
Introduction to
SuperCollider

Andrea Valle

Introduction to SuperCollider

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;

detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© Copyright Andrea Valle & Logos Verlag Berlin GmbH 2016

All rights reserved.

ISBN 978-3-8325-4017-3

Logos Verlag Berlin GmbH

Comeniushof, Gubener Str. 47,

10243 Berlin

Tel.: +49 (0)30 42 85 10 90

Fax: +49 (0)30 42 85 10 92

Web: http://www.logos-verlag.de

PDF version:

site: http://logos-verlag.de/ebooks/IntroSC/

user: introsc

password: Super0616Collider!

Translated from Italian by Marinos Koutsomichalis and Andrea Valle.

English revision by Joe Higham and Joshua Parmenter.

Italian edition:

Apogeo Education, Maggioli editore, Milano, 2015

ISBN: 978-88-916-1068-3

Typeset with ConTEXt and SuperCollider by Andrea Valle

Contents

1 Getting started with SuperCollider 1

1.1 About SuperCollider 1

1.2 SC overview 3

1.3 Installation and use 6

1.4 Objectives, references, typographical conventions 9

2 Programming in SC 13

2.1 Programming languages 13

2.2 Minima objectalia 16

2.3 Objects in SC 19

2.4 Methods and messages 26

2.5 The methods of type post and dump 33

2.6 Numbers 36

2.7 Conclusions 39

3 Syntax: basic elements 41

3.1 Brackets 41

3.2 Expressions 42

3.3 Comments 43

3.4 Strings 44

3.5 Variables 45

3.6 Symbols 49

3.7 Errors 51

3.8 Functions 52

3.9 Classes, messages/methods and keywords 57

3.10 A graphic example 59

3.11 Control Structures 64

3.12 Yet another GUI example 67

3.13 Conclusions 71

4 Synthesis, I: Fundamentals of Signal Processing 73

4.1 A few hundred words on acoustics 73

4.2 Analog vs. digital 76

4.3 Synthesis algorithms 81

4.4 Methods of Signal 89

4.5 Other signals and other algorithms 93

4.6 Still on signal processing 105

4.7 Control signals 109

4.8 Conclusions 117

5 SC architecture and the server 119

5.1 Client vs. Server 119

5.2 Ontology of the server as an audio synthesis plant 123

5.3 The server 132

5.4 SynthDefs 134

5.5 UGens and UGen graphs 138

5.6 Synths and Groups 144

5.7 A theremin 149

5.8 An example of real-time synthesis and control 151

5.9 Expressiveness of the language: algorithms 154

5.10 Expressiveness of the language: abbreviations 156

5.11 Conclusions 160

6 Control 161

6.1 Envelopes 161

6.2 Generalizing envelopes 167

6.3 Sinusoids & sinusoids 174

6.4 Pseudo-random signals 180

6.5 Busses 184

6.6 Procedural structure of SynthDef 197

6.7 Multichannel Expansion 201

6.8 Conclusions 208

Introduction to SuperCollider

7 Organized sound: scheduling 211

7.1 Server-side, 1: through UGens 211

7.2 Server side, 2: Demand UGen 217

7.3 Language-side: Clocks and routines 221

7.4 Clocks 226

7.5 Synthesizers vs. events 229

7.6 Graphic interlude: drawings and animations 236

7.7 Routines vs. Tasks 239

7.8 Patterns 243

7.9 Events and Event patterns 252

7.10 Conclusions 260

8 Synthesis, II: introduction to

basic real-time techniques 261

8.1 Oscillators and tables 261

8.1.1 Synthesis by sampling 269

8.1.2 Resampling and interpolation 271

8.2 Direct generation 275

8.2.1 Synthesis by fixed waveform 276

8.2.2 Modulation 277

8.2.3 Ring and Amplitude modulation 278

8.2.4 Ring modulation as a processing technique 280

8.2.5 Frequency modulation 285

8.2.6 C:M ratio 288

8.2.7 Waveshaping 292

8.3 Spectral modelling 297

8.3.1 Additive synthesis 297

8.3.2 Subtractive synthesis 305

8.3.3 Analysis and resynthesis: Phase vocoder 311

8.4 Physical Modeling 319

8.5 Time-based methods 327

8.5.1 Granular synthesis 328

8.5.2 Techniques based on the direct generation of the waveform 331

8.6 Conclusions 335

9 Communication 337

9.1 From server to client: use of control buses 337

9.2 From server to client: use of OSC messages 341

9.3 OSC to and from other applications 346

9.4 The MIDI protocol 349

9.5 Reading and writing: File 353

9.6 Pipe 359

9.7 SerialPort 362

9.8 Conclusions 365

Foreword

My first encounter with SuperCollider dates back to 2002, thanks to my friend

Hairy Vogel, one of its first (and bold) users. At that time, I remember being

deeply impressed by the sound quality, the seamless integration between audio

synthesis and algorithmic composition, the native real-time operating mode.

So, I decided to buy an Apple computer, as SuperCollider 2 was working on

MacOS9 systems only, while SuperCollider 3, that had just become open source,

was still an unstable release, porting to Linux had just begun (as far as I can

remember) and there were no plans at all for a Windows version…But in 2002

I was lacking some basic skills to be productive on SuperCollider, so I left it

momentarily, to get back to it in 2005. In 2008 I switched to SuperCollider in

my class for the Multimedia and Arts program (DAMS) at the University of

Turin. I was not able to find a basic, yet comprehensive resource to use for

teaching. Comprehensive of what? This is of course the main point. My class

is a basic introduction to computer music, so I was in need of reference for

both some basic notions in DSP and SuperCollider. Still, I was confident that

the latter was the apt tool to approach the former. Yet, introducing SC is to

also introduce computer languages in general and certain notions concerning

computer science tout court (e.g. the client/network architecture). That is why

I decided to write this book the scope of which is, consequently, too broad to

offer completeness in any of each subjects. From a very personal perspective, I

have to confess that I have tried to write the book that I wished to have while

starting with SuperCollider. My hope is that someone might be in need of it as

I was.

Originally written in Italian in 2008 in an electronic only version, the book

has been substantially re-edited and updated to account for the SC 3.7 version

in 2015, and then, revised and translated into English in 2016 to be published

in a printed version thanks to Logos Verlag. It has been translated into English

by myself and Marinos Koutsomichalis, thanks also to the support of the Su-

perCollider community. A crucial help on language and content revision has

been provided by Joe Higham and Joshua Parmenter. I am deeply thankful to

Marinos, Joe and Josh for their work.

SuperCollider has a strong, supporting and passionate community. With-

out it, my journey with SC probably would have ended very soon. So, I am

profoundly indebted to all its members. Finally, a special “grazie” to James

McCartney to have his ideas supercollide in his work.

Ciriè, Turin, May 27, 2016

1 Getting started with SuperCollider

1.1 About SuperCollider

SuperCollider (SC) is a software environment for real-time audio synthesis and

interactive control. It represents the state of the art in audio programming tech-

nologies: as of writing, there seems to be no other software solution which is,

at the same time, equally effective, efficient and flexible. Yet, SC is often, and

rightly, approached with suspicion and with awe: SC is not exactly “intuitive”.

In the first place, the interface is textual. In SuperCollider the user is supposed

to write, which is difficult enough for the typical computer-user who is nor-

mally used to seeing (and interacting with GUI) and not in manipulating and

reading raw code. Then, like all software solutions to advanced audio com-

puting, SuperCollider prerequisites in sound synthesis and algorithmic music

composition, as well as in computer programming. More, it demands thorough

understanding of certain informatics-derived concepts. However, these osten-

sible obstacles are in reality the true power of SC: there would be no other way

to arrive at a system equally versatile in software design, efficient in computer

modeling, and expressive in terms of easy to use symbolic representations.

SuperCollider was originally developed by James McCartney in 1996 for

the Macintosh platform. Version 2, in particular, has been designed for the Ma-

cOS 9 operating system. SuperCollider 3 (which is, at the same time, very sim-

ilar and yet very different to SC2) has been developed initially for the MacOS

X operating system, but is now an open source project that revolves around a

community of contributing programmers. This community of developers has

2 Getting started with SuperCollider

been responsible for porting SC in Windows and Linux operating systems. Ac-

cordingly, we witnessed major changes in the software during the last years,

not in terms of the core functionality (which albeit having been improved, is ef-

fectively the same) but more specifically the user interface. The first versions of

SC for other platforms have been less featured than the OSX version. The vari-

ous Linux versions have been gradually aligned with the OSX version in terms

of functionality, yet and until recently, their user interface has been very differ-

ent. On this aspect, the variousWindows versions used to be less intuitive than

the Linux/OSX versions in various respects. This situation has been radically

changed with the introduction of the new Integrated Development Environ-

ment (IDE) (as from version 3.6) and of the new help-system (as of version 3.5).

From 3.6 onwards, SC looks and works identically on all three platforms, this

way providing a consistent user experience1.

What can we do with SuperCollider? The SC community is highly diverse,

SC being successfully used for live improvisation, GUI-design, dance-oriented

music, electroacoustic music composition, sound spatialization, audio-hard-

ware interaction, scientific sonification, multimedia or network based applica-

tions, the performance of distributed systems and for all sorts of other applica-

tions. There have been real-life examples on all the aforementioned cases that

have beenmade possible either with SC alone or with respect to paradigms that

emerged fromwithin it. For instance, the so-called “live coding” paradigm—an

improvisation practice where the instrumental performance (to use a contextu-

ally uncanny, albeit not erroneous expression) is based on thewriting/editing of

code in real-time to control sound-generating processes2. Live coding practices

that are now being encountered in various other environments, have emerged

within SuperCollider (they are, somehow, inherent to its nature). Another “eso-

teric” and SC-specific project is SC-Tweet: musicians are supposed to compose

using code of a maximum size of 140 characters (the size of a “legal” tweet).

It has to be noted that such microprograms often result in surprising complex

1 In reality, SC is highly customizable with respect to intrinsic language features.
2 The reference site is

http://toplap.org

.

http://toplap.org

Introduction to SuperCollider 3

sounds/textures3. Therefore, there are many good reasons to learn how to use

SuperCollider.

1.2 SC overview

In a nutshell, SuperCollider is a software environment for the synthesis and

control of audio in real time. However, “Software environment” is a rather

vague term. The official definition (the one that used to appear on the official

website’s homepage) is more precise/comprehensive:

“SuperCollider is an environment and programming language for

real time audio synthesis and algorithmic composition. It provides an

interpreted object-oriented languagewhich functions as a network client

to a state of the art, real-time sound synthesis server.”

In detail:

1. an environment: SC is an application comprised of individual and disparate

components. Hence the use of the term “environment”.

2. and: SC is also something else, something completely different.

3. a programming language: SC is also a programming language. As to be fur-

ther discussed, it belongs to the broader family of “object-oriented” lan-

guages. In order for SC code to be operational, it has to be interpreted by

a special software module called an “interpreter”. An interpreter is a pro-

gram that “understands” some programming language and that commands

the computer to act accordingly. SC is also a language interpreter for the SC

programming language.

3 The first occurrence of SC-Tweet is for the sc140 album published in 2009 by the

The Wire music magazineThe Wire

http://www.thewire.co.uk/audio/tracks/supercollider-140.1?SELECT\%20*\%20\%20FROM

\%20request_redirect

.

http://www.thewire.co.uk/audio/tracks/supercollider-140.1?SELECT%20*%20%20FROM%20request_redirect
http://www.thewire.co.uk/audio/tracks/supercollider-140.1?SELECT%20*%20%20FROM%20request_redirect

4 Getting started with SuperCollider

4. for real-time audio synthesis: SC is optimized for the synthesis of real-time

audio signals. This makes it ideal for use in live performance, as well as,

in sound installation/event contexts. It is still possible to use SC in order

to generate audio in non real-time, but such a use is less immediate and, in

practice, it is encountered less often.

5. and algorithmic composition: one of the strengths of SC is to combine two, at

the same time both complimentary and antagonistic, approaches to audio

synthesis. On one hand, it makes it possible to carry out low-level signal

processing operations. On the other hand, it does enable the composers to

express themselves at amuch higher level; that is, not in terms of audio sam-

ples, but rather in terms of higher level abstractions that are more relevant

to the composition of music (e.g.: scales, rhythmical patterns, etc). In that

sense, SC is ideal for purely algorithmic or formal approaches to composi-

tion. In SC, that kind of operations can be performed interactively and in

real-time.

6. [the] language […] functions as a network client to a […] server: SC interpreter

(the application that interprets the SC language) is also a client that commu-

nicates through a network to a server—a service provider.

7. a state of the art: SC currently represents the state of the art in audio program-

ming: there is no other software package available that is equally powerful,

efficient, or flexible (and as of 3.6, also portable).

8. sound synthesis server: SC is also a provider of services, in particular of au-

dio synthesis services. The phrase may seem mysterious: SuperCollider

may generate real-time audio on demand. Those software processes or hu-

man individuals that request real-time audio are commonly referred to as

“clients”.

In summary, SC may (confusingly enough) refer to six different things, as

outlined in Figure 1.1:

1. an audio server (a provider of real-time audio on-demand)

2. a programming language

3. an interpreter (a program that interprets) for the above language

4. a client for the audio server

Introduction to SuperCollider 5

5. an application bundle comprised of all the above (1-4) components

6. and that also includes a special IntegratedDevelopment Environment (IDE),

that is, an editor where code may be written/edited and which forwards

code to the interpreter for evaluation.

Accordingly, SC application consists of three parts: the audio server (re-

ferred to as scsynth); the language interpreter (referred to as sclang) and which

also acts as a client to scsynth; and the IDE. Installing SC is to install this en-

tire scheme—these three applications are bundled together and communicate

internally with each other when needed4. The IDE is built-in this application

bundle. The server and the client (language interpreter) are two completely au-

tonomous programs—this will be elaborated upon later: for now, keep in mind

that these are two separate programs, and that when you install SC you get two

programs at the price of 1 (the actual cost is calculated as follows: 2 × 0 = 0: as
a madrigal by Cipriano de Rore says, “my benign fortune”).

Client

Server

Language

Interpreter

sclang scsynth

Application

1

2

3

4

5
IDE 6

Figure 1.1 Structure of SC.

4 Without getting into much detail, and as indicated by the straight vs dashed

lines in the figure, communication between IDE and sclang and between sclang

and scsynth occurs differently.

6 Getting started with SuperCollider

This may seem complicated and, indeed it is.

1.3 Installation and use

The official SC site is:

http://supercollider.github.io/

Managed by the community, it basically includes everything needed to di-

rectly use SC. It additionally features a series of learning resources (section

“learning”), and several code examples (see in particular the “video” section

on the site). Regarding the community, although there is significant presence

in various forums and social networks, the historical mailing list is worth men-

tioning, since this is where we may easily encounter and/or come in contact

with most of the best SC veterans:

 http://www.beast.bham.ac.uk/research/sc_mailing_lists.shtml

This is a high-traffic mailing list and immediate answers are to be, typically,

expected. The list’s archives are also a valuable resource; more often than not a

answer to some question is already available therein.

Finally, the original site by James McCartney, which has an eminent histor-

ical value, is still online:

http://www.audiosynth.com/

SC can be downloaded from Github, in particular from the following ad-

dress:

http://supercollider.github.io/download.html

Installation is easy when using the precompiled binary files that are avail-

able for OSX and/or Windows. For those platforms installation is similar to

everyday programs and downloads and, therefore, there is no need to further

examine it. Installation on Linux also follows the norms of the penguin, with

slight variations according to the idioms of the chosen distribution.

http://supercollider.github.io/
 http://www.beast.bham.ac.uk/research/sc_mailing_lists.shtml
http://www.audiosynth.com/
http://supercollider.github.io/download.html

Introduction to SuperCollider 7

In addition to the SuperCollider bundle, there are several third-party ex-

tensions available in the form of “Quarks”, that may be installed from within

the program itself.

When first executed, SC looks a lot like what we see in Figure 1.2. Note that

this is not the usual arrangement of graphic containers, even if the elements

are the same. This already demonstrates that the IDE can be personalized as

needed. On the right side there is a (empty) text fieldwhere codemay be edited.

On the left side, two componentsmay be identified: the postwindow,where the

interpreter posts the results of the various evaluated blocks of code (in this case,

information related to the initialization of SC itself), and the help browser (here

hidden by the post window), where one may navigate the available Help files.

The right side of the bottom bar, displays information about sclang (Interpreter,

active, in green) and scsynth (Server, inactive, white).

Figure 1.2 SC IDE.

IDE’s menu is not particularly complex. Some quick instructions/directions,

most of which will be also encountered later on, follow.

• File is dedicated to opening/saving SC documents. These are files in ASCII

text format and can be of three possible types, depending on the extension:

− scd is dedicated to SuperCollider Documents;

− sc is dedicated to files with SC class definitions (to be discussed later);

8 Getting started with SuperCollider

− schelp is reserved for the Help files, which should be written in a special

format for the Help browser to read them properly;

• Open startup file command opens for editing a configuration file that is in-

voked every time SC is launched.

• Session: enables the management in unitary groups files belonging to the

same project.

• Edit: contains the usual set of entries related to the editing of text. The last

section of themenu includes code-specific commands. Beyond editing com-

mands, particularly useful is "Select Region” command.

• View: allows you to manage/reorganize the visual elements of the IDE (e.g.

the availability of the post window, of the help browser and/or of the code

window. Figure 1.2 shows a custom-configured session).

• Language: includes a series of SC-specific commands, divided in five blocks:

− the first comprises Interpreter-specific commands. E.g., sclang (which,

as already discussed, is a stand-alone program) can be closed or restarted

from this menu;

− the second concerns themanagement of the audio server (as already dis-

cussed, scsynth is also a standalone program);

− the third features a series of commands that activate some graphical in-

terfaces for displaying information on the audio server;

− the fourth is devoted to the evaluation of the code, that is, to indicate

what code (or portion) should be taken into account for interpretation

(or for the actions that follow) ;

− finally, the fifth includes a set of commands to interactively explore sub-

ject code SC is largely in SC, thus allowing introspection—that is to allow

SC to explore its own structure.

• Help: allows you to interactively openHelp files associatedwith the relevant

selected elements of SC.

In summary, how to use SC:writing/editing code, selecting a line or a block

of code, asking the interpreter to evaluate this code, navigating the documenta-

tion files, and interactively repeating all the previous actions during a working

section. Yet, alternative and more sophisticated, working paradigms are also

Introduction to SuperCollider 9

possible; e.g. relying on programs that themselves trigger sound processes of

indeterminate duration, or to design standalone graphical user interfaces to be

used interactively in performance contexts. In reality, there are several possi-

ble and disparate styles of work. The only action that cannot be omitted is to

evaluate at least one block of code (which represents a single SC program) once.

1.4 Objectives, references, typographical conventions

The objective of this book is, then, twofold:

1. to provide a brief overview/introduction to SuperCollider, because as of

present there are no other available resources (as far as the author knows).

2. to introduce readers to some key aspects of what is commonly, albeit inac-

curately and often inappropriately, referred to as computer music.

The departing hypothesis is that both objectives are mutually relevant, and

that, eventually, SuperCollider is the perfect tool to achieve the second. Since

SuperCollider presupposes programming skills, this introduction is also an in-

formal introduction to computer programming, in particular to audio/music

programming via the use of the SuperCollider language.

The material presented herein is, with a few notable exceptions, “origi-

nal”. In particular, those parts relating to sound synthesis are based upon ex-

cerpts from the Italian handbook Audio e multimedia5, an advanced but not very

technical introduction to the subject. Also being an informal introduction to

sound synthesis, the present, up to a certain extent, draws upon material/con-

veniences found in several other resources, some of which are more complex

and more complete6. As far as the SuperCollider-specific parts are concerned,

this manual is neither a translation nor an extension to any other existing text.

More, it should not be understood as a substitute or alternative for the reference

5 V. Lombardo, and A. Valle, Audio e multimedia, Milano, Apogeo 2014 (4ed.),

hence on AeM
6 This is not the place for a bibliography on computer music, in this regard please

note the references in AeM, chap. 5.

10 Getting started with SuperCollider

text, i.e. The SuperCollider Book7. The latter, modelled analogously to Super-

Collider’s predecessor language’s main manual (The Csound Book), comprises

several chapters including tutorials, in-depth analyses and descriptions of spe-

cific applications/projects. Yet, it is not to be thought of as a unitary text to be

read sequentially, which is, instead, the purpose of this book. Finally, it should

be stated explicitly that the material presented herein boldly draws upon a se-

ries of resources, most importantly upon the SC help files, upon tutorials by

James McCartney, Mark Polishook, Scott Wilson8 and by David Cottle9, and

upon material derived from the invaluable SuperCollider mailing list10. The

reading of the aforementioned resources are not to be thought of as superflu-

ous, since the present book has a preparatory and complimentary role in respect

to them.

Ordering the available materials in the case of SC is always very difficult,

precisely because to some extent all (planning, architecture, audio) have to be

introduced together. Since the first (Italian) edition (2008) of this book it oc-

curred to me several times to change the chapter sequence so that sound syn-

thesis comes first (this is typically the main reason someone is interested in SC

in the first place). However, frommy teaching experience, it is very risky to de-

liberately leave certain programmatic aspects vague until later. Instead, I herein

follow a more concise approach, discussing audio synthesis only after having

examined the SC language in detail.

I have tried to make the text as readable as possible, also in purely visual

terms, by clearly marking the various blocks of text in different ways. Thus, the

following typographic conventions are followed in the book:

1. text: character in plain black, like written here;

7 S. Wilson, D. Cottle, N. Collins, The SuperCollider Book, Cambridge, MIT Press,

2011. Another recent addition is M. Koutsomichalis, Mapping and Visualisation

in SuperCollider, which is a step by step discussion of very sophisticated subjects

regarding SuperCollider in general, as well as its multimedia applications in

particular.
8 These tutorials are included in the standard SC distribution.
9 Computer Music with examples in SuperCollider 3,

http://www.mat.ucsb.edu/275/CottleSC3.pdf

10 It should be also noted that the section “docs” on Github also contain several

significant learning resources.

http://www.mat.ucsb.edu/275/CottleSC3.pdf

Introduction to SuperCollider 11

2. code: written with monospaced characters, following syntax-colorization11,

and enumerating lines. In the pdf version of this book, each example is fol-

lowed by an interactive marker which will directly open the corresponding

source file with the SC IDE when clicked. Readers interested in this feature

are advised to use Adobe Acrobat Reader (which is a free and multi-plat-

form).

1 // example

2 "something".postln ;

3. post window: written in black, inside an orange text box and enumerating

lines12.

1 an example

11 Color remarks apply to pdf version, in printed version gray scale is in use.
12 In some rare cases, the same format is used for non-SC related text. Such cases

are to be distinguished by their context—note that the interactive marker is in-

cluded in those cases, too.

// example
"something".postln ;

code/scGrado0/adEsempio.scd
code/scGrado0/adEsempio.scd

an example

code/scGrado0/post/inQuestoModoPost.scd
code/scGrado0/post/inQuestoModoPost.scd

12 Getting started with SuperCollider

2 Programming in SC

2.1 Programming languages

A computer is a device capable of manipulating symbolic entities representable

in binary form. In other words, the information in a computer is represented

by sequences of quantities that may have only two possible values, 0/1, on/off,

and so on. The theoretical foundation of computer science is typically attributed

to Alan Turing, who first proposed a formalization of an abstract machine de-

signed as a device to read from andwrite into amemory. With a few notable ex-

ceptions (that have beenmuchdiscussed but not really empirically tried out yet,

at least not in a large scale), all contemporary computers that are broadly in use

implement Turing’s abstract machine by means of a technological framework

that is called, by its designer, Von Neumann architecture. Once the computer is

built, the problem lies in its control, that is, in defining the reading/writing op-

erations that this machine should perform. Such operations can be performed

in close contact with the machine, i.e. by directly defining the ways in which

it should manage the manipulation of the memory cells. Let us consider the

case of the binary representation, which is the way that all the information is

described in a computer. The description of an alphabetic character –which can

be written in a text editor such as that of the SC IDE– requires 7 bits (also called

ASCII encoding). In other words, each character is associated with a sequence

of seven 0/1. For example, in ASCII the 7-bit binary code 1100001 represents

the character a. It is quite obvious that describing explicitly the information

at this level (bit by bit), requires such an effort, that the enthusiasm for using a

computer quickly vanishes. Instead, one of the fascinating aspects of the theory

14 Programming in SC

of programming lies in the fact that certain representations can be described at

a higher level in a more “meaningful”, “intuitive” form. You will notice that

for example a is significantly more compact and intuitive than 1100001. Simi-

larly, the character sequence SuperCollider is consequently represented by this

binary sequence:

0101001101110101011100000110010101110010010000110110

1111011011000110110001101001011001000110010101110010

The alphabetical sequence SuperCollider is therefore more “abstract” and

“higher level” than the binary one. If we assume that the latter represents the

lowest level – that is, the only one that can be actually used to “talk” to the

machine – then if we want to control the machine through the alphabetical se-

quence it becomes necessary to translate it into a binary sequence. How do

we perform this job? It is the job of a specific “translator” program. For ex-

ample, the binary representation above is obtainable in SuperCollider through

the following program, which is therefore a translator for the (quite minimal)

SuperCollider program into the binary program:

1 "SuperCollider".ascii.collect{|i| i.asBinaryDigits}

2 .flat.asString.replace(", ", "")

There are two consequences stemming from the previous short discussion:

The first is that when there is a programming language, there is always

the need for a translator program, which is typically called the “compiler” or

“interpreter”.

A compiler outputs an executable “program” that can be run. For example,

the SuperCollider application, as virtually all the programs that reside on a com-

puter, results from the compilation of a code written in C++. In other words,

the C++ code is compiled by the compiler, and the latter outputs the executable

(i.e. the SC application to be launched by the user). Developers (not users!) of

SuperCollider write C++ code that is used to build the overall program, which

includes the core functionality for the audio, the interface with the operating

system, the use of already available libraries to manage GUI elements, and so

on. These codes are then compiled (they are called “sources”1, by means of a

1 Source code also includes SC code, which is accessiblewhile using SC (see later).

"SuperCollider".ascii.collect{|i| i.asBinaryDigits}
.flat.asString.replace(", ", "")

code/oggetti/traduttoreInBinario.scd
code/oggetti/traduttoreInBinario.scd

Introduction to SuperCollider 15

compiler that is specific for each of the supported platforms and architectures

(e.g. respectively OSX, Linux, Windows, and Intel, PowerPC, and so on). The

process ends by outputting the executable (the one shown in Figure 1.1). As SC

is an open source project, this source code is available to everyone, and every-

one can eventually compile it on their own computer (provided that there is a

compiler installed on their machine).

An interpreter does not generate an intermediate representationwhichwill

be executed later, rather it translates and executes specified instructions directly.

Because the SuperCollider language is interpreted, the SC code from the previ-

ous example can be evaluated in the IDE (which passes it to the interpreter)

in order to be immediately executed. For the code to run in SuperCollider it

must be selected, then the command "Evaluate Selection or Line" from the Lan-

guagemenumust be launched (tomake things easier the user should familiarize

themselves with the key combinations for shortcuts). As a consequence of the

interpretation, the binary sequence above will be printed in the post window.

Therefore, the SuperCollider language is an interpreted language, and the

user is thus able to interact with the interpreter. The interpretation takes place

immediately (the code is executed as quickly as possible), and the interpreter re-

mains available for the user. So, programming in SC is an interactive process, in

which the user interacts properly with a programming environment. If the code

is selected again (in case of evaluation of individual lines, placing the cursor in

the relevant line is enough), and then re-evaluated, it will be executed again,

and the post window will keep track of the new interaction. Let us discuss a

possible source of confusion. On the one hand, the selected code is executed in

sequence (the interpreter reads the selection “line by line”, more correctly, as

we will see, “expression by expression”), on the other hand the text document

on which the user is working interactively is not exactly a page that has nec-

essarily to be read from top to bottom. Rather, it is better to consider the text

field as a blackboard on which the user is free to write wherever they wish, at

the top, or at the bottom: the order of code execution is dictated by the order of

evaluation. In this sense, what is left written in the text document is a memory

of the user interaction through writing.

