to “sense”
the computation status and to “actuate” policy decisions–represent the assem-
bler instructions of non-functional management.

If this perspective is taken, then management of non-functional concerns
may be implemented as an autonomic engine associated to the business logic
code. We can implement MAPE (monitor, analyze, plan, execute) loop based
managers where monitoring and execution of actions–those devised by policies in
the analyze phase and planned by other policies in the planning phase–happen
through the sensor and actuator mechanisms provided by the non-functional
concern management assembly instructions. Fig. 1 outlines this general idea.

Fig. 1. MAPE loop in autonomic management: the control flow is represented by solid
arrow lines and the dependencies are represented by dashed lines.

Previous work has demonstrated the feasibility of such an approach to non-
functional concern management [2, 3, 18, 1]. These works also pointed out two
interesting and somehow conflicting facts:

– Best management policies may be provided by experts in the specific non-
functional concern, rather than by “general purpose” non-functional concern
experts and/or application programmers.

– Different non-functional concern management policies may lead to conflicts,
that is decisions in relation to management of non-functional concern A may
impair decisions in relation to management of non-functional concern B.



Therefore autonomic management of different non-functional concerns poses
an interesting problem: how can we “merge” policies managing different non-
functional concerns without incurring serious penalties due to policy conflicts?

The rest of the paper introduces non-functional concerns and their auto-
nomic management in more detail (Sec. 2 and Sec. 3). Then conflict detection
techniques are introduced (Sec. 4). Sec. 5 discusses formal support for policy
merging and presents experimental results to assess the complete methodology.
Finally, conclusions are drawn in Sec. 6.

2 Non-functional concern management in parallel
computing

As stated in Sec. 1, a non-functional concern is a feature related to how the
results of an application are computed rather than to what these results actually
are. Typical non-functional concerns in parallel applications include:

Performance By far, the most significant non-functional concern in parallel
programming. Usually, two distinct kinds of optimization may be required,
either latency or service time optimization, with differing implications for
the pattern used to exploit parallelism.

Security Security requirements may be related to data processed and/or to the
code used to process input data to get output results. These requirements
may vary depending on the kind of resources used to compute the parallel
application: shared, private, reserved (i.e. not private, but with exclusive
access guaranteed).

Fault tolerance Considering the number of resources involved in large-scale
parallel applications, it is quite common to experience hardware faults during
the execution of an application. Thus fault tolerance is particularly critical
to ensure correct completion of applications in the event of failure of (part
of) the resources used, especially in the case of long-running applications.

Power management If different resources are available (with differences both
in terms of power consumption and of performance delivered) power saving
becomes a fundamental option in parallel processing, especially at large/extreme
scale.

In most cases, the management of these non-functional concerns requires quite
complex activities, including:

– Adoption of more complex mechanisms and tools with respect to those
needed to support business code only. For example, to ensure security, SSL
connections may be required instead of plain TCP/IP connections.

– Parallelization of sequential code or further parallelization of parallel code.
For example, in a data parallel computation the input data should be parti-
tioned among a larger number of threads to ensure a shortened completion
time of the application. Or the presence of a sequential bottleneck in a par-
allel computation may require parallelization of the bottleneck code.



– Complete restructuring of the parallel application, i.e. changing the parallel
design pattern used to exploit parallelism in the application. For example,
having first used a stream parallel pattern, we may realize that the perfor-
mance of our parallel application is not sufficient and may therefore apply
some data parallel pattern also on the different stream parallel pattern com-
ponents.

In general, various policies may be adopted to deal with non-functional con-
cerns, with different applicability pre-conditions and different results. For ex-
ample, when dealing with performance, if an application is not performing as
expected when running on a heterogeneous architecture, we can either try to
move parallel computation components of the application to more powerful ar-
chitecture nodes (processing elements) or we can try to improve the “structure”
of the parallel application (e.g. by changing the parallel pattern used) to give
better performance on the existing and available computing resources.

