
ACQUIRED RESISTANCE TO CLINICAL CANCER
THERAPY: A TWIST IN PHYSIOLOGICAL
SIGNALING
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Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, Xue G. Acquired
Resistance to Clinical Cancer Therapy: A Twist in Physiological Signaling. Physiol Rev 96:
805–829, 2016. Published May 3, 2016; doi:10.1152/physrev.00024.2015.—Al-
though modern therapeutic strategies have brought significant progress to cancer
care in the last 30 years, drug resistance to targeted monotherapies has emerged as

a major challenge. Aberrant regulation of multiple physiological signaling pathways indispensable
for developmental and metabolic homeostasis, such as hyperactivation of pro-survival signaling
axes, loss of suppressive regulations, and impaired functionalities of the immune system, have
been extensively investigated aiming to understand the diversity of molecular mechanisms that
underlie cancer development and progression. In this review, we intend to discuss the molecular
mechanisms of how conventional physiological signal transduction confers to acquired drug resis-
tance in cancer patients. We will particularly focus on protooncogenic receptor kinase inhibition-
elicited tumor cell adaptation through two major core downstream signaling cascades, the PI3K/
Akt and MAPK pathways. These pathways are crucial for cell growth and differentiation and are
frequently hyperactivated during tumorigenesis. In addition, we also emphasize the emerging roles
of the deregulated host immune system that may actively promote cancer progression and
attenuate immunosurveillance in cancer therapies. Understanding these mechanisms may help to
develop more effective therapeutic strategies that are able to keep the tumor in check and even
possibly turn cancer into a chronic disease.
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I. RECEPTOR TYROSINE KINASES AND
THEIR DOWNSTREAM SIGNALING AXES

Cancer is one of the major life-threatening diseases that
continuously attract tremendous social attention. Latest ep-
idemiological statistics highlight the global increase of can-
cer burden (290). In the United Kingdom, it is estimated
that 50% of people will suffer from cancer disease at a
certain stage in their lifetime (2). In 2014, out of 41 new
drugs approved by the Food and Drug Administration
(FDA), 22% (9 drugs) were designated for cancer therapy
(186). Encouragingly, new anti-cancer drugs have shown

great success in clinical cancer therapy with significantly
improved survival rate over the past 30 years (266). How-
ever, a relevant shortcoming of targeted therapies is the
quick emergence of acquired drug resistance. This is partic-
ularly frequent for small-molecule inhibitors that target re-
ceptor tyrosine kinase (RTK)-mediated oncogenic signaling
pathways. Cancer cells resistant to these drugs usually ex-
hibit a higher degree of genomic instability and show more
aggressive phenotypes, such as accelerated metastasis to
distant organs and tissues. Thus drug resistance becomes
the major challenge in clinical cancer therapies. Develop-
ment of novel therapeutic strategies towards overcoming
drug resistance is a critical issue in clinical cancer therapy.

RTKs are a group of membrane proteins that are activated
through tyrosine phosphorylation within their intracellular
kinase domain. In the human genome, there are �58 genes
encoding RTK proteins (235). Although they differ in their
patterns of expression and activation, such as the abun-
dance on the cell membrane, the discrepant expression be-
tween cell and tissue types as well as at different develop-
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mental stages, these RTK proteins are evolutionally con-
served and are structurally similar on a molecular level,
with an extracellular ligand-binding domain, a single trans-
membrane �-helix, and an intracellular kinase domain that
mediates downstream signaling. RTKs are one of the most
important molecular sensors that perceive extracellular sig-
nals and evoke cell responses through orchestrating intra-
cellular signaling networks. Under physiological condi-
tions, activation of RTKs regulates cell fate in many aspects,
including proliferation, differentiation, migration, and met-
abolic homeostasis (108, 246).

The multiple functionalities of RTKs are achieved through
two principal signaling axes: mitogen-activated protein ki-
nase (MAPK) (35) and phosphoinositide 3-kinase (PI3K)/
Akt (75, 296, 317). Mechanistic studies on molecular struc-
ture reveal that physiological activation of RTKs is initiated
by binding of growth factors to the extracellular domain
(ECD), which subsequently triggers RTK homo- or het-
erodimerization. Oligomerized RTKs undergo conforma-
tional changes that rapidly induce trans-autophosphoryla-
tion on key tyrosine residues within the COOH-terminal
kinase domain. This domain not only stabilizes the active
state of the RTK but also provides essential docking sites for
other regulatory proteins that contain phosphotyrosine-
binding motives such as SH2 (301). Once the signalosome is
assembled, downstream signaling modules such as MAPK
and PI3K/Akt are recruited and activated. These two path-
ways act as essential processors to direct cellular response at
both transcriptional and translational levels in a context-
dependent manner (FIGURE 1). However, to maintain a met-
abolic homeostasis, developmental patterns require spa-
tiotemporal controls of RTK activation. Indeed, acti-
vated RTKs not only integrate positive signaling loops
but also modulate feedback to terminate their activities.
Although other parallel mechanisms exist, MAPK and
PI3K/Akt/mTOR cascades are capable of self-limiting ex-
cessive activation of RTKs through direct phosphoinhi-
bition of the key adaptor proteins, which results in the
interruption of the link between RTKs and their down-
stream targets (127, 162).

RTKs are frequently hyperactivated in malignant cells and
play important roles in the maintenance of tumorigenic
phenotypes in various cancers. Due to their substantial con-
tributions to cell growth, RTKs are natural anticancer tar-
gets in the clinic. Aberrant constitutive activation of RTKs
can be triggered by gene amplification (16, 278), genetic
activating mutation (44, 289), gene rearrangement (258),
and overexpression of the respective ligands in the tumor
stroma (FIGURE 2). Deregulated RTK activation exponen-
tially amplifies downstream signals released from MAPK
and PI3K/Akt which leads to uncontrolled cancer cell pro-
liferation and tumor growth. Strategies to inhibit RTK (hy-
per-) activation have been developed, including blocking
antibodies to neutralize the extracellular ligand-binding

moiety and small molecular compounds (RTK inhibitors,
RTKi) to suppress the function of the intracellular kinase
domain or prevent RTK dimerization. Since activation of
RAS/MAPK and PI3K/Akt/mTOR is either the result of
RTK dysfunctions or correlates with mutations further
downstream (80, 120, 250), almost all key components
along these two signaling axes, such as BRAF, MEK, PI3K,
Akt, and mTOR, have been therapeutically targeted to al-
low for serial and parallel blockade of these two pathways.

ERBB family members, an important member of the RTKs,
are frequently hyperactivated (gene amplification and ac-
tive mutation) during oncogenic progression in many types
of cancer, including head and neck squamous cell carci-
noma (HNSCC), non-small-cell lung cancer (NSCLC),
breast cancer, ovarian cancer, prostate cancer, glioblas-
toma multiforme (GBM), colorectal cancer, and bladder
cancer (256, 283). We will use this family of RTKs as a
representative model to discuss the mechanisms of acquired
drug resistance in NSCLC and metastatic breast cancer pa-
tients undergoing targeted therapies because tumor pro-
gression is tightly correlated with therapy-induced drug re-
sistance. In addition, we will also address recent exciting
advances in understanding how resistance is developed in
metastatic melanomas harboring mutant BRAF, another
tumor model that is representative of both self-activating
and bypassing mechanisms of therapy-induced resistance.
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FIGURE 1. Signaling transduction of receptor tyrosine kinase
(RTK). The two essential proliferative intracellular signaling path-
ways, PI3K/Akt/mTOR and RAS/MAPK, are activated down-
stream of RTKs. Under physiological conditions, these two pathways
coordinate with each other to determine proper cell proliferation and
organ size. AP, adaptor protein; red ball, phosphotyrosine.
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A. Physiological Signaling of the ERBB
Family

The human homolog of the erythroblastic leukemia viral
oncoprotein v-erbB, known as the ERBB (also called EGFR
or HER) family, is composed of four closely related mem-
bers (EGFR and ERBB2-4) which localize on chromosomes
7, 17, 12, and 2, respectively (235). Despite the lack of an
intracellular kinase domain on ERBB3, the family members
share a high degree of similarities in their molecular struc-
ture, with a tandem cysteine-rich cascade in the ECD, one
single transmembrane helix, and a classical intracellular
kinase domain (303). A variety of extracellular ligands in-
cluding epidermal growth factor (EGF), heparin-binding
EGF (HB-EGF), transforming growth factor-� (TGF-�),
epiregulin (EpRG), amphiregulin (AmRG), betacellulin
(BTC), and neuregulin (NRG) are capable of binding to
individual ERBB members and inducing unique homo-
and/or hetero-dimerization (109). Dimerized ERBBs subse-
quently undergo conformational changes and trigger auto-
phosphorylation on specific tyrosine residues within the
intracellular kinase domain, which simultaneously switches
on the ERBB signaling pathway. This activation pattern
with a broad range of functional stimuli possibly reflects the
versatility of ERBB signaling in different tissues and organs
or at different developmental stages.