Back to the issue of the relationship between programming languages, a

second aspect can be underlined in relation to binary vs alphabetical represen-

tation. One may argue that the latter is more abstract than the other, but this

abstractive process does not necessarily ends here. In other words, you might

think of another language in which the whole string "SuperCollider" is repre-

sented by a single character, such as @. This language would be at a higher level

16 Programming in SC

of abstraction, because its compilation/interpretationwould output a represen-

tation (SuperCollider), which in turn should be interpreted/compiled. With-

out going deeper, the concept is that there may be different levels of abstraction

with respect to the physical machine. Such a stratification is useful exactly be-

cause it allows the end user to forget about the physical machine itself (which is

still there) by providing linguistic constructs, useful tomodel some specific con-

ceptual domains (e.g. a certain musical structure: rhythmic, harmonic, melodic

etc). The distinction between high and low level in the languages is usually re-

lated to the closeness/remoteness to/from the user. High-level languages are

closer to ”human” conceptual forms (and typically less efficient), low-level lan-

guages are nearer to technological aspects of the computer (and typically more

efficient). SuperCollider is a high-level language, but relies for audio generation

(a computationally intensive task) on a dedicated, low-level and very efficient

component, the audio server (more on this later). In this way the overall SC

application manages to hold together a high level of abstraction for the con-

trol (where the user directly works) and efficiency in computing audio. Finally,

in the history and design of programming languages, many different concep-

tual paradigms have been proposed: in particular, the most accepted classifi-

cation recognizes four different paradigms, imperative, functional, logical and

object-oriented.

To summarize, SuperCollider is a programming language that has a wide

general scope, but that has its strength and specificity in the description of no-

tions related to electronic/digital audio and music. It is a high-level language

that allows one to represent those same notions in a conceptually elegant way,

bymeans of an advanced abstraction from their implementation. It is also a lan-

guage that follows the paradigm of object-oriented programming. The latter is

the focus of the next section.

2.2 Minima objectalia

Object-Oriented Programming (OOP) assumes that the user, in order to pro-

gram the behavior of a computer, manipulates entities with properties and ca-

pabilities. The term –intentionally generic– indicating these entities is “objects”,

while their properties are typically thought of as “attributes” and their capabil-

ities as “methods” that objects can adopt to perform operations.

Introduction to SuperCollider 17

Receiver

Object
Message: runMethod: run

Method: swim

interface

Figure 2.1 Structure and communication in OOP.

In theObject-Orientedparadigm the programmerdealswith aworld that presents

itself as a set of objects that, under certain circumstances, may be manipulated.

In particular, in order to manipulate an object – that is, to ask it to do some-

thing – the object must receive a “message”, and conversely the programmer

has to send it a message. An object, in order to respond to the message, needs

to know an appropriate method. In short, the object can respond to a request

(message) only if it has an appropriate competence (amethod). In terms of com-

munication, the object is the “receiver” of that message and it can answer if it

implements a corresponding method. In summary:

• object and method concern the object definition from inside

• message and receiver concern the communicationwith the object from outside

The set of messages to which an object can respond is called its “interface”:

and it is an interface in the proper sense, because it makes the object available to

the user for interaction, and the user can also be another object. The situation is

depicted in Figure 2.1. In most Object-Oriented languages, the typical syntax to

send amessage to an object uses the dot (.) and takes the form object.message.

The relation between the receiver and the message must not be thought of as

a description, like the verb would be in the third person (“the object does a

certain thing”), rather as a couple of vocative/imperative forms: “object, do

something!”. For example, pencil.draw, or hippopotamus.swim. In short, to

speak figuratively, the programmer is a kind of sorcerer’s apprentice who tries

to control a set of heterogeneous objects2.

In order to be recognized by the language, the objects must belong to a

finite set of types: an object is of type A, the other of type B, and so on. In OOP

these types are called “classes”. An object is therefore a particular “instance”

of a certain class: the class can be thought of as the abstract type, but also as

2 Not surprisingly, the OOP paradigm is also considered as a specification of the

imperative paradigm.

18 Programming in SC

Mammalia

Theria

Eutheria

Laurasiatheria

Ungulata

Perissodactyla Artiodactyla

Suina Tylopoda Ruminantia

Suidae Tayassuidae Hippopotamidae

Hippopotamus Hexaprotodon

H. amphibius H. liberiensis

Figure 2.2 Taxonomy of the hippopotamus.

the “typeface” that produces instances. From a single typeface (the class) an

indefinite number of characters can be printed (that is, the instantiated objects).

As methods are defined in the class, all the instantiated objects of that class will

be equipped with them. A class describes also the way in which an object is

created (“construct”) from the class itself.

Classes are organizedhierarchically: each class can bederived fromanother

class, and each class can have subclasses. This principle is called “inheritance”.

For example, a coinage is a further specification of a more generic “mold”: the

Introduction to SuperCollider 19

mold is the superclass of the coinage, and the coinage is a subclass of the mold.

A seal (for sealing wax) is another mold, but of a completely different kind

from the coinage: the seal is a subclass of the mold, fromwhich it inherits some

features that it shareswith the coinage (the ability of printing), but that has some

other specific features (the seal has a handle, while the coinage is supposed to

beaten by a hammer-like device).

Inheritance can be thought of in a similar way to genetics, as features of

the parent are present in the children (like in genetic heritage): but note that

inheritance in OOP is of systematic nature, not evolutionary. The relation of

inheritance relation finds a close model in natural taxonomies. For example,

the graph in Figure 2.2 illustrates the taxonomic position of hippopotamus. The

hippopotamus belongs to the Suborder of Suina (e.g. evidently, pigs), sharing

with them some features, which differ both from Ruminantia (such as cows),

although Ruminantia and Suina are both Artiodactyla (and distinguished both

from Perissodactyla, such as horses). While classes are abstract (e.g. the species

of hippopotamus), objects (good old hippos swimming in African rivers) are

concrete.

The reason behind OOP is the application of a principle of encapsulation.

Each class (and any object that derives from it) defines clearly and strictly its

features in terms of data (attributes) and processes (methods). If it is a hip-

popotamus, then it can swim, but it cannot fly.

The reason behind inheritance is a principle of cognitive and computational

economics. It would be useless to specify nursing with milk as a property of

each single mammal species (hippo, man, hyena, etc.). Instead, it is useful to

define such a property at an upper level in the taxonomic tree so that it is auto-

matically passed on to all the lower nodes deriving from it.

2.3 Objects in SC

The SuperCollider language is an object-oriented language which adheres to

OOP in a very “pure” form. It uses, as its historical model to which it is ty-

pological very close, the Smalltalk language3. In Smalltalk, as in SC, literally

every possible entity is an object. This radicalness may be initially unsettling,

although it is a strength, as it ensures that all (really all) the entities will be

3 Actually, SC also includes aspects of other languages, primarily C and Python.

20 Programming in SC

controlled by the user according to a single principle: all entities will have at-

tributes and methods, and then it will be possible to send them all messages as

they will expose a certain interface (i.e. a certain number of available methods)

to the user.

An early example of particularly relevace is that of data structures: SC has

many classes to represent data structures, entities that act as containers for other

objects, each class being equippedwith special skills and specialized for certain

types of objects. For example, an “array”, a fundamental data structure in com-

puter science, is an ordered container of objects. Let us write Array. SC knows

that Array is a class because the first letter is capitalized (see the next chapter):

in SC everything starting with a capital letter indicates a class. If you evaluate

the code, SC returns (for now this means: it prints to the screen) the class itself.

Information about the class Array are available in the related help file, by select-

ing the text and choosing from the menu Help the Look Up Documentation for

Cursor entry. After calling the help file, the reader will immediately see that

many classifications of information are available, describing the relationship

that Array has with other classes, its parent and its children. For example, it in-

herits from ArrayedCollection, which in turn inherits from SequenceableCol-

lection, and so to on. The help file provides some guidance on the methods

available for array-like objects. Let us consider the following code:

1 z = Array.new;

The example builds a new, empty array by sending the message new to the

class Array4. So far, the assumption has been that a message is sent to a partic-

ular instance, not to class. But before you can send a message to an object, it

is necessary that an object exists. All classes in SC respond to the message new,

returning an instance. The method new is the “constructor” of the class: that is,

the method that instantiates an object from the class (just like, “typeface, print

me a character”). In addition to new, other constructor methods can be asso-

ciated to a class, each returning an instance with some specific features: they

are all classmethods because they are sent to the class, not to the object. At this

point the readermay speculate that, since in SC everything is an object, the class

4 Note that the code is colored according to the syntax: the classes as Array are

(arbitrarily) assigned the blue color.

z = Array.new;

code/oggetti/array1.scd
code/oggetti/array1.scd

Introduction to SuperCollider 21

is also in some sense, an object, as it adheres to the OOP principle. In the case

of Array, another constructor is the message newClear. It also includes a part

between brackets:

1 z = Array.newClear(12) ;

In the example, the brackets contain a list of “arguments” (one, in this case),

which further specify themessage newClear, like in “object, do something(so)!”5.

In particular newClear(12) provides an argument (12) indicating that the array

will contain a maximum of 12 slots. It is possible to explicitly indicate the name

of the argument, like in “object, do something (in the way: so)!”. Every argu-

ment has a specific name, its keyword: in the case of newClear, the keyword for

the argument is indexedSize, indicating the number of slots contained in the

new array. The following code is the same as above, but notice how, in this

case, it explicitly names the keyword for the argument:

1 z = Array.newClear(indexedSize:12) ;

Finally, z = indicates that the array will be assigned to the variable z. Note

that the letter used is lowercase: if the reader wrote Z, SC will interpret Z as a

(non-existent) class and raise an error. Now z is an empty arraywith a size of 12

slots and is an instance of the class Array. It is possible to ask z to communicate

the class to which it belongs by invoking a method class:

1 z.class

The method class returns the class of z: the evaluation of the code prints

Array on the post window. Translating into plain English, the sentence would

5 Or, back to our hippopotamus, hippo.swim(fast).

z = Array.newClear(12) ;

code/oggetti/array2.scd
code/oggetti/array2.scd

z = Array.newClear(indexedSize:12) ;	

code/oggetti/array3.scd
code/oggetti/array3.scd

z.class	

code/oggetti/array4.scd
code/oggetti/array4.scd

22 Programming in SC

be: “z, declare your class”. When using arrays, the user may often be dissatis-

fied with the methods listed on the help file file: many intuitively useful meth-

ods may seem to be missing. It is indeed one of the drawbacks: many times the

desired method is present, but it is defined in the superclass and inherited by

its subclasses. From the Array help file it is possible to navigate the structure of

the help files going back to ArrayedCollection, SequenceableCollection, Col-

lection: these are all superclasses (of increasingly abstract type) that define

methods that are inherited by subclasses. Ascending along the tree, we reach

its root Object. As stated in the help file:

“Object is the root class of all other classes. All objects are indirect

instances of class Object.”

In other words, all the classes in SC inherit from Object, and therefore all

objects are “indirectly” instances of Object. An example of inheritance is the

method class that in the example above has been called on z: it is defined at

the level of Object and inherited, by the relations specified by the class tree, by

Array, so that an instance of that class (z) is able to respond to it.

Apart from navigation in the structure of the help files, SC provides the

user with many methods to inspect the internal structure of the code: this fea-

ture is typically called “introspection”. Methods such as dumpClassSubtree and

dumpSubclassList print on the post window respectively a hierarchical repre-

sentation of the subclasses of the class, and a list in alphabetical order. The two

representations are equivalent. In the first, family relationships between classes

through the tree structure are easier to spot, in the second it is possible to fol-

low -for each of the subclasses of the class - the structure of the tree along the

ascending branches up to Object. If we consider the class Collection –a very

general class that has among its subclasses Array– and we send the messages

dumpClassSubtree and dumpSubclassList, namely:

1 Collection.dumpClassSubtree ;

2 Collection.dumpSubclassList ;

this is what the interpreter prints on the post window in the two cases:

Collection.dumpClassSubtree ;
Collection.dumpSubclassList ;

code/oggetti/array5.scd
code/oggetti/array5.scd

Introduction to SuperCollider 23

1 Collection

2 [

3 Array2D

4 Range

5 Interval

6 MultiLevelIdentityDictionary

7 [

8 LibraryBase

9 [Archive Library]

10]

11 Set

12 [

13 Dictionary

14 [

15 IdentityDictionary

16 [

17 Environment

18 [Event]

19]

20]

21 IdentitySet

22]

23 Bag

24 [IdentityBag]

25 Pair

26 TwoWayIdentityDictionary

27 [ObjectTable]

28 SequenceableCollection

29 [

30 Order

31 LinkedList

32 List

33 [SortedList]

34 ArrayedCollection

35 [

36 RawArray

37 [

38 DoubleArray

39 FloatArray

40 [Wavetable Signal]

42 [...]

44]

45 Collection

24 Programming in SC

1 Archive : LibraryBase : MultiLevelIdentityDictionary : Collection : Object

2 Array : ArrayedCollection : SequenceableCollection : Collection : Object

3 Array2D : Collection : Object

4 ArrayedCollection : SequenceableCollection : Collection : Object

5 Bag : Collection : Object

6 Collection : Object

7 Dictionary : Set : Collection : Object

8 DoubleArray : RawArray : ArrayedCollection : SequenceableCollection :

9 Collection : Object

10 Environment : IdentityDictionary : Dictionary : Set : Collection : Object

11 Event : Environment : IdentityDictionary : Dictionary : Set : Collection :

12 Object

13 FloatArray : Raw

15 [...]

17 36 classes listed.

18 Collection

With Collection.dumpClassSubtree we see the position of Array in rela-

tion to its neighbors. It is on the same level of RawArray, both are subclasses of

ArrayedCollection. The latter class belongs to the family of SequenceableCol-

lection. The method Collection.dumpSubclassList lists the classes in alpha-

betical order: it is easy to find Array, we can then follow the branches of the tree

(on the same line) up to Object.

Figure 2.3 is a visualization bymeans of a tree graph of part of the structure

of the classes Collection, obtained by automatically processing the output of

Collection.dumpSubclassList. The example is taken from the help file Inter-

nal-Snooping, which is dedicated to introspection in SC6. The last line printed

by SC is in either case the object Collection (39), which is what the methods

actually return. The reason behind this will be discussed shortly. By replacing

Collection with Object, the whole class structure of SC will be taken into ac-

count (and it’s a big structure). Figure 2.4 shows a representation of the radial

structure of all classes of SC, obtained by processing the result of Object.dump-

SubclassList7. Note that a particulary thick point is represented by Ugen, the

6 Also the help file for Class is particularly interesting in this respect.

Collection
[
 Array2D
 Range
 Interval
 MultiLevelIdentityDictionary
 [
 LibraryBase
 [Archive Library]
]
 Set
 [
 Dictionary
 [
 IdentityDictionary
 [
 Environment
 [Event]
]
]
 IdentitySet
]
 Bag
 [IdentityBag]
 Pair
 TwoWayIdentityDictionary
 [ObjectTable]
 SequenceableCollection
 [
 Order
 LinkedList
 List
 [SortedList]
 ArrayedCollection
 [
 RawArray
 [
 DoubleArray
 FloatArray
 [Wavetable Signal]

[...]

]
Collection			

code/oggetti/post/array5Post1.scd
code/oggetti/post/array5Post1.scd

Archive : LibraryBase : MultiLevelIdentityDictionary : Collection : Object
Array : ArrayedCollection : SequenceableCollection : Collection : Object
Array2D : Collection : Object
ArrayedCollection : SequenceableCollection : Collection : Object
Bag : Collection : Object
Collection : Object
Dictionary : Set : Collection : Object
DoubleArray : RawArray : ArrayedCollection : SequenceableCollection :
 Collection : Object
Environment : IdentityDictionary : Dictionary : Set : Collection : Object
Event : Environment : IdentityDictionary : Dictionary : Set : Collection :
 Object
FloatArray : Raw

[...]

36 classes listed.
Collection

code/oggetti/post/array5Post2.scd
code/oggetti/post/array5Post2.scd

Introduction to SuperCollider 25

Array2D

Collection

Range

Interval

Archive

LibraryBase

Library

MultiLevelIdentityDictionary

Event

Environment

IdentityDictionary

Dictionary

Set

IdentitySet

IdentityBag

Bag

Pair

ObjectTable

TwoWayIdentityDictionary

Object

Figure 2.3 Tree structure for some of Collection subclasses, from Object.

7 Properly, the figure depicts the class structure installed on the machine of the

author, which includes some additional classes.

26 Programming in SC

Env

Object

SCWindowDate

BinaryOpFailureErrorDoesNotUnderstandError

MethodError
ImmutableError

MustBeBooleanError
NotYetImplementedError
OutOfContextReturnError
PrimitiveFailedError

ShouldNotImplementError
SubclassResponsibilityError

Error
Exception

FormantTablePatternConductorJClassBrowserOSCResponderQueue

AnnotatedDebugNodeWatcher
DebugNodeWatcher

BasicNodeWatcher

NodeWatcher

AbstractNodeWatcher
UnicodeResponderScoreSwingDialog

CXSynthPlayerControl

CXPlayerControl
AbstractPlayControl

PatternControl

StreamControl

SynthDefControl

SynthControlProxyNodeMapSetting

NodeMapSettingScaleHarmonics

Help

PathNameBroadcastServerFlowVarConditionRectColorUniqueIDJPen

Public

EnvirDispatchDotViewerSpeechClassBrowserResponderArray

BendResponder

TouchResponder
CCResponder

MIDIResponder

NoteOffResponder

NoteOnResponder

AudioInMultiTapPMOscBusSynthDefsSystemSynthDefs

AutoCompClassSearch

AutoCompClassBrowser

AutoCompMethodBrowserLinkedListNodeFlowLayout

MixedBundle

OSCBundleFunctionPlayerPingPong

OSCSched

BeatSched

BundleNetAddr

NetAddrJSoundFileViewProgressWindow

JSC2DTabletSlider

JSC2DSlider

JSCSliderBase

JSCButton

JSCControlView

JSCCompositeView

JSCContainerView

JSCDragBoth

JSCDragView

JSCDragSinkJSCDragSource

JSCStaticTextBase

JSCFreqScope

JSCScope

JSCHLayoutView

JSCLayoutView

JSCKnob

JSCSlider

JSCListView

JSCMultiSliderViewJSCView

JSCNumberBox

JSCTextEditBase

JSCPlugContainerView

JSCPlugView

JSCPopUpMenu

JSCRangeSlider

JSCSoundFileView

JSCStaticText

JSCTextField

JSCTextView

JSCTopView

JSCUserView

JSCVLayoutView

SC2compat

KDRMaskTester

SimpleKDRUnitKeyCodeResponderStackKeyCodeResponder

InstrSynthDef

SynthDef

ProxySynthDef

JStethoscopePriorityQueue

JMouseButton

JMouseBase

JMouseXJMouseY

TChooseControlNamePositionCrucialControlPrototypesPen

ResponderClientFunc

ClientFunc

LocalClient

ClientJEZNumberJEZSliderMLIDbrowserCocoaCocoaDialogOSCresponderNode

OSCpathDispatcher

OSCMultiResponder

OSCresponder

OSCpathResponder

TempoSlotInspector

ClassInspector

ObjectInspector
FrameInspector

Inspector

FunctionDefInspectorMethodInspectorStringInspector

StethoscopeMixPeepModuleJFreqScopeSplayZSplay

CosineWarp

LinearWarp
CurveWarp

Warp

DbFaderWarpExponentialWarpFaderWarp

SineWarp

ArraySpec

HasItemSpec
BufferProxySpec

ScalarSpec

EnvSpec
MultiTrackAudioSpec

AudioSpec

Spec

ObjectSpec

PlayerSpec

SampleSpec

StaticIntegerSpec

StaticSpec

NoLagControlSpec

ControlSpec

StreamSpec

TempoSpec

TrigSpec

ProxyNodeMap

NodeMapBufferJSCWindowJFontMidi2FreqUGenModalFreqUGenNodeControlUnix

ProxySpace

LazyEnvir

EnvironmentRedirectTempoBus

CSVFileReader

FileReader

TabFileReaderArrayBuffer

BufferProxy

Sample

AbstractSample

SynthDescLibSynthDescIODescSoundFilePhrase

PrettyEat

PrettyState

PrettyEcho

Post

AudioPatchOut

ControlPatchOut

PatchOut

UpdatingScalarPatchOut

ScalarPatchOut

ScalarPatchIn

ControlPatchIn

AudioPatchIn

PatchInMonitorXInFeedbackXInInBusHIDDeviceServiceHIDDeviceElementHIDDevice

RootNode

Group

Node

Synth

SelectButtonSetStartUpCmdPeriod

EnvirDocument

DocumentGetStringDialogGetFileDialogNotificationRegistrationNotificationCenterUpdaterContiguousBlockAllocatorContiguousBlockRingNumberAllocatorStackNumberAllocatorLRUNumberAllocatorPowerOfTwoAllocatorPowerOfTwoBlockNodeIDAllocatorGUI

SharedBus

BusJKnobScheduler

AppClock

Clock

SystemClock

TempoBusClock

TempoClock

SoundFileFormats

SaveConsole

AbstractConsole

SynthConsole

CXBundle

BooleanEditor

NumberEditorEnvEditor

Editor

IntegerEditorIrNumberEditor

PopUpEditor

KrNumberEditor

PageLayoutModalDialogSheetMultiPageLayout

Any

EveryConstraint

AbstractConstraint

CountLimit

SeenBeforeIsEvenIsNil

IsNotIn

IsInIsOddNotNotNilXor

JavaObjectUIImpulsarEnveloper2MonoXFaderNXFader4XFaderNumChannelsJSlotInspector

JClassInspector

JObjectInspectorJFrameInspector

JInspector

JFunctionDefInspectorJMethodInspectorJStringInspector

OSCServiceDoDefSwingOptionsTestCaseInspManagerInspGeoGrapherGeoGraphSynthDebugFrameMethodQuoteMessage

BeatClockPlayerGui

AbstractPlayerGui

BooleanEditorGui

EditorGui

CXMenu

SCViewHolder

ClassGui

CXObjectInspector

ObjectGui

ClassNameLabel

ActionButton

DualSeriesEfxGui

XFaderPlayerGui

EnvEditorGui

InspectorLink

InstrSpawnerGui

PatchGui
InterfaceGui

KrNumberEditorGui

NumberEditorGui

MethodGui
MethodLabel

Midi2FreqGui

KrPlayerGui

ModalFreqGui

ModelImplementsGuiBodyPlayButton

PlayPathButton

PlayerAmpGui

HasSubjectGui

PlayerBinopGui

PlayerEffectGui

PlayerEfxFuncGuiPlayerMixerGuiPlayerPoolGuiPlayerUnopGui

PopUpEditorGui

SCViewAdapter

SFPGui

AbstractSFPGui

SampleGui

SelectorLabel

ServerErrorGuiServerGui

SimpleTriggerGui

StartRow

StreamKrDurGui

TempoGui

Tile

SCButtonAdapter

ToggleButton

XPlayPathButton

EZNumberEZSliderFreqScopeSoundFileViewProgressWindowHiliteGradientGradient

ArgNameLabel

CXAbstractLabel

CXLabel

FlowView

SCLayoutView

SC2DTabletSlider

SC2DSlider

SCSliderBase

SCButton

SCControlView

SCDragBoth

SCDragSink

SCDragView

SCDragSource

SCStaticTextBase

SCEnvelopeEdit

SCEnvelopeView

SCMultiSliderView

SCFreqScope

SCScope

SCHLayoutView

SCKnob

SCSlider

SCListView

SCMovieView

SCView

SCPopUpMenu

SCRangeSlider

SCSoundFileView

SCTabletView

SCTextField

SCNumberBox

SCTextView

SCTopView

SCCompositeView

SCContainerView
SCUserView

SCVLayoutView

VariableNameLabel

SCStaticText

UGenInstrInstrAt

InterfaceDef

Instr

Lines

PointArray

PolygonZigZag

Point
ServerOptionsEnvGateGraphBuilderFontMIDIOutMIDIInMIDIEventMIDIClientMIDIEndPointTestDependantSimpleController

Server

Model

SwingOSC

RawPointer

Association

Magnitude

Char

Complex

Number

Float

SimpleNumber

Integer

Polar

False

Boolean

True

NilSymbolFinalizer

A2K

UGen

APF

TwoPole

AbstractPlayerEffect

HasSubject

AllpassC

CombN

AllpassLAllpassN

AmpCompA

AmpCompAmplitude

AudioInPlayer

AbstractPlayer

BPZ2

LPZ2

BRF

BPF

Filter

BRZ2

Balance2

Panner

Ball

BeatClockPlayer
KrPlayer

BiPanB2

BinaryOpFunction

AbstractFunction

BinaryOpPlug

AbstractOpPlug

BinaryOpStream

Stream

BinaryOpUGen

BasicOpUGen

BinaryOpXStream

Blip

BrownNoise

WhiteNoise

BufAllpassC

BufCombN

BufAllpassLBufAllpassN

BufChannels

BufInfoUGenBase

BufCombCBufCombLBufDelayC

BufDelayN

BufDelayL
BufDurBufFramesBufRateScale

BufRd

MultiOutUGen

BufSampleRateBufSamples

BufWr

CCPlayer
MIDIPlayer

COsc

CleanupStream

Clip

InRange

ClipNoise

CoinGate

CombCCombL

CompanderCompanderD

ControlRate

InfoUGenBase
ConvolutionConvolution2Crackle

CuspL

CuspN

ChaosGen

DC

DecayDecay2

DecodeB2

DegreeToKey

Delay2

Delay1

DelayC

DelayN

DelayL

Demand

DemandEnvGen

DetectSilence

Dgeom

Dibrown

Dbrown

DiskIn

DiskOut

Diwhite

Dwhite
Done

Drand

ListDUGen

DseqDser

DseriesDswitch1DustDust2

Dxrand

DynKlank

EmbedOnce

EnvGen

EnvelopedPlayer

AbstractSinglePlayerEffect

ExpRand

FBSineC

FBSineN

FBSineL

FFT

FOS

FSinOsc

Fdef FuncProxy

Fold

Formant

Formlet

FreeFreeSelfFreeSelfWhenDone

Ref

FuncStream

FuncStreamAsRoutine

Routine

Function
GBinaryOp

GenFilter

GBinaryOpX

GBind

Gen

GBindF

GCat

GClumpGCollect

GCycGFibGFuncGGeomGInfGIter

GKeep
GKeepUntilGKeepWhile

GLace

GRepeatGResetGSelect

GSeries

GStutterGUnaryOp

GZip

Gate

Latch

GbmanL

GbmanN

GenStream

Gendy1Gendy2Gendy3

GrayNoise

HPF

LPF

HPZ1

LPZ1

HPZ2
Hasher

HenonC

HenonN

HenonL

IFFTIRand

ImageWarp

Impulse

In

AbstractIn

InFeedback

InRect

InTrig

Integrator

Interface

AbstractPlayerProxy

JScopeOutK2AKeyStateKlangKlank

LFClipNoise

LFNoise0

LFCub

LFSaw

LFDClipNoiseLFDNoise0LFDNoise1LFDNoise3LFNoise1LFNoise2LFPar

LFPulse

LFTri

Lag2

Lag

Lag3

LagControl

Control

LagIn

LastValueLatoocarfian

LatoocarfianC

LatoocarfianN

LatoocarfianL

LeakDC

LeastChange

MostChange
LimitedWriteStream

CollStream

Limiter

Normalizer

LinCongC

LinCongN

LinCongL

LinExpLinLin

LinPan2

Pan2

LinRand

LinXFade2

XFade

LineLinen

LocalIn

LocalOut

AbstractOut

Logistic

LorenzL

MIDIFreqPlayer
MIDIHoldsNotes

MIDIGatePlayer

SynthlessPlayer

MantissaMask

MedianMidEQ

Midi2Freq

ModalFreq
MonoAudioIn

MouseButton

MouseY

MouseXMulAdd

MultiTrackPlayer

MultiplePlayers

NAryOpFunction

NAryOpStream

NRand

Ndef
NodeProxy

NoahNoise

NumAudioBusesNumBuffersNumControlBusesNumInputBusesNumOutputBusesNumRunningSynths