It is worth pointing out that, in general, it is easier to devise suitable man-
agement policies when the structure of the parallel application is completely
exposed. If the structure is not exposed, it is much more difficult to determine
what exactly is going on and thus to plan corrective action in the event of a
(non-functional) malfunction of the application. Indeed, without a general view
of the application parallel structure, it may even be difficult to realize that there
is a non-functional malfunction.

If the parallel pattern of the application at hand is completely exposed we
are enabled:

1. to verify whether the application is performing as expected, as the (parallel)
design pattern used will come with models that can be verified while the
application is running; and

2. to take the decisions suggested by the design pattern used to correct possible
problems/malfunctions.

Of course, the parallel pattern–or the pattern composition–used within the ap-
plication may be identified in two distinct ways: i) by analyzing the HLL (High
Level Language) code used to program the application (e.g. where we use a pro-
gramming framework based on algorithmic skeletons), or ii) by running some
kind of (data flow) analysis on the application code to determine whether the
underlying parallel activities fit one of the known parallel patterns.

3 Autonomic management of non-functional concerns

Autonomic managers of non-functional concerns may be programmed as outlined
in Sec. 1 using MAPE loops. A MAPE loop is a control loop cycling on four
different phases (see Fig. 1):

M A monitoring phase, where the current status of the running parallel appli-
cation is observed by collecting data on what happens on the actual target
architecture: how many (partial) results have been computed, the time spent



Fig. 2. Implementation of ECA rules

in the different running tasks, the amount of resources used (CPU, Memory,
Network), etc.

A An analyze phase, where the current situation is analyzed, the behaviour of
the parallel application is compared to the expected behaviour and, possibly,
a plan to improve application behaviour is selected.

P A plan phase, where the decisions taken in the analyze phase are turned into
a sequence of actions to be run on the current application.

E An execute application, where the plan is actually executed.

The monitoring and plan+execute phases rely on the existence of a set of mech-
anisms with the ability to “sense” application behaviour and to “act upon”
application execution, i.e. to apply the plans devised by the manager policies
in the analyze+plan phases. These mechanisms–sensors and actuators–represent
“passive” code, as they are just called from within the manager. They also repre-
sent de facto the interface of the autonomic manager with the (running) business
code of the application and determine the kind of policies that can be effectively
implemented in the manager.

To clarify the concept, consider an application whose parallel pattern is based
on the master/worker paradigm. The availability of sensors reporting to the
monitoring phase the number of workers executing and the service time delivered
by the master/worker combination determines the capability to react to poorly
performing application states. In the same way, the availability of sensors capable
of reporting whether a parallel application component is running on a private or
on a public resource will enable the manager policies to take correct decisions
to ensure application security. On the other hand, the existence of mechanisms
(actuators) capable of stopping and restarting the application, recruiting new
resources and deploying and starting active code on the these newly acquired



nodes is fundamental to implementation of smart management policies, such as
increasing the number of workers in the master/worker pattern or moving an
application component from a public node to a private/reserved node.

As far as the “active” part of the MAPE loop is concerned–the analyze and
plan phases–different choices can be made. Plain code can be used to hard-wire
policies and plans and to call the sensor and actuator mechanisms. However, if
we wish to experiment with different policies, or investigate changing policies
“on-the-fly” depending on the perceived application status, a more dynamic
and declarative solution is necessary. Various systems, including the authors’
Behavioural skeletons [2, 3], use ECA (Event Condition Action) rule systems to
implement manager policies.

An ECA rule is applied in a context that consists of the status of the system
at the beginning of the MAPE cycle and the set of events that occurred in
the previous cycle. Events may be external, that is generated in the system
environment, or internal, that is generated as part of the effect of an action
performed in the previous cycle. The application of a rule results in a new state
and possibly in (internal) events, to be considered in the next cycle, when also
the external events received in the current cycle will be considered.

