
To appear in EPTCS.
c© I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro

This work is licensed under the
Creative Commons Attribution License.

Secure Multiparty Sessions with Topics∗

Ilaria Castellani
INRIA Sophia Antipolis, France

Mariangiola Dezani-Ciancaglini†

University of Turin, Italy

Ugo de’Liguoro‡

University of Turin, Italy

Multiparty session calculi have been recently equipped with security requirements, in order to guar-
antee properties such as access control and leak freedom. However, the proposed security require-
ments seem to be overly restrictive in some cases. In particular, a party is not allowed to communicate
any kind of public information after receiving a secret information. This does not seem justified in
case the two pieces of information are totally unrelated. The aim of the present paper is to over-
come this restriction, by designing a type discipline for a simple multiparty session calculus, which
classifies messages according to their topics and allows unrestricted sequencing of messages on in-
dependent topics.

1 Introduction
Today’s distributed computing environment strongly relies on communication. Communication often
takes place among multiple parties, which do not trust each other. This new scenario has spurred an
active trend of research on safety and security properties for multiparty interactions. It is often the case
that such interactions are “structured”, i.e. they follow a specified protocol. Since their introduction
in [5] (as an extension of binary session calculi), multiparty session calculi have been widely used to
model structured communications among multiple parties. Session calculi are endowed with particular
behavioural types called session types, which ensure that communications are not blocked and follow the
expected protocol. Lately, multiparty session calculi have been enriched with security requirements, in
order to ensure properties such as access control and leak freedom. An account of security analysis in
multiparty session calculi and similar formalisms may be found in the recent survey [1].

A drawback of the existing security-enriched session calculi (such as those reviewed in [1]) is that
the security requirements are overly restrictive in some cases. In particular, a party is not allowed to
communicate any kind of public information after receiving a secret information. This does not seem
justified in case the two pieces of information are totally unrelated. The aim of the present paper is
to overcome this restriction, by designing a type discipline for a simple multiparty session calculus,
which classifies messages according to their topics and allows unrestricted sequencing of messages on
independent topics. In this way, we can safely type processes that are rejected by previous type systems.

We start by illustrating our approach with a familiar example.
Example 1.1. A Programme Committee (PC) discussion may be described as a session whose partici-
pants are the PC members and whose main topics are the submitted papers. All papers are assumed to
be unrelated unless they share some author. A further topic, unrelated to the papers, is constituted by a
bibliographic database, which is public but possibly not easily accessible to all PC members; hence all
PC members are allowed to ask other PC members to fetch a document in the database for them. Other
topics, unrelated to the previous ones, are administrative data of interest to the PC, like email addresses.
∗Partly supported by the COST Action IC1201 BETTY.
†Partly supported by EU H2020-644235 Rephrase project, EU H2020-644298 HyVar project, ICT COST Actions IC1402

ARVI and Ateneo/CSP project RunVar.
‡Partly supported by EU H2020-644235 Rephrase project, EU H2020-644298 HyVar project, ICT COST Actions IC1402

ARVI and Ateneo/CSP project RunVar.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302068973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Secure multiparty sessions with topics

At the start of the session, all PC members receive a number of papers to review. During the dis-
cussion, PC members receive reviews and feedback on the papers in their lot, but possibly also on other
papers for which they have not declared conflict. In this scenario, our typing will ensure the following
properties:

1. A PC member P1 who received confidential information on paper ϕ can forward this information
to another PC member P2 if and only P2 is not in conflict with paper ϕ nor with any related paper;

2. A PC member who received confidential information on some paper ϕ can subsequently send an
email address to any other PC member, including those in conflict with paper ϕ;

3. The PC chair P0 is allowed to request a document belonging to the bibliographic database to any
PC member at any time, even after receiving confidential information on some paper ϕ . This could
happen for instance if a PC member P1 in charge of paper ϕ wishes to compare it with a previous
paper by a PC member P2 who is in conflict with paper ϕ . Suppose this paper is in the database
but P1 cannot access it; then P1 will express her concerns about paper ϕ to the PC chair P0 and
ask him to retrieve the document from the database. The point is that P0 himself may not have an
easy access to the document; in this case P0 will forward the request directly to P2. Intuitively, this
should be allowed because the requested document has the topic ψ of the database, which is not
related to topic ϕ .

In the above example, Property 1 is an access control (AC) property, which will be handled by
assigning to each participant a reading level for each topic; Property 2 is a leak freedom (LF) property,
where the usual “no write-down” condition is relaxed when the topic of the output is independent from
that of the preceding input; finally, Property 3 involves both AC and LF issues. Our type system will
ensure a safety property that is a combination of AC and of our relaxed LF property.

The next sections present the untyped calculus, the safety definition, the type system and the main
properties of the typed calculus.

2 Synchronous Multiparty Session Calculus
We introduce here our synchronous multiparty session calculus, which is essentially the LTS version of
the calculus considered in [4].
Syntax. A multiparty session is an abstraction for describing multiparty communication protocols [5].
It consists of a series of interactions between a fixed number of participants.