ObjectNotFound
Silence

OffsetOut

Out

OneShotStream

OneZero

OnePole

OscOscNOutputProxyPSinGrain

PV_Add

PV_MagMul
PV_BinScramblePV_BinWipePV_BrickWallPV_ConformalMap

PV_CopyPhase

PV_DiffuserPV_HainsworthFootePV_JensenAndersen

PV_LocalMax

PV_MagAbove

PV_MagBelowPV_MagClip

PV_MagFreeze

PV_MagNoise

PV_MagSquared

PV_MagShift

PV_BinShiftPV_MagSmear

PV_MaxPV_MinPV_Mul

PV_PhaseShift

PV_PhaseShift270PV_PhaseShift90

PV_RandCombPV_RandWipePV_RectCombPV_RectComb2

Padd

Pset

Paddp

Psetp
Paddpre

Psetpre

Pan4
PanAz
PanBPanB2

PausePauseSelfPauseSelfWhenDone

Pavaroh

FilterPattern

Pbind

Pattern

PbindProxy

Pbindef

Pdef

Pbindf

PbinopPbrown

Pbus

Pchain

Pclump

Pcollect

FuncFilterPattern

Pconst

EventPatternProxy

TaskProxy
Pdefn

PatternProxy

PdegreeToKey

Pdfsm

ListPattern

Pdict

Pdrop

PdurStutter

Pstutter

PeakFollower

PenvirPevent

PfadeOut

PfadeInPfinPfindurPflatten
Pflow

Pfset

Pfsm

PfuncPfuncn

Pfx

Pgeom

Pgroup

Pgtpar

Pgpar

Ppar

Phasor

PhidPindex

PinkNoise

Pipe

UnixFILE

Pitch

PitchShift

Place

Pseq

Plag

PlayBuf

PlayerAmp

PlayerBinop
PlayerEffectSocket

PlayerSocket

PlayerInputProxy

PlayerMixer PlayerPool

PlayerUnop

PlazyEnvirN
PlazyEnvir

PlazyPmono

Pmul

Pmulp

Pmulpre

Pn

Pnaryop

Ppatlace

Ppatmod

Pplayer

Pprob

Prand

Preject

Pretty

IOStream

PrettyPrintStream

PrewriteProrate

Proutine

Prout

Pseed

Pseg

Pstep

Pselect

Pser

Pseries

PshufPslide

Pstep2addPstep3add

PstepNadd

PstepNfunc

Pstretchp

Pstretch

Pswitch1

Pswitch

Psync

Ptime

Ptpar

Ptrace

Ptuple

PulsePulseDivider

Punop

Pwalk
Pwhile

Pwhite

Pwrand

Pwrap

Pxrand

QuadC

QuadN

QuadL

RHPF

RLPF

RadiansPerSample

Ramp

RandRandIDRandSeed

RecNodeProxy

RecordBuf

RefCopy

ReplaceOut

ResonzRingz

Rotate2

Thread

RunningMax

Peak

RunningMin

PulseCount
RunningSum

SOS

SampleDurSampleRate

Saw

Schmidt

ScopeOutScoreStreamPlayer

EventStreamPlayer

PauseStream

ScurryableInstrGateSpawnerInstrGateSpawnerInstrSpawnerPatchHasPatchIns

SelectSendTrig

SetResetFF

Shaper

Index

SharedIn

SharedNodeProxy BusPlug

SharedOut

Silent

SimpleTrigger

SinOscSinOscFB

SlewSlope

Spring

StandardL

StandardN

Stepper

Stream2TrigStreamKrDur

StreamClutch

BusDriver

SubsampleOffset

SweepSyncSawTBall

TDelay

Trig1

TDuty

DutyTExpRand

TGrains

TIRandTPulseTRandTWChooseTWindexTap

TaskTdef

TempoPlayer

Thunk

TimerToggleFFTrapezoid

Trig

TrigControl

TwoZero

UnaryOpFunction

UnaryOpPlug

UnaryOpStream
UnaryOpUGen

VOscVOsc3

VSFPSFPAbstractSFP

VarSawVibrato

Wrap
WrapIndex
XFade2

XLine

XOut

XY

ZArchive

File

ZeroCrossing

Interpreter

Main

ProcessFrame

Method

FunctionDef

Archive

LibraryBase

Array

ArrayedCollection

Array2D

Collection

DoubleArray

RawArray

Event

Environment

IdentityDictionary IdentityBag

Bag
Dictionary

Set

IdentitySet

Int16Array
Int32Array
Int8Array

Interval

Library

MultiLevelIdentityDictionaryLinkedList

SequenceableCollection

ObjectTable

TwoWayIdentityDictionary

Order
PairRange

Signal

FloatArray

SortedList

List

String
SymbolArray

Wavetable

Figure 2.4 Radial graph for class structure in SC, from Object.

direct superclass of all classes that generate signals in SC. Understandably, it is

a very large class.

2.4 Methods and messages

The SC language is written for the most part precisely in SC (with the excep-

tion of a core of primitives written in C++ language for reasons of efficiency):

thus, the same code that defines the language is transparent to the SC user. Of

course, to be able to recognize the SC syntax, is very different from understand-

ing exactly what it says: but in any case by looking at the sources it is possible

to discover plenty of interesting information. It is the fact of being mostly writ-

ten in SC that provides SC with a great power of introspection. After selecting

Array, it is possible to access the definition of the class Array by selecting the

Look Up Implementations for Cursor entry in the menu Language.

Introduction to SuperCollider 27

1 Array[slot] : ArrayedCollection {

3 *with { arg ... args;

4 // return an array of the arguments given

5 // cool! the interpreter does it for me..

6 ^args

7 }

8 reverse {

9 _ArrayReverse

10 ^this.primitiveFailed

11 }

12 scramble {

13 _ArrayScramble

14 ^this.primitiveFailed

15 }

16 mirror {

17 _ArrayMirror

18 ^this.primitiveFailed

19 }

20 mirror1 {

21 _ArrayMirror1

22 ^this.primitiveFailed

23 }

24 // etc

25 sputter { arg probability=0.25, maxlen = 100;

26 var i=0;

27 var list = Array.new;

28 var size = this.size;

29 probability = 1.0 - probability;

30 while { (i < size) and: { list.size < maxlen }}{

31 list = list.add(this[i]);

32 if (probability.coin) { i = i + 1; }

33 };

34 ^list

35 }

37 // etc

38 }

Without going into details, note that the first line (1) defines the class Array

as a subclass of ArrayedCollection (Array[slot] : ArrayedCollection). By

Array[slot] : ArrayedCollection {

	*with { arg ... args;
		// return an array of the arguments given
		// cool! the interpreter does it for me..
		^args
	}
	reverse {
		_ArrayReverse
		^this.primitiveFailed
	}
	scramble {
		_ArrayScramble
		^this.primitiveFailed
	}
	mirror {
		_ArrayMirror
		^this.primitiveFailed
	}
	mirror1 {
		_ArrayMirror1
		^this.primitiveFailed
	}
// etc
	sputter { arg probability=0.25, maxlen = 100;
		var i=0;
		var list = Array.new;
		var size = this.size;
		probability = 1.0 - probability;
		while { (i < size) and: { list.size < maxlen }}{
			list = list.add(this[i]);
			if (probability.coin) { i = i + 1; }
		};
		^list
	}

// etc
}

code/oggetti/Array.scd
code/oggetti/Array.scd

28 Programming in SC

(3) onwards, there is the list of the methods implemented for the class (width,

reverse, scramble, each enclosed by a pair of curly brackets).

An easyway to retrieve a list of implementedmethods is to use the power of

introspection of SC. SC provides many ways to learn about information related

to its internal state. The methods dumpInterface, dumpFullInterface, dump-

MethodList display on post window information on the methods implemented

as the interface for a class. In particular:

• dumpInterface: posts all the methods defined for the class;

• dumpFullInterface: as before, but also includes methods inherited from the

superclasses;

The following example shows the result of evaluating Array.dumpInter-

face. The lists provided by the two other methods are much longer.

Introduction to SuperCollider 29

1 Array.dumpInterface

2 reverse ()

3 scramble ()

4 mirror ()

5 mirror1 ()

6 mirror2 ()

7 stutter (n)

8 rotate (n)

9 pyramid (patternType)

10 pyramidg (patternType)

11 sputter (probability, maxlen)

12 lace (length)

13 permute (nthPermutation)

14 allTuples (maxTuples)

15 wrapExtend (length)

16 foldExtend (length)

17 clipExtend (length)

18 slide (windowLength, stepSize)

19 containsSeqColl ()

20 flop ()

21 multiChannelExpand ()

22 envirPairs ()

23 shift (n)

24 source ()

25 asUGenInput ()

26 isValidUGenInput ()

27 numChannels ()

28 poll (interval, label)

29 envAt (time)

30 atIdentityHash (argKey)

31 atIdentityHashInPairs (argKey)

32 asSpec ()

33 fork (join, clock, quant, stackSize)

34 madd (mul, add)

35 asRawOSC ()

36 printOn (stream)

37 storeOn (stream)

38 prUnarchive (slotArray)

39 jscope (name, bufsize, zoom)

40 scope (name, bufsize, zoom)

41 Array

Array.dumpInterface
 reverse ()
 scramble ()
 mirror ()
 mirror1 ()
 mirror2 ()
 stutter (n)
 rotate (n)
 pyramid (patternType)
 pyramidg (patternType)
 sputter (probability, maxlen)
 lace (length)
 permute (nthPermutation)
 allTuples (maxTuples)
 wrapExtend (length)
 foldExtend (length)
 clipExtend (length)
 slide (windowLength, stepSize)
 containsSeqColl ()
 flop ()
 multiChannelExpand ()
 envirPairs ()
 shift (n)
 source ()
 asUGenInput ()
 isValidUGenInput ()
 numChannels ()
 poll (interval, label)
 envAt (time)
 atIdentityHash (argKey)
 atIdentityHashInPairs (argKey)
 asSpec ()
 fork (join, clock, quant, stackSize)
 madd (mul, add)
 asRawOSC ()
 printOn (stream)
 storeOn (stream)
 prUnarchive (slotArray)
 jscope (name, bufsize, zoom)
 scope (name, bufsize, zoom)
Array

code/oggetti/post/arrayDumpInterface.scd
code/oggetti/post/arrayDumpInterface.scd

30 Programming in SC

Through the same procedure that has been discussed to access the class

definition (Language →Look Up Implementations for Cursor), it is possible to

start from a method and trace the classes that implement it.

The following example, which could be a session with the interpreter, to be

read from top to bottom by evaluating each line, allows us to move on in the

discussion of methods.

1 z = [1,2,3,4] ;

2 z.reverse ;

3 z ;

4 z = z.reverse ;

5 z ;

6 z.mirror ;

7 z ;

8 z.reverse.mirror.mirror ;

The following is what appears in the post window as a result of the evalu-

ation line by line:

1 [1, 2, 3, 4]

2 [4, 3, 2, 1]

3 [1, 2, 3, 4]

4 [4, 3, 2, 1]

5 [4, 3, 2, 1]

6 [4, 3, 2, 1, 2, 3, 4]

7 [4, 3, 2, 1]

8 [1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

However, a smoother way to create an array is simply to write the same ar-

ray between square brackets (according to a widespread notation in program-

ming languages)8. For example, z = [1,2,3,4] assigns the array [1,2,3,4] to

the variable z (1). In the session with the interpreter the code z = [1,2,3,4] is

evaluated (code, 1): SC returns the array [1, 2, 3, 4] (post window, 2) and

8 This is a convenient abbreviation. SC language providesmany of these abbrevi-

ations (called “syntactic sugar”) that allow a gain of expressivity, but potentially

introduce confusion in the neophyte.

z = [1,2,3,4] ;
z.reverse ;
z ;
z = z.reverse ;
z ;
z.mirror ;
z ;
z.reverse.mirror.mirror ;

code/oggetti/arrayMethods.scd
code/oggetti/arrayMethods.scd

[1, 2, 3, 4]
[4, 3, 2, 1]
[1, 2, 3, 4]
[4, 3, 2, 1]
[4, 3, 2, 1]
[4, 3, 2, 1, 2, 3, 4]
[4, 3, 2, 1]
[1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

code/oggetti/post/methods1Post.scd
code/oggetti/post/methods1Post.scd

Introduction to SuperCollider 31

assigns it to z. The last object returned from SC is printed on the post window

as a result of the process of interpretation.

As we saw in the class definition above, one of the methods that the class

Array provides is reverse: intuitively, the method takes the array and reverses

the order of its elements. The moment that the message reverse is passed to z,

the latter becomes its receiver (3). Then, z looks for the method reverse among

those that are defined in its class, and it behaves accordingly. In the case in

question, it is not relevant how the reverse operation is carried out by SC: in

any case, by looking at the definition of the method (in class Array, page 30,

lines 8-11), it is possible to see that the method includes a mysterious line, _Ar-

rayReverse (line 9): the sign _ indicates that the reverse operation is carried out

by a primitive of SC, written in the C++ language and not in SC. On the con-

trary, in the same class the method sputter (class Array, lines 25-35) is entirely

written in SC. Themethods return entities as a result of the operations that they

carry out: these entities are objects in their own right. For example, z.reverse

returns a new array, the reverse of z. On line 2, z.reverse asks z to carry out

the operations defined by reverse: the result [4, 3, 2, 1] is not assigned to

any variable (post window, 2). As we see, if z is called (code 3), the result is [1,

2, 3, 4] (post window, 3). In order to assign to z the result of the computation

performed by reverse, the value calculated by the method must be reassigned

to z, through z = z.reverse (code, 4). When called, z (code, 5) returns its value:

this time it is the array z, now reversed (post window, 5). The method mirror

instead generates a new array from that to which the message is passed, sym-

metrical to the center (“palindrome”, so to say): z.mirror (code, 6) returns [4,

3, 2, 1, 2, 3, 4] (post window, 6), again without assigning it to z. The last

line of code (8) highlights an important aspect of SC: the so-called “message

chaining”. The result of z.reverse is passed to mirror, the output of the latter

is then passed to mirror again (post window, 8). These are the steps starting

from z = [4, 3, 2, 1] (initial value plus three messages):

[4,3,2,1] → [1,2,3,4] → [1,2,3,4,3,2,1]→[1,2,3,4,3,2,1,2,3,4,3,2,1]

Althoughmessage chaining allows one to write code concisely, it should be

used with caution as it can make the code difficult to read. The next example

shows two expressions that use chaining.

32 Programming in SC

1 [1,2,3,7,5].reverse.reverse ;

2 [1,2,3,7,5].class.superclass.subclasses[2].newClear(3) ;

The first case presents no peculiarities compared to what has been dis-

cussed, but it is included for comparison to the second, the effects of which

are very different. From [1,2,3,7,5] the first message class returns the class;

then, the superclass of the class is accessed by superclass, again returning a

class; from the superclass, through subclasses, an array containing all the sub-

classes is obtained (an array is just a container, so it can typically contains any

object, here classes). The notation anArray[2] has not yet been introduced: the

number 2 is an index (position) in the array. In essence, the method [n] allows

to access the element 𝑛 + 1 of the array. So, [Polynomial class, class RawAr-

ray, class Array][2] returns class Array. On the returned element (remem-

ber that is a class, Array) is then possible to invoke a constructor method that

generates a new, empty array (nil) with three slots [nil, nil, nil].

A schematic representation of what happens in the two cases is in Figure

2.5.

[1,2,3,7,5].reverse.reverse ;
[1,2,3,7,5].class.superclass.subclasses[2].newClear(3) ;

code/oggetti/chaining.scd
code/oggetti/chaining.scd

Introduction to SuperCollider 33

[1,2,3,7,5] [5,7,3,2,1]
reverse

[1,2,3,7,5]
reverse

[1,2,3,7,5] Array
class

ArrayedCollection
superclass

[class Polynomial, class RawArray, class Array]

subclasses

Array
[2]

[nil, nil, nil]

newClear(3)

Figure 2.5 Two examples of message chaining.

2.5 The methods of type post and dump

So, all the methods always return an object. To avoid confusion we must re-

member the behavior of methods to obtain information through the post win-

dow. Examples already seen are dumpClassSubtree and dumpSubclassList, and

dumpInterface, dumpFullInterface, dumpMethodList. Themethod that ismost

often used to obtain information, and informus ofwhat is happening, is postln,

which prints a string representation of the object onwhich it is called andwraps

to a new line. For example, let us consider the code Array.postln. Once evalu-

ated, the expression prints on the post window:

1 Array

2 Array

When the method postln is called for Array, SC executes code that then

prints the information for Array: in this case, Array being a class, it simply prints

the class name, Array (1). At the end of each evaluation process, SC always

prints in the post window information about the last object that was returned

Array
Array

code/oggetti/post/arrayPost.scd
code/oggetti/post/arrayPost.scd

34 Programming in SC

by an expression: in essence, SC calls postln on this object. In fact, the previous

expression returns again Array (2). In this case the utility of postln is virtually

nothing, but let us consider instead the following case:

1 z = [4, 3, 2, 1] ;

2 z.postln.reverse.postln.mirror.postln.mirror

3 z.postln.reverse.postln.mirror.postln.mirror.postln

The evaluation of the three expressions prints in the post window the three

following blocks:

1 [4, 3, 2, 1]

3 [4, 3, 2, 1]

4 [1, 2, 3, 4]

5 [1, 2, 3, 4, 3, 2, 1]

6 [1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

8 [4, 3, 2, 1]

9 [1, 2, 3, 4]

10 [1, 2, 3, 4, 3, 2, 1]

11 [1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

12 [1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

The array [4, 3, 2, 1] is assigned to z. The chainedmessages reverse.mir-

ror.mirror are called, but after eachmessage a postlnmessage is added (chained).

Basically, in this case postln lets the user see (in a visual form) the intermediate

result returned by each of the methods called. Note that it is useless to chain a

new postln after the last mirror (as in the code, line 3), since, as we saw, by de-

fault SC posts the result of the last computation (the results returned by mirror).

In fact, lines 11 and 12 produce identical results.

One might expect that since postln is used to print in the post window, the

method would return a string-type object, a set of characters. But fortunately, it

does not. In fact, postln:

• prints a string on the screen

• returns the object on which the method is called

z = [4, 3, 2, 1] ;
z.postln.reverse.postln.mirror.postln.mirror
z.postln.reverse.postln.mirror.postln.mirror.postln

code/oggetti/postln.scd
code/oggetti/postln.scd

[4, 3, 2, 1]

[4, 3, 2, 1]
[1, 2, 3, 4]
[1, 2, 3, 4, 3, 2, 1]
[1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

[4, 3, 2, 1]
[1, 2, 3, 4]
[1, 2, 3, 4, 3, 2, 1]
[1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]
[1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1]

code/oggetti/post/postlnPost.scd
code/oggetti/post/postlnPost.scd

Introduction to SuperCollider 35

These two things are completely different. The first is a behavior that is in-

dependent from computation, the second one concerns the computation flow,

because the returned object is available for further processing. From this point

of view (which is what matters for message chaining) postln is totally transpar-

ent with respect to the object on which it is called. This behavior is absolutely

crucial in the process of code error checking (“debugging”), because it allows

the user to chain postlnmessages to check the behavior of the methods called,

but without interfering with the computation process. If the method postln

would return a string, then in an expression, such as z.postln.reverse, the re-

versemessage would be received by a string object and not by an array object,

as happens in the next example, in which reverse is called on a string:

1 z = [4, 3, 2, 1] ;

2 z.postln.reverse.postln.mirror.postln.mirror

3 z.postln.reverse.postln.mirror.postln.mirror.postln

The result would then be:

1] 4 ,3 ,2 ,1 [

In other words, the reverse operation is applied to the characters that com-

pose the string (see later for a detailed explanation). This type of behavior is typ-

ical for all SCprinting and introspectionmethods. There aremanymethods that

will print information in the post window: for example variants of postln are

post, postc, postcln. For introspection, the reader is referred to the examples

of Collection.dumpClassSubtree, Collection.dumpSubclassList, Array.dump-

Interface. In all three cases, the last line prints in the post window the object

code/oggetti/postln.scd
code/oggetti/postln.scd

] 4 ,3 ,2 ,1 [

code/oggetti/post/reversePost.scd
code/oggetti/post/reversePost.scd

36 Programming in SC

returned by the method: note how the class is returned, as posted in the respec-

tive last lines (Collection, Collection, Array).

2.6 Numbers

The interpreter of SC can be used as a calculator. For example, consider this

interactive session:

1 2.3*2 ;

2 4/3 ;

3 4**3 ;

4 4+2*3 ;

The interpreter responds on the post window with:

1 4.6

2 1.3333333333333

3 64

4 18

Two things stand out. The first one is very (very) important, and concerns

the computation order. In the expression 4 + 2 * 3, unlike the standardmathe-

matical convention, there is no hierarchy between operators: meaning, themul-

tiplication is not evaluated before addition. In the expression, 4 + 2 is evaluated

first, followed by * 3, which is calculated on the result of the previous operation

(4 + 2 = 6 × 3 = 18). Computation order can be forced with the use of brackets,
like this: 4 + (2 * 3). The second aspect that might impress the reader is that

the syntax in use here contradicts the assumption that in SC everything is an ob-

ject with an interface, so that each operation should follow the general pattern

object.method. Here indeed SC makes an exception, at least for the basic four

operations, which can be written more intuitively in the usual functional form.

But this is just a convention of notation. That is, numbers (integers, floating

point, etc.) are objects to all effects. If the message class is sent to an integer,

2.3*2 ;
4/3 ;
4**3 ;
4+2*3 ;

code/oggetti/numeri1.scd
code/oggetti/numeri1.scd

4.6
1.3333333333333
64
18

code/oggetti/post/numeri1Post.scd
code/oggetti/post/numeri1Post.scd

Introduction to SuperCollider 37

for example 5 (1), the interpreter returns the class towhich the instance belongs:

Integer. Then, the method superclasses can be sent to Integer, that returns

an array containing all the superclasses up to Object. Evaluated line by line,

the code:

1 5.class ;

2 Integer.superclasses ;

returns:

1 Integer

2 [class SimpleNumber, class Number, class Magnitude, class Object]

Intuitively, without taking into account Object (the superclass of all classes),

Magnitude is the class that more generally deals with magnitudes (including

numbers). With Magnitude.allSubclasseswe would get:

1 [class Association, class Number, class Char, class Polar, class Complex,

2 class SimpleNumber, class Float, class Integer]

Magnitude.dumpClassSubtree posts a tree representation of the subclasses

of Magnitude: all classes that deal with magnitudes: Integer –the integer num-

bers– is near to Float –floating point numbers– since they are two subclasses

of SimpleNumber. The latter class is part of a broader set of subclasses of Number

–numbers in general, including polar and complex ones (Polar, Complex).

5.class ;
Integer.superclasses ;

code/oggetti/numeri2.scd
code/oggetti/numeri2.scd

Integer
[class SimpleNumber, class Number, class Magnitude, class Object]

code/oggetti/post/numeri2Post.scd
code/oggetti/post/numeri2Post.scd

[class Association, class Number, class Char, class Polar, class Complex,
class SimpleNumber, class Float, class Integer]

code/oggetti/post/numeriClassPost.scd
code/oggetti/post/numeriClassPost.scd

38 Programming in SC

1 Magnitude.dumpClassSubtree

2 Magnitude

3 [

4 Association

5 Number

6 [

7 Polar

8 Complex

9 SimpleNumber

10 [Float Integer]

11]

12 Char

13]

14 Magnitude

As they are objects (that is, properly, indirect instances of Object), it is pos-

sible to send to a number, 3 for example, the message postln, which prints the

number and returns the number itself. So the code:

1 3.postln ;

2 3.postln * 4.postln ;

returns the following on post window:

1 3

2 3

3 3

4 4

5 12

Where (1) and (2) are the output of the code line (1), and (3), (4), (5) of

the code line (2). The reader should remember what we discussed about the

call by the interpreter of postln on the last evaluated expression and about the

Magnitude.dumpClassSubtree
Magnitude
[
 Association
 Number
 [
 Polar
 Complex
 SimpleNumber
 [Float Integer]
]
 Char
]
Magnitude

code/oggetti/post/numeriClassPost2.scd
code/oggetti/post/numeriClassPost2.scd

3.postln ;
3.postln * 4.postln ;

code/oggetti/numeri3.scd
code/oggetti/numeri3.scd

3
3
3
4
12

code/oggetti/post/numeri3Post.scd
code/oggetti/post/numeri3Post.scd

Introduction to SuperCollider 39

“transparency” of the latter method (that unobtrusively returns the same the

object on which it is called).

For many mathematical operations, a double notation is available, func-

tional and object-oriented9.

1 sqrt(2) ;

2 2.sqrt ;

4 4**2 ;

5 4.pow(2) ;

6 4.squared ;

8 4**3 ;

9 4.pow(3) ;

10 4.cubed ;

For example sqrt(2) (1) prompts to compute the square root of 2: said in
an OOP flavor, the method sqrt is invoked on 2 (2), returning the result of the

square root applied to the object on which it is called. Similarly, the exponenti-

ation can be written functionally with 4**2 (4), or as with 4.pow(2) (5): the pow

method is called with the argument 2 on the object 4. Or, translated into natural

language: “object 4, exponentiate yourself with exponent 2”. Still, a third op-

tion (6) is to use a dedicated method for elevating to the square, squared. The

same applies to the exponentiation to the cube (8-10).

2.7 Conclusions

The different paradigms of programming languages offer radically different

ways of thinking about programming itself. The SuperCollider language ad-

heres to the OOP paradigm, in many ways ensuring a strong and immediate

conceptualization of the entities that are represented. Above all, the SC lan-

guage is extremely consistent, and this aspect, once past the first difficulties,

makes the learning curve much smoother even for the novice. After this brief

9 These are indeed other cases of “syntactic sugar”.

sqrt(2) ;
2.sqrt ;

4**2 ;
4.pow(2) ;
4.squared ;

4**3 ;
4.pow(3) ;
4.cubed ;

code/oggetti/sugar.scd
code/oggetti/sugar.scd

40 Programming in SC

introduction to object-oriented programming, it is indeed appropriate to ad-

dress in detail the syntax of SC, as well as write a real program.

3 Syntax: basic elements

As in any language, to speak SuperCollider you need to follow a set of rules.

And, as in all programming languages, these rules are quite inflexible and bind-

ing. In SuperCollider, a sentence must be syntactically correct, otherwise it is

incomprehensible to the interpreter, which means it will report it to you. This

aspect may not be exactly friendly for the beginner not used to programming

languages, forcing her/him to an accuracy of writing very far from an “analog”

mood. However, there are at least two positive, interrelated, aspects in writing

code. The first is the unavoidable analytical effort, which brings out a precise

analysis of the problem to be solved, as the latter must be formalized linguis-

tically. The second is a specific form of self-awareness: even if “bugs” in the

language are possibile (although very rare), the programmer’s mantra is: “If

something does not work, it’s your fault”.

3.1 Brackets

In SuperCollider code examples, you will often find brackets, (), used as de-

limiters. Brackets are not expressly designed with this aim in the syntax of

SC. However, it is a long-established writing convention (just look at the help

files) that their presence indicates a piece of code that must be evaluated al-

together (i.e., selection and evaluation of all lines). Remember that when you

write or open a document, code evaluation is in charge to the user. In the IDE,

double-clicking after an open bracket will thus allow the selection of the entire

block of code until the next closing bracket: in this way, brackets facilitate a

lot the interaction of the user with the interpreter. Brackets are also a way of

42 Syntax: basic elements

arranging more complex code in blocks that must operate separately: for ex-

ample, a block that must be evaluated in the initialization phase, another that

determines a certain interaction with an ongoing process (audio or GUI), and

so on.

3.2 Expressions

An expression in SC is a finished, complete sentence written in the language.

Expressions in SC are closed (finished) by ; (a semicolon). Each code block

enclosed by ; is therefore an expression of SC. The interpreter will collect the

code until a ; is found, and then it will analyze the resulting expression. If the

code to be evaluated by the interpreter consists of a single line (e.g. during an

interactive working session), the ; can be omitted. In that case the interpreter

will treat the entire block as a single expression (as it indeed is).