More precisely, an ECA rule is a triple

〈trigger, condition, action〉

Whether a rule is applied in a MAPE cycle depends on its trigger and condition.
The trigger is a pattern describing of the events that may cause the application
of the rule (a.k.a. firing of the rule). At the beginning of the cycle, the trigger
is matched with the events in the current context. In case of success, the rule
becomes ready to fire: it actually fires, that is, its action is executed, only if its
condition holds in the current state. An event that is not matched, or is matched
when the condition does not hold, is lost. A single event can enable two or more
rules if it matches their triggers. In the case two or more rules are enabled in an
evaluation step they are fired concurrently.

The matching process may bind parameters in the trigger to the values car-
ried by the event: the scope of such binding covers the rule condition and action,
thus enhancing the capability of the notation to express complex policies. For
the same purpose, two triggers may be disjoint, meaning that either is suffi-
cient to apply a rule, and conditions may be combined with the standard logical
operators.

Fig. 2 shows how selectors and actuators can enact ECA rules.
The use of ECA rules allows a better implementation of the manager policies.

In particular, we use the triggering event to start rule evaluation. In previous
work, we used JBoss rule syntax to express management rules. In that case rules
were tested cyclically for fireability. The period of the cycle de facto determined
the MAPE loop efficiency, as “too slow” loops react poorly and “too fast” loops
may lead to overly rapid decisions. In the following sections, we adopt the rule
system of Appel (see Sect. 5.1) to implement our rule-based manager programs.
Appel chooses rules for firing using a loop such as that mentioned above. How-



Fig. 3. Behavioural skeletons

ever, the trigger events are gathered continually and an ordered list of events is
exposed to the rule system at each loop iteration.

It’s worth pointing out here that “planning” activities in our MAPE loop
are not actually proper planning activities. Rather, the “plan” step in the loop
consists in applying a plan that has been already coded in the action part of
the ECA rules used as the program of the autonomic manager. These rules may
also include an action part that somehow modifies the rule set. For example,
a rule priority may be lowered or a rule may be substituted by a different one
which more precisely reflects the actions needed in the current situation. This
notwithstanding, the “plan” phase is actually a kind of “actuate one of the
already established plans” phase. At a rather higher level of abstraction, the
process leading to the design of the rules used as the program of the MAPE
loop is a kind of MAPE loop itself. The current situation is monitored and then
it is analyzed. During the analysis phase a policy is eventually identified which
turns into a plan to be actuated/executed by generating suitable loops for our
run time MAPE loop.



3.1 Behavioural skeletons

Building on the concepts detailed in the previous Sections, we proposed some
time ago the concept of Behavioural skeleton, i.e. of a parallel design pattern
coupled with an autonomic manager taking care of a non-functional concern. In
the original behavioural skeleton design, the parallel design patterns considered
were the traditional ones in stream parallel computing models, that is task farm
and pipeline. Task farm (a.k.a. abstraction of the master/worker implementation
pattern) completely captures and models embarrassingly parallel computation
on streams. Pipeline, instead, captures and models computation in stages, with-
out backward communications. Also, the original behavioural skeleton design
considered management of only a single non-functional concern: performance.

The behavioural skeleton approach is outlined in Fig. 3. A behavioural skele-
ton library is made available to the application programmer. The library contains
several composable behavioural skeletons. Each behavioural skeleton consists of
a parallel design pattern and of an autonomic manager running a MAPE loop
and using an ECA rule system to implement policies. Suitable sensors and ac-
tuators are implemented within the parallel design pattern implementation to
support autonomic manager activities.

The application programmer in charge of writing a parallel application chooses
a behavioural skeleton or some composition of behavioural skeletons from the
BS library and provides the behavioural skeleton(s) business logic parameters.
For example, if the pattern used to express parallelism within the application is
a pipeline, the application programmer chooses the pipeline behavioural skele-
ton and instantiates it passing as parameters the code (wrappers) implementing
the business logic of the pipeline stages. If one of the stages has to be further
parallelized, the application programmer may pass as pipeline stage an instance
of a task farm whose worker parameter implements the parallel stage business
logic.