The signaling cascades downstream of the ERBB family
include RAS/MAPK, PI3K/Akt, JAK/Src/Stat, PLC/DAG/
PKC, and CDC42/Rac/Pak (FIGURE 3). Depending on the
patterns of dimerization, distinct pathways are activated
and functionally regulate cellular transcriptional and trans-
lational programs that in turn direct cell cycle progression,
proliferation, differentiation, angiogenesis, immunomodu-
lation, polarity, migration, and inflammation in a cell- or
tissue type-dependent manner (31). The physiological roles
of the ERBB family have been broadly explored using ge-
netic mouse models. Full-body knockout of Egfr leads to
embryonic and perinatal lethality (175, 264, 265). Multiple
organs and tissues including lung, heart, liver, brain, skin,
and bone undergo immature development which accounts
for the complex phenotypes seen upon genetic ablation of
ERBB family members. For example, severely abnormal
placental development and immaturity of the lung were
observed in Egfr-knockout mice, leading to spontaneous
embryonic or perinatal death. Impaired neural develop-
ment with progressive neurodegeneration resulting from el-
evated apoptosis of neural cells in the brain was also ob-
served in these mice (129, 145, 203). These genetic studies
demonstrate that Egfr is indispensable during development.
The observation of distinct patterns of lethality at different
developmental stages of Egfr-knockout mice with different
genetic backgrounds (265, 286) implies a partial compen-
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FIGURE 2. Aberrant activation of RTK signaling.
Four major factors contribute to elevated activation
of major RTK signaling that are frequently detected
in human cancer: gene amplification, somatic mu-
tation, gene rearrangement, and remodeling of
cancer stroma. These are the predominant players
that often lead to pathological activation of many
RTK kinases that eventually promote uncontrolled
cell proliferation. Persistent activation of RTKs am-
plifies downstream proliferative signaling, such as
PI3K/Akt/mTOR and RAS/MAPK, and inhibits
pro-apoptotic signaling like the Hippo pathway. Fur-
thermore, RTK activation can also be caused by
drug resistance through interference with signaling
cross-talk. Such genetic remodeling encourages
genomic instability to overcome cell cycle arrest,
and therefore, the cells become cancerous with
malignant proliferative and migratory potential.
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sation by other ERBB family members in overcoming devel-
opmental defects attributed to loss of Egfr. This is indirectly
supported by the fact that ablation of certain Egfr ligands,
such as EGF and TGF-�, does not result in evident defects
(155, 156). In contrast to Egfr, the loss of any other ERBB
family member does not necessarily lead to embryonic le-
thality in mice, which indicates nonredundant roles of
Erbb2, Erbb3, and Erbb4 during development. Erbb2
mainly impacts on mammalian neural (140, 146) and car-
diac cell development (194, 215), which was confirmed in
recent studies on the role of NRG in cardiomyocytes (48,
217) and directly links Erbb2 to cardiac regeneration (49).
As expected, due to the direct interaction with Erbb3 and
Erbb4, functional loss of NRG mimics Erbb3 or Erbb4
deficiency. Both Erbb3- or Erbb4-knockout mice show neu-
ronal degenerative phenotypes and cardiac maldevelop-
ment (71, 83, 88, 232, 287) similar to NRG-knockout mice
(174). Nonetheless, it should be pointed out that functional
interference with any single Erbb family member may trig-

ger mixed phenotypic abnormalities with other isoforms,
since the specificity of downstream signaling depends on
dimerizing partners and a broad spectrum of ligands.
Therefore, it is sometimes difficult to correctly define the
biological roles of individual ERBB kinases (109).

B. Physiology Downstream of ERBB
Signaling: RAF and PI3K/Akt

1. RAF signaling

The mammalian RAF (rapidly accelerated fibrosarcoma)
family has three members, ARAF, BRAF, and CRAF (RAF-
1), that are intracellular serine/threonine kinases. All three
isoforms are ubiquitously expressed in developing embryos
but have distinct expression patterns in adulthood. Araf
and Craf are widely expressed in almost all tissues of adult
mice, although Araf expression seems to be relatively higher
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FIGURE 3. Physiological signaling pathway of ERBB family. ERBB signaling is initiated from induced dimeriza-
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ERBB are five major axes: PKC, MAPK, PI3K/Akt, and Rac and Jak signaling. In a context-dependent manner,
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in the organs of the urogenital tract such as the kidney,
bladder, testis, and ovary, as well as in lymphoid organs and
lymphatic tissues such as thymus and spleen (277), whereas
Braf expression is mostly restricted to the brain and testis
(74, 312). Targeted deletion of Araf in mice leads to
partially postnatal lethality, growth retardation, defective
neurological and gastrointestinal development, and abnor-
mality of limb development (225). In contrast to Araf,
knockout of either Braf or Craf results in embryonic death
(313, 314). These three mammalian RAF isozymes are evo-
lutionarily conserved and share sequence identities of
�45% in the regulatory domain and �80% in the kinase
domain (333). The deficient phenotypes seen in KO mice
and the differences in sequences of functionally defined pro-
tein domains indicate nonredundant regulatory roles dur-
ing development. Although they have a common down-
stream signaling node, MAPK, their activating capacity is
differentially regulated. For example, Braf and Craf differ-
entially respond to NGF or cAMP stimulation (70, 112)
and also show considerable differences of their activation
driven by Ras (167). Moreover, Src can directly activate
Araf and Craf but not Braf (163), and Braf is the major
activator of MAPK pathway due to its higher binding ca-
pacity to MEK (a MAPKK) (207, 226, 311). This is not due
to their expression level (33, 183) but their functional spec-
ificity in individual tissues (199). On the other hand, bio-
logical interactions between Raf family members are also
indispensable for specific extracellular signaling triggers,
for example, EGF (312) and downstream signal transmis-
sions (173). Taken together, similar to the ERBB family,
RAF family members have an extensive crosstalk, thus dif-
ferentially regulating cell proliferation, differentiation, and

survival through MAPK signaling across the entire develop-
ment.

2. PI3K/Akt signaling

Similar to the activation pattern of RAF signaling, intracel-
lular tyrosine phosphorylation on RTKs generates binding
pockets for the SH2-containing subunit p85 and subse-
quently induces catalytic activity of the p110 subunit. These
two subunits assemble the functional PI3K protein (PI3K
class I) (8). Activated PI3K catalyzes phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-tris-
phosphate (PIP3), which promotes membrane targeting of
pleckstrin homology (PH) domain-containing proteins such
as Akt and phosphoinositide-dependent kinase 1 (PDK1)
(98, 142). In response to RTK signaling, PI3K transduces
physiological signals through intracellular kinases like
Akt, protein kinase C (PKC) and phospholipase C (PLC).
Among those, the PI3K/Akt axis plays a vital role in
regulating cell growth, anti-apoptosis, and metabolic ho-
meostasis. Subsequent Akt-directed phosphoregulation
of a large number of specific substrates determines the
cell fate depending on tissue type, developmental stage,
and environmental stress. During embryonic develop-
ment and postnatal organ/tissue formation and matura-
tion, all three Akt isoforms play crucial roles in growth
and metabolism (TABLE 1). Akt1 is ubiquitously ex-
pressed in mammalian cells, and Akt2 is mainly detected
in insulin-responsive tissues such as skeletal muscle and
adipose tissue, whereas Akt3 is restricted to the brain and
testis. Although Akt1 KO mice are viable, they have a
smaller body size (�20 and �25% reduction at birth and
14 mo after birth, respectively) than their littermates,