1 a = [1,2,3]

2 a = [1,2,3] ;

If evaluated line by line, the two previous expressions are equivalent. In

general, it is always better to get used to including the ; even when you are

working interactivelywith the interpreter, evaluating the code line by line. When

evaluatingmultiple lines of code, the presence of ; is the only information avail-

able to the interpreter to know where one expression ends and another begins.

In essence, when the interpreter is required to evaluate the code, it will start to

scan the text character by character, and determine the closing of an expression

in function of the ;. If all the code is evaluated all together (in one block) as in

the following example (note also the use of brackets for delimitation):

1 (

2 a = [1,2,3]

3 a = [1,2,3] ;

4)

a = [1,2,3]
a = [1,2,3] ;

code/sintassi/espressioni1.scd
code/sintassi/espressioni1.scd

(
a = [1,2,3]
a = [1,2,3] ;
)

code/sintassi/espressioni1b.scd
code/sintassi/espressioni1b.scd

Introduction to SuperCollider 43

even if the intention of the userwas towrite two expressions, as far as the in-

terpreter is concernered there is only one: being meaningless (not well-formed,

to speak with Chomsky), the interpreter will report an error and will block the

execution.

In the following example, the two expressions are the same because the line

break is not relevant for SC. This allows you to use line breaks to improve the

readability of code, or make it worse, of course, as happens in the following

example.

1 (

2 a = [1,2,3]

3)

6 (

7 a = [1,

8 2,

9 3]

10)

Again, note how in this case the absence of the semicolon in the second

multiline version does not create a problem. In the absence of a ;, SC considers

an expression as all that is selected; for the selected code is actually a single,

well-formed expression, an so the interpreter does not report errors.

The order of expressions is their order of execution. In other words, the

interpreter scans the code, and when it finds an expression terminator (; or

the end of the selection) it executes the expression; then, it re-starts scanning

thereafter until it has obtained a new expression to be executed.

3.3 Comments

A “comment” is a block of code that the interpreter does not take into account.

When the interpreter reaches a comment indicator, it jumps to the end indicator

of the comment, and it resumes normal execution process from then on. Com-

ments are therefore meta-textual information that are very useful to make your

(
a = [1,2,3]
)

(
a = [1,
		2,
		3]
)

code/sintassi/espressioni2.scd
code/sintassi/espressioni2.scd

44 Syntax: basic elements

code readable, up to the so-called “self-documenting code”, in which the code

also includes a guidance for its use. In SC there are two types of comments:

a. // indicates a comment that occupies one line or the ending part of it. When

the intepreter finds //, it skips the following characters and jumps to the

next line;

b. the couple /* …*/ defines a multi-line comment: all the text included be-

tween the /* and */, even if it occupies more than one line, is ignored by the

interpreter.

The following examples shows the usage of comments, in a very verbose

way.

1 /*

2 %%%%%% VERBOSE DOCUMENTATION %%%%%%

3

4 There are 3 ways to get a power of 3

5 - n**3

6 - n.pow(3)

7 - n.squared

8

9 %%%%%% END OF VERBOSE DOCUMENTATION %

10 */

12 // first way

13 2**3 // it’s 8

3.4 Strings

A “string” is a sequence of characters enclosed by double quotes. Strings can

span multiple lines (remember that a line break is also a character in a string).

A string is an ordered sequence of elements just like an array. In fact, the class

String is a subclass of RawArray: strings are sequences of objects that can be

accessed. Evaluating line by line the following code:

/*
%%%%%% VERBOSE DOCUMENTATION %%%%%%

There are 3 ways to get a power of 3
 - n**3
 - n.pow(3)
 - n.squared

%%%%%% END OF VERBOSE DOCUMENTATION %
*/

// first way
2**3 // it's 8

code/sintassi/commenti.scd
code/sintassi/commenti.scd

Introduction to SuperCollider 45

1 t = "string"

2 t[0]

3 t[1]

4 t.size

will output on the post window:

1 string

2 s

3 t

4 6

Here, t[0] indicates the first element of the array "string", that is: s, and

so on.

It is the class String that defines all the post-related methods. When you

send a post message an object, SC typically asks the object its string represen-

tation, and invokes the post method on the resulting string. For example, the

method ++ for string concatenation works even if the objects to which the se-

lected string are not of string-type: ++ asks internally to all the concatenated

objects to provide a string representation: "you " ++ 2 is thus equivalent to

"you " ++ (2.asString), and returns the string "you 2".

3.5 Variables

A variable is a placeholder. Whenever you store something, you assign it to

a variable. In fact, to store the data in the memory is not enough: in order to

access it, you must know its address, its “label” (as when you look for an ob-

ject in a warehouse based on its location). If the data is stored but inaccessible

(as in the case of an object somewhere in the warehouse), then you cannot use

it and its presence is only a waste of space. The theory of variables is a very

complex area in the science of computing. For example, one important aspect

concerns the type of variables. In “typed” languages (for example, C), the user

t = "string"
t[0]
t[1]
t.size

code/sintassi/stringa1.scd
code/sintassi/stringa1.scd

string
s
t
6

code/sintassi/post/stringa1Post.scd
code/sintassi/post/stringa1Post.scd

46 Syntax: basic elements

declares that he will use that label (i.e. the variable) to contain only and exclu-

sively a certain type of object (for example, an integer), and the variable cannot

be used for different objects (for example, a string). In such a case, before using

a variable, its existence must be declared and its type must be specified. On the

contrary, “untyped” languages do not require the user to specify the type of the

variables, as the type is inferred in variousways (for example, by inspecting the

object assigned to the variable). Some languages (e.g. Python) does not even

require the declaration of the variable, which is simply used. In Python, the

interpreter infers that that specific string represents a variable. Typing imposes

constraints on the use of variables and a more verbose writing in code, but pro-

vides a clearer data organization. In untyped languages, writing code is faster,

but on the other hand you can potentially run into complicated situations, such

as when you change the type of a variable “on the run” without realizing it.

SuperCollider follows a sort of mixed approach. Youmust declare the vari-

ables you want to use, but not their type, which is inferred from their assigned

object. In SC variable names must begin with a lowercase alphabetic charac-

ter and can contain alphanumeric characters (uppercase characters, numbers).

The variable declaration needs to be preceded by the reserved word var (which

therefore cannot be used as a variable name). You can assign a value to a vari-

able while you declare it.

1 (

2 var first, second;

3 var third = 3;

4 var fourth;

5)

If you evaluate the example above, you may notice that the interpreter re-

turns nil. In evaluating a block of expressions, the interpreter always returns

the last value: in this case, the one assigned to the variable fourth, which has

not yet been assigned a value, as indicated by nil. This word, nil, is another

“reserved word” that cannot be used as a variable name. Variable declaration

can also span multiple lines, provided that they are always consecutive in the

initial block of the code that uses them. In other words, variable declaration

must necessarily be placed at the beginning of the program in which they are

used. In SC there are two types of variables, local variables and variables related

(
var first, second;
var third = 3;
var fourth;
)

code/sintassi/variabili1.scd
code/sintassi/variabili1.scd

Introduction to SuperCollider 47

to an environment (“environment variables”). As discussed, an interpreted lan-

guage provides user interaction through an environment. In SC, environment

variables are variables that are constant (and thus usable) throughout the en-

vironment. Practically, they are permanently available throughout the work-

ing session with the interpreter. A particular case is given by the letters a - z

that are immediately reserved by the interpreter as environment variables. You

can use them (for example, in prototyping phases) without declaration. So far,

the examples involving variables have always referred to variables of this type,

such as a or z, as they allow interaction with the environment.

To understand the differences between the two types, consider the follow-

ing example:

1 a = [1,2,3] ;

2 array = [1,2,3] ;

3 (

4 var array ;

5 array = [1,2,3]

6)

1 [1, 2, 3]

2 ERROR: Variable ’array’ not defined.

3 in file ’selected text’

4 line 1 char 17:

6 array = [1,2,3] ;

8 -----------------------------------

9 nil

10 [1, 2, 3]

When evaluating line 1, a is a valid and legal name for an environment vari-

able that does not have to be declared. The interpreter will then assign to a the

array [1,2,3] (post window, 1). When evaluating (2) the interpreter raises an

error (post window, 2-9), because it recognizes the assignment of a value to a

a = [1,2,3] ;
array = [1,2,3] ;
(
var array ;
array = [1,2,3]
)

code/sintassi/variabili2.scd
code/sintassi/variabili2.scd

[1, 2, 3]
ERROR: Variable 'array' not defined.
 in file 'selected text'
 line 1 char 17:

 array = [1,2,3] ;

nil
[1, 2, 3]

code/sintassi/post/variabili2Post.scd
code/sintassi/post/variabili2Post.scd

48 Syntax: basic elements

variable, but it notes that the local variable in question array has not been previ-

ously declared (• ERROR: Variable ’array’ not defined.). The problem can

be solved by declaring the variable (code, 3-6; post window, 10). It is important

to note the use of brackets to indicate that the lines of code should be evaluated

together! The existence of the variable is valid only for the time at which the

code is evaluated. In otherwords, if you run again the expression array.postln,

you might assume that the variable array is declared and therefore legal. But

an error is raised by the interpreter. Local variables are therefore usable only

within those blocks of code that declare them. This is a good option for code

encapsulation, as there is no need to keep track of variables in use after the eval-

uation. On the other hand, during an interactive session it can be desirable to

maintain certain variables in existence to use them at a later time. Environment

variables are designed exactly for this purpose. The alphabetic characters a -

z are immediately assignable as environment variables by internal convention

of the intepreter. In addition, each variable whose first character is ~ (the tilde)

is an environment variable. Once declared in this way (without being preceded

by var):

1 ~array = [1,2,3] ;

the variable ~array is set (i.e. fixed) throughout the session1.

Users that are programming novices might wonder why not use only envi-

ronmental variables. The answer is that they serve to work interactively with

SC, to “communicate” –so to say– with SC, but not to write code in a struc-

tured form, as an example in designing systems for live music. In fact, in these

contexts, environmental variables may be very dangerous for programming,

simply because they are always accessible, and therefore poorly controllable.

To sum up:

• a variable name is an alphanumeric sequence of characters and always starts

with a lowercase alphabetic character;

• variables are local or environmental;

1 We will discuss further the issue of scoping, i.e. the scope of validity of the

variables.

~array = [1,2,3] ;

code/sintassi/variabiliAmb.scd
code/sintassi/variabiliAmb.scd

Introduction to SuperCollider 49

• local variables must be declared at the beginning of the program and are

valid only in its interpretation;

• environmental variables are permanent throughout theworking sessionwith

the interpreter;

• environment variables are preceded by ~;

• individual alphabetic characters (not preceded by ~) are also predefined

names for environmental variables.

3.6 Symbols

Asymbol is a name that represents something in a uniqueway. It can be thought

of as an absolute identification. It is a name that uniquely represent an object,

a sort of proper name. A symbol is written in single quotes, or, if the character

string does not include spaceswithin it, preceded by a \. The following example

has to be evaluated line by line, and the result is shown on the window post.

1 a = \symbol ;

2 b = ’here a symbol’ ;

3 a.class ;

4 [a,b].class.post.name.post.class ;

5 \Symbol .post.class.post.name.post.class ;

1 symbol

2 here a symbol

3 Symbol

4 ArrayArraySymbol

5 SymbolSymbolSymbolSymbol

Lines (1) and (2) assign to the variables a and b two symbols (1-2). Then,

(3) asks to print as confirmation the class of a: Symbol. Finally, (4) is somewhat

more esoteric. It use post, which prints but does not produce a line break, thus

every print simply follows the previous one. The two symbols are placed in an

array (the class returned by class): hence, the first Array. The codes asks for the

a = \symbol ;
b = 'here a symbol' ;
a.class ;
[a,b].class.post.name.post.class ;
\Symbol.post.class.post.name.post.class ;

code/sintassi/symbol1.scd
code/sintassi/symbol1.scd

symbol
here a symbol
Symbol
ArrayArraySymbol
SymbolSymbolSymbolSymbol

code/sintassi/post/symbol1Post.scd
code/sintassi/post/symbol1Post.scd

50 Syntax: basic elements

name of the class (name). In fact, a class is an entity, and has a name attribute:

naturally, the name for the class Array is Array. What is this name? It is a

symbol that represents the class. The class of the name Array (that provides the

name for the class Array) is Symbol. Let’s rephrase it in a more figurative way:

if the reader agrees to be a concrete example, whose class is Homo Sapiens. The

label Homo Sapiens (the name of the class) is an object that belongs in turn to

the class Taxonomic symbol. The last example (5) follows the same pattern (4)

but the whole code is entangled with a little homonymy. The situation in both

cases is shown in Figure 3.1: its analytical understanding is left to the reader as

an exercise.

Symbol

\Symbol
class

name

class
Oggetto:

Classe: Array

[a, b]
class

name

class
\Array

Symbol

Figure 3.1 Relations between objects and classes in relation to Symbol.

Note the difference with strings. A string is a sequence of characters. For ex-

ample, here a and b are two strings.

a = "symbol" ; b = "symbol" ;

The two strings are equivalent (roughly said: "they have the same content").

1 a == b // == asks: are they equivalent?

2 // post window replies: true

but they are not the same object (i.e. two copies of the same book are two

different books).

1 a === b // === asks on the contrary: are they the same object?

2 // post window replies: false

a == b		// == asks: are they equivalent?
// post window replies: true

code/sintassi/symbol2a.scd
code/sintassi/symbol2a.scd

Introduction to SuperCollider 51

Instead, the relationship of identity is true in the case of the symbols:

1 a = \symbol ; b = ’symbol’ // same s

2 a == b; // post: true

3 a === b // same object? post: true

Here, a and b are two containers for a unique object.

The previous examples introduce us to two other reservedwords, true and

false, dedicated to represent the values of truth. Reserved words (like var, nil

and others to be seen later) cannot of course be used as variable names, even

if their structure could be syntactically legal (they are alphanumeric and begin

with lower case).

3.7 Errors

If you reconsider the previous example in which a variable was used without

declaring it you can see how the SC interpreter reports errors:

1 ERROR: Variable ’array’ not defined.

2 in file ’selected text’

3 line 1 char 17:

5 array = [1,2,3] ;

7 -----------------------------------

8 nil

As every computer interpreter/compiler, SC is very strict: it is a decidedly

uncharitable interpreter. This requires special attention for beginners, who are

likely to spend an interesting amount of time (beware) before being able to build

a correct expression. In addition, error reporting is rather laconic in SC: in the

above case it is very clear, in others it may be less clear. In particular it can be

a === b 	// === asks on the contrary: are they the same object?
// post window replies: false	

code/sintassi/symbol2b.scd
code/sintassi/symbol2b.scd

a = \symbol; b = 'symbol'	// same s
a == b; // post: true
a === b	// same object? post: true

code/sintassi/symbol2c.scd
code/sintassi/symbol2c.scd

ERROR: Variable 'array' not defined.
 in file 'selected text'
 line 1 char 17:

 array = [1,2,3] ;

nil

code/sintassi/post/errore.scd
code/sintassi/post/errore.scd

52 Syntax: basic elements

sometimes difficult to identify where the error is. Usually, the part of code indi-

cated by SCwhile reporting the error is the point immediately next to, meaning

just before, the error occurred. In this case what is missing is a variable decla-

ration before = array [1,2,3].

3.8 Functions

Functions are one of the less intuitive aspects to understand in SC for thosewho

do not come from a computer background. But let’s consider the definition

provided by the help file:

“AFunction is an expressionwhichdefines operations to be performed

when it is sent the ’value’ message.”

The definition is precise and exhaustive. A function is:

1. an expression

2. that defines operations

3. that are performed only when the function receives the message value. A

function is therefore an object: it implements amethod valuewhich answers

the valuemessage (try Function.dumpInterface).

A function can be thought of as a (physical) object capable of doing certain

things. For example, a blender. At the moment in which it is declared, SC is

told to build the object, but not make it work. The object is then available: it is pos-

sible tomake it work by sending it themessage value. Function definitions are

enclosed in curly brackets {}. Curly brackets are a sort of transparent shell that

encloses the object, whose content is a set of expressions that will be evaluated

when called. The concept of function is essential in structured (“organized”)

programming because it allows the programmer to apply a principle of encap-

sulation. Sequences of expressions that may be used multiple times can then be

defined once, associated with a variable, and reused on demand.

1 f = { 5 } ;

2 f.value ;

Introduction to SuperCollider 53

The function f is an object that throws out on request the value 5. The de-

finition stores the function object (1) whose behavior is triggered upon request

using themessage value (2). Amore interesting use of functions, demonstrated

by the following example, involves the use of “arguments”: arguments can be

thought of as input parameters for the object. Arguments are defined using the

reservedword argwhich is followedby the argument names separated by , and

delimited by a ;. In the next example the function g is defined as { arg input;

input*2 }. Line (2): g takes one argument and returns the result of the oper-

ation on that argument. In particular g returns twice the value that input was

given. The function g is like a blender: you put the egg input and the blender

returns as its output (when set to operate) the result of blender.shake(egg)2.

1 g = { arg input; input*2 } ;

2 g.value(2) ;

3 g.value(134) ;

1 A Function

2 4

3 268

Finally, the function h = { arg a, b; (a.pow(2)+b.pow(2)).sqrt } of the

last example is a calculation module that implements the Pythagorean theo-

rem: it accepts in input the two catheti 𝑎 and 𝑏 and it returns the hypotenuse
𝑐, according to the relation 𝑐 =

√
𝑎2 + 𝑏2. By the way, note that the square root

is implemented as a message sent to the integer resulting from computing the

bracketed operation.

2 The similarity with the syntax object.methodname is indeed not accidental.

f = { 5 } ;
f.value ;

code/sintassi/func1.scd
code/sintassi/func1.scd

g = { arg input; input*2 } ;
g.value(2) ;
g.value(134) ;

code/sintassi/func2.scd
code/sintassi/func2.scd

A Function
4
268

code/sintassi/post/func2Post.scd
code/sintassi/post/func2Post.scd

54 Syntax: basic elements

1 h = { arg a, b; (a.pow(2)+b.pow(2)).sqrt } ;

2 c = h.value(4,3) ; // -> 5

In a second version (below) the definition does not substantially change but

allows to define additional aspects.

1 (

2 h = { // calculate hypotenuse from catheti

3 arg cat1, cat2 ;

4 var hypo ;

5 hypo = (cat1.pow(2)+cat2.pow(2)).sqrt ;

6 "hypo: "++hypo } ;

7)

9 h.value(4,3) ;

11 h.value(4,3).class ;

1 hypo: 5

2 String

Notice the following steps:

• comments work as usual within the functions (2);

• arguments must be specified first (3);

• argument names follow the criteria defined for variables (3);

• after the arguments, you can add a variable declaration (4). In the body of

the function, especially if its complex, it may be useful to have some names

for variables. In this case, hypo is a meaningful name that allows the last

line to be more readable, where it is then used ("hypo:"++hypo). Of course,

variables work as discussed before;

• a function returns a single value (be it a number, a string, an object, an array,

etc.): the value of the last expression defined in the function body. The output

h = { arg a, b; (a.pow(2)+b.pow(2)).sqrt } ;
c = h.value(4,3) ; // -> 5

code/sintassi/func3.scd
code/sintassi/func3.scd

(
h = { // calculate hypotenuse from catheti
	 arg cat1, cat2 ;
	 var hypo ;
	 hypo = (cat1.pow(2)+cat2.pow(2)).sqrt ;
	 "hypo: "++hypo } ;
)

h.value(4,3) ;

h.value(4,3).class ;

code/sintassi/func4.scd
code/sintassi/func4.scd

hypo: 5
String

code/sintassi/post/func4Post.scd
code/sintassi/post/func4Post.scd

Introduction to SuperCollider 55

of the last expression is then the output of the function. In particular, in this

second version, the function h returns a string "hypo", to which (by means

of ++) the content of the variable hypo is concatenated. Thus, in this case

what is returned by the function is therefore a string. This aspects becomes

evident if you evaluate the lines (9) and (10), the output of which is shown

on the post window (below).

1 hypo: 5

2 String

This last point has important consequences. If you redefine h –in this first

version– as proposed in the following example, it radically alters the way the

function works.

1 h = { arg a, b; (a.pow(2)+b.pow(2)).sqrt ; a } ;

The addition of the expression a at the end of the definition means that the

function h still computes the hypotenuse, but it returns as its output a (i.e. the

first argument entered in (1)).

In short, a function has three parts, all three optional, but in the mandatory

order:

1. a declaration of arguments (input)

2. a declaration of variables (internal operation)

3. a set of expressions (internal operation and output)

A function that has only the declaration of the arguments is an object that

accepts some incoming entities, but litterally does nothing. In the following

example, the function i accepts a in input, but the declaration of the argument

is not followed by any expression: the function does nothing and returns nil.

As an extreme case, a function that does not have any of the three components

is still possible: in the example, the function l returns always just nil.

code/sintassi/post/func4Post.scd
code/sintassi/post/func4Post.scd

h = { arg a, b; (a.pow(2)+b.pow(2)).sqrt ; a } ;

code/sintassi/func5.scd
code/sintassi/func5.scd

56 Syntax: basic elements

1 i = {arg a;} ;

2 l = {} ;

The situation may be represented as in figure 3.2, where functions are rep-

resented as modules, which can be equipped with inputs and outputs. The text

in the last row is the SC code relative to each diagram.

{ 5 } { arg a, b; ... a+b }{ arg a, b; }
a+b5nilnil

a+b
5

a b a b

{ }

...
arg a, barg a, b

Figure 3.2 Functions.

By introducing functions it becomes possible to address the problem of the vari-

able “scope”(their “visibility”, “accessibility”, so to say). Each variable “is valu-

able”, it is recognized, and is associated to that value, and it is manipulatable,

within a certain region of text: its “scope”.

In the example below, func.value returns 8 because the variable val, having

been declared outside the function func, is also visible inside the function.

1 (

2 var val = 4 ;

3 var func = { val*2 } ;

4 func.value ;

5)

i = {arg a;} ;
l = {} ;

code/sintassi/func6.scd
code/sintassi/func6.scd

(
var val = 4 ;
var func = { val*2 } ;
func.value ;
)

code/sintassi/scope1.scd
code/sintassi/scope1.scd

Introduction to SuperCollider 57

On the contrary, in the following example func always returns 8, as this

now depends on the declaration of val inside func.

1 (

2 var val = 4 ;

3 var func = { arg val = 4 ; val*2 } ;

4 func.value ;

5)

And so, the following example raises an error because val (declared in func)

is not assigned a value, which effetively means that the operation is nil * 2,

which is not legal.

1 (

2 var val = 4 ;

3 var func = { arg val ; val*2 } ;

4 func.value ;

5)

In essence, the general rule is that the scope of variables goes from outside

to inside. A variable is visible as long as the same name is not declared in a

more internal block of code.

3.9 Classes, messages/methods and keywords

We have already seen how in SC, classes are indicated by a sequence of charac-

ters that begin with a capital letter. If you evaluate the following two lines of

code (note the colored syntax):

1 superCollider ;

2 SuperCollider ;

(
var val = 4 ;
var func = { arg val = 4 ; val*2 } ;
func.value ;
)

code/sintassi/scope2.scd
code/sintassi/scope2.scd

(
var val = 4 ;
var func = { arg val ; val*2 } ;
func.value ;
)

code/sintassi/scope3.scd
code/sintassi/scope3.scd

58 Syntax: basic elements

you get for the two cases:

1 ERROR: Variable ’superCollider’ not defined.

2 in file ’selected text’

3 line 1 char 13:

5 superCollider ;

7 -----------------------------------

8 nil

9 ERROR: Class not defined.

10 in file ’selected text’

11 line 1 char 13:

13 SuperCollider ;

15 -----------------------------------

16 nil

As already mentioned, a message is sent to a class and to an object by

means of the marker . : respectively, through the syntax Class.method and ob-

ject.method. The methods can basically be thought of as functions defined for

a certain class or object: when a method is invoked with a message it is like

sending a message value to a function. In addition, methods may also have ar-

guments as their input parameters. SC typically provides appropriate default

values for the cases in which a method requires arguments, so that many times

itmay not be necessary to specify them. The use of keywords is useful because it

allows to choose which is the desired argument that needs a certain value, leav-

ing the other argumentswith their default values. If keywords are not specified,

the only criterion available for SC to assign a value to an argument is the order

in which the value appears in the argument list. For example, the method plot

for objects, which belongs to the class (and subclasses of) ArrayedCollection,

includes the arguments

plot(name, bounds, discrete, numChannels, minval, maxval, parent, labels)

Themethod creates awindowanddraws in the formof amultipoint line the

content of an object of type ArrayCollection. The argument name defines the ti-

tle of the window. Thus, the window created by [1,2,3,1,2,3].plot("test")

superCollider ;
SuperCollider ;

code/sintassi/classi1.scd
code/sintassi/classi1.scd

ERROR: Variable 'superCollider' not defined.
 in file 'selected text'
 line 1 char 13:

 superCollider ;

nil
ERROR: Class not defined.
 in file 'selected text'
 line 1 char 13:

 SuperCollider ;

nil

code/sintassi/post/classi1Post.scd
code/sintassi/post/classi1Post.scd

Introduction to SuperCollider 59

is labelled “test”. The method also allows to define the number of channels

numChannels. If the number is greater than 1, plot assumes that the first 𝑛 sam-

ples are the samples no. 1 of the channels 1…𝑛. For example, if there are two
channels, then the first two samples are the samples number 1 of channel 1 and
2, and so on: plot draws a window for each channel3. In order to specify that

numChannels must be equal to 2 without using the keyword, all the previous

arguments have to be explicited. For example:

1 [1,4,3,2].plot("test", Rect(200 , 140, 705, 410), false, 2) ;

Much more easily, you can write:

1 [1,4,3,2].plot(numChannels:2) ;

Finally, the use of keywords is in general slightly more expensive from a

computational point of view, but it makes the code much more readable.

3.10 A graphic example

An example of code for creating a simple graphic element (GUI) allows us to in-

troduce the fundamentals of SC syntax. The code below aims to create a graphic

knob, that controls in parametric form the background color of a window.

SuperCollider comes with a rich palette of graphic elements that allow one

to build sophisticated graphical user interfaces (GUI). So, although in SC the

user interface in the implementation phase is indeed text-based, it does not

mean that the same interface has to be used while performing, e.g. during a

live setup. Obviously, the desired GUI must be programmed in SuperCollider.

3 The utility of the method lies in the fact that multichannel audio signals, repre-

sentable by an array, are stored in this ”interlaced” form. If the signal is stereo,

plotwith numChannels: 2 draws the waveforms of both signals.