We use the following base sets: security levels, ranged over by `,`′, . . . ; topics, ranged over by
ϕ,ψ, . . . ; values with levels and topics, ranged over by v`,ϕ ,u`

′,ψ , . . .; expressions, ranged over by e,e′, . . .;
expression variables, ranged over by x,y,z . . . ; labels, ranged over by λ ,λ ′, . . . ; session participants,
ranged over by p,q, . . .; process variables, ranged over by X ,Y, . . . ; processes, ranged over by P,Q, . . . ;
and multiparty sessions, ranged over by M ,M ′,

Processes P are defined by:

P ::= q!λ (e).P || p?λ (x).Q || P⊕P || P+P || µX .P || X || 0

The output process q!λ (e).P sends the value of expression e with label λ to participant q. The input
process p?λ (x).Q waits for the value of an expression with label λ from participant p. The operators of
internal and external choice, denoted⊕ and + respectively, are standard. We take an equi-recursive view
of processes, not distinguishing between a process µX .P and its unfolding P{µX .P/X}. We assume that
the recursive processes are guarded, i.e. µX .X is not a process.

A multiparty session M is a parallel composition of pairs (denoted by p /P) made of a participant
and a process:

I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro 3

M ::= p/P || M |M
We will use ∑

i∈I
Pi as short for P1 + . . .+ Pn, and ∏

i∈I
pi / Pi as short for p1 / P1 | . . . | pn / Pn, where

I = {1, . . . ,n}.
Security levels and topics, which appear as superscripts of values, are used to classify values accord-

ing to two criteria: their degree of confidentiality and their subject. The use of these two parameters will
become clear in Section 3.

Our calculus is admittedly very simple, since processes are sequential and thus cannot be involved
in more than one session at a time. As a consequence, it is not necessary to introduce explicit session
channels: within a session, processes are identified as session participants and can directly communicate
with each other, without ambiguity since the I/O operations mention the communicating partner.

Operational semantics The value v`,ϕ of an expression e (notation e ↓ v`,ϕ) is defined as expected,
provided that all the values appearing in e have the same topic ϕ (this will be guaranteed by our typing)
and the join of their security levels is `. The semantics of processes and sessions is given by means of
two separate LTS’s. The actions of processes, ranged over by ϑ , are either the silent action τ or a visible
I/O action α of the form q!λ (v`,ϕ) or p?λ (v`,ϕ). The actions of sessions, ranged over by κ , are either τ

or a message of the form p(λ ,v`,ϕ)q.
The LTS’s for processes and sessions are given by the rules in Table 2, defined up to a standard

structural congruence denoted by ≡ (by abuse of notation we use the same symbol for both processes
and sessions), whose definition is in Table 1.

[S-INTCH 1]
P⊕Q≡ Q⊕P

[S-INTCH 2]
(P⊕Q)⊕R≡ P⊕ (Q⊕R)

[S-EXTCH 1]
P+Q≡ Q+P

[S-EXTCH 2]
(P+Q)+R≡ P+(Q+R)

[S-REC]
µX .P≡ P{µX .P/X}

[S-MULTI]
P≡ Q⇒ p/P≡ p/Q

[S-PAR 1]
p/0 |M ≡M

[S-PAR 2]
M |M ′ ≡M ′ |M

[S-PAR 3]
(M |M ′) |M ′′ ≡M | (M ′ |M ′′)

Table 1: Structural congruence.

3 Safety
Our notion of safety for sessions has two facets: access control and information flow security or leak-
freedom. We assume that security levels `,`′ form a finite lattice, ordered by v. We denote by t and
u the join and meet operations on the lattice, and by ⊥ and > its bottom and top elements. The partial
ordering v is used to classify values according to their degree of confidentiality: a value of level ⊥ is
public, a value of level > is secret. The ordering also indicates the authorised direction for information
flow: a flow from a value of level ` to a value of level `′ is allowed if and only if `v `′.

Furthermore, each session participant p has a reading level for each topic ϕ , denoted by ρ(p,ϕ). In
a safe session, participant p will only be able to receive values of level ` v ρ(p,ϕ) on topic ϕ . This
requirement assures access control.

We also assume an irreflexive and symmetric relation of independence between topics: we denote

4 Secure multiparty sessions with topics

[R-OUTPUT]
e ↓ v`,ϕ

q!λ (e).P
q!λ (v`,ϕ)−−−−−→ P

[R-INPUT]

p?λ (x).Q
p?λ (v`,ϕ)−−−−−→ Q{v`,ϕ/x}

[R-INT-CHOICE]
P⊕Q τ−→ P

[R-EXT-CHOICE]
P α−→ P′

P+Q α−→ P′

[R-STRUCT-PROC]

P′1 ≡ P1 P1
ϑ−→ P2 P2 ≡ P′2

P′1
ϑ−→ P′2

[R-COMM]

P
q!λ (v`,ϕ)−−−−−→ P′ Q

p?λ (v`,ϕ)−−−−−→ Q′

p/P | q/Q
p(λ ,v`,ϕ)q−−−−−−→ p/P′ | q/Q′

[R-TAU]
P τ−→ P′

p/P τ−→ p/P′

[R-CONTEXT]

M
κ−→M ′

M |M ′′ κ−→M ′ |M ′′

[R-STRUCT-SESS]

M ′
1 ≡M1 M1

κ−→M2 M2 ≡M ′
2

M ′
1

κ−→M ′
2

Table 2: LTS rules for processes and sessions.

by ϕ
b

ψ the fact that ϕ and ψ are independent and by ϕ
c

ψ (defined as ¬(ϕ
b

ψ)) the fact that ϕ and
ψ are correlated. Neither of these two relations is transitive in general, as illustrated by Example 1.1,
where

c
is the co-authorship relation between papers and

b
is its complement.