Table 1. Tissue-specific distribution of Erbb, Raf, and Akt kinases in mice and the individual knockout phenotypes

Genes Tissue Distribution Knockout Phenotypes

Egfr Ubiquitous Perinatal lethality; defects in the development of multiple
tissues/organs including skin, lung, bone, heart

Erbb2 Intestine, stomach, epidermis, uterus, kidney, prostate Embryonic lethality
Erbb3 Breast, epidermis, stomach, CNS, intestine, prostate, kidney,

brain
Embryonic lethality

Erbb4 Brain, liver, heart, eyes, CNS Embryonic lethality
Araf Heart, brain, liver, kidney, lung Partially postnatal lethality; defective development of

multiple organs
Braf Testis, brain Embryonic lethality
Craf Ubiquitous Embryonic lethality
Akt1 Ubiquitous Increased postnatal lethality; growth retardation; defect

of development of placenta
Akt2 Muscle, fat, liver Diabetic phenotype: hyperglycemia; hyperinsulinemia;

insulin resistance; growth retardation; loss of adipose
tissue

Akt3 Brain, testis Neural degeneration; defect of brain development
Akt1/Akt2 Perinatal lethality; severe growth defect
Akt1/Akt3 Embryonic lethality (�E12.5)
Akt2/Akt3 Diabetic phenotype; defect of brain development
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defects of testis development and abnormal spermato-
genesis associated with elevated spontaneous apoptosis,
and a shorter lifespan when challenged with genotoxic
substances, probably due to a lack of pro-survival signals
(41). In fact, mice without Akt1 show partial neonatal
lethality (43), possibly due to a functional deficiency of
the placenta (325). Unlike Akt1, Akt2 is mainly detected
in muscle, fat, and liver, those tissues which are more
sensitive to insulin or play a central role in glucose ho-
meostasis. Akt2 null mice are also viable but exhibit di-
abetic phenotypes such as hyperglycemia, hyperinsulin-
emia, and insulin resistance (81), indicating that Akt2 is
a key regulator of glucose metabolism (42). This is dem-
onstrated in further studies showing that Akt2 phospho-
regulates membrane targeting and activation of glucose
transporter (GLUT4) in response to insulin signaling
(100, 132). Similar to Akt1, Akt2 deficiency is also associated
with moderate growth retardation that results from early met-
abolic disorders through reduced glycolysis and mitochondrial
dysfunction (89). On the other hand, mice lacking Akt3 de-
velop a smaller brain (20-25% reduction) (64, 292). Interest-
ingly, these unique phenotypes governed by individual Akt
isoforms are unlikely to be compensatory, suggesting nonre-
dundant physiological functionalities of each Akt isoform
across the entire lifespan. Although mice may survive the loss
of a single Akt isoforms (63), double-knockout (dKO) of
Akt1/Akt3 is embryonically lethal (324) with Akt1/Akt2-dKO
mice dying shortly after birth due to severely mixed defective
phenotypes of cell proliferation and differentiation (213). Sim-
ilarly, Akt2/Akt3-dKO mice exhibit aberrant brain develop-
ment and diabetic phenotypes (63), further demonstrating the
specific roles of individual Akt proteins in different cell types
and developmental stages.

II. TARGETED STRATEGIES IN CLINICAL
CANCER THERAPIES

The latest report on the global cancer burden shows that the
incidence of cancer continuously increased from 2002 to
2012 (209, 290). Remarkably, in last 15 years, lung cancer
is the leading cause of cancer-related death for both males
and females; in addition, breast cancer results in an equally
high rate of death among females. Recent advances in the
mechanistic understanding of tumor biology rationalize fu-
ture therapeutic strategies by targeting the fundamental
hallmarks of cancer (94).

In many types of cancer, including NSCLC and metastatic
breast cancer, gene amplification and/or mutation-driven
constitutive activation of the ERBB family facilitates uncon-
trolled cancer cell proliferation and invasion as well as the
evasion of programmed cell death (130, 196). Therefore,
ERBB family members have emerged as key therapeutic
targets (TABLE 2). Apart from the ERBB family, distinct
deregulation of anaplastic lymphoma kinase (ALK)
through oncogenic protein fusion with echinoderm micro-
tubule-associated protein-like 4 (EML4) has been found to
cause �5% of NSCLC in clinic (271). Interestingly, using
next generation sequencing (NGS), a recent study identified
a novel oncogenic fusion of ALK with KIF5B-RET in
NSCLC (147), indicating that ALK deregulation is more
frequent in NSCLC than it was assumed before. These clin-
ical observations are the rationale for suppressing tumor
growth by blocking ERBB and ALK kinase activities. Thus
targeting ERBB and ALK families with either small molec-
ular inhibitors or blocking antibodies has become the first
line of therapy for lung cancer and Her2-positive breast

Table 2. FDA-approved major kinase (pathway) inhibitors

Generic Name Brand Name Target Producer

Lung cancer Gefitinib Iressa EGFR AstraZeneca
Erlotinib Tarceva EGFR Roche
Crizotinib Xalkori ALK Pfizer
Afatinib Gilotrif/Giotrif EGFR, ERBB2 Boehringer Ingelheim
Ceritinib Zykadia ALK Novartis
Cetuximab Erbitux EGFR Yeda & Sanofi-Aventis
Panitumumab Vectibix EGFR Amgen
Bevacizumab Avastin VEGF-A Roche

Breast cancer Lapatinib Tykerb ERBB2, EGFR GSK
Trastuzumab Herceptin ERBB2 Roche
Pertuzumab Perjeta ERBB2 Roche

Melanoma Vemurafenib Zelboraf BRAF (V600E) Roche
Dabrafenib Tafinlar BRAF (V600E) Novartis
Trametinib Mekinist MEK1/2 GSK

Food and Drug Administration (FDA)-approved major kinase (pathway) inhibitors (including both small molecular
compounds and therapeutic antibodies) in three types of cancer are shown. The inhibitors approved for
therapeutic applications in other cancers, or still in clinical trials, are not included.
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cancer patients. In fact, with the response rate above 50%,
these targeted therapies significantly improve progression-
free survival of NSCLC patients (204, 216) and breast can-
cer patients (11, 17, 24, 52, 86).

In contrast to other types of cancer, the incidence rate for
melanoma has been steadily increasing for both men and
women (266). When melanoma develops metastases, the
five-year survival rate decreases dramatically from 98 to
15%. One of the hallmarks of metastatic melanoma is the
constitutive activation of the MAPKKK kinase BRAF that
harbors an oncogenic mutation (BRAF_V600E, V600K, or
V600R) in �50% of melanoma patients (20). Constitu-
tively active BRAF promotes cancer cell proliferation
through hyperactivated ERK signaling. Compared with the
chemotherapeutic agent dacarbazine, treatment with one of
the available small molecule inhibitors of BRAF (vemu-
rafenib, Zelboraf, Roche and dabrafenib, Tafinlar, No-
vartis) significantly improves overall survival of melanoma
patients (36, 272).

III. ADAPTIVE RESISTANCE TO TARGETED
THERAPIES

Unfortunately, most of the targeted monotherapies against
cancer eventually result in resistance. Cancer cells bypass
proliferative inhibition through alternative activation of
other survival pathways as functional compensation. Acti-
vation of these signaling pathways is mediated by various
mechanisms on both a transcriptional and translational
level, including induction of novel oncogenic mutations,
inactivation of negative-feedback signaling loops, aberrant
protein-protein interaction/oligomerization, oncogenic
gene amplifications, suppressive gene deletions, conversion
of apoptotic signaling to survival signaling, and deregulated
immunosurveillance. Resistant cancer cells often exhibit an
accelerated cell cycle, enhanced metabolism, and increased
migration/invasion that ultimately leads to higher malig-
nancy. Therefore, a better understanding of the underlying
mechanisms of resistance will contribute to the develop-
ment of novel therapeutic approaches that may help to turn
cancer into a chronic disease.