[1,4,3,2].plot("test", Rect(200 , 140, 705, 410), false, 2) ;

code/sintassi/classi2.scd
code/sintassi/classi2.scd

[1,4,3,2].plot(numChannels:2) ;

code/sintassi/classi3.scd
code/sintassi/classi3.scd

60 Syntax: basic elements

The case of GUI is a classic topic in object-oriented programming, because a

GUI element is very well suited to be defined as an object (it is an entity clearly

showing certain properties, e.g. colors, and behaviors, or actions related to its

usage). GUI handling in SuperCollider is possible by including a widespread

library, Qt, which is included within the IDE. Quite simply, it is immediately

available for use. You will notice, however, that when using a GUI a second

process is explicitly called, sclang, to which the GUI elements are related (also

in relation to focus). For communication and representation, Qt GUI objects are

represented in SC by means of classes: thus, Window is the SC class that repre-

sents a window object in Qt. As we are dealing with a language, it is like saying

that the sign Window in SC is the conceptual and linguistic representation (a sign

provided with an expression and a content) of a class of objects in the external

world (a type of window in Qt). Let us look at what the code looks like:

1 (

2 /* coupling view and controller */

4 var window, knob, screen ; // declaring variables

6 // a container window

7 window = Window.new("A knob", Rect.new(300,300, 150, 100)) ;

8 window.background = Color.black ;

10 // a knob in the window, range: [0,1]

11 knob = Knob.new(window, Rect(50, 25, 50, 50)) ;

12 knob.value = 0.5 ;

14 // action associated to knob

15 knob.action_({ arg me;

16 var red, blue, green ;

17 red = me.value ;

18 green = red*0.5 ;

19 blue = 0.25+(red*0.75) ;

20 ["red, green, blue", red, green, blue].postln ;

21 window.background = Color(red, green, blue);

22 });

24 // don’t forget me

25 window.front ;

26)

(
/* coupling view and controller */

var window, knob, screen ; // declaring variables

// a container window
window = Window.new("A knob", Rect.new(300,300, 150, 100)) ;
window.background = Color.black ;

// a knob in the window, range: [0,1]
knob = Knob.new(window, Rect(50, 25, 50, 50)) ;
knob.value = 0.5 ;

// action associated to knob
knob.action_({ arg me;
	var red, blue, green ;
	red = me.value ;
	green = red*0.5 ;
	blue = 0.25+(red*0.75) ;
	["red, green, blue", red, green, blue].postln ;
	window.background = Color(red, green, blue);
});

// don't forget me
window.front ;
)

code/sintassi/simpleKnob.scd
code/sintassi/simpleKnob.scd

Introduction to SuperCollider 61

• 1: the code block is enclosed in parentheses (1 and 26);

• 3: a multi-line comment is used as a title (2) and there are other comments

that provide some information about the different parts of the code (for ex-

ample, 6). Commenting the code is of course optional, but is seen as good

practice: it allows us to provide both general information on the structure

and specific details about the implementation;

• 4: apart from the comments, the code beginswith the declaration of the three

variables in use. They are declared at the beginning of the code block;

• 7-8: the first thing to do is to create a container window, that is, a reference

object for all other graphic elements thatwill be created later. This is a typical

approach in the creation of GUI systems. The variable window is assigned an

object Window, generated through the constructor method new. The method

new is passed two arguments (i.e. new window, with these attributes): a

string indicating the title of the window to be displayed ("A knob" and an

object of type Rect. In other words, the window size, instead of being de-

scribed as a set of parameters, is provided by a rectangle object, which is an

instance of the class Rect, equipped with its attributes, that is, left, top,

width, height. The position of the rectangle is given from top-left (argu-

ments left and top), while width and height specify the dimensions. The

rectangle then determines that thewindowwill be 150×100 pixels, its upper
left corner being placed in the pixel (300, 300). Note that Rect.new returns
an object (new is a constructor method) but without assigning it to a variable.

In fact, on the one hand the Rect object does not need to be identifiabile out-

side of the GUIwindow, on the other hand, it actually remains accessible for

future manipulations, since it is stored as a property of the window: bounds.

Thismeans, evaluating the expression window.bounds returns an object Rect.

Following the same logic, that property can bemodified, e.g. with this code:

w.bounds = Rect (100, 100, 1000, 600), that assigns to window a new ob-

ject Rect with different size and position as its bounds. Apart from the rec-

tangle boundaries (so to speak), among the many attributes of the window

there is the background color, accessible by calling the method background.

The value of background can be set by passing an object Color. Even colors

are objects in SC and the class Color provides some methods to easily ob-

tain themost common colors by simply indicating their names, such as black

with Color.black. Note that black is a constructor method that returns an

instance of Colorwith the appropriate features for black;

• 10-12: the construction of a graphic knob follows a similar procedure to that

of the container window. The variable knob is assigned an object Knob (11).

The contructor method works moslty like the one of Window: except that this

62 Syntax: basic elements

time it is also necessary to specify towhich containerwindow the knobmust

refer: the referencewindow here is indeed window, and the relative rectangle

is defined by taking as a reference not the screen, but the window window.

Therefore a rectangle 50×50, whose origin is in pixels (30, 30) of the Window

window. Note also that the geometry manager of Knob (as happened with

Window) is obtained with the formula: Rect (50, 25, 50, 50). Now, here

we have a class followed by a pair of brackets with arguments. However,

where is the construct method (in this case .new)? This is an example of syn-

tactic sugar. If after a class there are brackets with argument values, then the

interpreter implies that the newmethod is implied. In short, new is the default

method. That is, when the SC interpreter spots a class followed by a pair of

brackets containing data, it assumes that you have invoked Class.new(ar-

guments). The starting value of the knob is 0.5 (12). By default, the range of

an object Knob varies between 0.0 and 1.0 (a normalized range): thus, by set-
ting the attribute knob.value = 0.5, the knob is placed at half of its range.

The ratio for having a normalized excursion lies in the fact that it is not pos-

sible to know in advance the use of the knob (will it control the frequency

of an audio signal? 20 − 20, 000 Hz; or maybe a MIDI note? 0 − 127). Note
that the property is set through the use of the assignment operator =. An-

other syntax is available for setting attributes. In fact, the = is a synonym

of the method setter represented by the symbol _, which explicitly assigns

the value to the attribute. In other words, the two following syntaxes are

equivalent.

1 knob.value = 0.5 ;

2 knob.value_(0.5) ;

The setter syntax is therefore of the type object.attribute_(value).

The next part of the code defines the interaction with the user.

• 15-22: a knob is evidently a “controller”, an object used to control some-

thing else. Therefore, it is possible to associate an action to the object knob:

it is expected that by definition the action is carried out every time the user

changes the value of knob. A function is appropriate for this type of situa-

tion, because it is an object that defines a behavior called from time to time

and parameterized by arguments. The method knob.action asks to assign

knob.value = 0.5 ;
knob.value_(0.5) ;

code/sintassi/setter.scd
code/sintassi/setter.scd

Introduction to SuperCollider 63

knob the action described by a function: the function definition is the code

between the braces, 15-22. What happens behind the scenes is that, when

the knob is moved, the function is sent a value message. The value mes-

sage asks to evaluate the function for the value of the knob, the latter being

the input of the function. In other words, the function answers the “What

should be done when the knob knob moves?”. In the function the input is

described by the argument me (15): the argument has a completely arbitrary

name (here chosen by the author), as it is used to represent in the reflexive

form the object itself inside the function. This means the name me could be

replaced with any other name (e.g. callOfCthulhu). Why the need for such

an internal reference? As an example, it is useful to tell a graphic object to

change itself as a result of its actions.

• 16-21: in the example, however, the expected behavior requires changing

the background color of window. Three variables are declared (red, green,

blue) (16). They identify the three RGB components of the background color

of window, that SC defines the range [0, 1]. The variable red is assigned the
input value of me (17). The variables green and blue are assigned two val-

ues that are proportional (but in a different way) to me, so as to define a

continuous change of the background for the three chromatic components

in relationt to the value of me. This is a mapping operation: a certain do-

main of values ([0, 1]) is associated with three other domains, one for each
component ([[0, 1], [0, 0.5], [0.25, 1]]). Then, the codes asks to print on the

screen an array composed of a string and the three values (20), suitably for-

matted. Screen printing is not computationally unrelevant but it allows us

to understand how values are calculated, and it is crucial in debugging.

Finally, the attribute background of window is assigned an object Color, to

which the three components are passed. The constructur of Color accepts

that the three RGB components are specified in the range [0.1]. Again, Color
(red, green, blue) is equivalent in every way to Color.new(red, green,

blue).

• 25: all GUI systems distinguish between creation and display. It is one thing

to create GUI objects, and another to make them visible: this distinction al-

lows to display/hide GUI elements on the screen without necessarily build-

ing and destroying new objects. Themethod frontmakes window and all the

64 Syntax: basic elements

elements that depend on it visible: remember, without invoking it, all the

code would work the same, but nothing would be displayed on the screen.

3.11 Control Structures

In SC the flow of computation follows the order of the expressions. Flow con-

trols are those syntactic constructs that can change this order of computation.

For example, a cycle for repeats the instructions nested inside it for a certain

number of times, and then proceeds sequentially from there forward, while a

conditional if evaluates a condition with respect to which the flow of informa-

tion forks (wether the condition is true or false). Information flow controls are

explained in the help file “Control structures”, from which the following three

examples are taken (with some small changes, respectively from if, while and

for).

1 (

2 var a = 1, z;

3 z = if (a < 5, { 100 },{ 200 });

4 z.postln;

5)

8 (

9 i = 0;

10 while ({ i < 5 }, { i = i + 1; [i, "boing"].postln });

11)

14 for (3, 7, { arg i; i.postln });

16 forBy (0, 8, 2, { arg i; i.postln });

The first example shows the use of if. The syntax is:

if (condition to be evaluated,

{ function if the condition is true } ,

{ function if it is false })

(
var a = 1, z;
z = if (a < 5, { 100 },{ 200 });
z.postln;
)

(
i = 0;
while ({ i < 5 }, { i = i + 1; [i, "boing"].postln });
)

for (3, 7, { arg i; i.postln });

forBy (0, 8, 2, { arg i; i.postln });

code/sintassi/controlStructures.scd
code/sintassi/controlStructures.scd

Introduction to SuperCollider 65

In other words, the evaluation of the condition leads to a decision depend-

ing on the resulting true or false. Turning to the example, the variable a de-

clared (note, it is local) is 1. The condition is a < 5. If the condition is true, the

function { 100 } is computed, which returns 100; if it is false, the other function,

{ 200 }, is computed, returning 200. As the condition is true, the conditional

statement returns a value of 100, which is assigned to z.

Also the control statement while has an evident semantics, borrowed from

natural language

while ({ condition is true }, { function to be computed })

In the example, i is initially 0. As long as i is less than 5, the next function
is called. The function increases i (otherwise the computation would loop in

an infinite cycle) and prints an array that contains i and the string "boing".

Finally, the case of the cycle for, which iterates a function.

for (start, end, { function })

The function in the example is repeated five times (3, …, 7). The value is
passed to the function as its argument so that it is available for computation:

the function prints i at each call (3, …, 7). Note, the fact that the function’s

argument is named i is completely arbitrary (it is just a reference for internal

usage). The two expressions of the following example shows that the position

of the argument is the only relevant information that specifies the semantics

(i.e. the counter), not the name (arbitrary):

1 for (3, 7, { arg i; i.postln });

2 for (3, 7, { arg index; index.postln });

The instruction forBy requires a third parameter that indicates the step:

forBy (start, end, step, { function })

The example is a variation of the previous one, that prints the range [0, 8]
every 2. There are indeed other control structures. Here it is worth introducing
do, which iterates the elements of a collection. It can be written in this way:

do (collection, function)

for (3, 7, { arg i; i.postln });
for (3, 7, { arg index; index.postln });

code/sintassi/forIndex.scd
code/sintassi/forIndex.scd

66 Syntax: basic elements

but more typically it is written as a method defined on the collection, i.e.:

collection.do({ function })

the example is taken from the help file “Control-structures”, with somemi-

nor changes.

1 [101, 33, "abc", Array].do({ arg item, i; [i, item].postln; });

2

3 5.do({ arg item; ("item"+item.asString).postln });

4

5 "you".do({ arg item; item.postln });

By evaluating the first line, the post window prints out:

1 [0, 101]

2 [1, 33]

3 [2, abc]

4 [3, class Array]

5 [1, 2, abc, class Array]

To avoid any doubts, the last line simply returns the original array. The

function is passed the element on which to perform the iteration (item) and a

counter (i). Again, the names items and i are totally arbitrary (and they can

be replaced with any other desired names). It is their place that specifies the

semantics, i.e.

1 [101, 33, "abc", Array].do({ arg moby, dick; [dick, moby].postln; });

2 [0, 101]

3 [1, 33]

4 [2, abc]

5 [3, class Array]

6 [101, 33, abc, class Array]

[101, 33, "abc", Array].do({ arg item, i; [i, item].postln; });

5.do({ arg item; ("item"+item.asString).postln });

"you".do({ arg item; item.postln });

code/sintassi/do.scd
code/sintassi/do.scd

[0, 101]
[1, 33]
[2, abc]
[3, class Array]
[1, 2, abc, class Array]

code/sintassi/post/do1post.scd
code/sintassi/post/do1post.scd

[101, 33, "abc", Array].do({ arg moby, dick; [dick, moby].postln; });
[0, 101]
[1, 33]
[2, abc]
[3, class Array]
[101, 33, abc, class Array]

code/sintassi/post/do2Post.scd
code/sintassi/post/do2Post.scd

Introduction to SuperCollider 67

The function prints an array that contains the counter i (left column of the

first four rows) and the element items (right column). The method do is also

defined in integers, its semantics this time being 𝑛 times.evaluate function,

so to say. The way it works is shown in the second example. Evaluating the

code results in:

1 item 0

2 item 1

3 item 2

4 item 3

5 item 4

6 5

The last line is the integer on which the method is called. The function

prints a string consisting of the concatenation of "item" with a representation

as a string of the integer item (returned by the method AsString called on the

item) (0, …, 4). Since most of the cycles for iterate from 0 andwith a 1 step, they
are often written in SC with do called on a number (e.g. 3.do). The syntax of do

(object.method) is fully OOP. Finally, the last example simply shows that each

string is a collection whose elements are individual alphanumeric characters.

3.12 Yet another GUI example

The following example shows the code to create a GUI which chooses a color,

Simple Color Selector. The control of GUI elements is a particularly interesting

way to demonstrate some aspects of the syntax, and the visualization of the

process can be a useful aid.

The designed GUI consists of three sliders. Each slider controls one of the

three parameters that define the color (the fourth, not considered here, is trans-

parency, alpha). The color is displayed as the background of the window. In

addition, the value obtained for each component is displayed in numerical form

on the side of the relative cursor. The GUI allows one to choose between two

typical color spaces. As seen, the color is defined in a computer through the

RGBmodel. However, this model is not very intuitive compared to the percep-

tion of color: among others, a different mode is in use, describing color in terms

item 0
item 1
item 2
item 3
item 4
5

code/sintassi/post/do3Post.scd
code/sintassi/post/do3Post.scd

68 Syntax: basic elements

of hue (going circularly from red to yellow to green to blue to purple, to red

again), saturation (expressing the amount of color, from absence to full color),

brightness (or "value", which indicates the brightness and goes from white to

black). The model is therefore called "HSB" or "HSV". HSV encoding can be

converted with a formula into RGB (the latter being the only format actually

implemented on a computer). So, in SC Color provides a constructor hsv that

allows us to define a color precisely through hue, saturation, value (always in

the normalized range [0, 1]). In the GUI, a button is included to choose between
RGB andHSV encoding. Clearly, there are various ways to arrange such a GUI,

and still more ways to implement it in SC.

slider 1

slider 2

slider 3

button flag

color
function window

v1

v2

v3

2

3

1

4

Figure 3.3 Structure of the Simple Color Selector.

A diagram of the project is shown in Figure 3.3. In the example two elements

can be recognized: a flag, which is a variable that can have discrete values (here

two: in the code, rgb or hsv, and an array of three values (in Figure, v1-v3) to

specify the color. A button allows us to choose which of the two values of the

flag is active (and then the selected color space). The three sliders perform each

four actions (numbered and underlined in the example). Each slider selects a

relative value in the array (1), then calls the color function andpasses it the array

and the flag (2); the function returns a color (3), and change the background (4).

The function has an important role because it is the computational core of the

code, and it is kept separate from the user interface to ensure encapsulation.

Therefore, the function will not refer to external variables, but will be passed

them as arguments. Similarly, the function will not change the background,

rather it will simply return the resulting color.

A possible implementation follows:

Introduction to SuperCollider 69

1 (

2 /*

3 Simple Color Selector

4 RGB-HSV

5 */

7 var window = Window("Color Selector", Rect(100, 100, 300, 270)).front ;

8 var guiArr, step = 50 ;

9 var flag = \rgb , colorFunc ;

10 var colorArr = [0,0,0] ;

12 colorFunc = { arg flag, cls;

13 var color, v1, v2, v3 ;

14 # v1, v2, v3 = cls ;

15 if(flag == \rgb){

16 color = Color(v1, v2, v3)

17 }{

18 color = Color.hsv(v1.min(0.999), v2, v3)

19 } ;

20 color ;

21 } ;

23 Button(window, Rect(10, 200, 100, 50))

24 .states_([["RGB", Color.white, Color.red], ["HSV", Color.white, Color.black]])

25 .action_({ arg me; if (me.value == 0) {flag = \rgb } {flag = \hsv } });

27 guiArr = Array.fill(3, { arg i ;

28 [

29 Slider(window, Rect(10, (step+10*i+10), 100, step)),

30 StaticText(window, Rect(120, (step+10*i+10), 120, step))

31]

32 }) ;

34 guiArr.do{|item, index|

35 item[0].action_{|me|

36 item[1].string_(me.value) ;

37 colorArr[index] = me.value ;

38 window.background_(colorFunc.value(flag, colorArr));

39 }} ;

40)

(
/*
Simple Color Selector
RGB-HSV
*/

var window = Window("Color Selector", Rect(100, 100, 300, 270)).front ;
var guiArr, step = 50 ;
var flag = \rgb, colorFunc ;
var colorArr = [0,0,0] ;

colorFunc = { arg flag, cls;
	var color, v1, v2, v3 ;
	# v1, v2, v3 = cls ;
	if(flag == \rgb){
		color = Color(v1, v2, v3)
	}{
		color = Color.hsv(v1.min(0.999), v2, v3)
	} ;
	color ;
} ;

Button(window, Rect(10, 200, 100, 50))
.states_([["RGB", Color.white, Color.red], ["HSV", Color.white, Color.black]])
.action_({ arg me; if (me.value == 0) {flag = \rgb} {flag = \hsv} });

guiArr = Array.fill(3, { arg i ;
	[
		Slider(window, Rect(10, (step+10*i+10), 100, step)),
		StaticText(window, Rect(120, (step+10*i+10), 120, step))
]
}) ;

guiArr.do{|item, index|
	item[0].action_{|me|
		item[1].string_(me.value) ;
		colorArr[index] = me.value ;
		window.background_(colorFunc.value(flag, colorArr));
}} ;
)

code/sintassi/simpleColor.scd
code/sintassi/simpleColor.scd

70 Syntax: basic elements

• 7-10: variable declaration. Note that window is immediately associated with

the creation of thewindow that appears. Other variables are initializedwith

“meaningful” values;

• 12-21: the block is dedicated to the definition of the function colorFunc.

The function takes as input arguments flag and cls. The first is the flag,

the second an array of the three color values. Line 14 introduces another

useful abbreviation: # v1, v2, v3 = cls is equivalent to v1 = cls[0]; v1

= cls[1]; v3 = cls[2]. The conditional block (15) operates in relation to

the verification of the flag. If flag is rgb (literally, if flag == rgb is true),

then color is assigned a color according to the RGB color model (default).

Otherwise (the cases are only two, RGB or HSV, so there are no other possi-

bilities), the same values define a color built in reference to HSV. In the latter

case, note that by definition (see the help file for Color.hsv) the argument

hue can be set at a maximum of 0, 999. If the first slider is moved to 1, then
there will be a problem. The solution is the method min defined on num-

bers, which returns the lesser between the number on which it is called and

a threshold value. So, for all values less than 0, 999, it will return the value
itself, while it will returns 0.999 if the number is greater. Note that the last
expression of the function is simply an invocation of color, so that it will be

returned in the output. Finally, note the “syntactic sugar” in the definition

of the conditional statement, that increases readability by eliminating some

brackets;

• 23-25: a button is created. Note that, as it will be no longer changed, it is

not associated with a variable for future reference (the object simply has

to work). Of course, a button is built following the usual conventions that

we discussed with other GUIs. In addition, it has a property, states, that

defines each button state by a set of arrays (in SC, buttons are not limited

to two states, they can have 𝑛). The parameters are easily inferable from
the running GUI. The method action associates an action to the button (it

is the usual semantics). But in this case, the value of a button is the index of

the state: that is, the button has a value 0 in the first state, 1 in the second,
and so on. Therefore, it becomes possible to define a condition statement

depending on the state of the button. In this case, values are only two (as

they have to be associated with the two possible values of the flag, through

a symbol), and an if statement is enough, determing the value of the flag

according to the state of the button;

• 27-32: it is time to build sliders and the relative labels that show their values.

The approach presented here is “oversized” for the case, but its aim is to be

useful in a more general sense. Rather than building the six elements one

Introduction to SuperCollider 71

by one, a procedural approach is applied. The constructor method fill of

Array returns an array of 𝑛 places: for each place, an elements is provided

by calculating the function passed as an argument to fill. The function has

an argument that represents the counter (in the case, i). In our example, the

array has a size of three elments, and the function returns for each place an

arraymade of a slider and a label. Each element of the array guiArr is in turn

therefore an array of two elements. The construction of the slider (Slider)

and the label (StaticText) is very similar towhatwe saw for Knob. Note that

the position of the graphic elements depends on a parameter step common

to both the elements and controlled by the counter. The idea is “do it three

times, a slider and a label, every time with the same size but progressively

shifting down a bit”. When i = 0, then the cursor is on the abscissa at the

point 10, when i = 1 is at 70, and so on. A similar approach is extremely

useful in cases where the elements are not three but many more, or when

the number of elements cannot be known in advance but could depend on

some variable. The work involved in programming a GUI is compensated

by its flexibility;

• 34-39: the block defines the action of each slider. The action is assigned by

iterating on the array that contains the elements. Each element is accessible

through item and its position through index (the reader should remember

that the argument names are arbitrary, its their position that defines their

semantics). Now, every element of guiArr is an array with cursor and label.

Therefore, item[0] will return the slider, and item[1] its relative label. So

the action associated with each slider (35, the function associated with each

movement of the slider) will consist of updating the value of the label as-

sociated (through its attribute string) (36); updating the array colorArr for

the index index with the value of the slider (37); changing the background

of windowwith the result of the function call colorFuncwhich is passed flag

and colorArr (38). Note that this passage includes the steps 2-4 of Figure

3.3 (in which, by the way, labels are not included).

3.13 Conclusions

What we have seen in this chapter is a good start for diving smoothly into the

SC language. There is much more, of course. But with some general references

it is possible to explore the language itself by inspecting the interactive help

files and the examples that they provide, by exploiting the internal snooping

72 Syntax: basic elements

that SC provide, and also by looking directly at the SC code source. It is worth

closing the chapter bymentioning some abbreviations (some “syntactic sugar”)

that are useful and often used, but which may cause some confusion in the SC

novice:

1 // omitting new in Object

2 a = Something.new(argument) ;

3 a = Something(argument) ;

5 // omitting value in Function

6 function.value(aValue) ;

7 function.(aValue) ;

9 // multiple assignment to Array

10 # a,b,c = array ;

11 a = array[0]; b = array[1]; c = array[2] ;

13 // less parentheses

14 if (a, {do}, {do something different}) ;

15 if (a) {do} {do something different} ;

17 Something.methodWithFunction_({}) ;

18 Something.methodWithFunction_{} ;

20 // argument shortened by |

21 { arg argument, anAnotherArgument ; } ;

22 { |argument, anAnotherArgument| } ;

For a complete discussion the reader is referred to the help file “Syntax

Shortcuts”.

// omitting new in Object
a = Something.new(argument) ;
a = Something(argument) ;

// omitting value in Function
function.value(aValue) ;
function.(aValue) ;

// multiple assignment to Array
a,b,c = array ;
a = array[0]; b = array[1]; c = array[2] ;

// less parentheses
if (a, {do}, {do something different}) ;
if (a) {do} {do something different} ;

Something.methodWithFunction_({}) ;
Something.methodWithFunction_{} ;

// argument shortened by |
{ arg argument, anAnotherArgument ; } ;
{ |argument, anAnotherArgument| } ;

code/sintassi/sugar.scd
code/sintassi/sugar.scd

4 Synthesis, I: Fundamentals of Signal Pro-

cessing

SuperCollider is undoubtedly specialized in real-time sound synthesis bymeans

of its audio server, scsynth. The aim of this chapter is not, however, to intro-

duce the audio server and its functions. The following discussion aims instead

to provide a rapid introduction to digital signal processing and sound synthe-

sis using the SuperCollider language. The expert reader eager to learn about

synthesis via the server can safely skip to the next chapter. The discussion on

the fundamentals of synthesis still allows us to look more closely at some of

the linguistic aspects previously introduced. Of course, the chapter is very con-

cise, and the reader is referred to the many available resources on acoustics and

digital audio.

4.1 A few hundred words on acoustics

A sound is a continuous variation of pressure detectable by the human ear. As

a vibration, it depends on the movement of bodies of the physical world (a

guitar played with a plectrum, a tent shaken by the wind, a table beaten with

knuckles). A sound is thus a series of compressions and rarefactions of air mol-

ecules around the listener: what is propagated is precisely this oscillation (as

in a system of steel balls that collide), not the molecules themselves, that in-

stead oscillate around an equilibrium position. A signal is a representation of

a time pattern, sound being a good example of this. In particular, an audio sig-

nal, that represents a sequence of compressions/rarefactions of the atmospheric

74 Synthesis, I: Fundamentals of Signal Processing

pressure, takes the form of an oscillation between positive values and negative

values. If this oscillation is regular in time, the signal is periodic, otherwise

it is aperiodic: most sounds are placed between these two extremes, i.e. they

are more or less periodic/aperiodic. The most basic periodic signal is a sine

wave, something that acoustically corresponds more or less to the sound of a

tuning fork. Figure 4.1 allows to summarize what has been said. Let us sup-

pose one strikes the tuning fork (as a singer would do to get a reference note).

Following the supplied energy, the tuning fork will produce sound, the latter

resulting from the oscillation of the metal prongs. In other words, the oscilla-

tion of the metal prongs around the equilibrium position will be transmitted

to the air molecules around it, which will fluctuate accordingly, “analogically”.

Therefore, the “form” of the oscillation of the prongs is substantially the same

“form” as the oscillation of the air molecules, that the listener perceives as a

sound. Suppose then to connect a pen to one of the prongs of the tuning fork

and to have a tape that runs at a uniform speed (in fact, the model is precisely

that of a seismograph): such a device will record the excursion of the prongs

and the resulting trace, which is, in the case of the tuning fork, a sinusoid.

4 Capitolo 1

oltre all’informazione sulla posizione della particella vogliamo rappresentare la suc-
cessione delle variazioni della distanza dall’origine con la variazione dell’angolo a
cui si trova la particella occorre disegnare un diagramma cartesiano con una funzione
trigonometrica, ad esempio il seno. Il seno di un angolo, infatti, è la posizione della
particella sull’asse verticale rispetto all’origine (Figura 1.3).

La funzione disegnata descrive quindi un movimento sinusoidale; il fenomeno
ondulatorio connesso a tale vibrazione è detto onda seno. Tutta la scienza delle onde
sonore, come vedremo, è costruita a partire dalle onde sinusoidali.2

Inseriamo ora il tempo nelle nostre descrizioni. La particella in moto armonico,
sia essa una corda o la punta di un diapason, si sposta nel tempo anche se ripete le
stesse posizioni. Nella Figura 1.4 supponiamo di collegare un pennino a una punta
del diapason: vibrando, essa disegna nel tempo una curva sinusoidale (simile al fun-
zionamento di un elettrocardiografo).

2 Le nozioni di questo paragrafo sono valide non soltanto per le onde sonore, ma per i segnali
periodici in generale (ad esempio, per le onde elettromagnetiche della luce).

Figura 1.3 Relazione tra il moto sul cerchio e la funzione seno

Figura 1.4 Relazione tra la vibrazione del diapason e la funzione seno

Capi1.pmd 19/12/2007, 10.044

A A A A

BB

C C

Figure 4.1 Vibration of a tuning fork and sinusoid.

By observing the sine wave, it is possible to see the basic dimensions of a signal:

• after 𝐴 has been reached for the second time, ideally the trace is repeated.

The signal is then periodic because it repeats its beahvior after a certain period

of time, which is referred to by T. The frequency, f of a signal is the number

of repetitions of the cycle in the time unit. Intuitively, 𝑓 = 1
𝑇 , and vice versa.

Audible frequencies are (approximately) in the range [16, 20000] Hz (Herz).