We say that a session is leak-free if, whenever a participant p receives a value of level ` on topic ϕ ,
then p can subsequently only send values of level `′ w ` on topics related to ϕ . For instance, the output
of level `′ could be placed within an internal choice, and this choice could be resolved depending on the
input of level `, since this input is on a related topic. To formalise this requirement we need to look at the
traces of multiparty sessions, ranged over by σ ,σ ′ and defined as the sequences of actions that label a
transition sequence. Formally, σ is a word on the alphabet containing τ and the messages p(λ ,v`,ϕ)q for
all participants p,q, labels λ , values v, security levels ` and topics ϕ . Safety is now defined as follows,
using the notion of relay trace:

Definition 3.1. A relay trace is a trace of the form:

σ ·p(λ ,v`,ϕ)q ·σ ′ ·q(λ ′,u`′,ψ)r
The middle participant q is called the mediator between participants p and r.

Definition 3.2. A multiparty session M is safe if it satisfies:

1. Access control (AC): whenever σ ·p(λ ,v`,ϕ)q is a trace of M , then `v ρ(q,ϕ);
2. Leak freedom (LF): whenever σ ·p(λ ,v`,ϕ)q ·σ ′ ·q(λ ′,u`′,ψ)r is a relay trace of M , then either

`v `′ or ϕ
b

ψ .

For example the relay trace p(λ , true>,ϕ)q · q(λ ′, false⊥,ψ)r satisfies the condition of the previous
definition if ρ(p,ϕ) => and ϕ

b
ψ . Intuitively, in spite of the “level drop” between the two messages,

their sequencing is harmless because they belong to two different conversations.
Example 3.3. The PC discussion described in Example 1.1 may be formalised as the session:

MPC = ∏
i∈I

pi /Pi where I = {1, . . . ,n}.

I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro 5

Here each participant pi represents a PC member, and Pi is the associated process. Let us see how the
three properties discussed in Example 1.1 can be expressed in MPC.

1. (AC issue) Here we assume that p1 is entitled to receive a confidential value v`,ϕ from some p. Thus
` 6= ⊥ and ` v ρ(p1,ϕ). Subsequently p1 forwards this information to p2, hence there is a relay
trace of the form p(v`,ϕ)p1 · p1(v

`,ϕ)p2. This trace trivially satisfies LF, and the second message
satisfies AC if and only if `v ρ(p2,ϕ). Then, if we set ρ(p2,ϕ) =⊥ for any p2 in conflict with ϕ

and ρ(p2,ϕ) => for any other p2, Property 1 will be ensured by the safety of MPC.

2. (LF issue) Here the relay trace has the form p(v`,ϕ)p1 ·p1(v
⊥,ϕ1
1)p2, where again⊥ 6= `v ρ(p1,ϕ).

This trace satisfies LF because ϕ1 is independent from ϕ . The second message trivially satisfies
AC because the email address v⊥,ϕ1

1 has level ⊥ and thus can be read by any participant.

3. (Combination of AC and LF) Here p1 sends to the PC Chair p0 a confidential value v
`,ϕ
1 , followed

by a request for a public document of topic ψ , and then waits to receive this document from p0.
The behaviour of p0 is dual for the first two steps, but then p0 asks p2, who is in conflict with paper
ϕ , to fetch the document for him, before sending it back to p1.
Processes implementing the behaviour of the PC Chair and of the involved PC members are:

P0 = p1?(x).p1?(y).p2!(y).p2?(z).p1!(z).0
P1 = p0!(v`,ϕ1).p0!(v⊥,ψ2).p0?(x).0
P2 = p0?(x).p0!(v⊥,ψ3).0

Intuitively, the reading levels of p0,p1 and p2 should be ρ(p0,ϕ) = ρ(p0,ψ) = >, ρ(p1,ϕ) = `,
ρ(p1,ψ) =⊥, and ρ(p2,ϕ) = ρ(p2,ψ) =⊥. Consider now the following trace of session MPC:

σ = p1(v
`,ϕ
1)p0 ·p1(v

⊥,ψ
2)p0 ·p0(v

⊥,ψ
2)p2 ·p2(v

⊥,ψ
3)p0 ·p0(v

⊥,ψ
3)p1

With the above reading levels, each message in trace σ satisfies AC. Moreover, trace σ contains
three relay traces: p1(v

⊥,ψ
2)p0 ·p0(v

⊥,ψ
2)p2, p0(v

⊥,ψ
2)p2 ·p2(v

⊥,ψ
3)p0, and p2(v

⊥,ψ
3)p0 ·p0(v

⊥,ψ
3)p1,

which trivially satisfy LF since all values have level ⊥.

4 Type System
Our type system enriches the system of [4] with security levels and topics.

Types. Sorts are ranged over by S and defined by: S ::= nat || int || bool || string
Global types describe the whole conversation scenarios of multiparty sessions. They are generated by:

G ::= p→ q : {λi(S
`i,ϕi
i).Gi}i∈I || µt.G || t || end

Session types correspond to the views of the individual participants. They can be either unions of outputs
or intersections of inputs. The grammar of session types, ranged over by T , is then

T ::=
∨

i∈I q!λi(S
`i,ϕi
i).Ti ||

∧
i∈I p?λi(S

`i,ϕi
i).Ti || µt.T || t || end

We require that λi 6= λ j with i 6= j and i, j ∈ I.