A. Resistance to Targeted EGFR and ALK
Signaling in NSCLC

Since EGFR was discovered and validated as a major drug-
gable target in NSCLC, specific inhibition of EGFR signal-
ing was shown to prolong both PFS and OS compared with
conventional platinum-based chemotherapy and is now the
accepted standard in the clinic. Although a subset of
NSCLC patients treated with gefitinib or erlotinib benefit
from a longer lifespan for a longer period of time (131,
157), including those patients with primary somatic muta-
tion L858R on EGFR (178, 201, 205), two large cohort

studies revealed rapid development of acquired resistance in
the majority of the monotherapeutically treated patients
like these (181, 239). Several independent studies reported
that a secondary somatic mutation of EGFR, T790M, was
emerging in relapsed NSCLC (126, 206). The decreased
inhibitory efficacy of gefitinib against EGFR T790M was
confirmed in genetically engineered cell lines expressing
T790M mutants (206). Further studies indicated that
T790M could also be detected in some patients before treat-
ment, which was possibly responsible for their primary re-
sistance to gefitinib (261) and erlotinib (238, 328). Indeed,
with the help of next-generation-sequencing technology, it
becomes clearer that T790M is a frequent primary muta-
tion that is observed in a small number of malignant cell
clones in NSCLC patients (281). Under selective pressure
with an EGFR inhibitor, the T790M clone expands quickly
and leads to resistance in �50% of NSCLC patients. Al-
though it is not fully understood mechanistically, studies
from structural biology predict that the T790M mutation
mediates steric hindrance in the ATP-binding pocket to
limit the access of small molecular inhibitors (134) and
increases ATP-binding affinity in the kinase domain of
EGFR (332). Functionally, persistent activation of EGFR
with the T790M mutation maintains hyperactivation of its
downstream pro-survival signaling axes, including PI3K/
Akt, JAK/Stat3, and MAPK.

In addition to the dominant gatekeeper mutation, amplifi-
cation of other oncogenic RTKs in EGFRi-resistant NSCLC
was also observed. C-Met, also known as hepatocyte
growth factor receptor (HGFR), is a receptor tyrosine ki-
nase that plays essential roles during embryonic develop-
ment and wound healing and is overexpressed in EGFRi-
resistant lung cancer (69). Mechanistically, overexpressed
c-Met may heterodimerize with HER3 and subsequently
mediates PI3K/Akt activation bypassing EGFR inhibition.
Similarly, recent studies also identified gefitinib/erlotinib-
mediated overexpression of AXL (337), amplification of
HER2/HER3 (161), and activation of an FGFR autocrine
signaling loop (284, 304). All of these mechanisms contrib-
ute to acquired resistance in NSCLC.

Although the specific tissue distribution pattern suggested a
role of ALK in brain and neuronal development (110, 227),
the lack of abnormal phenotypes in ALK knockout mice
throughout their lifespan (305) makes it difficult to define
the physiological role of this kinase. Despite these uncer-
tainties in physiology, numerous reports confirmed its im-
portance in driving tumorigenic progression in many types
of cancer, most frequently as rearrangement/translocation-
elicited oncogenic fusion proteins. In NSCLC patients, ALK
is commonly fused with EML4, a microtubule-stabilizing
protein guarding correct formation of cellular skeleton net-
work (220). The resulting chimeric protein functions as an
intracellular kinase promoting cancer cell proliferation, in-
vasion, and anti-apoptosis through activating PI3K/Akt,
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MAPK, and JAK/Stat signaling. Although inhibitors target-
ing ALK, such as crizotinib and ceritinib, showed immedi-
ate benefits in ALK-positive NSCLC patients (133), the
short duration of response indicated an acquired resistance
(122, 259). Sequencing analysis of crizotinib-/ceritinib-re-
sistant tumors revealed multiple self-activating mutations
on ALK (25, 59, 78) and bypassing activation of alternative
oncogenic drivers such as KIT (122), IGF-IR (153), EGFR
(320), and the GPCR family member P2Y (310). The result-
ing acquired resistance does not seem to be restricted to
TKIs, since the use of blocking antibodies targeting EGFR,
such as cetuximab and panitumumab, leads to similar out-
comes (10, 309). Clearly, these resistant phenotypes are
closely related to and possibly driven by the heterogeneity
of NSCLC (FIGURE 4).

B. Resistance to HER2-Targeting in Breast
Cancer

The oncogenic role of HER2 has been extensively investi-
gated in human breast cancer. Approximately 25% of in-
vasive breast tumors overexpress HER2 (269, 270). Over-
expression of HER2 is associated with a poor prognosis and
survival rate (223, 224), and it is also observed as a response
to chemotherapies (189, 202, 285). Trastuzumab (Hercep-
tin, Roche) is a humanized monoclonal antibody that tar-
gets HER2 and has been approved for clinical breast cancer
therapy by the FDA for 15 years. Trastuzumab treatment
induces tumor regression through interference with HER2
signaling, in particular HER2 internalization/degradation
(47), inactivation of proteolysis of ECD of HER2 (73, 182),
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FIGURE 4. Representative mechanisms of drug resistance to clinical therapies in human lung cancer, breast
cancer, and melanoma. Several molecular signatures are discovered that contribute to resistance. In lung
cancer, a) inhibition of EGFR induces not only overexpression of alternative RTKs, such as c-Met, Axl,
ERBB2/3, but also activating mutations of EGFR itself; b) targeted inhibition of oncogenic ALK fusion protein
leads to ALK mutations and c) oncogenic activation of EGFR, Kit, IGF-1R, and P2Y kinases. In metastatic breast
cancer, blocking HER2 activity frequently results in d) activating mutations on catalytic subunit of PI3K, e)
activation of Src kinase family, and f) activation of RTK including c-Met, IGF-IR, and activating truncation form
of HER2. In BRAFV600E/K melanomas, blocking kinase activity of mutant BRAF with Zelboraf or Tafinlar can g)
induce active dimerization between CRAF and kinase-dead mutant BRAF that drives ERK activation, h) trigger
activating mutation on MEK and i) RAS, or upregulate j) MAPK3K kinase COT and k) RTKs including PDGFR,
EGFR, and FGFR. In the cancer environment, growth factor HGF overexpression is also reported to contribute
to BRAFi resistance (l). All these genetic and/or epigenetic remodeling can empower cancer cells to activate
the proliferative and survival pathways, MAPK and PI3K/Akt, to overcome kinase inhibitor-induced apoptosis.
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and HER2-dependent angiogenesis (111). HER2-positive
patients initially respond well to trastuzumab, but similar to
other targeted therapies they often relapse within �1 year
of treatment, suggesting an acquired resistance promoting
escape from HER2 blockade. Similarly, resistance to lapa-
tinib, an FDA approved Her2 small molecule inhibitor, oc-
curs rather fast (40, 302, 308). Several potential mecha-
nisms of acquired resistance have been investigated.

In HER2-positive breast tumors including both primary
and metastatic lesions that do not respond to trastuzumab,
downstream activating mutations of the catalytic subunit of
PI3K have been discovered (15). Mutant PI3K constitu-
tively activates Akt-dependent cell proliferation and sur-
vival. Such hot spot mutations of PI3K are not only respon-
sible for acquired resistance but also intrinsic primary resis-
tance to trastuzumab. In fact, PI3K was identified as the
most important mediator downstream of HER2 signaling
in resistant breast tumors, in which PTEN, the negative
regulator of PI3K, is simultaneously downregulated (191).
Co-inhibition of PI3K overcomes trastuzumab resistance,
placing PI3K as an essential co-target in future HER2 ther-
apies (117, 326). This therapeutic strategy has been under
evaluation in preclinical models and potentially provides
clinical benefit (198). In addition to oncogenic mutations of
PI3K, activating splicing of ECD of HER2 was also discov-
ered in tumors resistant to trastuzumab. Masking of the
antibody-binding site within the ECD leads to a silent re-
sponse of HER2 to trastuzumab without impairing its in-
tracellular signaling as shown by its capacity of maintaining
hyperactivation of PI3K/Akt (6, 244), which in contrast is
abolished by lapatinib (243). This indicates that the trun-
cated HER2 with loss of trastuzumab recognition is poten-
tially persistently active, which is partially confirmed in a
recent report (30). Recent studies also revealed a nuclear
fraction of the truncated form of HER2 that may also con-
tribute to resistance (315). Another form of HER2 splicing
is the truncation within its ECD, resulting from the deletion
of exon 16. Tumors carrying this truncation showed in-
creased growth, metastasis (4), and dimerization activity of
HER2, resulting in antagonizing trastuzumab-induced
complex disruption (177). Interestingly, this splicing vari-
ant was sensitive to trastuzumab in a mouse xenograft
model. Therefore, it was suggested that this splicing variant
may predict the likelihood of acquired trastuzumab resis-
tance (32). Somatic HER2 mutations have been occasion-
ally found in some tumors but are rarely associated with
increased HER2 expression levels. It is unclear how or if
these mutations contribute to cancer development and drug
resistance.