Once the application programmer has written his/her application using be-
havioural skeletons, a compiler takes care of producing suitable parallel code for
the target architecture at hand. This code relies on the functions provided by
the behavioural skeleton run time library, of course.

It is worth pointing out several notable features of this approach:

– the system concerns (those requiring specific knowledge concerning the tar-
get architecture/system at hand) and the application concerns (those requir-
ing more domain specific knowledge related to the application field) are kept
completely separate. Separation of concerns clearly enforces productivity and
efficiency in both application and system programmer activities.

– the application time-to-deploy is significantly reduced by reuse of behavioural
skeleton library components.

– performance portability across different architectures is the responsibility of
system programmers (as opposed to application programmers) who provide,
in the behavioural skeleton library, components specific for the different tar-
get architectures.



– policy programmability is ensured by the ECA rule system embedded in the
autonomic manager MAPE loop. Programming rules (declarative style) is
much more user friendly and efficient than writing specific code using the
sensors and actuators provided by the associated design pattern.

Leveraging on all these attractive properties, a prototype implementation
of behavioural skeletons on top of the ProActive/GCM middleware has been
demonstrated to be able to carefully manage performance in stream parallel
applications [3].

4 Conflict detection and resolution in rule-based systems

Policy conflict has been recognized as a problem and there have been some
attempts to address it, mostly in the domain of access or resource control [17].

Kind of conflicts. ECA rules conflict if (1) they may be triggered at the
same time and (2) their conditions overlap and (3) their actions conflict. While
this definition makes complete sense only in a specific application domain, as
one must be aware of what conflicting actions are, the problem is inherent to
policies. To ensure that policies can be applied it is necessary to remove conflicts.
This process involves two stages: first one needs to identify whether conflicts
can occur, that is to detect conflicts, and then to remove them, that is resolve
conflicts.

The general definition of policy conflict can be extended to accommodate
some special cases.

In [8] the authors discuss what it means for two rules to be triggered at
the same time, providing two different interpretations: their trigger sets overlap
(and the actual triggering event is in the overlap) or the action of one is in the
trigger set of the other. The former case has been called STI (Shared Trigger
Interaction) and the latter SAI (Sequential Action Interaction).

More generally, and this provides interesting future work in our case, the
designer may be interested in specifying conflicts on the basis of traces, i.e.
define as conflicting rules that (1) may be applied within n MAPE loops and (2)
whose actions conflict.

One further aspect to consider, and this is again based on experience in
feature interaction, is the question as to how many policies are required to gen-
erate a conflict. In the community, discussions have taken place around a topic
called “three-way interaction”. In the feature interaction detection contest at
FIW2000[9] this was an issue, and the community decided that there are two
types of three-way interaction: those where there is already an interaction be-
tween one or more pairs of the three features and those where the interaction
only exists if the triple is present. The latter were termed “true” three-way
interactions.

Nothing has been written about true three-way interaction, as only one, quite
contrived, example of such an interaction has been found. Hence we consider



realistic to assume that no “true” three-way interaction may occur, and limit
ourselves to pair wise checking.

Conflict Detection Time We distinguish between design time (static) and
run-time detection. In run-time detection, conflicts, if any, are looked for at each
execution step among the rules that can be applied at the step. When conflict
detection is anticipated at design-time, rules are filtered before being entered in
the policy engine, to detect those that would originate conflicts. In this way we
can provide the user with confidence that the rules are conflict free.

In our former works we addressed design time detection. In [13, 14], we take
a logic–based approach to this end: conflicts are detected by deducing specific
formulae in a suitable temporal logic theory. In [6] we exploit the use of model
checking to detect policy conflict. This is the approach employed in this paper.

Layouni et al. in [11] also experimented with the use of the model checker
Alloy [5] to support policy conflict resolution.