We give now conditions on session types which will guarantee session safety.

Definition 4.1. A pair of a security level ` and a topic ϕ agrees with a session type T (notation 〈`,ϕ〉≺ T)
if T specifies that only values of level `′ w ` are sent on topics related with ϕ:

6 Secure multiparty sessions with topics

[AGR-END]
〈`,ϕ〉 ≺ end

[AGR-OUT]

∀i ∈ I : 〈`,ϕ〉 ≺ Ti (either `v `′i or ϕ

j
ψi)

〈`,ϕ〉 ≺
∨
i∈I

q!λi(S`
′
i,ψi).Ti

=======================================

[AGR-IN]
∀i ∈ I : 〈`,ϕ〉 ≺ Ti

〈`,ϕ〉 ≺
∧
i∈I

p?λi(S
`i,ϕi
i).Ti

======================

Definition 4.2. A closed session type T is a safe session type if ` T can be derived from the rules:

[SAFE-END]
` end

[SAFE-OUT]
∀i ∈ I : ` Ti `i v ρ(q,ϕi)

`
∨
i∈I

q!λi(S
`i,ϕi
i).Ti

=========================

[SAFE-IN]
∀i ∈ I : ` Ti 〈`i,ϕi〉 ≺ Ti

`
∧
i∈I

p?λi(S
`i,ϕi
i).Ti

========================

The double line in the above rules means that they are coinductive [7, 21.1]. This is necessary
since session types are recursive and under the equi-recursive approach the types in the premises can
coincide with the types in the conclusion. For example p?λ (bool>,ϕ).r!λ ′(bool⊥,ψ).end is a safe type
if ρ(p,ϕ) => and ϕ

b
ψ .

We only allow safe types in the typing rules for processes and multiparty sessions. As will be es-
tablished in Theorem 5.5, the conditions in rules [SAFE-OUT] and [SAFE-IN] of safe session types assure
respectively access control and leak freedom, namely Properties 1 and 2 of session safety (Definition 3.2).

Typing rules. We distinguish three kinds of typing judgments. Expressions are typed by sorts with levels
and topics, processes are typed by session types and multiparty sessions are typed by global types:

Γ ` e : S`,ϕ Γ ` PI T M I G

Here Γ is the environment that associates expression variables with sorts (decorated by levels and topics)
and process variables with safe session types: Γ ::= /0 || Γ,x : S`,ϕ || Γ,X : T .

The typing rules for expressions in Table 3 are almost standard, but for the treatment of topics. A
value of level ` and topic ϕ is typed with the appropriate sort type decorated by ` and ϕ . Expressions
cannot contain subexpressions of different topics. This limitation could be easily overcome by allowing
sets of topics. In this way we could associate to an expression the set of topics of its subexpressions. The
sets of topics would naturally build a lattice, where the order is given by subset inclusion.

[EXP-VAR]
Γ,x : S`,ϕ ` x : S`,ϕ

[EXP-VAL]
Γ ` v`,ϕ : S`,ϕ

[EXP-OP]
Γ ` e1 : S`1,ϕ

1 Γ ` e2 : S`2,ϕ
2 op : S1,S2→ S3

Γ ` e1 ope2 : S`1t`2,ϕ
3

Table 3: Typing rules for expressions.

Processes have the expected types. Let us note that the syntax of session types only allows output
processes in internal choices (typed by unions) and input processes in external choices (typed by in-
tersections). Table 4 gives the typing rules for processes. For example, if ρ(p,ϕ) = > and ϕ

b
ψ we

can derive ` p?λ (x).r!λ ′(false⊥,ψ).0I p?λ (bool>,ϕ).r!λ ′(bool⊥,ψ).end, while this process cannot be
typed otherwise. Notice that the process obtained by erasing topics is not typable in the system of [2],
where the typing rule for input requires that the level of the input be lower than or equal to the level of
the following output. Similarly, in the monitored semantics of [3], this input would raise the monitor
level to > and then the monitor would produce an error when applied to the output of level ⊥.

A session is typable when its parallel components can play as participants of a whole communication
protocol or they are terminated. To formalise this we need some definitions.

I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro 7

Γ ` e : S`,ϕ Γ ` PI T
[T-OUT]

Γ ` q!λ (e).PI q!λ (S`,ϕ).T

Γ,x : S`,ϕ ` QI T
[T-IN]

Γ ` p?λ (x).QI p?λ (S`,ϕ).T

Γ ` P1 I T1 Γ ` P2 I T2
[T-I-CHOICE]

Γ ` P1⊕P2 I T1∨T2

Γ ` P1 I T1 Γ ` P2 I T2
[T-E-CHOICE]

Γ ` P1 +P2 I T1∧T2

Γ,X : T ` PI T
[T-REC]

Γ ` µX .PI T
Γ,X : T ` X I T [T-VAR] Γ ` 0I end [T-0]

Table 4: Typing rules for processes.

The subtyping relation ≤ between session types as defined in Table 5 is simply the set-theoretic
inclusion between intersections and unions. The double line in these rules means that subtyping is co-
inductively defined.