With the support of more sensitive NGS technologies, a few
activating mutations were identified in human breast can-
cers (9, 26, 66, 195, 255, 276). The roles of such emerging
mutations are still being characterized, and the current data
support the notion that some point mutations are possibly

responsible for either primary or acquired resistance to
HER2-targeted therapies (5, 21). In addition to the gain-of-
function mutations of PI3KCA, increased activity of Src
kinase in response to HER2-targeting has been shown to
activate downstream PI3K/Akt bypassing HER2 in resis-
tant breast cancer cells (212). Similar to PI3KCA, co-inhi-
bition of Src kinase overcomes lapatinib-elicited resistance
in vivo (230). Enhanced Src activation is also triggered by
ECD masking with trastuzumab, and co-targeting both
HER2 and Src has demonstrated synergistic effect in animal
models (334). These observations provide a scientific ratio-
nale for Src kinase as a core component of targeted thera-
pies in breast cancer (3, 268). Furthermore, induced over-
expression of other oncogenes, mainly receptor tyrosine
kinases, also contributes to resistant phenotypes compen-
sating HER2 deactivation in resistant tumors. For example,
IGF-IR overexpression can override trastuzumab-induced
tumor regression through rescue of the cell-cycle program
(154), which could be reversed upon blockade of IGF-IR
(113). Consistent with this observation, enhanced oli-
gomerization between HER2 and IGF-IR was observed in
trastuzumab-resistant breast cancer cells (107, 149). An-
other key regulator of trastuzumab resistance is c-Met
(257). c-Met is also reported to be overexpressed in a subset
of invasive breast cancers and correlates with poor outcome
(119, 321). Interestingly, c-Met was found to form active
protein complexes with HER2 in NSCLC, implying a syn-
ergistic role in driving downstream PI3K/Akt and ERK sig-
naling (FIGURE 4).

Some members of the mucin protein family, such as mu-
cin-1 and mucin-4, were also found upregulated and
masked the trastuzumab-binding site on HER2 in resistant
breast cancer cells (76, 192). It was also reported that
dimerization of HER2 and HER3, rather than EGFR, plays
an essential role in mediating downstream PI3K/Akt signal-
ing (139). This dimerization pattern is not readily disrupted
by trastuzumab (1), and increased HER3 expression upon
TKI treatment may effectively enhance HER2/HER3 inter-
action (252), thus contributing to a reduced response to
HER2 targeting. Following this rationale, disruption of
dimerization with pertuzumab (Perieta, Roche), another
FDA-approved humanized blocking antibody that specifi-
cally targets dimerization functionality of HER2, dramati-
cally restored sensitivity to trastuzumab treatment (13, 27,
143). This synergistic efficacy was also confirmed in a clin-
ical study (12).

C. Resistance to Mutant BRAFV600-
Targeting Therapy in Metastatic
Melanoma

Approximately 50% of metastatic melanomas harbor an
oncogenic mutation on BRAF which acts as a major driver
to fuel out-of-control proliferation of tumor cells through
MAPK signaling. Among the human melanomas with a
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gain-of-function mutation on BRAF the substitution on
V600 is: V600E (�70%), V600K (10�15%), and V600R
(3�7%). V600E/K mutations biochemically mimic the
phosphorylation-dependent active conformation of wild-
type BRAF, thus resulting in constitutive activation as a
monomer in a RAS-independent manner. Although ARAF
and CRAF share high sequence similarity with BRAF in the
kinase domain, mutations of ARAF or CRAF are very rare.
BRAF mutations are not only restricted to melanoma, but
also frequently detected in thyroid cancer (30�70%), ovar-
ian cancer (�30%), and colon cancer (�10%) (51). There-
fore, targeting mutant BRAF is a promising therapeutic
strategy.

Two FDA and EMA approved small molecular BRAF in-
hibitors (BRAFi), vemurafenib/Zelboraf and dabrafenib/
Tafinlar, specifically inhibit the BRAF kinase activity and
lead to prolonged overall survival of melanoma patients
(272). However, the majority of patients stop responding to
BRAFi within 6–9 mo (36), indicating an acquired resis-
tance to BRAFi. BRAFi-induced resistance can be mediated
by several different mechanisms (FIGURE 4) including re-
dimerization of the kinase-dead form of mutant BRAF with
endogenous CRAF (96, 221), unfavorable disruption of the
ERK-dependent negative feedback signaling loop (148), ac-
quiring activating mutations of RAS and MEK (23, 67, 298,
300), upregulation of other pro-oncogenic kinases, such as
COT (115), RTKs [platelet-derived growth factor receptor
(PDGFR), EGFR, and fibroblast growth factor receptor
(FGFR)] (193, 319) or RTK ligands like HGF (279). All of
these mechanisms ultimately trigger the reactivation of
MAPK and PI3K/Akt signaling that support melanoma cell
survival. In fact, despite those spontaneously occurring mu-
tations of RAS, MEK and possibly other undiscovered on-
cogenes, targeting mutant BRAF simply enhances physio-
logical RAS/RAF/MAPK signaling in three ways. First,
BRAFi induces self-activation of RAF signaling through an
existing downstream feedback loop. This effect is essen-
tially achieved through ERK-dependent transcriptomic pro-
gramming of physiological inhibitors of RAF kinases (148,
222) or direct phospho-inhibition of physical binding be-
tween RAS and RAFs (60, 233). As a consequence, transient
downregulation of ERK may also lead to proliferative acti-
vation of another pathway, mTOR/PI3K/Akt, through sig-
naling cross-talk mediated by ERK (38, 214). Prolonged
exposure of cancer cells to BRAFi eventually reactivates
ERK. This indicates a fundamental role of ERK reactivation
in BRAFi resistance. Indeed, ERK activation is a universal
phenotype for both BRAF- and MEKi-induced resistance
(95, 184). Simultaneous blocking of mutant BRAF and
MEK improves anti-tumor activity of BRAFi (77, 152). On
the basis of three positive phase 3 trials, the combination of
BRAF (vemurafenib, dabrafenib) and MEK inhibitors (co-
bimetinib, trametinib) is a new standard for BRAF mutant
melanoma. Second, BRAFi transactivates RAF signaling,
mimicking functional assembly of a wild-type signalosome.

Functional RAF signaling requires dimerization of RAF
family members such as BRAF and CRAF to drive down-
stream MAPK activation. This is triggered by upstream
RAS signaling in a CRAF-dependent manner. In melanoma
cells with mutant BRAF, unlike the dimerization-dependent
activation of wild-type RAF, BRAFV600E/K performs its ki-
nase function as a monomer. BRAFi treatment only blocks
its kinase activity but disguises the kinase-dead form as a
“wild-type” BRAF that still has the capacity to dimerize
with CRAF. As a consequence, the entire MAPK pathway is
reactivated in this setting. Third, BRAFi can induce RTK
signaling through a feedback loop. Feedback-induced over-
expression includes PDGFR, HER3, and RAS, which po-
tently promotes Akt phosphorylation through classical
RTK/PI3K/Akt signaling (280). Investigating BRAFi resis-
tance has unravelled a complex intracellular signaling
cross-talk whose deregulation leads to unresponsiveness to
targeted therapies.