Introduction to SuperCollider 75

As themeasure represents the number of cycles per second, it is also referred

as cps;

• the amplitude of a signal is the amount of oscillation, in the example themax-

imum travel of the reed. Note that the audio signal is bipolar, i.e. has a posi-

tive and a negative maximum (the sign is arbitrary but represents the oppo-

site directions of the oscillation). An audio signal is (usually) symmetrical

with respect to the 0, that in turn represents the point of inertia (in which
the reed is at rest). The amplitude measurement can take place in various

ways. Very often (that is, in SC and inmany other softwares) two units are in

use. On the one hand, a normalized range [−1, 1], abstract from the physical

value, on the other hand a representation in decibels, dB, a unit of measure

for sound intensity/pressure somewhat closer to the perception ;

• let us suppose to have two identical tuning forks that are hit one after the

another after a certain amount of time. Intuitively, they will draw the same

trace, but at each instant one will be in a certain position, the other in a dif-

ferent one. That is, they will have a difference of phase, 𝜙. Since in periodic
signals the cycle is repeated, the phase is measured in degrees (such as on a

circumference) or radians, that is, in fractions of 𝜋, where 2𝜋 is the circum-

ference;

• the oscillation motion of the tuning fork follows a certain trace, that is, the

signal exhibits a certain waveform, the sine wave. Other acoustic sources (an

oboe, for example) would result in different plots.

The above discussion concerns the so-called time-domain representation

of a signal. The signal is in fact represented as a temporal phenomenon. An

alternative representation of the signal is possible, in the frequency domain, in

which the signal is representedwith respect to its frequency content. In particu-

lar, the Fourier theorem states that any periodic signal can be decomposed into

a sum of sinusoids of different amplitude: as if a (theoretically infinite) number

of sinusoids of different volumes all sounded together. The sine wave is mathe-

matically the simplest form of periodic curve (which is why sinusoids are often

referred to with the terms “simple signal” and “pure tone”). The result of this

decomposition is a spectrum, which can be seen as the way in which energy is

distributed among the various sinusoidal components in which the input sig-

nal is decomposed. A spectrum does not include time information: it is like an

instantaneous snapshot of the internal composition of the sound. Therefore, if

we analyse a signal in the frequency domain we get its spectrum. Starting from

the Fourier theorem, we can observe that the spectrum of a complex signal (not

of a sinusoidal tone) is made up of many components of different frequency. In

76 Synthesis, I: Fundamentals of Signal Processing

a periodic signal these components (called “harmonics”) are integer multiples

of the fundamental frequency (which is the greatest common divisor). Signals

of this type are for example the sawtooth wave, the square wave, the triangular

wave, and in general the stationary phases of all signals with a recognizable

pitch. In an aperiodic signal, the components can be distributed in the spec-

trum in an arbitrary manner. When we are talking (very loosely) of “noise”, we

mostly refer to aperiodic signals.

4.2 Analog vs. digital

A digital signal is a numerical representation of an analog signal and is dou-

bly discrete: it represents discrete amplitude variations (quantization) into dis-

crete instants of time (sampling frequency, or better rate). The digitalization of

an analog signal is shown in Figure 4.2. A continuous signal (for example, a

voltage variation of the electrical output from a generator which produces an

analog sine wave at 440Hz) (a), is sampled (b): in the sampling process, an ana-

log-to-digital converter (ADC) is polling at regular time intervals (defined by a

“clock”) the voltage value. In essence, it imposes a “vertical” reference grid on

the analog signal. The result (c) is a pulse signal (that is, it consists of pulses)

between which there is no other information. A similar mechanism occurs in

relation to the amplitude of the signal (d). Here the grid defines a set of dis-

crete (finite) values to which the amplitude values detected in the analog signal

have to be approximated (e). The result is a pulse signal whose amplitudes are

reffered to a discrete scale (f): a digital signal.

The digitalization can be thought of as a grid that is superimposed on an

analog signal, even if a digital signal is typically represented in software as a

continuous curve for sake of convenience. Sometimes it is shown as a broken

line: at the end, there is only one mathematically continuous function passing

through all points, and therefore, once converted back to analog (through a dig-

ital-to-analog converter, DAC), the curve should have exactly the same shape

as the input. Obviously the process produces approximations. Quantization

defines the maximum dynamic range of the signal (in CD-quality, 16 bit, 96 dB)
while sampling defines the maximum frequency that can be represented in the

digital signal. As shown by the Nyquist theorem, the sampling rate states that

the frequencies that can be represented in a digital signal are all those com-

prised in the half of the sampling frequency: if we have a CD-quality signal

Introduction to SuperCollider 77

0 0.01

-1

1

0 0.01

-1

1

(a) (b)

0 0.01

-1

1

0 0.01

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(c) (d)

0 0.01

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.01

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(e) (f)

Figure 4.2 Digital signal: analog-to-digital.

with a sample rate of 44.100, then we can represent frequencies up to 22.050Hz
(a good approximation of the audible frequencies).

In the case of digital audio, the digitalized signal is thus available in the

form of numerical information. This can be processed by a computer which

can perform the calculation, and process the numbers representing the signal.

The main steps of digital recording are as follows (Figure 4.3):

78 Synthesis, I: Fundamentals of Signal Processing

Pressure
wave

Analog processing

Support

Microphone

Loudspeaker

Reading

reading

Pressure
wave

Analog processing

Pressure
wave

Analog processing

Storage

Microphone

Loudspeaker

ADC Pressure
wave

Analog processing

DAC

Figure 4.3 Audio chain: analog and digital.

1. analog-to-digital conversion: the analog signal is filtered and converted

from the analog domain (as a continuous variation of the electrical voltage,

e.g. produced by a microphone) in the digital format via the ADC;

2. processing: the digitalized signal, nowa sequence of numbers, can be processed

in various ways;

3. digital-to-analog conversion: to be heard, the sequence of numbers that

composes the signal is converted back into an analog signal through the

DAC: once filtered, the DAC generates again a continuous variation of the

electrical voltage that can, for example, drive a loudspeaker.

In the preceding discussion, the process of digitalization has been described

with respect to a pre-existing analog signal. On the other hand, the analog is

always “surrounding” the digital. To be heard, a digital signal must necessarily

be converted into a continuous electric signal, which is then sent to a speaker,

making it vibrate. However, a digital signal does not have to start from an ana-

log one. The starting assumption of computer music is that the computer can

be used to directly synthesize the sound. The heart of digital synthesis is to

exclude the step 1, directly generating the sequence of numbers that have to be

converted into an analog signal. Such an assumption in no way precludes the

possibility of working with samples from “external” sources, rather it under-

lines that the fundamental aspect of computer music lies in the methods and

Introduction to SuperCollider 79

calculation procedures that govern the synthesis. It is always possible for the

“digital” composer to work on analog components (e.g. recording and process-

ing analog signals), but the most distinctive aspect of the composer’s practice is

to exploit the numerical (and therefore “computable”) nature of digital signals

(Figure 4.4).

Pressure
wave

Analog processing

Support

Microphone

Writing

Pressure
wave

Analog processing

Storage

Microphone

ADC

ANALOG

DIGITAL

Figure 4.4 Analog vs. digital composition.

A discrete signal can be described through a mathematical function:

𝑦 = 𝑓[𝑥]

the function indicates that for each discretemoment of time 𝑥 the signal has
the amplitude value 𝑦 . A digital signal is a sequence of elements 𝑥0, 𝑥1, 𝑥2, …
which correspond to values of amplitude 𝑦0, 𝑦1, 𝑦2, ….

The data structure that represents a signal is typically an array, a sequence

of consecutive and homogeneous memory cells, that is, the cells contain the

same data type (the numeric type chosen for the signal in question). Thus, for

example an array such as:

[0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35]

The array describes a signal composed of 8 samples (Figure 4.5), where the

index (the number that label progressively each of the eight values) is 𝑥, to be

80 Synthesis, I: Fundamentals of Signal Processing

0 1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.5 The array [0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35].

considered as amoment of time, while the associated numeric data is 𝑦 , defined
as the amplitude of the signal at the time 𝑥:

𝑥 = 0 → 𝑦 = 0
𝑥 = 1 → 𝑦 = 0.5
…
𝑥 = 7 → 𝑦 = 0.35

SuperCollider allows us to easily view such data structures through the

method plot. For example, the class Array provides the plotmethod that gen-

erates a window and draws the resulting curve by joining the values in the

array.

1 [0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35].plot ;

2 [0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35].plot

3 ("an array", minval:-1, maxval:1, discrete:true) ;

The first line makes use of the default values, the second line gives an ex-

ample of some possible options. The method plot is implemented not only in

[0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35].plot ;
[0, 0.5, 0, -0.25, 0, 0.1, -0.77, 0.35].plot
 ("an array", minval:-1, maxval:1, discrete:true) ;

code/fondamenti/plot.scd
code/fondamenti/plot.scd

Introduction to SuperCollider 81

the class Array but in many others, and is extremely useful for understanding

the behavior of the signals taken into account.

4.3 Synthesis algorithms

An algorithm for the synthesis of sound is a formalized procedure which has as

its purpose the generation of the numerical representation of an audio signal.

The SuperCollider language (sclang) allows us to experiment with algo-

rithms for signal synthesis in deferred time without taking into account –for

the moment– the audio server (scsynth). This is not the usual way to use Su-

perCollider. Moreover, sclang is designed as a high-level language (“far from

the machine and close to the programmer”), and it is inherently not optimized

for massive numerical operations (“number crunching”, as it is defined in com-

puter science jargon). However, for educational reasons and in order to increase

our knowledge both on signal synthesis and on the language itself, it can be

useful to discuss some simple synthesis algorithms.

Since the signal of CD audio (currently still the most popular audio stan-

dard) is sampled at 44.100Hz, in order to create a mono signal of 1 second with
CD quality, we need to build an array of 44.100 slots: the computation process
to generate a signal requires us to design and implement an algorithm to “fill”

each of these (indexed) places with a value. So, to generate a pure sinusoidal

signal, the easiest method is to calculate the amplitude 𝑦 for each 𝑥 sample of

the signal, according to the sine function and to associate the value to 𝑦 to the

index 𝑥 in the array 𝐴, that represents 𝑆 .
A periodic function is defined as follows:

𝑦 = 𝑓(2𝜋 × 𝑥)

A sinusoidal signal is described by the formula:

𝑦 = 𝑎 × 𝑠𝑖𝑛(2𝜋 × 𝑘 × 𝑥)

The effect of the parameters 𝑎 and 𝑘 is represented in Figure 4.6, where a

(discrete) signal composed 100 samples is drawn (in continuous form).

82 Synthesis, I: Fundamentals of Signal Processing

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

𝑎 = 1, 𝑘 = 1/1000 𝑎 = 1, 𝑘 = 2/1000

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

𝑎 = 0.5, 𝑘 = 1/1000 𝑎 = 0.5, 𝑘 = 2/1000

Figure 4.6 Sinewave and variation of parameters 𝑎 and 𝑘.

The synthesis algorithm for a sinusoidal signal, written in pseudo-code (that

is, in a non-existent language that allows us to illustrate programming in an

abstract form), is the following:

For each x in A:

y = a*sin(k*x)

A[x] = y

Line 1 of the cycle calculates the value y as a function of two parameters a

and k that control the amplitude and frequency of the sinusoid, while line 2 as-

signs index x of A the value y. SC allows to easily implement a similar algorithm.

For example, the first signal of Figure 4.6was obtainedwith the following code:

Introduction to SuperCollider 83

1 var sig, amp = 1, freq = 1, val ;

2 sig = Array.newClear(100) ;

3 sig.size.do({ arg x ;

4 val = amp*sin(2pi*freq*(x/sig.size)) ;

5 sig[x]= val ;

6 }) ;

7 sig.plot(minval:-1, maxval:1, discrete:true) ;

In the code, the first line defines the variables that contain respectively the

signal, the amplitude, the frequency, and the incremental value of the samples.

Then, an array of 100 elements is created. Lines 3-6 are occupied by a loop:

sig.size returns the size of the array (100). For sig.size (100) times the func-
tion is evaluated in the cycle do: because x represents the increase along the

array (representing time: 0, 1, 2…98, 99), the function (𝑓[𝑥]) calculates its value
in relation to x. The value of the frequency of the desired signal indicates the

number of cycles (2𝜋) per second. The case freq = 1 indicates that a cycle of the

sine wave (ranging from 0 to 1) will be distributed over 100 points. Hence, the
meaning of x/sig.size. If the desired frequency is 440Hz (→ cycles per second,

freq = 440) then there should be 440 × 2𝜋 cycles per second (2*pi*freq). This

value should be distributed on all the places of the array (x/sig.size). The

computed value of val is in the range [−1, 1] by trigonometric definition and
therefore can be directly scaled by amp. Line 5 assigns the value val to the place

x of sig. The signal is then drawn in the amplitude range [−1, 1], in a discrete
fashion (7).

A class particularly useful for calculating signals is Signal, which is a sub-

class of ArrayedCollection (the superclass of many array-like objects) that is

specialized in signal generation. The class Signal is designed to contain large

arrayswith homogeneous type of data (as typical for audio signals). The follow-

ing example is an obvious rewriting of the code discussed above using Signal

and filling a signal of 44.100 samples, equivalent to one second of audio at CD
standard sampling rate.

var sig, amp = 1, freq = 1, val ;
sig = Array.newClear(100) ;
sig.size.do({ arg x ;
	val = amp*sin(2pi*freq*(x/sig.size)) ;
	sig[x]= val ;
}) ;
sig.plot(minval:-1, maxval:1, discrete:true) ;

code/fondamenti/sineAK.scd
code/fondamenti/sineAK.scd

84 Synthesis, I: Fundamentals of Signal Processing

1 var sig, amp = 1, freq = 440, val ;

2 sig = Signal.newClear(44100) ;

3 sig.size.do({ arg x ;

4 val = amp*sin(2pi*freq*(x/sig.size)) ;

5 sig[x]= val ;

6 }) ;

The resulting signal can be stored on the hard disk in an audio format in

order to be played back, bymeans of the class Soundfile (still on the client side).

In this way, Signal can be used to generate audio materials to be used later.

1 (

2 var sig, amp = 1, freq = 440, val ;

3 var soundFile ;

5 sig = Signal.newClear(44100) ;

6 sig.size.do({ arg x ;

7 val = amp*sin(2pi*freq*(x/sig.size)) ;

8 sig[x]= val ;

9 }) ;

11 soundFile = SoundFile.new ;

12 soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;

13 soundFile.openWrite("/Users/andrea/Desktop/signal.aiff") ;

14 soundFile.writeData(sig) ;

15 soundFile.close ;

16)

In the example, Soundfile creates an audio file (11) with properties defin-

able by the user (12): file type ("AIFF"), quantization (16 bits, "int16"), number
of channels (mono, 1)1. It is important to specify the quantization because SC

internally (and by default) works with a 32 bit quantization in a float format: a

useful format for the internal precision but rather inconvenient for final release.

After the file object is created, the user must also specify a path where the file

1 Note the chaining of messages: each of the setter methods returns the object

itself.

var sig, amp = 1, freq = 440, val ;
sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	val = amp*sin(2pi*freq*(x/sig.size)) ;
	sig[x]= val ;
}) ;

code/fondamenti/signalAK.scd
code/fondamenti/signalAK.scd

(
var sig, amp = 1, freq = 440, val ;
var soundFile ;

sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	val = amp*sin(2pi*freq*(x/sig.size)) ;
	sig[x]= val ;
}) ;

soundFile = SoundFile.new ;
soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;
soundFile.openWrite("/Users/andrea/Desktop/signal.aiff") ;
soundFile.writeData(sig) ;
soundFile.close ;
)

code/fondamenti/signalSoundFile.scd
code/fondamenti/signalSoundFile.scd

Introduction to SuperCollider 85

is to be stored (13). At this point the data in the array sig can be written in the

file (14) - data is generated exactly as in the previous example. Once the writing

operations are concluded, the file must be closed (15), otherwise it will not be

readable. The file is ready to be played back.

To avoid writing the generated data onto a file, we can use the method

play that offers a chance to “directly” hear the contents of the Signal (how this

happens will be discussed in details later) .

1 var sig, amp = 1, freq = 441, val ;

2 sig = Signal.newClear(44100) ;

3 sig.size.do({ arg x ;

4 val = amp*sin(2pi*freq*(x/sig.size)) ;

5 sig[x]= val ;

6 }) ;

7 sig.play(true) ;

What is the frequency at which the signal is played? Until now the rate has

in fact been specified only in terms of relative frequency between the compo-

nents. With play we switch to real-time2, other variables have to be taken into

account, that will be discussed later. SC by default generates a signal with a

sampling rate (often shortened to sr) of 44, 100 samples per second.
The content of the array, after being put in a temporary memory location (a

“buffer”) is read at a frequency of 44, 100 samples per second (a signal of 44, 100
samples is “consumed” in a second). In other words, SC takes a value from the

buffer every 1/44, 100 seconds. With the method play(true) (the default) the

execution is looping: once arrived at the end of the buffer, SC restarts from the

beginning. So if 𝑠𝑖𝑧𝑒 is the number of elements in the array, the signal period
(“how much it lasts” in seconds) is 𝑠𝑖𝑧𝑒/𝑠𝑟, and the frequency is its inverse:

1/𝑠𝑖𝑧𝑒/𝑠𝑟 = 𝑠𝑟/𝑠𝑖𝑧𝑒. If 𝑠𝑖𝑧𝑒 = 1, 000, then 𝑓 = 44, 100/1000 = 44.1 Hz. Con-
versely, if we want to get a signal whose fundamental is 𝑓 , the size of the array
that contains a single cyclemust be 𝑠𝑖𝑧𝑒 = 𝑠𝑟/𝑓 . The calculation is only approx-
imate because 𝑠𝑖𝑧𝑒 has to be an integer. If the array size is 44, 100 (as in many
examples in the chapter, but not in all), then the signal is read once per second.

Because the array contains a number of cycles 𝑓𝑟𝑒𝑞 , freq is actually the signal

2 It is therefore necessary to boot the audio server, From the menu Language >

Boot Server. Everything will be clarified later on.

var sig, amp = 1, freq = 441, val ;
sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	val = amp*sin(2pi*freq*(x/sig.size)) ;
	sig[x]= val ;
}) ;
sig.play(true) ;

code/fondamenti/play.scd
code/fondamenti/play.scd

86 Synthesis, I: Fundamentals of Signal Processing

frequency. In the following example(s) playwill not be automatically used: the

possibility of using the method is left to the reader, together with the task of

adapting the examples.

Returning now to synthesis-related issues, a periodic signal is a sum of sine

waves. A “rudimentary” implementation might be the following:

1 var sig, sig1, sig2, sig3 ;

2 var amp = 1, freq = 1, val ;

3 sig = Signal.newClear(44100) ;

4 sig1 = Signal.newClear(44100) ;

5 sig2 = Signal.newClear(44100) ;

6 sig3 = Signal.newClear(44100) ;

8 sig1.size.do({ arg x ;

9 val = amp*sin(2pi*freq*(x/sig.size)) ;

10 sig1[x]= val ;

11 }) ;

12 sig2.size.do({ arg x ;

13 val = amp*sin(2pi*freq*2*(x/sig.size)) ;

14 sig2[x]= val ;

15 }) ;

16 sig3.size.do({ arg x ;

17 val = amp*sin(2pi*freq*3*(x/sig.size)) ;

18 sig3[x]= val ;

19 }) ;

20 sig = (sig1+sig2+sig3)/3 ;

21 sig.plot ;

In the example we want to calculate the fundamental and first two har-

monics. Four Signal objects are generated, with the same size (3-6). Then, four

signals are calculated, by repeating a code that is structurally always the same,

as it varies only for the presence of a multiplier freq (8-19). Finally, sig is used

to contain the sum of the arrays (implemented for array as the sum of the el-

ements in the same relative positions). The aim is precisely to obtain a “sum”

of sinusoids. The values in the array sig are then prudently divided by 3. In
fact, if the signal must be contained within the range [−1, +1], then the worst
possible scenario is that of the three peaks (be they positive or negative) are in

phase (together), the sum of which would be just 3. Dividing by 3, then the

maximum amplitude possible will be −1 or 1. The signal can be written onto
an audio file as in the previous example. Note that, for graphic clarity, in order

var sig, sig1, sig2, sig3 ;
var amp = 1, freq = 1, val ;
sig = Signal.newClear(44100) ;
sig1 = Signal.newClear(44100) ;
sig2 = Signal.newClear(44100) ;
sig3 = Signal.newClear(44100) ;

sig1.size.do({ arg x ;
	val = amp*sin(2pi*freq*(x/sig.size)) ;
	sig1[x]= val ;
}) ;
sig2.size.do({ arg x ;
	val = amp*sin(2pi*freq*2*(x/sig.size)) ;
	sig2[x]= val ;
}) ;
sig3.size.do({ arg x ;
	val = amp*sin(2pi*freq*3*(x/sig.size)) ;
	sig3[x]= val ;
}) ;
sig = (sig1+sig2+sig3)/3 ;
sig.plot ;

code/fondamenti/sineAKiter.scd
code/fondamenti/sineAKiter.scd

Introduction to SuperCollider 87

to draw onto the screen it is convenient to reduce the number of points and set

𝑓𝑟𝑒𝑞 = 1.
In programming, repetition of substantially identical code blocks is always

suspect. In fact, iteration is not an ideal solution (even if it seems a simple so-

lution). Moreover, the repetition typically results in errors. Furthermore, the

program is not modular because it is designed not for the general case of a sum

of 𝑛 sinusoids, but for the specific case of three sinusoids. Finally, the code

becomes unnecessarily verbose and difficult to read.

The following algorithm provides a more elegant way to calculate a peri-

odic signal with a number of harmonics 𝑛, defined by the variable harm.

1 var sig, amp = 1, freq = 440, val ;

2 var sample, harm = 3 ;

3 sig = Signal.newClear(44100) ;

4 sig.size.do({ arg x ;

5 sample = x/sig.size ;

6 val = 0 ;

7 harm.do{ arg i ;

8 harm = i+1 ;

9 val = val + (amp*sin(2pi*freq*(i+1)*sample));

10 } ;

11 sig[x]= val/harm ;

12 }) ;

The cycle (4) calculates the value of each sample and use sample to keep in

memory the location. For each sample it resets val to 0. At this point, for each
sample it performs a number 𝑛 of calculations, so that it simply calculates the

value of the sine function for the fundamental frequency and the first 𝑛−1 har-
monics, as they were 𝑛 different signals. At each calculation, it adds the value

obtained to the one calculated for the same sample by the other functions (the

“sum” of sine waves). Finally, val is stored in the element of sig on which we

are working, after dividing it by the number of harmonics (following the cau-

tionary approach discussed above). Compared to the previous example, the

code uniquely defines the required function and assigns parameters as desired

(try to vary harm increasing harmonics), it is easier to fix, it is general and more

compact. It is worth introducing another point, although it will not have prac-

tical consequences. The iterative example implements an approach that is not

meant to work in real time. First the three signals are calculated, then they are

var sig, amp = 1, freq = 440, val ;
var sample, harm = 3 ;
sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	sample = x/sig.size ;
	val = 0 ;
	harm.do{ arg i ;
		harm = i+1 ;
		val = val + (amp*sin(2pi*freq*(i+1)*sample));
	} ;
	sig[x]= val/harm ;
}) ;

code/fondamenti/sineAKharm.scd
code/fondamenti/sineAKharm.scd

88 Synthesis, I: Fundamentals of Signal Processing

summed (mixed, we may say). In real time, as will be seen, the signal is gener-

ated continuously, therefore it is not possible to follow such an approach as the

duration of the signal is not determined. On the contrary, the second example

potentially can be implemented in real time: in fact, the algorithm calculates

the final value of a sample one at a time. In this case, this value is written into

the array sig by increasing progressively the position, but it could instead be

sent to the sound card and converted to sound.

Starting from the last example, it is easy to generate other periodic signals,

in the sameway as the ones alreadymentioned. By definition, a sawtoothwave

is a periodic signal that has theoretically infinite frequency harmonics 𝑓 × 𝑛,
where 𝑓 is the fundamental frequency and 𝑛 = 2, 3, 4, …, and amplitude re-

spectively equal to 1/2, 3, 4… (i.e. each one inversely proportional to the rela-

tive harmonic number). The following example introduces a small change in

the algorithm presented above.

1 var sig, amp = 1, freq = 440, val ;

2 var ampl ; // ampl is the same for each component

3 var sample, harm = 10 ;

4 sig = Signal.newClear(44100) ;

5 sig.size.do({ arg x ;

6 sample = x/sig.size ;

7 val = 0 ;

8 harm.do{ arg i ;

9 harm = i+1 ;

10 ampl = amp/harm ;

11 val = val + (ampl*sin(2pi*freq*(i+1)*sample));

12 } ;

13 sig[x]= val/harm ;

14 }) ;

The only difference is the introduction of the variable ampl: for each sam-

ple, for each harmonic component (10) the relative amplitude is calculated by

dividing the reference amplitude amp by the harmonic number. By increasing

harm, it can be seen that the sawtooth wave is gradually approximated more

accurately.

A squarewave can be generated in the sameway as the sawtoothwave, but

adding only the odd harmonics (𝑛 = 1, 3, 5…). In other words, a square wave is

a sawtooth wave in which the even harmonics have zero amplitude. The code

is shown in the following example.

var sig, amp = 1, freq = 440, val ;
var ampl ; // ampl is the same for each component
var sample, harm = 10 ;
sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	sample = x/sig.size ;
	val = 0 ;
	harm.do{ arg i ;
		harm = i+1 ;
		ampl = amp/harm ;
		val = val + (ampl*sin(2pi*freq*(i+1)*sample));
	} ;
	sig[x]= val/harm ;
}) ;

code/fondamenti/sineAKsaw.scd
code/fondamenti/sineAKsaw.scd

Introduction to SuperCollider 89

1 var sig, amp = 1, freq = 440, val ;

2 var ampl ; // ampl is the same for each component

3 var sample, harm = 20 ;

4 sig = Signal.newClear(44100) ;

5 sig.size.do({ arg x ;

6 sample = x/sig.size ;

7 val = 0 ;

8 harm.do{ arg i ;

9 harm = i+1 ;

10 if(harm.odd){ // is it odd?

11 ampl = amp/harm ;

12 val = val + (ampl*sin(2pi*freq*(i+1)*sample));

13 }

14 } ;

15 sig[x]= val/harm ;

16 }) ;

This time the value of ampl is subject to a conditional evaluation (10), where

harm.odd returns true or false depending onwhether the variable (the harmonic

number) is even odd or even. If it is odd, the value is calculated as in the case

of the sawtooth wave, if it is even, the computation of val is skipped for the

component.

Variable numbers of harmonics (3,5,40) for the three cases discussed (sinu-

soids with constant amplitude, sawtooth wave and square wave) are shown in

Figure 4.7. In particular, in the sawtooth and square waves the contribution of

harmonics is made evident by the number of “humps” in the signal.

4.4 Methods of Signal

The class Signalprovidesmany opportunities for processing that have not been

discussed before, as a “direct” implementation was more useful for learning

purposes. Signal is in fact a class that is used to generate signals that typically

are not to bewritten to files, but that are to be used by specific synthesismethods

(wavetable synthesis, to be discussed later). For example, the method sineFill

is explicitly dedicated to the generation of signals by summing sinusoids. Its

arguments are

var sig, amp = 1, freq = 440, val ;
var ampl ; // ampl is the same for each component
var sample, harm = 20 ;
sig = Signal.newClear(44100) ;
sig.size.do({ arg x ;
	sample = x/sig.size ;
	val = 0 ;
	harm.do{ arg i ;
		harm = i+1 ;
		if(harm.odd){ // is it odd?
			ampl = amp/harm ;
			val = val + (ampl*sin(2pi*freq*(i+1)*sample));
		}
	} ;
	sig[x]= val/harm ;
}) ;

code/fondamenti/sineAKsquare.scd
code/fondamenti/sineAKsquare.scd

90 Synthesis, I: Fundamentals of Signal Processing

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.7 From left, the sum of 3, 5, 40 sinusoids: from above, constant am-

plitude, sawtooth wave, square wave.

1. the size;

2. an array specifying a series of amplitudes;

3. an array that specifies a series of phases.

In the following minimal example, a sinusoid of 100 points is generated by
specifying a single element (i.e., the fundamental) in the array of amplitudes.