[SUB-END]
end6 end

[SUB-IN]
∀i ∈ I : Ti 6 T ′i∧

i∈I∪J

p?λi(S
`i,ϕi
i).Ti 6

∧
i∈I

p?λi(S
`i,ϕi
i).T ′i

==================================

[SUB-OUT]
∀i ∈ I : Ti 6 T ′i∨

i∈I

p!λi(S
`i,ϕi
i).Ti 6

∨
i∈I∪J

p!λi(S
`i,ϕi
i).T ′i

=================================

Table 5: Subtyping rules.

The projection of the global type G on participant p, notation G � p, is as usual [5], and it is reported
in Table 6. We shall consider projectable global types only.

p→ q : {λi(S
`i,ϕi
i).Gi}i∈I � r =

∨
i∈I q!λi(S

`i,ϕi
i).Gi � r if r = p,∧

i∈I p?λi(S
`i,ϕi
i).Gi � r if r = q,

Gi � r if r 6= p, r 6= q

and Gi � r = G j � r for all i, j ∈ I.

µt.G � r =

{
G � r if r occurs in G,

end otherwise.
t � r = t end � r = end

Table 6: Projection of global types onto participants.

We define the set pt{G} of participants of a global type G as expected:

pt{p→ q : {λi(S
`i,ϕi
i).Gi}i∈I}= {p,q}∪pt{Gi} (i ∈ I)1

pt{µt.G}= pt{G} pt{t}= /0 pt{end}= /0

We can now explain the typing rule for sessions:

∀i ∈ {1, . . . ,n} : ` Pi I Ti Ti ≤ G � pi pt{G} ⊆ {p1, . . . ,pn}
[T-SESS]

p1 /P1 | . . . |pn /Pn I G

Note that all pi must be distinct, since the premise assumes {p1, . . . ,pn} to be a set of n elements. The
condition Ti ≤ G � pi assures that the type of the process paired with participant pi is “better” than the
projection of the global type G on pi. The inclusion of pt{G} in the set {p1, . . . ,pn} allows sessions
containing p/0 to be typed, a property needed to assure invariance of types under structural congruence.

1The projectability of G assures pt{Gi}= pt{G j} for all i, j ∈ I.

8 Secure multiparty sessions with topics

Example 4.3. The communication protocol described in Examples 1.1 and 3.3, Item 3, can be formalised
(omitting labels) by the global type:

p1→ p0 : str`,ϕ .p1→ p0 : str⊥,ψ .p0→ p2 : str⊥,ψ .p2→ p0 : str⊥,ψ .p0→ p1 : str⊥,ψ .end

where str is short for string.
The session type of the PC chair p0 is then:

p1?str`,ϕ .p1?str⊥,ψ .p2!str⊥,ψ .p2?str⊥,ψ .p1!str⊥,ψ .end

This type is safe, since ϕ and ψ are unrelated. In fact we can check that

〈`,ϕ〉 ≺ p1?str⊥,ψ .p2!str⊥,ψ .p2?str⊥,ψ .p1!str⊥,ψ .end.

5 Main Properties
The basic soundness property of the typing system w.r.t. operational semantics is subject reduction.
As usual with types expressing communications, the reduction of sessions “consumes” the types. This
consumption can be formalised by means of a reduction. In our system we need to reduce both session
types and global types.

The reduction of session types is the smallest pre-order relation closed under the rules:

T ∨T ′ =⇒ T p!λ (S`,ϕ).T =⇒ T
∧

i∈I p?λi(S
`i,ϕi
i).Ti =⇒ Ti

These rules mimic respectively internal choice, output and external choice among inputs.
The reduction of global types is the smallest pre-order relation closed under the rule:

G =⇒ G\p λ−→ q

where G \ p λ−→ q is the global type obtained from G by executing the communication p
λ−→ q. We dub

G\p λ−→ q the residual after the communication p
λ−→ q in the global type G, whose definition is given in

Table 7. Notice that G\p λ−→ q is defined only if p λ−→ q occurs in G, since both end\p λ−→ q and t\p λ−→ q

are undefined. For example, if G = r→ s : λ ′(nat⊥,ϕ).p→ q : λ (bool>,ψ), then

G\p λ−→ q= r→ s : λ ′(nat⊥,ϕ).

The reduction rule for global types is more involved than that for session types, since the global types do
not prescribe an order on communications between disjoint pairs of participants.

We can now show that session reduction transforms the global type of a session into its residual,
and the session types of the processes into their reducts. Besides substitution and inversion lemmas,
the proof of subject reduction is based on the relations between subtyping, projection and erasure of
communications.

(r→ s : {λi(S
`i,ϕi
i).Gi}i∈I)\p

λ−→ q=

Gi0 if r= p,

s= q,

λi0 = λ i0 ∈ I

r→ s : {λi(S
`i,ϕi
i).Gi \p

λ−→ q}i∈I otherwise

(µt.G)\p λ−→ q= µt.G\p λ−→ q

Table 7: Residual after a communication.

I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro 9

Lemma 5.1. If Γ ` e : S`,ϕ and e ↓ v`,ϕ and Γ,x : S`,ϕ ` PI T , then Γ ` P{v`,ϕ/x}I T .

Proof. Standard.

Lemma 5.2.