Conflict Resolution Conflict resolution can in general be attempted in a num-
ber of ways, and which is best suited depends on the situation. We can broadly
distinguish between resolution at design–time and resolution at run–time. The
taxonomy of policy conflict in [17] makes explicit that design-time resolution is
always feasible when policies are co-located and owned by the same user. In this
case resolution will be a redesign of the policies. However, when policies are dis-
tributed, this is not always possible and it is preferable to deal with conflicts at
run-time. Resolution in this case may exploit priorities among policies, activat-
ing only policies with greater precedence. Nevertheless, there is a wide spectrum
between the two extremes of co-location and complete distributed placement,
and any conflict that is resolved before run-time is of benefit.

A comprehensive survey on detection and resolution techniques in three well-
known policy management approaches, KAoS, Rei and Ponder, is found in [20].

5 Multiple non-functional concern management: formal
tool support

The ability to develop independent managers and to modify them to accomplish
coordinated management of multiple concerns is attractive for two reasons: it
enforces modular design and reuse; and allows better use of domain specific
knowledge of different non-functional concerns.

However, combining a set of single-concern managers may be difficult to
achieve since it requires expertise in all of the non-functional concerns to be
coordinated, and because the sheer number of evolution paths of the combined
managers may make it extremely difficult for the human to identify the possi-
bility of a conflict arising.

Model checking tools may provide fundamental support, however, as pro-
posed in [6, 10]: “conflicts” can be detected by model checking, once the conflict-



ing atomic actions have been identified. More precisely, the whole design phase
includes the following steps:

– Independent experts design and implement policies relative to distinct non-
functional concerns.

– A set of conflicting actions is defined, such that a pair of actions ai, aj are
in the set iff action ai “undoes” action aj and vice versa.

– A formal model of the rule system is derived, which is fed to a model checker.

– The model checker is used to check formulas stating that conflicting actions
may occur “at the same time”, that is in the same MAPE loop iteration.

– The traces leading to the situation with the conflicting actions obtained from
the model checker are used to change the rules to handle conflicts.1

5.1 An experiment in static conflict detection for autonomic
managers

In the sequel, we first describe our experimental setting, and then discuss our
first results, with respect to the likelihood of applying the technique to real
life examples. The ingredients of the technique are a policy language, a model
checker and a translator able to generate a checkable model from the policies.

Appel We use Appel [22, 21] to write the management rules. Appel is a gen-
eral language for expressing policies in a variety of application domains: it is
conceived with a clear separation between the core language and its special-
ization for concrete domains, a separation which turns out very useful for our
purposes.

In Appel a policy consists of a number of policy rules, grouped using a
number of operators (sequential, parallel, guarded and unguarded choice).

A policy rule has the following syntax:

[when trigger] [if condition] do action

The core language defines the structure but not the details of these parts, which
are specifically defined for each application domain: base triggers and actions
are domain-specific atoms; an atomic condition is either a domain-specific or a
more generic (e.g. time) predicate. This allows the core language to be used for
different purposes. In our case, as mentioned above, the triggers relate to active
sensors, conditions to (passive) sensors, and actions to actuators.

Triggers can be combined with a disjunction, complex conditions can be built
with Boolean operators, and a few operators (and, andthen, or and orelse)
are available to create composite actions.

1 At the moment conflicts are identified by the model checker, but then the actions
needed to resolve the situation (i.e. the modifications to the manager rules) are per-
formed by humans. The asymptote is to have this part also executed automatically.



The semantics of Appel [,] which before was only defined informally, as
with most policy languages, has been formally defined by translation into the
temporal logic ∆DSTL(x) [15, 16].

Though Appel supports also a notion of priority among the rules, we do not
exploit this currently.

UMC. This is an on-the-fly analysis framework [12, 23, 19] that allows the user

1. to interactively explore the behaviour of a UML state machine;
2. to visualize abstract slices of its behaviour; and
3. to perform local model checking of UCTL formulae, UCTL being a branching-

time temporal logic [7].