D. Inhibition-Enhanced Activation: Feedback
and Cross-talk Loops of PI3K/Akt/mTOR
Axis at a Glance

The physiological roles of PI3K/Akt in gate-keeping cell
proliferation and anti-apoptosis place this pathway as one
of the most important defensive signaling cascades. This
vital function is often malignantly hijacked due to an in-
creased demand of metabolism in pathological contexts. In
almost all cancer types, PI3K/Akt pathway is deregulated
and essential for cancer cell proliferation. Tumor relapse
from drug resistance also strongly relies on Akt-dominated
anti-apoptosis. Thus targeting this signaling axis could po-
tentially induce cancer cell death. Many different small-
molecule inhibitors and biological substances specifically
targeting each component along this pathway are currently
in clinical studies. Although in vivo studies in cancer-mod-
eled mice show a profound benefit in attenuating tumor
growth and abrogating therapy-induced drug resistance
through mono-targeting PI3K, Akt, and mTOR, or by dual-
inhibition of PI3K/mTOR, inhibition of PI3K/Akt/mTOR
also elicits resistance through feedback loops similar to
other targeted therapies.

Several mechanisms are involved in inducing resistance.
The first important mechanism is the interference of a path-
way with its own physiological self-regulating feedback
loop (FIGURE 5). Nutrient-stimulated Akt activation
through insulin and insulin growth factor-like receptors (IR
and IGF-IR, respectively) is the major driver of downstream
signaling in a physiological context. Along this signaling
axis, the p85 regulatory subunit of PI3K is recruited to
IR/IGF-IR through the insulin receptor substrate (IRS), an
adaptor protein that anchors the assembly of the active
PI3K kinase complex. Upon activation, Akt triggers the
activation of ribosomal protein S6 kinase (S6K) and 4EBP-1
in a mTOR-dependent manner (135–137, 262).
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Physiological homeostasis of metabolism is maintained
through negative feedback signaling of S6K-driven phos-
phoinactivation of IRS, which avoids overtime activation of
the PI3K/Akt/mTOR pathway (176). In addition, another
parallel route was also discovered: mTORC1 phosphoacti-
vates growth factor receptor-bound protein 10 (Grb10)
(103), an adaptor protein that negatively regulates the ac-
tivities of IR/IGF-IR and IRS (329). As a result, cooperation
of these two major negative feedback loops provides a bal-
anced Akt activity for proper cell proliferation. In parallel,
activation of Akt sequesters transcription factor FOXO
proteins in the cytoplasm through direct phosphorylation.
FOXO proteins are considered negative regulators of cell
proliferation through transcriptional inhibition of cell-cycle
promoters like cyclin D (247) and through induction of
several cell-cycle blockers, such as p21 (53) and p27 (57,
170). On the other hand, FOXO proteins are also involved
in other cell functions such as driving RTK expression di-
rectly through transcriptional regulation. This is interesting

because, for example, FOXO 1, 3, and 4 have been found to
upregulate platelet-derived growth factor receptor
(PDGFR) in neuroblastoma, a childhood malignancy (171).
Additionally, other RTKs like insulin and insulin-like recep-
tors (InsR and IGF-IR) (164), HER2 and HER3 (34, 82,
253) are emerging as transcriptional targets of FOXO fam-
ily members that closely associate with the PI3K/Akt/
mTOR activities in different cancer types. Moreover, sev-
eral studies also pointed out the importance of the tran-
scriptional interregulations between FOXO proteins (72).
Due to the oncogenic demand for accelerated metabolism,
RTKs including IR/IGF-IR signaling are often hyperacti-
vated, thus continuously providing energy equivalents to
fuel Akt activation (218). In addition to Akt, the I�B kinase
(IKK), a downstream substrate of Akt, was also shown to
phosphoinhibit FOXO activities (106), further preventing
an unwanted activation of RTKs and cell apoptosis in stress
conditions.

Interestingly, some proapoptotic kinases such as MST, the
mammalian Hippo ortholog, and stress-activated AMP-ac-
tivated protein kinase (AMPK), which are both inhibited by
Akt, can directly phosphoactivate FOXO family members
(62, 91, 141, 294, 331). This remarkable increase of PI3K/
Akt activity in cancer cells quarantines their survival phe-
notype while antagonizing genomic instability-triggered ap-
optosis through (at least partly) FOXO transcription fac-
tors. In this regard, blockade of PI3K/Akt/mTOR pathway
has been considered as one of the most promising strategies
to suppress cancer cell proliferation. This concept has in-
deed been proven in a number of clinical studies with mono-
specific or dual-specific compounds targeting the PI3K/Akt/
mTOR pathway. Everolimus, Temsirolimus (both mTOR
inhibitors), and Idelalisib (a PI3K� inhibitor) have been ap-
proved for clinical use. However, based on the emerging
image of the signaling landscape of autoregulation and
compensatory reactivation (240), it is assumed that inhibi-
tion of PI3K/Akt/mTOR will eventually activate upstream
RTK signalosomes. This multi-faced reactivation of RTK-
mediated signaling reupregulates a variety of downstream
oncogenes, which then leads to resistance to targeted inhi-
bition therapies (125, 150, 188, 249).

IV. TUMOR HETEROGENEITY PROMOTES
RESISTANCE

Tumor heterogeneity, namely, the intertumor and intratu-
mor diversities, has been realized for a long time in clinic
(99, 273) and is confirmed with improved sequencing tech-
nologies (14). Such diversities promoted through stemness
of cancer cell and clonal evolution, and reflected by cell
morphology, gene expression profile, metabolic, prolifera-
tive and migratory patterns have been observed in many
types of cancer (254). Genetically, extrinsic factors such as
exposure to radiation and cytotoxic reagents, as well as
intrinsic genomic instability induce somatic driver muta-
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FIGURE 5. Physiological negative-feedback regulation and bypass-
ing activating signaling loops of PI3K/Akt/mTOR pathway. PI3K/
Akt/mTOR activation is initiated through PI3K by binding to RTKs.
This process can be direct or mediated by a linker protein such as
IRS. Under physiological conditions, insulin signaling is a strong
driver of PI3K activation, which subsequently leads to ribosomal
protein S6 kinase (S6K1) activation. To avoid unwanted PI3K activ-
ity, S6K1 is able to phospho-inhibit IRS that promotes the dissocia-
tion of PI3K from InsR or IGF-1R to reduce PI3K activity (a). Activated
mTORC1 can also phosphorylate Grb10, an adaptor protein that
interferes with IRS binding to InsR/IGF-1R, an alternative route to
control PI3K activity (b). Several RTKs are transcriptionally regulated
by FOXO proteins whose activities are negatively regulated by Akt
through direct phosphorylation. Indirectly, Akt is able to activate IKK
signaling that inhibits FOXO, or Akt inhibits MST1 and AMPK which
activate FOXOs. Upon inhibition of PI3K/Akt, FOXO proteins rapidly
translocate into nucleus and form active transcriptional complex
that drives mRNA expression of RTKs (c).
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tions (22, 58, 85) to allow accelerated cell proliferation and
actively resist to environmental stress. Furthermore, such
genetic heterogeneity is often accompanied by epigeneti-
cally induced deregulation of gene expression and pathway
activation to elevate genetic plasticity that is in favor of
cancer cell survival (282, 327).

Evolutionary reprogramming of tumor genome frequently
correlates with decreased sensitivity in response to chemo-
therapy (56). The selective clonal expansion supports tu-
mor cells to better adapt to stress conditions. In addition to
the preexisting somatic driver mutations in certain tumor-
initiating cells that actively accelerate their cell cycle, deac-
tivation of single oncogenic signaling axis by targeted ther-
apies ultimately triggers Darwinian selection to guide con-
tinuous cancer cell proliferation. This passive process leads
to rapid growth of those cancer cells that are insensitive to
the therapies. In fact, emerging studies have shown that the
selectively expanded cancer cells are the source of tumor
malignancy and account for tumor relapse in cancer pa-
tients (166, 236). The relapsed tumors often become more
heterogeneic (197) and decline the response to cytotoxic
reagents. A better studied model is the core node driving cell
survival, the PI3K/PTEN/Akt pathway. In melanoma pa-
tients with disease progression posttreatment, the resistant
tumors exhibited branched evolution marked by high fre-
quency of oncogenic driver mutations along PI3K/PTEN/
Akt and MAPK pathways (124, 260), indicating that the
melanoma genomic heterogeneity is the key factor respon-
sible for reduced efficacy of BRAFi treatment. Similarly, the
PI3K mutation (H1047R) can activate a multipotent ge-
netic program and cell plasticity at the early stage of breast
tumor initiation and establish future intratumoural hetero-
geneity (128, 295). Independent clinical trial studies have
also demonstrated that rapid clonal expansion of the cells
harboring oncogenic mutations correlates with worse re-
sponsiveness (160, 197) and accelerated malignancy (245,
291). Taken together, tumor heterogeneity is an essential
factor responsible for drug resistance through clonal evolu-
tion and expansion (185). As a consequence, current tar-
geted chemotherapies fail to provide considerable survival
benefit to the cancer patients due to the lack of systematic
targeting of these genetically evolved, selectively expanded
clones that escape from the targeted therapies. Therefore,
functional targeting of individual oncogenic pathways is
unlikely an effective therapeutic strategy; rather, it is more
important to investigate the details of genetic divergence in
each tumor, to design personalized, targeted combination
therapies to avoid the selective enrichment of the insensitive
clones. This has been demonstrated by recent efforts on
strategic combination therapies that have shown promising
potentials as effective therapies (144, 187). In addition, an-
tibody-mediated specific cytotoxic targeting that directly
and rapidly kills the cancer cells may effectively suppress
clonal expansion and overcome drug resistance (65, 165).
These ongoing studies strongly imply that heterogeneity