Note also the method scale defined on Signal but not on other subclasses of

ArrayedCollection, which multiplies the elements by a specified factor.

1 var sig, amp = 0.75, freq = 440 ;

2 sig = Signal.sineFill(100, [1]).scale(amp) ;

3 sig.plot(minval:-1, maxval:1) ;

As we said, amplitudes and phases are related to the harmonics of the si-

nusoidal signal. For example, an array of amplitudes [0.4, 0.5, 0, 0.1] indi-

cates that the first 4 harmonics will be calculated, where 𝐹2 will have amplitude

0.4, 𝐹3 0.5, and so on. Note that to remove a harmonic component, its ampli-

tude must be set to 0 (the case of 𝑓4). The help file includes the code:

var sig, amp = 0.75, freq = 440 ;
sig = Signal.sineFill(100, [1]).scale(amp) ;
sig.plot(minval:-1, maxval:1) ;

code/fondamenti/sineFill1.scd
code/fondamenti/sineFill1.scd

Introduction to SuperCollider 91

1 Signal.sineFill(1000, 1.0/[1,2,3,4,5,6]) ;

The code creates an array of 1000 points which it fills with a sine wave, plus

its first five harmonics. The syntax 1.0/[1,2,3,4,5,6] is interesting. If further

evaluated, the post window returns:

1 1.0/[1,2,3,4,5,6]

2 [1, 0.5, 0.33333333333333, 0.25, 0.2, 0.16666666666667]

That is, a number divided by an array returns an array where each element

is equal to the number divided by the relative element of the starting array. In

other words it is like writing [1.0/1, 1.0/2, 1.0/3, 1.0/4, 1.0/5, 1.0/6].

The array therefore contains a series of 6 amplitudes inversely proportional to
the number of harmonics. Intuitively, the resulting signal approximates a saw-

tooth wave3.

In the following example, the approximation is much better. The method

series, defined for Array, creates an array and has as arguments size, start

and step: the array is filled by a series of size successive integers that, starting

from start, increase by step. Therefore, the array contains the values 1, 2, 3, …1, 000.
The signal sig generates a sine wave and its first 999 upper harmonics with a

value inversely proportional to the number of harmonic. Note the great com-

pactness of this linguistic representation.

1 var sig, arr ;

2 arr = Array.series(size: 1000, start: 1, step: 1) ;

3 sig = Signal.sineFill(1024, 1.0/arr) ;

A square wave is a sawtooth wave without even harmonics. The code is

shown in the following example.

3 Here phase is not taken into account, but the same principles apply.

Signal.sineFill(1000, 1.0/[1,2,3,4,5,6]) ;

code/fondamenti/sineFillEx.scd
code/fondamenti/sineFillEx.scd

1.0/[1,2,3,4,5,6]
[1, 0.5, 0.33333333333333, 0.25, 0.2, 0.16666666666667]

code/fondamenti/post/sineFillPost.scd
code/fondamenti/post/sineFillPost.scd

var sig, arr ;
arr = Array.series(size: 1000, start: 1, step: 1) ;
sig = Signal.sineFill(1024, 1.0/arr) ;

code/fondamenti/sineFillSaw.scd
code/fondamenti/sineFillSaw.scd

92 Synthesis, I: Fundamentals of Signal Processing

1 var sig, arr, arr1, arr2 ;

2 arr1 = Array.series(size: 500, start: 1, step: 2) ;

3 arr1 = 1.0/arr1 ;

4 arr2 = Array.fill(500, {0}) ;

5 arr = [arr1, arr2].flop.flat ;

6 // arr = [arr1, arr2].lace(1000) ;

8 sig = Signal.sineFill(1024, arr) ;

9 sig.plot ;

The amplitudes of the even harmonics must be equal to 0, the odd ones

inversely proportional to their number.

The array arr1 is the array of amplitudes of odd harmonics. Note that step:

2 and arr1 are already properly scaled (3). The array arr2 (4) is created by

the method fill that fills an array of the desired size (here 500) evaluating for

each place the passed function. As we need an array composed of zeros, the

function should simply return 0. Line 5 creates the new array arr, as it is more

interesting, since it makes use of the methods flop and flat. See the example

from the post window:

var sig, arr, arr1, arr2 ;
arr1 = Array.series(size: 500, start: 1, step: 2) ;
arr1 = 1.0/arr1 ;
arr2 = Array.fill(500, {0}) ;
arr = [arr1, arr2].flop.flat ;
// arr = [arr1, arr2].lace(1000) ;

sig = Signal.sineFill(1024, arr) ;
sig.plot ;

code/fondamenti/sineFillSquare.scd
code/fondamenti/sineFillSquare.scd

Introduction to SuperCollider 93

1 a = Array.fill(10, 0) ;

3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5 b = Array.fill(10, 1) ;

7 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

9 c = [a,b] ;

11 [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

12 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

14 c = c.flop ;

16 [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1],

17 [0, 1], [0, 1], [0, 1]]

19 c = c.flat ;

21 [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

After creating two arrays of 10 places a and b (1, 7), a third array c is in-

stantiated containing the two array a and b as its elements (9, as seen in 11 and

12). The method flop (14) “interlaces” pairs of elements from the two arrays

(see 16). The method flat (18) “flatten” an array “eliminating all brackets”: the

structure of sub-array elements is lost. Compared to line 9, the result is an alter-

nation of elements from the first and the second array (from a and b). In the ex-

ample of the square wave, the result of line 5 is an alternation of elements from

arr1 and zeros taken from arr2). As typical, the operation is actually already

implemented in SC by a dedicated method, lace (6, commented): lace(1000)

returns an array of size 1000 polling alternately arr1 and arr2.

4.5 Other signals and other algorithms

Other periodic signals can be generated in a trigonometric/procedural form,

through a sum of sinusoids calibrated in amplitude. This is the case for exam-

ple of the triangular wave. Even if described in a discrete form, such a method

a = Array.fill(10, 0) ;

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

b = Array.fill(10, 1) ;

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

c = [a,b] ;

[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

c = c.flop ;

[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1],
[0, 1], [0, 1], [0, 1]]

c = c.flat ;

[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

code/fondamenti/post/flopFlatPost.scd
code/fondamenti/post/flopFlatPost.scd

94 Synthesis, I: Fundamentals of Signal Processing

has its origin in the continuous domain. However, in the discrete domain other

approaches are available, that are typically defined as “non-standard”. For ex-

ample, a geometric approach can be designed. The period of a triangular wave

can be seen as consisting of four segments: the first in the range of [0.0, 1.0], the
second in [1.0, 0.0], the third in [0.0, −1.0] and the fourth in [−1.0, 0].

1 // Triangular waveform by adding segments

3 var first, second, third, fourth, total ;

4 var size = 50 , step;

6 step = 1.0/size ;

7 first = Signal.series(size, 0, step) ;

8 second = (first+step).reverse ;

9 third = second-1 ;

10 fourth = first-1 ;

11 total = (first++second++third++fourth) ;

13 total.plot;

In the example, the variable size, the size of the array, contains the four

segments, while step is the increase in the amplitude value. The first segment

is then an array of type Signal filled by a number 𝑠𝑡𝑒𝑝 of values increasing by

𝑠𝑡𝑒𝑝: it contains values from 0 to 1 − 𝑠𝑡𝑒𝑝 (7). The second segment follows

the opposite path: the method reverse returns an array by reading backward

the array on which it is called. Before, a step is added to each element of the

array: second contains values from 1 to 0 + 𝑠𝑡𝑒𝑝. The other two segments are
obtained by generating two arrays third and fourth that subtract 1 respectively
from second and first, that is, they are later “shifted down” (9, 10). Finally,

the array total is obtained by concatenating the four segments. Note that the

summing operations (as other operations on arrays) return an array in which

each element results from the application of the sum to the relative element of

the starting array. I.e.:

1 [1, 2, 3, 4]*2

2 [2, 4, 6, 8]

// Triangular waveform by adding segments

var first, second, third, fourth, total ;
var size = 50 , step;

step = 1.0/size ;
first = Signal.series(size, 0, step) ;
second = (first+step).reverse ;
third = second-1 ;
fourth = first-1 ;
total = (first++second++third++fourth) ;

total.plot;

code/fondamenti/sigTriangle.scd
code/fondamenti/sigTriangle.scd

[1, 2, 3, 4]*2
[2, 4, 6, 8]

code/fondamenti/post/addArrayPost.scd
code/fondamenti/post/addArrayPost.scd

Introduction to SuperCollider 95

Such a method based on geometric synthesis allows one to obtain better

results than a sum of sinusoids that can only approximate the triangular wave.

Summing sinusoids would require infinite components to generate a triangular

wave: the resulting edges are always “smoothed”.

Again, the approach can also be discussed in relation to real/deferred time.

The geometric approach must first calculate the segments in full, and then con-

catenate them: is not therefore a well-suited technique for real-time synthesis.

An alternative approach is presented in the following example:

1 // Triangular waveform by series e sign change

3 var size = 100, freq = 2 ;

4 var step, val, start = 0, sign = 1 ;

5 var sig = Signal.newClear(size) ;

6 step = 1.0/size*(freq*4);

7 val = 0 ;

8 sig.size.do{ arg x;

9 if((val >= 1) || (val<=1.neg)) {

10 sign = sign.neg

11 } ;

12 val = val+(step*sign);

13 sig[x] = val ;

14 } ;

16 sig.plot ;

The idea, in this case, comes from the observation that the waveform is a

straight line whose slope is reversed when a limit is reached, namely the two

symmetric amplitude peaks, positive and negative ([−1, +1]). The variable step
(6) determines the slope of the line. Four segments are in play, and freq mul-

tiplies them for each of their repetitions (in this case, 2). Let us consider two
arrays of fixed size, both with triangle waves, yet the second is double the fre-

quency of the first. It becomes clear that the slope of the second one is double

that of the first (“it goes up and down at double speed”) (Figure 4.8).

Once defined the meaning of step, we initialize val, the value of the first

sample (7). The cycle iterates on the samples of sig (8-14). It checks that val is

not greater than the positive peak or lesser that the negative, and in that case

adds to val an amount step (12). The increase, however, is multiplied by sign.

// Triangular waveform by series e sign change

var size = 100, freq = 2 ;
var step, val, start = 0, sign = 1 ;
var sig = Signal.newClear(size) ;
step = 1.0/size*(freq*4);
val = 0 ;
sig.size.do{ arg x;
	if((val >= 1) || (val<=1.neg)) {
		sign = sign.neg
	} ;
	val = val+(step*sign);
	sig[x] = val ;
} ;

sig.plot ;

code/fondamenti/sigTriangle2.scd
code/fondamenti/sigTriangle2.scd

96 Synthesis, I: Fundamentals of Signal Processing

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.8 Triangular waves with frequency 𝑓 and 2𝑓 .

1 0.216.sign

2 1

4 -0.216.sign

5 -1

Initially sign is 1, so that the increment value is unmodified. However, if a
peak is exceeded, then sign is inverted by sign.neg (9-11). In other words, the

wave raises up to 1 and then it decreases (a negative increase) up to −1.
Going back to the synthesis by sinusoidal components, the previously dis-

cussed example dealing with sum of sinusoids demonstrates the importance

of the phase. In fact, the 50 phase-synced components increase together at the

beginning of the cycle, producing the initial peak and then they interfere reci-

procally until the negative peak phase 𝜋4. Figure 4.9, top, shows the phases of

the components (always 0) and the resulting signal.
In the following example the variable harmonics contains the number of

harmonics. The array phases is instead created by the method fill (3) that

requires us to specify a size (here harmonics) and a function that is applied to

the calculation of each of the elements in the array. The function is {2pi.rand},

which results in a random value between [0, 2𝜋], i.e. a random phase in the

whole cycle. The amplitudes of the components are all equal to 1 (4) and stored
in amplitudes. Finally, sig is generated as a sum of harmonic sinusoids with

the same amplitude but random phase.

4 Note that pi and 2pi are two reserved words in SC.

0.216.sign
1

-0.216.sign
-1

code/fondamenti/post/signPost.scd
code/fondamenti/post/signPost.scd

Introduction to SuperCollider 97

0 10 20 30 40 50

0

1.26

2.51

3.77

5.03

6.28

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

0

1.26

2.51

3.77

5.03

6.28

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.9 Sum of sinusoids: top, from left, stage 0 and signal; bottom, from

left, and random phase signal.

1 var sig, harmonics = 50 ;

2 //var phases = Array.fill(harmonics, {0});

3 var phases = Array.fill(harmonics, {2pi.rand});

4 var amplitudes = Array.fill(harmonics, {1}) ;

5 sig = Signal.sineFill(1024, amplitudes, phases) ;

6 sig.plot ;

In this case, the amplitude of each component is equal to 1 but if it were
generated by a function {1.0.rand}, it will receive a pseudo-random value be-

tween [0.0, 1.0] (between absence and maximum normalized value). If the pre-

vious code is modified according to this indication, by running the code several

times it would be possible to notice that the sound changes, as the relevance of

the components depends on the function of the method fill. Also, by increas-

ing or decreasing the value of partials, the signal respectively will be enriched

or impoverished in relation to higher components. Line 7 makes it possible to

view the array of amplitudes as a broken line combining the discrete values:

with plot it is possible to specify the maximum and minimum values of the

var sig, harmonics = 50 ;
//var phases = Array.fill(harmonics, {0});
var phases = Array.fill(harmonics, {2pi.rand});
var amplitudes = Array.fill(harmonics, {1}) ;
sig = Signal.sineFill(1024, amplitudes, phases) ;
sig.plot ;

code/fondamenti/phases.scd
code/fondamenti/phases.scd

98 Synthesis, I: Fundamentals of Signal Processing

desired range ([0, 1]). This is, as will be discussed later, a form of additive syn-

thesis. Figure 4.9, below, shows the phases of the components (random in the

range [0, 2𝜋]) and the resulting signal. Note that the harmonic content is the

same but the waveform is radically different.

The introduction of the pseudo-randomnumbers enables us to create non-pe-

riodic signals. White noise is a signal whose behavior is predictable only sta-

tistically. This behavior results in a uniform energy distribution over the whole

spectrum of the signal. White noise can be described as a totally aperiodic vari-

ation in time: in other words, the value of each sample is entirely independent

from the previous and the following ones5. Therefore, the value of a sample 𝑥
is independent of the value of the previous sample 𝑥 − 1: 𝑥 can have any value,

always, of course, within the finite space of digital representation of the ampli-

tude. Intuitively, the generation algorithm is very simple. In pseudo-code:

For every x in A:

y = a*rand(-1, 1)

A[x] = y

In the following example, the method fill (6) evaluates for each sample

x a function that returns a random value within the normalized range [−1, 1]
(rrand(-1.0,1.0)). The code specifies a sampling frequency (sr) and a duration

in seconds (dur). The result (one second of white noise) is scaled to amp, and

then, given a value of 0.75 for amp, the result is a (pseudo-) random oscillation

in the range [−0.75, 0.75]. Notice how the function (by the very definition of

𝑓[𝑥]) is actually calculated independently from 𝑥: being totally aperiodic, his
behavior does not depend on time (that is, on 𝑥).

1 var sig, amp = 0.75, dur = 1, sr = 44100 ;

2 sig = Signal.fill(dur*sr, { amp*rrand(-1.0,1.0) }) ;

3 sig.plot(minval:-1, maxval:1) ;

Softwares typically represent audio signals through a continuous curve that

connects the values of amplitude. In the case of noise, the continuous repre-

sentation is decidedly less clear than that of a discrete representation (Figure

4.10), as here the image of a cloud of pseudo-randomly distribute points clearly

emerges.

5 It is said, therefore, that the signal has autocorrelation = 0.

var sig, amp = 0.75, dur = 1, sr = 44100 ;
sig = Signal.fill(dur*sr, { amp*rrand(-1.0,1.0) }) ;
sig.plot(minval:-1, maxval:1) ;

code/fondamenti/sigWhiteNoise.scd
code/fondamenti/sigWhiteNoise.scd

Introduction to SuperCollider 99

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.10 White noise: continuous curve and value dispersion.

However obvious it may be, it is worth remembering that a digital signal

is in fact simply a sequence of values, on which it is possible to performmathe-

matical operations. Digital Signal Processing (DSP) techniques originate in this

fact.

The next two examples are inspired by Miller Puckette6. A periodic func-

tion, such as the usual sine function, oscillates periodically between [−1, 1] in
normalized range. By calculating its absolute value, the negative part simply

flips on the positive axis: by looking at the curve, it is apparent that the two

semicircles are identical, thus resulting in a signal with twice the frequency of

the original one. In general the application of the function of the absolute value

is a rapid technique to make a signal jump by an an octave. Since the curve has

only positive values (between [0, 1] in the case of normalized values), it should
be translated to avoid an offset fromzero (thus, the signal goes back fromunipo-

lar to bipolar): decreasing by 0.5 the signal oscillates in the range [−0.5, 0.5] and
it is again symmetrical between positive and negative (Figure in [abs]). In the

following example, the method abs invoked on an object of type Signal returns

another Signal in which each element is the result of the absolute value of the

relative element from the starting signal (it is like calling abs for each element).

The same also applies for subtraction and formultiplication: they are applied to

each element of the array. The sine wave is then multiplied by 𝑎𝑚𝑝 and shifted
“down” (towards the negative semiplane) of 𝑎𝑚𝑝

2 , here implemented with amp

* 0.57. The situation is represented in Figure 4.11.

6 M. Puckette, The Theory and Technique of Electronic Music, World Scientific Pub-

lishing Company, 2007, available on line:

http://msp.ucsd.edu/techniques.htm.
7 This is a typical practice in computer science. The multiplication costs, in com-

putational terms, much less than the division.

100 Synthesis, I: Fundamentals of Signal Processing

1 var sig, amp = 0.75 ;

2 sig = (Signal.sineFill(100, [1]).abs)*amp-(amp*0.5) ;

3 sig.plot(minval:-1, maxval: 1) ;

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.11 Absolute value of the sine function and translation (𝐴 = 0.75).

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.12 𝑦 = 𝑠𝑖𝑛(2𝜋 × 𝑥)2, 𝑦 = 𝑠𝑖𝑛(2𝜋 × 𝑥)2 − 0.5.

A feature of the application of the absolute value is the generation of a sig-

nal which is asymmetrical with respect to the amplitude, and the presence of a

very sharp edge (the flipping point) that introduces many higher components

(higher harmonics). This feature can be avoided if, rather than absolute value,

a power of two operation is applied: in fact the square of a negative value in the

signal is positive, thus the resulting curve is substantially similar to what hap-

pens with the absolute value (with frequency doubling), but smoother (Figure

4.12).

var sig, amp = 0.75 ;
sig = (Signal.sineFill(100, [1]).abs)*amp-(amp*0.5) ;
sig.plot(minval:-1, maxval: 1) ;

code/fondamenti/abs.scd
code/fondamenti/abs.scd

Introduction to SuperCollider 101

1 var sig, amp = 0.75 ;

2 sig = (Signal.sineFill(100, [1]).squared)*amp-(amp*0.5) ;

3 sig.plot(minval:-1, maxval: 1) ;

As a further example of minimal signal processing we can consider “clip-

ping”: which means all values above a certain threshold 𝑠 (or lower than its

negative) are reset to ±𝑠. Clipping also known as “digital distortion” because
the same process occurs when a digitalized signal has an amplitude greater

than quantization, and is therefore “cut” at its extremities. Clipping is a kind

of radical limiter (as it limits the signal amplitude) and can be used as a dis-

torsion effect. SC provides the method clip2(t) that “cuts” a value out of the

excursion [−𝑡, 𝑡] for ±𝑡. Consider the following example, where 𝑡 = 3.

1 1.clip2(3)

2 1

4 -1.clip2(3)

5 -1

7 4.clip2(3)

8 3

10 -4.clip2(3)

11 -3

Although clip2 is already defined for Signal, to implement a “clipper”

module is an interesting exercise.

var sig, amp = 0.75 ;
sig = (Signal.sineFill(100, [1]).squared)*amp-(amp*0.5) ;
sig.plot(minval:-1, maxval: 1) ;

code/fondamenti/pow2.scd
code/fondamenti/pow2.scd

1.clip2(3)
1

-1.clip2(3)
-1

4.clip2(3)
3

-4.clip2(3)
-3

code/fondamenti/post/clipPost.scd
code/fondamenti/post/clipPost.scd

102 Synthesis, I: Fundamentals of Signal Processing

1 var sig, sig2, sig3, clipFunc ;

2 sig = Signal.sineFill(100, [1]) ;

4 clipFunc = { arg signal, threshold = 0.5 ;

5 var clipSig = Signal.newClear(signal.size) ;

6 signal.do({ arg item, index;

7 var val ;

8 val = if (item.abs < threshold, { item.abs },

9 { threshold}) ;

10 val = val*item.sign ;

11 clipSig.put(index, val) ;

12 }) ;

13 clipSig ;

14 } ;

16 sig2 = clipFunc.value(sig) ;

17 sig3 = clipFunc.value(sig, threshold: 0.75) ;

19 [sig, sig2, sig3].flop.flat.plot

20 (minval:-1, maxval: 1, numChannels:3) ;

As discussed, a function performs a behavior when it receives the message

value with input arguments. The example defines a function that implements

clipping, clipFunc: the required arguments are a signal (an object of type Sig-

nal) and a threshold value (threshold). The function clipFunc returns another

Signal. Line 5 declares the variable that is assigned to the signal and imme-

diately assigns an object Signal with the same size of the incoming signal, but

filledwith 0. The idea is to evaluate each of the elements (which represent audio
samples) of Signal by cycling on it (6). In the loop, the variable val is the value

to be written in the array clipSig. The value to be assigned to val depends on

a condition.

If the sample is within the range [−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] then there will be
no clipping: val has the same value as the value of incoming sample. If the

input value falls outside the range, then valwill get the value of the threshold.

The conditional is contained in lines 8-9. The evaluation is done on the absolute

value of item (item.abs). It occurs in the interval [0, 1]. The output has the

same absolute value of item or threshold. Thus, if the input value is negative,

it would return a positive value. But the sign of the input value is retrieved in

var sig, sig2, sig3, clipFunc ;
sig = Signal.sineFill(100, [1]) ;

clipFunc = { arg signal, threshold = 0.5 ;
	var clipSig = Signal.newClear(signal.size) ;
	signal.do({	arg item, index;
		var val ;
		val = if (item.abs < threshold, { item.abs },
			{ threshold}) ;
		val = val*item.sign ;
		clipSig.put(index, val) ;
	}) ;
	clipSig ;
} ;

sig2 = clipFunc.value(sig) ;
sig3 = clipFunc.value(sig, threshold: 0.75) ;

[sig, sig2, sig3].flop.flat.plot
 (minval:-1, maxval: 1, numChannels:3) ;

code/fondamenti/sigClip.scd
code/fondamenti/sigClip.scd

Introduction to SuperCollider 103

line 10 inwhich the value val ismultiplied by the sign of item: in fact, item.sign

returns ±1.
If item = -0.4:

• item.abs = 0.4

• is it lower than threshold = 0.5? Yes, then val = item.abs = 0.4

• item.sign = -1 (item = -0.4: it is negative)

• val = 0.4 * -1 = -0.4

Here are two examples, one that uses the default value of threshold (0.5),
the other in which threshold is 0.75. Clipping tends to “square“ the waveform,
and, in fact, the resulting signal tends to sound like a square wave. Lines 19-20

are alsoworth discussing. Themethod plot is defined for an array, but one of its

arguments is numChannels, that treats the actual sequence of values in the array

as if it were interlaced values of numChannels channels. Then, with numChan-

nels = 3 three curves are plotted, by considering each subsequent three-sam-

ple block as representing the values of the first, second and third channel. So,

in our approach we need to create an array that includes the elements of the

three arrays in the required order. With the method flop, an array of arrays is

reshaped exactly in this way: in our case, three arrays of 100 values are reorga-
nized into 100 arrays of three values. The method flat flattens the array, that

at this point can be plotted by specifying numChannels: 3. The reader can try

adding the appropriate postln messages to understand the example in more

detail. The result is in Figure 4.13.

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.13 Clipping a sinusoid, threshold = 0.5, threshold = 0.75.

There are other, much more elegant ways to implement clipFunc. The next ex-

ample uses the method collect, which, along with other similar methods, is

inherited from the class Collection. These methods, once called on an collec-

tion-type object, return a new collection by applying a function for each element

(each method implementing specific features). If the previous approach was

104 Synthesis, I: Fundamentals of Signal Processing

typical of the imperative paradigm, these methods exhibit a rather functional

attitude (and are also clear and concise).

In the following example, collect applies to each element its passed func-

tion.

1 clipFunc = { arg signal, threshold = 0.5 ;

2 signal.collect({ arg item;

3 var val, sign ;

4 sign = item.sign ;

5 val = if (item.abs < threshold, { item.abs },

6 { threshold}) ;

7 val*sign ;

8 }) ;

9 } ;

A function returns the value of its last expression. Here there is only one ex-

pression, which returns a Signal by applying a function to each element (similar

to the previous implementation). The implementation aims at maintaining the

modularity of clipFunc. It would have also been possibile to directly call col-

lect on the Signal to be processed. The modular approach allows to re-write

the previous cases related to the absolute value and the square functions. In

particular, we can explicitly define two transfer functions:

𝑊𝑎𝑏𝑠 : 𝑓(𝑥) = 𝑥2

𝑊𝑠𝑞𝑢𝑎𝑟𝑒 : 𝑓(𝑥) = |𝑥|

These functions behave as true processing modules of the input signal. A

modular version of the absolute value function, written in a very compact fash-

ion (note the use of |) could be written as:

1 absFunc = {|sig| sig.collect{|i| i.abs} - (sig.peak*0.5) } ;

In the code, the only thing of importance is the automatic elimination of

the offset. The method peak returns the element of Signal that has the high-

est absolute value (the maximum amplitude of the signal). Assuming that the

clipFunc = { arg signal, threshold = 0.5 ;
	signal.collect({ arg item;
		var val, sign ;
		sign = item.sign ;
		val = if (item.abs < threshold, { item.abs },
			{ threshold}) ;
		val*sign ;
	}) ;
} ;

code/fondamenti/sigClip2.scd
code/fondamenti/sigClip2.scd

absFunc = {|sig| sig.collect{|i| i.abs} - (sig.peak*0.5) } ;

code/fondamenti/absFunc.scd
code/fondamenti/absFunc.scd

Introduction to SuperCollider 105

signal is symmetrical with respect to 0, each new value resulting from the ap-

plication of the function is shifted by 𝑝𝑒𝑎𝑘/2. If, for example, the signal’s range
is between [−0.7, 0.7] then 𝑝𝑒𝑎𝑘 = 0.7: the processed signal will be included in
[0.0, 0.7] and is offset by 0.7/2 = 0.35 , so that the amplitude range is symmet-
rical around 0, in the range [−0.35, 0.35].

4.6 Still on signal processing

The numerical nature of the signal allows us to define operations similar to the

previous example on pre-existing material. The class Soundfile allows us not

only to write to audio files, but to also access those available elsewhere (on a

hard disk). The following code fills the object Signal sig with the contents of

the audio file sFile through themethod readData of SoundFile. The audio file is

one of the examples provided with SC and can be accessed using Platform.re-

sourceDir, a class that allows us to manage file paths regardless of the actual

platform in use (OSX, Windows, Linux). Note how the size of sig has been

defined relative to the number of samples of sFile by referring to its attribute

numFrames.