The last feature is the most important for our purposes, but the previous ones
are very useful once a conflict is detected and we need a deep understanding of
what is happening to resolve it.

UCTL allows specification of the properties that a state should satisfy and
combination of these basic predicates with advanced temporal operators dealing
also with the performed actions. Some care must be taken in writing the formulae
that characterize the conflicts to be detected, since they are checked not against
the traces of the UML state machine, but against the traces of an equivalent
standard state machine – generated by UMC – where parallelism is resolved
with interleaving. So to detect two conflicting parallel actions one has to detect
any sequence of the actions in any path in the traces.

Appel2UMC. We have defined a semantics-preserving compositional mapping
from Appel to UML, suitable for model checking with UMC. Since UMC oper-
ates on UML state machines, the target of the mapping happens to be a subset
of UML state machines: policies and policy groups are defined using compos-
ite states, i.e. states with structure reflecting the one imposed by the Appel
operators onto policies and actions.

To derive a UML state machine model of the system to feed the checker, we
follow the approach of [6]: Appel policies are automatically mapped to a UMC
specification, i.e. the description of a UML state machine, in the UMC textual
input format.

The mapping is based on the Appel semantics given in terms of UML state
machines. Actually, the mapping needs not consider the actual semantics of the
actions, but only an abstract one, where an action may result in a success or a
failure. Intuitively, these notions entail that an action may complete normally
(success) or may abort for some reason (failure), and Appel leaves the specifics
of an action success or failure to the domain. However, it defines the success or
failure of a composed action as a composition of the successes and failures of the
actions under composition. Therefore, for the translation, actions can be treated
as propositional atoms.

The prototype translator from Appel to an equivalent UMC specification,
dubbed Appel2UMC, is written in OCaml, and structured in a syntax definition



module, a Compiler, and an Unparser. Compiler translates Appel to UMC, at
the abstract syntax level, and Unparser generates the textual version needed
by the model checker. These core modules depend on a further one that defines
the domain dependent features (triggers, conditions and actions), thus ensuring
adaptability of the tool. At the moment, the syntax is about 100 lines, the core
modules are slightly over 500 lines, and the domain dependent part less than 80
lines. Translation times are not an issue.

5.2 Preliminary results

To evaluate the feasibility of the approach, we ran some experiments using the
model checker UMC [23, 19] to verify part of the policies introduced in [4] for
structured parallel computations.

We consider two independently developed managers controlling respectively
performance and power consumption of an application with a farm structure.

Managing performance. The Appel rules in Table 1 address performance
management: the first two capture a noteworthy change in performance (trigger
NewPerformanceMonitored and the others a noteworthy change in the paral-
lelism degree of the execution. What a noteworthy change is, is defined by the
semantics of the active sensors that generate the events matching these triggers.

These changes may be disregarded if they do not take the system outside of
the “normal” operational range, i.e., when neither LowPerformance nor HighPer-
formance (LowParDegree nor HighParDegree, respectively) holds, that is, when
the values returned by the corresponding sensors do not satisfy the intended
condition.

Let us now consider what happens when PM1 fires, i.e., when performance
drops below the threshold. The goal obviously being to reestablish an accept-
able level, a new worker is introduced, in two macro steps, each sequencing two
basic actions on the current state of the application. In the best of worlds, an
available processor is allocated to the farm (GetResource), the appropriate run-
time-support is deployed (DeployRts)and started (StartRts), and finally the new
worker is linked (LinkRts)and therefore made available to the farm.

What if something goes wrong in the execute phase, e.g. no more processors
are available? PM1 is written (like all the other rules in this simplistic scenario,
by the way) using the composition operator andthen in such a way that the
failure of any basic action entails the failure of the rule as a whole, and therefore
the rule fires but has no effect whatsoever.2

The other rules were designed similarly, and use a few more basic actions,
whose meaning should be immediate. Only GetWorker may need a comment:
it selects one of the active workers in the farm, likely so that the manager can
consequently free the resources it is using.