may be used as a biomarker in clinic for determining per-
sonalized therapy (84), and targeting tumor heterogeneity
resulted from deregulation of DNA-repair machinery (123,
237) and the gateway of gene activation (93, 263) in cancer
cells emerges as a fundamental strategy to kill cancer cells.

V. IMPACT OF DEFECTIVE
IMMUNOSURVEILLANCE IN
RESISTANCE

It has been known for a long time that tumors are sur-
rounded by diverse types of immune cells that impact tumor
progression. Data from clinical studies have revealed that
infiltration of certain types of immune cells, such as T helper
2 (Th2), regulatory T cells (Treg), T helper 17 (Th17), as
well as macrophages and neutrophils can be associated with
a poor prognosis (79, 92, 219, 228, 241), indicating a tu-
mor-promoting role of a deregulated immune response. Tu-
mor-infiltrating lymphocytes (TILs) are directed towards
the tumor vicinity through individual chemokine signaling
(318). Trafficking of TILs to this region often leads to a
biological remodeling of the tumor microenvironment me-
diated by the local enrichment of secreted factors, which
consequently signal to cancer cells to promote or suppress
the anti-tumor functions of the TILs (45, 87). In addition to
the cancer cell-TIL interaction, TIL-TIL interaction can also
contribute to deregulated immune response such as infil-
trating CD4� T-cell-mediated macrophage differentiation
from M1 to M2 stage (55). At the same time, there is evi-
dence indicating that the infiltration of tumors by CD8�

effector cells can improve the prognosis of certain cancer
entities. However, upon survival of intrinsic or extrinsic
stress, including host immune defense, cancer cells actively
disregard the host immunosurveillance and gain tolerance
(61). Therefore, extensive studies have been focusing on the
characterization of the unique roles of individual type of
lymphocytes towards to their clinical value as biomarkers.

This neglect of the immune defense can be governed by
T-cell anergy (190) and direct suppression of host immune
cell functionality by cancer cells (54, 297). Selected cancer
cells that survive environmental stress such as chemo- or
radiotherapy are capable of undergoing genetic and/or epi-
genetic modifications to evade immune detection, an orga-
nized process called cancer immunoediting (248). As a con-
sequence, this gain-of-capacity generally increases the ma-
lignancy of cancer cells. Under physiological conditions, the
immune activity is attenuated through inhibitory signaling
networks, among which the members of B7 protein family
play a predominant role. B7 proteins, including B7-1, B7-2,
B7-H1 (also called programmed cell death ligand 1, PD-
L1), and B7-DC (also called programmed death ligand 2,
PD-L2), are expressed on the surface of infiltrating lympho-
cytes with differential preference in distinct cell lineages
(90). Negative feed-forward signals direct the inhibition of
TCR-mediated proliferation to prevent tissue damage from
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unfavorable immune responses through intercellular pair-
ing with their targeted receptors, such as cytotoxic T-lym-
phocyte-associated protein 4 (CTLA-4, for B7-1 and B7-2)
and programmed death 1 protein (PD-1) expressed on T
cells, macrophages, dendritic cells (DCs), B cells, and NK
cells (39). Under pathological conditions, disruption of this
homeostatic regulatory machinery leads to T-cell apoptosis,
thereby helping cancer cells to evade an immune attack
(208). Advances from recent studies discovered significant
basal level of PD-L1/2 on the surface of cancer cells (179,
211). The overexpression of PD-L1/2 empowers cancer
cells to subvert the action of the immune system (116, 293).
It has been observed to achieve this by blocking the signal-
ing interaction PD-1/PD-L1/2 and B7-1/2/CTLA-4 between
cancer cells and host immune cells potently inducing apo-
ptosis of resistant cancer cells (293, 322). This indicates
another resistance mechanism stemming from an unfavor-
able deactivation of the immune response and possibly trig-
gered by targeted therapies (FIGURE 6). Interestingly, PD-L1
expression is tightly associated with and possibly controlled
by PI3K/Akt activation (318). This is consistent with the
observation of downregulated PD-L1 expression by specific
inhibition of Akt with pharmacological inhibitor MK-2206
in triple-negative breast cancer (179). Although the under-
lying molecular mechanisms are not yet fully understood,
this signaling route seems to be a universal event as it was
also reported in prostate cancer (46), mutant BRAF-harbor-
ing melanoma (7, 114), pancreatic cancer (336), and human

glioma (210). Furthermore, overexpression of PD-L1 in tu-
mors has been found to correlate with poor clinical prog-
nosis, and its expression status could be useful to predict
drug resistance (168, 169).

VI. CURRENT STRATEGIES TO OVERCOME
RESISTANCE

Developmental homeostasis requires meticulous and tightly
regulated switching of signaling activation. This is com-
monly achieved through functional interactions between
different pathways. A representative module is the interplay
between PI3K/Akt, MAPK and the Hippo pathways in
which integral interactions of both help maintain proper
cell proliferation and organ size. Despite the self-regulated
feedback loops (FIGURE 5), inter-inhibitory mechanisms be-
tween PI3K/Akt and MAPK signaling were also widely ac-
knowledged (172, 275). Activated Akt can attenuate
MAPK signaling by phospho-inhibition of Raf (180, 338),
or indirectly through the mTORC1/S6K/IRS1/RAS/MAPK
signaling feedback loop. Active ERK can also mediate the
inhibition of IRS1 through phospho-activation of raptor-
dependent mTORC1/S6K signaling (29) or inhibition of
TSC1/2 (159). Such inverse inter-regulation has been con-
firmed in vivo (28). Moreover, with its suppressive func-
tion, Hippo signaling is involved in the regulation of PTEN,
thus preventing over-activation of PI3K/Akt through p53
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FIGURE 6. Mechanisms of cancer cell-medi-
ated CTL activation and inhibition. Upon activa-
tion of CD8� T cells mediated by binding to a
cancer cell through TCR/Ag/MHC and
CD28/B7 formation, resting CD8� T cells are
activated to become effector T cells (a) that re-
lease pro-apoptotic molecules like IFN� that me-
diate apoptotic death of the vast majority of can-
cer cells (b). However, cancer cell survivors from
T-cell attack may evolve to increase the expres-
sion level of B7 family members like PD-L1/2,
which binds to PD-1 on the surface of CD8� T
cells. This interaction masks the formation of
functional complex TCR/Ag/MHC and
CD28/B7 and consequently induces T-cell ex-
haustion to protect cancer cells from immuno-
surveillance (c). Clinical targeted therapies often
upregulate PD-L1/2 expression on the cancer
cell surface. When this inhibitory interaction is
disrupted with PD-1 blocking antibody, T-cell ex-
haustion is inhibited, and the killing effect is re-
stored due to reaccumulation of functional cyto-
toxic T cells (d).
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(274, 330, 335). Given the importance of shared signaling
nodes downstream of a number of signaling cascades, it is
not surprising that a compensatory activation will be
triggered upon deactivation of any pathway. In fact, this
is frequently reflected by the outcome of drug resistance
in clinical monotherapies of cancer. Therefore, combina-
tion therapies including bispecific inhibition that simul-
taneously block compensatory activation of self or par-
allel signaling axes come to the center stage, and several
clinical trials have shown clinical benefits to this over
monotherapies. As mentioned above, two phase III stud-
ies of coinhibition of mutant BRAF and MEK with dab-
rafenib and trametinib in melanoma patients increased
the overall survival compared with dabrafenib mono-
therapy (151, 234) (Combi-d trial: ClinicalTrials.gov
Identifier NCT01584648; Combi-v trial: ClinicalTrials-
.gov Identifier NCT01597908). Combination between
chemotherapy, trastuzumab, and pertuzumab has also
become the standard of care in Her2-positive breast can-
cer patients (288), and another combined chemotherapy
also exhibits significant advances in treating triple nega-
tive breast cancer patients (118). Other combinatorial
strategies, such as cytotoxic reagents paired with several
negative immunologic regulators, have been explored
and seem to be promising (101, 138, 158, 229). Cer-
tainly, it will be interesting to investigate the therapeutic
outcome when targeted kinase inhibition is combined
with immunotherapy (105). A number of trials are cur-
rently running.