1. If Γ ` p!λ (e).PI T , then T = p!λ (S`,ϕ).T ′ and Γ ` e : S`,ϕ and Γ ` PI T ′.
2. If Γ ` p?λ (x).PI T , then T = p?λ (S`,ϕ).T ′ and Γ,x : S`,ϕ ` PI T ′.
3. If Γ ` P⊕QI T , then T = T1∨T2 and Γ ` PI T1 and Γ ` QI T2.
4. If Γ ` P+QI T , then T = T1∧T2 and Γ ` PI T1 and Γ ` QI T2.
5. If p1 /P1 | . . . |pn /Pn IG, then ` Pi I Ti and Ti ≤G � pi for 1≤ i≤ n and pt{G} ⊆ {p1, . . . ,pn}.

Proof. By observing that the type assignment system for processes and multiparty sessions is syntax
directed.

Lemma 5.3. If q!λ (S`,ϕ).T ≤ G � p and p?λ (S`,ϕ).T ′ ∧ T ′′ ≤ G � q, then T ≤ (G \ p λ−→ q) � p and

T ′ ≤ (G\p λ−→ q) � q. Moreover G � r= (G\p λ−→ q) � r for r 6= p, r 6= q.

Proof. By induction on G and by cases on the definition of G \ p λ−→ q. Notice that G can only be
s1 → s2 : {λi(S

`i,ϕi
i).Gi}i∈I with either s1 = p and s2 = q or {s1,s2}∩{p,q} = /0, since otherwise the

types in the statement of the lemma could not be subtypes of the given projections of G.
If G= p→ q : {λi(S

`i,ϕi
i).Gi}i∈I , then G � p=

∨
i∈I q!λi(S

`i,ϕi
i).Gi � p and G � q=

∧
i∈I p?λi(S

`i,ϕi
i).Gi � q.

From q!λ (S`,ϕ).T ≤
∨

i∈I q!λi(S
`i,ϕi
i).Gi � p we get λ = λi0 and T ≤ Gi0 � p for some i0 ∈ I. From

p?λ (S`,ϕ).T ′∧T ′′ ≤
∧

i∈I p?λi(S
`i,ϕi
i).Gi � q and λ = λi0 we get T ′ ≤ Gi0 � q. This implies

T ≤ (G\p λ−→ q) � p and T ′ ≤ (G\p λ−→ q) � q,

since (G \ p λ−→ q) � p = Gi0 � p and (G \ p λ−→ q) � q = Gi0 � q. If r 6= p, r 6= q, then by definition of

projection G � r = Gi0 � r for an arbitrary i0 ∈ I, and then G � r = (G \ p λ−→ q) � r by definition of
residual.

If G = s1→ s2 : {λi(S
`i,ϕi
i).Gi}i∈I and {s1,s2}∩{p,q}= /0, then G � p= Gi0 � p and G � q= Gi0 � q

for an arbitrary i0 ∈ I. By definition of residual

G\p λ−→ q= s1→ s2 : {λi(S
`i,ϕi
i).Gi \p

λ−→ q}i∈I,

which implies (G\p λ−→ q) � p= (Gi0 \p
λ−→ q) � p and (G\p λ−→ q) � q= (Gi0 \p

λ−→ q) � q.
Notice that the choice of i0 does not modify the projection, by definition of projectability. We get

q!λ (S`,ϕ).T ≤ Gi0 � p and p?λ (S`,ϕ).T ′∧T ′′ ≤ Gi0 � q, which imply by induction T ≤ (Gi0 \p
λ−→ q) � p

and T ′ ≤ (Gi0 \p
λ−→ q) � q.

Let r 6= p, r 6= q.
If r= s1, then G � r=

∨
i∈I s2!λi(S

`i,ϕi
i).Gi � r and

(G\p λ−→ q) � r=
∨

i∈I s2!λi(S
`i,ϕi
i).(Gi \p

λ−→ q) � r,

so we may conclude, since by induction Gi � r= (Gi \p
λ−→ q) � r for all i ∈ I.

If r= s2, then G � r=
∧

i∈I s1?λi(S
`i,ϕi
i).Gi � r and

(G\p λ−→ q) � r=
∧

i∈I s1?λi(S
`i,ϕi
i).(Gi \p

λ−→ q) � r,

10 Secure multiparty sessions with topics

so we may conclude using induction as in the previous case.

If r 6∈ {s1,s2}, then G � r= Gi0 � r and (G\p λ−→ q) � r= (Gi0 \p
λ−→ q) � r for an arbitrary i0 ∈ I. Again,

we can conclude using induction.

Theorem 5.4. (Subject reduction) If p/P |M κ−→ p/P′ |M ′, p/P |M I G and ` PI T , then:

1. p/P′ |M ′ I G′ for some G′ such that G =⇒∗ G′;
2. ` P′ I T ′ for some T ′ such that T =⇒∗ T ′.

Proof. We only consider the more interesting reduction, i.e., when P is reduced. We distinguish three
cases according to the shape of κ .

Case κ = τ: then P ≡ P1⊕P2 and P′ ≡ P1 and M ′ ≡M . By Lemma 5.2(5) and (3) T ≤ G � p and
T = T1∨T2 and ` P1 I T1. We can then choose G′ = G and T ′ = T1.