2 Actually, care must be taken that the controlled application is rolled-back to its
initial state. Also, in a realistic scenario, some alarm should be sent to the adminis-
trator, when appropriate.



PM1: when NewPerformanceMonitored
if LowPerformance
do (GetResource andthen DeployRts) andthen

(StartRts andthen LinkWorker)
PM2: when NewPerformanceMonitored

if HighPerformance
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)
PM3: when NewParMonitored

if LowParDegree
do (GetResource andthen DeployRts) andthen

(StartRts andthen LinkWorker)
PM4: when NewParMonitored

if HighParDegree
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)

Table 1. The Performance Manager Rules

Managing power consumption. The Appel rules in Table 2 address this
concern. They should be easily understandable, at this point, since they use
many of the actions already used for performance management, but react to
different events and are subject to new appropriate conditions.

The two rules deal only, in different ways, with the need to decrease power
consumption. PCM1 takes a drastic approach, and kills one of the workers, to
get the result. PCM2 attempts to save something, trading away one of the more
power consuming workers for a less consuming one.

Conflict definition. As we have seen, both managers operate on the appli-
cation graph by executing actions like LinkWorker and UnlinkWorker, which
include or remove a node in/from the current computation, respectively.

These actions are marked as an “atomic conflict”, as they nullify each other,
if performed in the same control cycle.

Putting UMC to work. To illustrate how conflict detection is supported by
UMC, we consider as simple a situation as possible, with only two rules, one from
each manager, namely PM1 and PCM1. Given the parallel composition of these
two rules, Appel2UMC generates the textual representation of the corresponding
UMC model, dubbed System by default.

Loading System into the framework, an equivalent graphical representation
(Fig. 4) is generated by the framework: it is a translation of the input System
model into a standard automaton, resolving parallelism with interleaving: in this
representation, “parallel” actions in the rules appear in sequence, in all possible
different orders, along several traces. It is precisely the space of traces of this
automaton that is searched by the UMC model checker.



PCM1: when NewPowerConsumptionMonitored
if PowerContractLow
do (GetWorker andthen UnlinkWorker) andthen

(StopRts andthen UndeployRts)
PCM2: when NewPowerConsumptionMonitored

if PowerContractLow
do [(GetPowerWorker andthen GetCheaperWorker) andthen

(UnlinkWorker andthen StopRts)]
andthen
[(UndeployRts andthen DeployRts) andthen
(StartRts andthen LinkWorker)]

Table 2. The Power Consumption Manager Rules

In this simple example it is clear, by inspection of the automaton, that the
conflict will arise. However, as the number of rules in parallel increases, the size of
the space of the traces of the corresponding automaton increases exponentially,
and human inspection becomes quickly infeasible.

To use model checking instead, we need first to formalize the relevant ques-
tion may a conflict occur in one MAPE cycle? in UCTL, in terms of traces: is
there no trace among those generated by the automaton, which includes both
LinkWorker and UnlinkWorker? Formally, the question is expressed by requir-
ing that it should never be the case that there is a path were a LinkWorker
(UnlinkWorker) state has a path to a subsequent UnlinkWorker (LinkWorker),
that is:

(not EF EX{LinkWorker} EF{UnlinkWorker} true)

& (1)

(not EF EX{UnlinkWorker} EF{LinkWorker} true)

Our aim is to specify that there is no single MAPE cycle where both actions
LinkWorker and UnlinkWorker are executed. The question has to be formulated
in this way, since UMC translates the input model into a standard finite state
machine, resolving parallelism with interleaving: “parallel” actions appear in
sequence, in different orders, in several traces.

Running the model checker, it gives “false” as answer, and the explanation of
this result gives the traces leading to the situation where the formula is demon-
strated false.

To conclude we remark that the logical formulae associated with conflicts
can be systematically written by the designer following the pattern of formula
(1).