VII. DISCUSSION AND PERSPECTIVE

A. Targeting Oncogenic Mutations

Physiological signaling supports cell proliferation, differen-
tiation, migration, and acute responses to overcome epige-
netic and genetic stress. Functional interplay between pro-
survival and pro-apoptotic signaling ensures homeostatic
development. When the metabolic stability in a cell is inter-
fered with and eventually disrupted, the cell fate becomes
uncontrollable, often resulting in an accelerated cell cycle
and a high degree of genomic instability that triggers further
oncogenic mutations. Therefore, the development-oriented
signaling cross-talk is a key factor to be considered for
targeted inhibition. The first generation of small RTK in-
hibitors shares similar mechanistic actions and are generally
reversible, such as FDA-approved gefitinib and erlotinib for
NSCLC therapy. They competitively bind to the catalytic
domain of EGFR to inhibit the phosphorylation of key ty-
rosine residues in a reversible manner. Although these types
of inhibitors are effective, the majority of the patients stop
responding to the therapy and inevitably acquire resistance
in a rather short period of time. Such resistance can broadly
be categorized into two types: “self-activating” and
“nonself-activating.” Self-activating resistance results
from the reactivation of on-target or on-pathway ele-

ments, while nonself-activating resistance is mediated
through alternative targets or pathways. On-target reac-
tivation is often associated with acquired or clonally ex-
panded mutations that desensitize the cancer cells to in-
hibitors, for instance, T790M mutations of EGFR in ge-
fitinib-resistant NSCLC (206). Similarly, a substantial
number of on-target mutations directly linked to resis-
tance have been discovered, such as KIT (97) and ALK
(242); on-pathway resistance can be mediated by either
activating mutations or genomic amplifications on differ-
ent components along the same pathway, which is repre-
sented by the MEK mutation upon BRAFV600E inhibition
(67, 298) and PI3KCA gene amplification in resistance to
trastuzumab (15). The second-generation inhibitors
(200) aiming to overcome this drawback specialize in
irreversible binding to the adjacent sites of the kinase
pocket that form stable covalent bond. For example, the
second-generation EGFR inhibitor afatinib potently cir-
cumvents EGFRT790M-induced resistance to gefitinib (68).
Nevertheless, it is also important to point out that such
irreversible inhibition may target structurally similar mem-
bers of the same family, including wild-type kinases. The
persistent inactivation of physiological required enzymes with
this class of irreversible inhibitors may cause relevant toxicity
(121, 323). With the help of next-generation sequencing tech-
nology, the spatial and temporal resolution of specific clonal
sequences of the tumor is dramatically improved and drives
the discovery of genetic alterations that are druggable. Selec-
tive targeting of non-self oncogenic targets may substantially
reduce toxicity, increase specificity, and avoid emergence of
resistance.

B. Targeting Gene Amplifications

As described above, oncogenic amplification without acti-
vating mutation is another factor driving drug resistance in
cancer (FIGURES 2 AND 4). Amplified genes can be on both
the “self-pathway” and on “non-self pathways.” Mecha-
nistically, gene amplification can “mistarget” the physio-
logical feedback loops in the signaling network. To over-
come this type of resistance, two major approaches are
being explored in clinical studies. The first approach is a
“combinatory blockade,” namely, simultaneous target-
ing of two or three proteins as a cocktail therapy. Clinical
data have already shown significant benefit through en-
hanced anti-tumor potency and delayed drug resistance.
Cotargeting several cancer markers is not only applicable
to the activation of non-self pathways but also to the
activation of the downstream components on the same
pathway (37, 104, 152). The other approach is to opti-
mize the drug doses and schedules. It was shown that the
dose of imatinib in clinical phase II and III studies can
influence on-site occurrence of resistance (18, 19), so the
dosing schedule could also potentially be a critical factor
to attenuate vemurafenib-triggered resistance in mela-
noma therapy (50).
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C. Targeting Cancer-Directed
Immunosuppression

Recent advances in understanding the exhaustion of im-
mune cells in the cancer environment significantly evoke the
importance of immunotherapy. With the discovery of can-
cer cell-direct blockade of immunological checkpoints, in
particular by CTLA-4 and PD-1 signaling, the therapeutic
strategies have rapidly shifted to immunotherapy. As a con-
sequence, we have seen a large number of trials with anti-
CTLA-4 and anti-PD-1/PD-L1 antibodies, which reactivate
the anti-tumor responses of the human immune system,
resulting in durable and long-lasting responses in some can-
cer patients. However, similar to the on-targeted therapies,
such checkpoints are intrinsically important for homeo-
static immune reaction. Thus prolonged activation of a T-
cell response potentiates toxicities in many different tissues/
organs (306, 307); in some cases this can be severely detri-
mental to the patient (102). So, although immunotherapy
targeting the checkpoints CTLA-4 and PD-1/PD-L1 has
convincingly demonstrated a therapeutic benefit in a variety
of malignant cancers, further studies on optimizing dose
and schedule are required for clinic safety. Currently it is
foreseen that, in combination with TKIs, interference with
the checkpoint regulation in cancer may not only suppress
the activities of the hyperactivated oncoproteins, but also
induce anti-tumor memory of the immune system, achiev-
ing the synergistic effect from two directions. Although
promising, relevant safety issues became evident in a few
clinical trials that have been ongoing to evaluate a combi-
nation between immunotherapy and chemotherapy or tar-
geted therapy (231). In fact, more observations have
emerged that in certain circumstances the resistance to tar-
geted therapies essentially associates with suppressed anti-
tumor activity of T cells and results from impaired immune
checkpoint controls (169). A number of immunological reg-
ulators are dysregulated despite adequate CTLA-4 and PD-
1/PD-L1 function. Clearly, future discoveries of novel tar-
getable checkpoint regulators hold the promise to
strengthen the immunologic anti-tumor efficacy.

D. Targeting “Histologic Transformation”

It is also suggested that “histologic transformation” may
cause acquired resistance. This category mainly includes
epithelial-mesenchymal transition (EMT) (267, 299) and
phenotypic changes (such as from NSCLC to SCLC) (251).
EMT is also a key event during embryonic development at
an early stage. Such a transition is crucial for cell migration
and differentiation and exhibits high plasticity to facilitate
cell fate and organ formation. EMT has been shown to
support cancer cell anti-apoptosis and metastasis; there-
fore, it is also hypothesized to contribute to resistance. Nev-
ertheless, due to its highly dynamic and plastic nature, it is
still unclear whether and how EMT mechanistically pro-
motes acquired resistance. In addition, while EMT is dem-

onstrated in established cell lines and animal models, it is
much more difficult to be identified in human tumors. Al-
though some of these EMT-drivers do not seem to be im-
portant during postnatal development but are upregulated
in metastatic cancers (for example, Twist; Ref. 316), it re-
mains to be determined whether they are suitable targets for
therapy.

Taken together, a better understanding of the mechanisms
of cancer drug resistance is ultimately the driving force to
develop novel therapeutic tools in the future.
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