Case κ = p(λ ,v`,ϕ)q: then P≡ q!λ (e).P′ and M ≡ q/p?λ (x).Q1 +Q2 |M ′′ and

M ′ ≡ q/Q1{v`,ϕ/x} |M ′′,

where e ↓ v`,ϕ . By Lemma 5.2(5) and (1) T ≤ G � p and T = q!λ (S`,ϕ).T ′ and ` e : S`,ϕ and
` P′ I T ′. By Lemma 5.2(5) and (4) and (2) T1∧T2 ≤ G � q and ` p?λ (x).Q1 I T1 and ` Q2 I T2 and
T1 = p?λ (S`

′,ψ
1).T ′1 and x : S`

′,ψ
1 `Q1 I T ′1 . From q!λ (S`,ϕ).T ′ ≤G � p and p?λ (S`

′,ψ
1).T ′1∧T2 ≤G � q we

get S= S1 and `= `′ and ϕ =ψ . By Lemma 5.1 ` e : S`,ϕ and x : S`,ϕ `Q1I T ′1 imply `Q1{v`,ϕ/x}I T ′1 .

Then we choose G′ = G\p λ−→ q, since Lemma 5.3 gives T ′ ≤ (G\p λ−→ q) � p and T ′1 ≤ (G\p λ−→ q) � q
and the same projections for all other participants of G.

Case κ = q(λ ,v`,ϕ)p: then P ≡ q?λ (x).P1 +P2 and M ≡ q /p!λ (e).Q |M ′′ and P′ = P1{v`,ϕ/x}
and M ′ ≡ q /Q | M ′′, where e ↓ v`,ϕ . By Lemma 5.2(5) and (4) and (2) T = T1 ∧ T2 ≤ G � p and
` q?λ (x).P1 I T1 and ` P2 I T2 and T1 = q?λ (S`,ϕ).T ′ and x : S`,ϕ ` P1 I T ′. By Lemma 5.2(5)
and (1) T3 ≤ G � q and ` p!λ (e).Q I T3 and T3 = p!λ (S`

′,ψ
1).T ′3 and ` e : S`

′,ψ
1 and ` Q I T ′3 . From

q?λ (S`,ϕ).T ′∧T2 ≤ G � p and p!λ (S`
′,ψ

1).T ′3 ≤G � q we get S = S1 and `= `′ and ϕ = ψ . By Lemma 5.1

` e : S`,ϕ and x : S`,ϕ ` P1 I T ′ imply ` P1{v`,ϕ/x}I T ′. Then we take G′ = G\q λ−→ p, since Lemma 5.3

gives T ′ ≤ (G\p λ−→ q) � p and T ′3 ≤ (G\p λ−→ q) � q and the same projections for all other participants
of G.

We may now prove our main result:

Theorem 5.5. (Soundness) If M is typable, then M is safe.

Proof. Suppose that M is safely typed. If M generates the trace σ ·p(λ ,v`,ϕ)q, then

M
σ−−−→ p/P | q/Q |M ′ p(λ ,v`,ϕ)q−−−−−−→ p/P′ | q/Q′ |M ′.

From p /P | q /Q |M ′ p(λ ,v`,ϕ)q−−−−−−→ p /P′ | q /Q′ |M ′ we get that P ≡ q!λ (e).P′ for some e such that
e ↓ v`,ϕ , and Q≡ p?λ (x).Q1 +Q2. By Lemma 5.2(5), there are types TP and TQ such that ` PI TP and
`QI TQ. By Lemma 5.2(1), TP must be of the form TP = q!λ (S`,ϕ).T ′P. Then the safety of q!λ (S`,ϕ).T ′P
(more specifically, the premise of Rule [SAFE-OUT]) implies that ` v ρ(q,ϕ). This concludes the proof
of Property 1 of session safety (AC).

Suppose now that the above computation continues as follows:

p/P′ | q/Q′ |M ′ σ ′−−−−−−→ q/Q2 |M ′′ q(λ ′,u`
′,ψ)r−−−−−−→ q/Q′′′ |M ′′′

I. Castellani, M. Dezani-Ciancaglini & U. de’Liguoro 11

namely, that the trace σ ·p(λ ,v`,ϕ)q is extended to the relay trace σ ·p(λ ,v`,ϕ)q ·σ ′ ·q(λ ′,u`′,ψ)r. From
Q ≡ p?λ (x).Q1 +Q2, by Lemma 5.2(4) we get TQ = T1 ∧T2 and ` p?λ (x).Q1 I T1. By applying now
Lemma 5.2(2), we obtain T1 = p?λ (S`,ϕ).T ′1 and x : S`,ϕ `Q1I T ′1 . From this, since Q′=Q1{v`,ϕ/x}, we
infer ` Q′ I T ′1 . By Theorem 5.4, ` Q′ I T ′1 implies ` Q′′ I T ′′1 for some T ′′1 such that T ′1 =⇒ T ′′1 . Now,

since q/Q′′ |M ′′ q(λ ′,u`
′,ψ)r−−−−−−→ q/Q′′′ |M ′′′, we have Q′′ ≡ r!λ ′(e′).Q′′′ for some e′ such that e′ ↓ u`′,ψ .