{NewParMonitored, 
NewPerfMonitored}

{NewPerfMonitored, 
NewParMonitored}

{GetWorker}

{SUCC}

{UnlinkWorker}

{FAIL}

{GetResource}

{LinkWorker}

{SUCC}

{FAIL}

{FAIL}

{SUCC}

{GetResource}

{SUCC}

{LinkWorker}

{FAIL} {SUCC}

{GetWorker}

{SUCC}

{UnlinkWorker}
{FAIL}

{FAIL}

{SUCC}{FAIL}

Fig. 4. Representation of System as an automaton



Resolving the conflict. According to the method outlined in Sec. 5.1 we
should be able to collect all the knowledge necessary to produce a modified
set of rules properly handling the conflict from the answer given by the model
checker to explain why the model falsify formula (1):

– the situation leading to the conflict is determined by the contemporary fir-
ing of the power manager rule PCM1 to “reduce power usage”, and of the
performance manager rule PM1 to “increase parallelism degree”.

– there is at least one path leading to the conflict, which includes the actions
in PM1 and PCM1.

Based on this knowledge, we can conclude that handling of the detected
conflict may be achieved by a high priority rule (or a set of rules):

– whose (new) trigger logically corresponds to the conjunction of the two trig-
gers as Appel, and most ECA based notation, does not support the con-
junction of triggers but only trigger disjunction, and

– whose action part consists in a plan whose effect is an increase of the paral-
lelism degree with reduced power consumption.

Alternatively, we may solve the conflict by assigning a priority to one of the
conflicting rules, in such a way that only the highest priority rule is executed.

Feasibility. We discussed a very simple example: two rules giving rise to a very
compact model and useful “explanations” in terms of traces. The number of
states generated in the UMC model is below one hundred and the response time
of the model checker is of the order of a fraction of a second.

We made a few slightly more realistic experiments using up to all the rules
given above. The times needed to execute the model checker with different rules
sets and queries are in the tens of milliseconds range: when 2, 4 or 6 rule systems
are used, the time to model check the “conflict exists” formula are 30, 50 and
60 msecs, respectively (the model checker was running on a quad core Core Duo
Intel Xeon workstation). When the AG(true) is model checked–this query gives
the upper bound in execution times, as it requires the model checker to visit all
possible paths in the model–the time spent in the model checker is 20, 120 and
250 milliseconds, respectively. These results seem to confirm that the approach
is feasible in more realistic situations. We cannot show the involved automata,
as the graphs are significantly larger and do not fit easily on a page.

6 Conclusions

We discussed formal tool support for the integration of independently developed
autonomic managers, each taking care of a different non-functional concern.
The formal tool support provides suitable hints to the programmer integrating
these independently developed managers into a single parallel applications. As



the manager programs are suitable sets of ECA rules, the formal tool support
provides evidence of the conflicting rules in different managers as well as of the
initial situations (states) that eventually lead to the conflicting actions generated
by the ECA rules. The preliminary results demonstrate the feasibility of the
approach and the relatively modest computational cost of the model checker
activities involved.

Paraphrase perspective

The research results discussed in this paper will be exploited within the Para-
Phrase project in various ways.

First, although not discussed here for the sake of simplicity, the ECA rule
sets we are considering in our non-functional concern managers include rules that
change the structure of the parallel computation. For example, a manager taking
care of performance in a program whose parallel structure may be represented as
a pipeline(seq(f), seq(g), seq(h)) may discover that the second stage takes much
longer to execute than the first and the third. Therefore he may execute an action
aimed at transforming the program into a pipeline(seq(f), farm(seq(g)), seq(h)).
As the main focus of ParaPhrase is on parallel program refactoring, these rules
transforming parallel pattern compositions to better performing parallel pattern
compositions represent natural candidates for use in the refactoring process.

Second, we foresee the possibility to implement some kind of dynamic man-
agement of the re-factoring to suit the varying conditions on the target architec-
tures within ParaPhrase. The techniques discussed here will naturally suit the
need to verify that no conflicts are generated while dynamically re-factoring our
parallel applications.
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