By Lemma 5.2(1), T ′′1 = r!λ ′(S`
′,ψ

1).T ′′′1 . Now, the safety of T1 = p?λ (S`,ϕ).T ′1 (and more specifically, the
premise of Rule [SAFE-IN]) implies that 〈`,ϕ〉≺ T ′1 and therefore also 〈`,ϕ〉≺ T ′′1 = r!λ ′(S`

′,ψ
1).T ′′′1 , since

T ′′1 is obtained by reducing T ′1 (and therefore T ′′1 is a subterm of T ′1). Then `v `′ or ϕ
b

ψ by definition
of agreement (Rule [AGR-OUT]). This concludes the proof of Property 2 of session safety (LF).

6 Related and Future Work
We introduced the notion of topic as a way to relax security type systems for session calculi. We focussed
on multiparty rather than binary sessions, as security issues appear to be less relevant for binary sessions.
Indeed, binary sessions may often be viewed as client-server interactions, where one can assume that
the client chooses the server (and thus to some extent trusts it) and that the server is protected against
malicious clients. On the other hand, in a multiparty session the parties are symmetric peers which may
not know each other and thus require to be protected against each other.

The first multiparty session calculus with synchronous communication was presented in [?]. Here we
considered an enrichment of the calculus of [4] with security and types. The base calculus is admittedly
very simple, as it cannot describe parallel and interleaved sessions, and its type system only allows inter-
nal choices among outputs and external choices among inputs. Our version is even simpler than that of
[4] since the syntax does not include the conditional construct. The advantage of this minimal setting is
that the safety property, which covers both access control and leak freedom, enjoys a particularly simple
definition. In particular, leak freedom amounts to a condition on mediators, which are participants acting
as a bridge between a sender and a receiver. This condition says that after receiving high information by
the sender on some topic, the mediator should not send low information to the receiver on a related topic.

It can be argued that topics are orthogonal to structured communication features, and could therefore
be studied in a more general setting. However, within a structured communication the set of topics is
delimited a priori, as specified by the global type, so the notion becomes more effective.

One further issue is that of expressiveness of topics. One may wonder whether the use of topics could
be simulated by using other ingredients of our calculus, such as security levels, labels and base types.
Clearly, the independence of topics in the two end messages of a relay trace cannot be represented by
the incomparability of their security levels: a safe relay trace m1 ·σ ·m2 where m1 and m2 have unrelated
topics could not be mimicked by the same trace with incomparable security levels for m1 and m2, since
the latter is insecure in a classical LF approach. As for labels, they are meant to represent different
options in the choice operators, so they are conceptually quite different from topics.
Related work. Compared to previous work on security-enriched multiparty session calculi [2, 3], our
definition of leak freedom is more permissive in two respects:

1. A sequence of messages directed to the same participant is always allowed. In the calculi of [2, 3],
where deadlocks could arise, it was necessary to prevent any low communication after a high
communication (because the mere fact that the high communication could fail to occur would
cause a leak). For instance the trace (omitting labels) p(v>,ϕ)q · p′(u⊥,ϕ)q was rejected in those
calculi, while it is allowed in the present one, which is deadlock-free. In our case it is only the

12 Secure multiparty sessions with topics

content of a message that can be leaked, and therefore it is enough to focus on relay sequences
made of a message to a participant, followed by a message from the same participant.

2. Thanks to the introduction of topics, the standard leak-freedom requirement can be relaxed also
on relay sequences, by forbidding only downward flows between messages on correlated topics.

One could see the use of topics as a way of implementing declassification (see [?] for a survey). For
instance, a relay trace whose end messages carry values v>,ϕ1

1 and v
⊥,ϕ2
2 with independent topics ϕ1 and

ϕ2 could be interpreted as the application of a trusted function (such as encryption [?]) to transform a
secret value v1 into a public value v2.

Future work. We intend to explore further the relationship between topics and declassification. Also,
inspired by [6], we plan to enrich the present calculus by allowing levels and topics to depend on ex-
changed values. Indeed, it seems reasonable to expect that a server should conform the levels and topics
of its messages to its different kinds of clients. For example an ATM should receive credit card numbers
with personalised topics.

Acknowledgments. We are grateful to the anonymous reviewers for their useful remarks.

References
[1] M. Bartoletti, I. Castellani, P.-M. Deniélou, M. Dezani-Ciancaglini, S. Ghilezan, J. Pantovic, J. A. Pérez,

P. Thiemann, B. Toninho, and H. T. Vieira. Combining Behavioural Types with Security Analysis. Journal of
Logical and Algebraic Methods in Programming, 84(6):763 – 780, 2015. Special Issue on Open Problems in
Concurrency Theory.

[2] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Typing Access Control and Secure Information Flow
in Sessions. Information and Computation, 238:68–105, 2014.

[3] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information Flow Safety in Multiparty Sessions. Math-
ematical Structures in Computer Science, 2016. to appear.

[4] M. Dezani-Ciancaglini, S. Ghilezan, J. P. Svetlana Jaksic, and N. Yoshida. Precise Subtyping for Synchronous
Multiparty Sessions. In Proc. PLACES, EPTCS, 2016. To appear.

[5] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In Proc. POPL’08, pages
273–284. ACM Press, 2008.

[6] L. Lourenço and L. Caires. Dependent Information Flow Types. In Proc. POPL’15, pages 317–328. ACM
Press, 2015.

[7] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

	Introduction
	Synchronous Multiparty Session Calculus
	Safety
	Type System
	Main Properties
	Related and Future Work