1 var sFile, sig ;

2 sFile = SoundFile.new;

3 sFile.openRead(Platform.resourceDir +/+ "sounds/a11wlk01.wav");

4 sig = Signal.newClear(sFile.numFrames) ;

5 sFile.readData(sig) ;

6 sFile.close;

7 sig.plot ;

8 sig.plot ;

The following operation exploits the nature of the numerical sequence of

the audio signal to implement a kind of granulation (to be discussed). In essence,

the imported audio signal is divided into a number of blocks, known as chunks

numChunks, each of which comprises a number step of samples (lines 12 & 13,

here 500). The chunks are then randomly shuffled and reassembled. The imple-
mentation, indices (indexes) on line 17, is the sequence of the chunk indices, in

this case starting from 0. This linear progression (1, 2, 3, 4…) is shuffled through

the method scramble (becoming for example, 9, 1, 3, 7…). Then, by looping on

var sFile, sig ;
sFile = SoundFile.new;
sFile.openRead(Platform.resourceDir +/+ "sounds/a11wlk01.wav");
sig = Signal.newClear(sFile.numFrames) ;
sFile.readData(sig) ;
sFile.close;
sig.plot ;
sig.plot ;

code/fondamenti/sFileOpen.scd
code/fondamenti/sFileOpen.scd

106 Synthesis, I: Fundamentals of Signal Processing

each index, the corresponding chunk is retrieved from the original source (sig-

nal) and concatenated in sequence. Themethod copyRange copies from an array

a set of elements specified by the arguments representing the start and end in-

dices. It is likely that step is not an integer divider of the input signal. The

remaining part (tail) is appended to the end of the new signal newSig.

1 var sFile, sig, newSig ;

2 var numChunks, step, rest, indices ;

3 var block, tail ;

5 sFile = SoundFile.new;

6 sFile.openRead

7 (Platform.resourceDir +/+ "sounds/a11wlk01-44_1.aiff");

8 sig = Signal.newClear(sFile.numFrames) ;

9 sFile.readData(sig) ;

10 sFile.close;

12 step = 500 ; // try with: 10, 200, 1000

13 numChunks = (sig.size/step).asInteger ;

14 // the tail...

15 tail = (sig.size-(step*numChunks)) ;

17 indices = Array.series(numChunks).scramble;

19 newSig = Signal.new;

20 indices.do({arg item;

21 block = sig.copyRange(item*step, (item+1)*step-1) ;

22 newSig = newSig.addAll(block) ;

24 }) ;

26 tail = sig.copyRange(sig.size-tail, sig.size) ;

27 newSig = newSig.addAll(tail) ;

This form of granulation of the signal allows to introduce a synthesis tech-

nique, that may be defined as “permutation synthesis”. By “scrambling” the

signal, it produces a new signal that more or less is related to the original signal.

The lower the step the greater the recombination of the source signal. When

such an operation is performed on a sinusoidal signal, the relation between the

decrease of step and the increase of noise is apparent.

The following example implements a form of permutation synthesis. The

process is similar to the previous example, with one relevant difference. Here

var sFile, sig, newSig ;
var numChunks, step, rest, indices ;
var block, tail ;

sFile = SoundFile.new;
sFile.openRead
 (Platform.resourceDir +/+ "sounds/a11wlk01-44_1.aiff");
sig = Signal.newClear(sFile.numFrames) ;
sFile.readData(sig) ;
sFile.close;

step = 500 ; // try with: 10, 200, 1000
numChunks = (sig.size/step).asInteger ;
// the tail...
tail = (sig.size-(step*numChunks)) ;

indices = Array.series(numChunks).scramble;

newSig = Signal.new;
indices.do({arg item;
	block = sig.copyRange(item*step, (item+1)*step-1) ;
	newSig = newSig.addAll(block) ;

}) ;

tail = sig.copyRange(sig.size-tail, sig.size) ;
newSig = newSig.addAll(tail) ;

code/fondamenti/sigScramble.scd
code/fondamenti/sigScramble.scd

Introduction to SuperCollider 107

the sinusoid is created by concatenating several copies (100, that is, 44100/pe-
riod) of the signal sig (9-11). The signal is always divided into blocks of size

step. In place of the scramble operation, the following permutation is imple-

mented:

[0, 1, 2, 3, 4, 5] → [1, 0, 3, 2, 5, 4]

Essentially, pairs of blocks are permuted. The permutation of the indices is

calculated in two steps. First we create a series of even and odd indices, with a

step equal to 2, starting from different values (1 and 0) (18-19). Then, the series
are interlaced via flop and the final array is obtained by using flat (20). Since

the permutation is periodic, the resulting signal has a very rich spectrum but

has a periodicity that depends on both the frequency of the input sinewave and

the size of step.

108 Synthesis, I: Fundamentals of Signal Processing

1 /* Distorsion by permutation on a sinusoid */

3 var sig, sig2, newSig ;

4 var numChunks, step, rest, indices ;

5 var block, tail ;

6 var period = 441;

8 // creation of the sinusoide

9 sig = Signal.new ;

10 sig2 = Signal.sineFill(period, [1]) ;

11 (44100/period).do(sig = sig.addAll(sig2)) ;

13 step = 50 ; // try with other steps

14 numChunks = (sig.size/step).asInteger ;

15 tail = (sig.size-(step*numChunks)) ;

17 // creation of the index sequence

18 a = Array.series((numChunks/2).asInteger, 1,2) ;

19 b = Array.series((numChunks/2).asInteger, 0,2) ;

20 indices = [a,b].flop.flat ;

22 newSig = Signal.new;

23 indices.do({ arg item;

24 block = sig.copyRange(item*step, (item+1)*step-1) ;

25 newSig = newSig.addAll(block) ;

26 }) ;

28 tail = sig.copyRange(sig.size-tail, sig.size) ;

29 newSig = newSig.addAll(tail) ;

The frequency becomes evident, not only by listening, but also by looking

at the sine wave, distorted by permutation (Figure 4.14).

/* Distorsion by permutation on a sinusoid */

var sig, sig2, newSig ;
var numChunks, step, rest, indices ;
var block, tail ;
var period = 441;

// creation of the sinusoide
sig = Signal.new ;
sig2 = Signal.sineFill(period, [1]) ;
(44100/period).do(sig = sig.addAll(sig2)) ;

step = 50 ; // try with other steps
numChunks = (sig.size/step).asInteger ;
tail = (sig.size-(step*numChunks)) ;

// creation of the index sequence
a = Array.series((numChunks/2).asInteger, 1,2) ;
b = Array.series((numChunks/2).asInteger, 0,2) ;
indices = [a,b].flop.flat ;

newSig = Signal.new;
indices.do({ arg item;
	block = sig.copyRange(item*step, (item+1)*step-1) ;
	newSig = newSig.addAll(block) ;
}) ;

tail = sig.copyRange(sig.size-tail, sig.size) ;
newSig = newSig.addAll(tail) ;

code/fondamenti/SigScramble1.scd
code/fondamenti/SigScramble1.scd

Introduction to SuperCollider 109

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.14 Sinusoid of 100 points and scrambling with step = 3 and = 7.

4.7 Control signals

A sinusoidal signal, as all perfectly periodic signals, completely lacks those

dynamic features usually ascribed to a “natural“ (or better, "acoustically in-

teresting") sound: it is a sound, as Pierre Schaeffer said, without “temporal

form”, “homogeneous”. However, sounds like this furnish the soundscape

of mechanical and electrical modernity in the form of humming from street

lamps, buzzing produced by fans, electrical impedance, engines, and much

more. Apart from these cases, the temporal “shape” of a sound typically takes

the form of a dynamic profile, a variation of the dynamics of the sound that

is acoustically described in the form of an envelope curve. The phases of this

curve are described using the terms attack/decay/sustain/release: hence the

acronym ADSR. The simplest way to represent such an envelope is to use a

broken line (Figure 4.15).

Time (s)
0 4.23184

–0.8233

0.8881

0

Time (s)
0 0.588944

–0.3398

0.3456

0

Figure 4.15 Description of the dynamic profile through a broken line (enve-

lope).

110 Synthesis, I: Fundamentals of Signal Processing

A look at the envelope shows that it is just another curve, that is, another signal,

differing from the signals so far considered by two important features:

1. it is not periodic (it consists of a single cycle). Therefore, the period of the

envelope signal is equal to the duration of the audio signal: if the signal

lasts for 2 seconds (that is, the period of the envelope) then the envelope has

a frequency 1/2 = 0.5 Hz. Note that the frequency falls outside the audible
domain;

2. it is unipolar: assuming that the audio signal is normalized in the excursion

[−1, 1] (bipolarity), the envelope is included in [0, 1] (unipolarity)8.

Moving from analysis to synthesis, the task will be to reproduce the prop-

erties of the envelope (its “form”) and to apply this form to an audio signal. The

envelope is a typical control signal: a signal modifying - controlling - an audio

signal. Being a signal, in order to represent an envelope we can still use an ar-

ray. For example, a typical ADSR envelope could be described by means of the

array of ten points in Figure 4.16.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Figure 4.16 Array [0, 0.9, 0.4, 0.4, 0.4, 0.4, 0.3, 0.2, 0.1, 0].

In an interactive fashion:

8 Remember the case of the absolute value function that turns a bipolar signal

into a unipolar one.

Introduction to SuperCollider 111

1 [0, 0.9, 0.4, 0.4, 0.4, 0.4, 0.3, 0.2, 0.1, 0].plot

In order to increase or decrease the amplitude of a signal we now under-

stand that we can simply multiply the signal by a constant: each sample is thus

multiplied by the constant. For example, if the constant 𝐴𝑚𝑝 = 0.5, the signal
amplitude is reduced by half. One could think of a similar constant in terms

of a signal: as an array, with a size equal to that of the scaled signal, in which

each element is the same value. Each value in the array to scale is multiplied

by the respective value of the array 𝐴𝑚𝑝 (always the same). The idea ceases

to be an unnecessary complication at the moment in which the array 𝐴𝑚𝑝 no

longer always contains the same value, but instead contains variable values that

represent precisely an amplitude envelope. Therefore, each sample of the au-

dio signal (each element of the array) is multiplied by the related value of the

envelope signal. The situation is represented in Figure 4.17.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.17 Envelope, resulting audio signal, audio signal, enveloped audio

signal.

To fully represent the duration of an audio signal, the size (length) of the enve-

lopemust be the same of the audio signal. Here a fundamental point shows up,

[0, 0.9, 0.4, 0.4, 0.4, 0.4, 0.3, 0.2, 0.1, 0].plot

code/fondamenti/post/envPost.scd
code/fondamenti/post/envPost.scd

112 Synthesis, I: Fundamentals of Signal Processing

to be discussed again: typically, a much smaller number of points is enough to

represent an envelope with respect to an audio signal, that is assuming 1 sec-

ond audio signal of CD-quality, and the adequateness of the envelope in Figure

4.17, the ratio between the two could be something like 10/44, 100. This is in
fact a relevant feature that identifies a control signal.

Moving on to the implementation in SC (below), we can generate a sinu-

soid of a duration equal to a second by means of the method waveFill. We

have chosen a low frequency, only for sake of visibility. The envelope array to

be implemented is made up of ten segments: since these are to be distributed

throughout the duration of the audio signal, each of the segments will include

44, 100/109 samples. This value is assigned to the variable step.
The task now is to generate the arrays that describe the fourADSR segments

(att, dec, sus, rel, 8-11), and then concatenate them in a unique array env.

Since they must be multiplied by an object Signal then they must also be of the

Signal type. The method series(size, start, step) creates a linear progres-

sion of size values from startwith an increase of tt step.

The attack starts at 0 and reaches 0.9, it occupies a segment, i.e, 4410 sam-
ples. The value 0.9 should thus be reached in 4410 points: the increase of each
will therefore be 0.9/4410 - in other words, 0.9/step. The last point will receive
a value of 0.9/𝑠𝑡𝑒𝑝 × 𝑠𝑡𝑒𝑝 = 0.9. In relation to dec the value to be reached is

0.5, along the duration of another segment. In this case the progression starts at
0.9 and the increment is negative: it must go down by 0.5 in one step, therefore
the increase is -0.5/step. In the third case (sus), the value is constant at 0.5 for
a duration of 4 steps, then the increase is 0. The case of rel is similar to that
of dec. The new envelope signal env (13) is obtained by concatenating the four

segments where it is used as a multiplier for sig, in order to get the enveloped

signal envSig (14). Line 16 draws the signal, the envelope and the enveloped

signal.

Introduction to SuperCollider 113

1 var sig, freq = 440, size = 44100, step ;

2 var env, att, dec, sus, rel, envSig ;

4 step = 44100/10 ;

5 sig = Signal.newClear(size) ;

6 sig.waveFill({ arg x, i; sin(x) }, 0, 2pi*50) ;

8 att = Signal.series(step, 0, 0.9/step) ;

9 dec = Signal.series(step, 0.9, -0.5/step) ;

10 sus = Signal.series(step*4, 0.4, 0) ;

11 rel = Signal.series(step*4, 0.4, -0.4/(step*4)) ;

13 env = att++dec++sus++rel ;

14 envSig = sig * env ;

16 [sig, env, envSig].flop.flat.plot(minval:-1, maxval: 1, numChannels: 3) ;

The above method is quite cumbersome, and quite theoretical in SuperCol-

lider. SC provides a class, Env specializing in building envelopes. Env assumes

that an envelope is a broken line that connects amplitude values over time and

provides various interpolation methods for intermediate values. Consider the

following two arrays v and d:

1 v = [0, 1, 0.3, 0.8, 0] ;

2 d = [2, 3, 1, 4] ;

A similar pair is typically used to specify an envelope:

• v: indicates the points that define where the envelope steepness change (i.e.

all peaks and valleys);

• d: indicates the duration of each segment connecting two points.

Therefore, the array of the durations d always has a size equal to the size

of amplitude v less 1. In fact, d[0] (= 2) indicates that the duration between
v[0] (= 0) and v[1] (= 1) is 2 units of time (in SC, they are seconds: but in

reality they can be conceived as abstract units, as we will see). Through the two

var sig, freq = 440, size = 44100, step ;
var env, att, dec, sus, rel, envSig ;

step = 44100/10 ;
sig = Signal.newClear(size) ;
sig.waveFill({ arg x, i; sin(x) }, 0, 2pi*50) ;

att = Signal.series(step, 0, 0.9/step) ;
dec = Signal.series(step, 0.9, -0.5/step) ;
sus = Signal.series(step*4, 0.4, 0) ;
rel = Signal.series(step*4, 0.4, -0.4/(step*4)) ;

env = att++dec++sus++rel ;
envSig = sig * env ;

[sig, env, envSig].flop.flat.plot(minval:-1, maxval: 1, numChannels: 3) ;

code/fondamenti/sigEnv.scd
code/fondamenti/sigEnv.scd

v = [0, 1, 0.3, 0.8, 0] ;
d = [2, 3, 1, 4] ;

code/fondamenti/envArr.scd
code/fondamenti/envArr.scd

114 Synthesis, I: Fundamentals of Signal Processing

arrays v and d it is thus possible to describe a time (d) profile (d). In the exam-

ple, however, it is still not specified what happens for each sample comprised

between 0 and 1. The way in which the intermediate samples are calculated de-
pends on the interpolation mode. In the following example e1, e2 and e3 are

instances of Env, using the same pair of arrays v, d, but with different modes

of interpolation (linear, discrete, exponential). The final example, e4, shows a

different possibility: an array of interpolationmodes, one for each segment (the

last mode is ’sine’).

1 var v, d, e1, e2, e3, e4 ;

3 v = [0, 1, 0.3, 0.8, 0] ;

4 d = [2, 3, 1, 4] ;

6 e1 = Env.new(v, d,’linear’) ;

7 e2 = Env.new(v, d,’step’) ;

9 v = [0.0001, 1, 0.3, 0.8, 0] ;

10 e3 = Env.new(v, d,’exponential’).asSignal ;

11 e4 = Env.new(v, d,[\linear , \step ,\exponential , \sine]) ;

13 [e1, e2, e3, e4].collect{|i| i.asSignal}.flop.flat.plot(numChannels:4) ;

Note that in the case of an exponential envelope the starting value cannot

be = 0: the first value of v is then redefined with a value close to zero. The

meaning of the parameters is shown in Figure 4.18 commenting the output of

the method plot. The class Env inherits directly from Object and is therefore

not an array-like object. Typically Env is used to specify an envelope for the

real-time usage (as wewill see). However, when an object Env receives the mes-

sage asSignal, it returns a Signal object containing a sampled envelope. The

method is used (on line 13) to obtain arrays from envelopes, in order to apply

the plotting technique already discussed.

Through asSignal the class Env allows one to use, even in deferred time,

a specification for envelopes. In addition, the class includes some constructors

that return particularly useful envelopes. Two examples:

• triangle takes two arguments: the first indicates the duration, the second

the peak value of a triangular envelope (i.e. the peak at half the duration).

var v, d, e1, e2, e3, e4 ;

v = [0, 1, 0.3, 0.8, 0] ;
d = [2, 3, 1, 4] ;

e1 = Env.new(v, d,'linear') ;
e2 = Env.new(v, d,'step') ;

v = [0.0001, 1, 0.3, 0.8, 0] ;
e3 = Env.new(v, d,'exponential').asSignal ;
e4 = Env.new(v, d,[\linear, \step,\exponential, \sine]) ;

[e1, e2, e3, e4].collect{|i| i.asSignal}.flop.flat.plot(numChannels:4) ;

code/fondamenti/ssEnv.scd
code/fondamenti/ssEnv.scd

Introduction to SuperCollider 115

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

Figure 4.18 Env: interpolation types.

• perc: allows to define a percussive envelope (attack + release). The argu-

ments are attack time, release time, peak value and value of curvature.

1 var sig, freq = 440, size = 1000 ;

2 var envT, envP ;

4 sig = Signal.newClear(size) ;

5 sig.waveFill({ arg x, i; sin(x) }, 0, 2pi*50) ;

7 envT = Env.triangle(1,1).asSignal(size);

8 envP = Env.perc(0.05, 1, 1, -4).asSignal(size) ;

10 [sig, envT, sig*envT, envP, sig*envP].flop.flat

11 .plot(minval:-1, maxval: 1, numChannels: 5) ;

The envelope types triangle and perc, and their applications using a sine

wave, are represented in Figure 4.19.

var sig, freq = 440, size = 1000 ;
var envT, envP ;

sig = Signal.newClear(size) ;
sig.waveFill({ arg x, i; sin(x) }, 0, 2pi*50) ;

envT = Env.triangle(1,1).asSignal(size);
envP = Env.perc(0.05, 1, 1, -4).asSignal(size) ;

[sig, envT, sig*envT, envP, sig*envP].flop.flat
 .plot(minval:-1, maxval: 1, numChannels: 5) ;

code/fondamenti/sigEnv2.scd
code/fondamenti/sigEnv2.scd

116 Synthesis, I: Fundamentals of Signal Processing

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.19 Envelopes with Env, triangle (top) and perc (bottom).

An envelope signal can also be applied to an audio signal of concrete origin

(i.e. from an audio file). In the following example, the signal sig is obtained by

importing the content of sFile, which has to be normalized so that its peak is

equal to 1 (6). An envelope signal env is applied to sig: env is obtained through
two arrays filled with pseudo-random numbers, v and d. The first varies in the

range [0.0, 1.0] (it is a unipolar signal). To avoid offset in amplitude, the first

and the last value of the array are set to 0, and added respectively to the head
and tail (11). The array d has a size equal to v −1, as required by the syntax of
Env. Time intervals vary in the range [0.0, 4.0] (12).

Introduction to SuperCollider 117

1 var env, v, d, breakPoints = 10 ;

2 var sig, sFile ;

4 sFile = SoundFile.new;

5 sFile.openRead(Platform.resourceDir+/+"sounds/a11wlk01-44_1.aiff");

6 sig = Signal.newClear(sFile.numFrames).normalize ;

7 sFile.readData(sig) ;

8 sFile.close;

10 v = Array.fill(breakPoints-2, { arg i ; 1.0.rand }) ;

11 v = v.add(0) ; v = [0].addAll(v) ;

12 d = Array.fill(breakPoints-1, { arg i; 4.0.rand }) ;

14 env = Env(v, d, ’lin’).asSignal(sig.size) ;

16 [sig, env, sig*env].flop.flat.plot(minval:-1, maxval: 1, numChannels: 3) ;

Two pseudo-random envelopes generated by the same code are drawn in

Figure 4.20: on each code evaluation, the envelope takes on a different form,

apart from the two extremes set to 0.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Figure 4.20 Pseudo-random envelopes.

4.8 Conclusions

The goal of the chapter was to introduce the concept of a digital signal through

operations that are possible thanks to its numerical nature. We have also had

the opportunity to see how it is possible to change a signal by means of another

var env, v, d, breakPoints = 10 ;
var sig, sFile ;

sFile = SoundFile.new;
sFile.openRead(Platform.resourceDir+/+"sounds/a11wlk01-44_1.aiff");
sig = Signal.newClear(sFile.numFrames).normalize ;
sFile.readData(sig) ;
sFile.close;

v = Array.fill(breakPoints-2, { arg i ; 1.0.rand }) ;
v = v.add(0) ; v = [0].addAll(v) ;
d = Array.fill(breakPoints-1, { arg i; 4.0.rand }) ;

env = Env(v, d, 'lin').asSignal(sig.size) ;

[sig, env, sig*env].flop.flat.plot(minval:-1, maxval: 1, numChannels: 3) ;

code/fondamenti/sigEnv3.scd
code/fondamenti/sigEnv3.scd

118 Synthesis, I: Fundamentals of Signal Processing

signal. In particular, a control signal is a signal that requires a temporal reso-

lution much smaller than an audio signal, its frequency standing far below the

audible frequency (“sub-audio range”). A control signal typically modifies an

audio signal. However, the chapter was also intended as an opportunity to ex-

plore some aspects of the SuperCollider language. At this point, it is important

to move along and expand these ideas by turning to the more typical modus

operandi of SC, real-time sound generation.

5 SC architecture and the server

So far we have discussedmany aspects of SuperCollider, however the synthesis

and processing of audio, one of the most famous features (and strengths) of SC,

has not as yet been examined. It is therefore time to address this issue, but, as

usual, some patience maybe required in order to get to the bigger picture.

5.1 Client vs. Server

As we have observed, when installing the SC application we obtain two au-

tonomous components, a server and a client. The first is called scsynth, the sec-

ond sclang. The latter is the interpreter for the SuperCollider language that has

been discussed in previous chapters. But it also works as a client for the audio

server. In summary, the sound server is an audio provider, capable of gener-

ating and managing a large variety of signal processes. The server is an audio

“provider”, and its services must be requested by a “customer”, technically a

“client”. This type of software organization is thus called “client/server archi-

tecture”. Figure 5.1 describes a generic network architecture: multiple clients

communicate with a server by exchanging messages.

The SC application is thus built upon a client/server architecture, that splits

the computation into two modules, one for the request and the other for the

supply of services. In SC the client and server communicate over a network

(to be precise, according to the network protocol UDP) by means of messages

written in a specific communication protocol (a “code” known to both), named

Open SoundControl (OSC). OSC is commonly used inmultimedia applications

120 SC architecture and the server

client 2 Server
msg

Network

client 1

client 3

msg

msg

Figure 5.1 Generic client/server architecture.

(for example, it is implemented in Max/MSP, PD, EyesWeb, Processing, etc.)1.

The OSC protocol, in itself, does not specify a semantics, that is, it does not

define the meaning of a closed set of possible messages: rather, it defines a

syntax for constructing messages that are compliant to the protocol. In this

way, applications and users can define their own messages and associate them

a specific semantics. In our case, scsynth defines a set of OSC messages that

grant access to all its operations.

For the avoidance of doubt, the network we are speaking about is defined

on an abstract level. This means that the client and server can be running on the

samemachine. It is what happenswhen you execute the SC application: without

any extra settings, the interpreter is already configured to communicate over a

network as a client for the audio server. Repetita iuvant. By opening SC, two

programs are already configured to work together over a network, sclang and

scsynth. The latter (the server) is an audio synthesis engine, powerful, efficient,

low-level application, that is, not very “intelligent”.

The interpreter –sclang– has two functions:

1. it is the client: in other words, it is the interface that allows the user to write

and send OSC messages to the server. To write a letter to the server, you

need to have a sheet of paper and a postman that delivers it: sclang does

both.

2. it is the interpreter for the SC language: OSC messages may be quite cum-

bersome to write, and share with the server this low-level perspective. As

we have abundantly seen, the SC language is on the contrary a high-level

1 Historically, JamesMcCartney, the first author of SC, has also contributed to the

definition of the protocol itself.

Introduction to SuperCollider 121

language. The SC code, when it refers to the server, is then translated by

the interpreter into the proper OSCmessages that are sent to the server. The

poem that you write in the SC language is paraphrased by the interpreter

into the OSC prose that the more mundane server understands.

The situation is depicted in Figure 5.2. Communication between the client-

and the server side happens viaOSCmessages that the client sends to the server.

The sclang interpreter sends OSC messages in two ways:

1. directly. In other words, the sclang interpreter is yet a good place for you

if you want to talk to the server with the OSC code (that is, sclang is a place

where to write directly OSC messages);

2. indirectly. The SuperCollider language (at a more abstract, “high” level) is

automatically translated by the interpreter into OSCmessages (at the server

level) in order to be sent to scsynth (this is the so-called language wrapping).

To sum up, starting from the sclang interpreter you can write poetry by

relying on the translation into prose performed by the interpreter (which acts

as a translator and postman) or you can directlywrite in OSC prose (in this case,

the interpreter is only the postman). One might ask why bother with such an

architecture. The advantages are the following:

• stability: if the client experiences a crash, the server continues to run (i.e.

the audio does not stop, and this is an important feature in a concert, instal-

lation, performance …), and vice versa.

• modularity: one thing is the synthesis, another one is control. Keeping the

two functions distinct allows to control scsynth even from applications that

are not sclang: the important thing is that they know how to send the right

OSC messages to the server. The server is democratic (everyone can get

audio services) and bureaucratic at the same time (the important thing is to

respect the OSC protocol and the semantics defined for scsynth). As shown

in Figure 5.2, other applications can send messages to the server2.

• remote control: the network we are talking about can be either internal to

the computer, or an external one. When dealing exclusively with audio syn-

2 Over the years, various clients for scsynth have been developed in other pro-

gramming languages such as Clojure, Java, Scala. In this way, experienced pro-

grammers of other languages can access scsynth without knowledge of the SC

language.

122 SC architecture and the server

thesis, typically the two componentswork on the same computer by sharing

a local address (it is the default situation). But client and server may well be

on the network and, with some caveat, even on the two opposite ends of the

globe, communicating via internet.

The main disadvantages of such an architecture are two:

1. the circulation of messages introduces a small delay (which may be signifi-

cant, however, if considering time sensitivity of the audio domain);

2. a great time density of the messages on the network can overloaded the

latter, and message handling can cause a delay.

It should also be noted that it is very rare to incur similar problems.

s
.sendMsg synthDefs

synth
.play

func
.play

OSC messages

OSC messages

OSC messages

sclang

language wrapping

Client side Server side

scsynth

OSC message level
other, more abstract levels external

app

external
app

Figure 5.2 Client/server architecture in SC.

The above discussionmakes it clear that sclang is only one of the possible clients

for scsynth. However, sclang, being designed specifically to be used with sc-

synth, it is somehow the privileged client, because it provides the user an inte-

grated, high-level language and translates it in OSC messages3.

Introduction to SuperCollider 123

As mentioned, the server can be controlled (only) through OSC messages:

that is, scsynth exposes an interface of OSC commands. However, the Su-

perCollider language defines a set of classes that represent all the objects in

the server, and manage the relative OSC communication with it. So, what we

learned previously in relation to the SC language can be fully exploited in the

interaction with the server. Hence, the user must be aware that there is circula-

tion of OSCmessages between the client and the server. But, apart from special

cases, this low-level business can be safely ignored.

5.2 Ontology of the server as an audio synthesis plant

So, scsynth is an audio synthesis engine that is programmable and controllable

in real-time. It is not easy at first to be able to keep in mind the relationship

between all the elements relevant to the server. In fact, there are some purely

computer-science notions (the client/server architecture), other that are typi-

cal of the digital audio domain (sampling, quantization, etc.), other that are

borrowed from computer music (the concept of “instrument”, from Music-N

languages), other that are rooted in electronic music tout court (many synthe-

sis techniques are digital implementations of analogue methods, as well as the

idea of “patching”), still other notions stem from analog audio even if typical

also of the electroacoustic practice (the concept of buses in themixer, that is also

present –in a digital fashion– in DAWs, Digital Audio Workstations).

It is therefore convenient to introduce a metaphorical framework –a bit

“quirky” indeed, but hopefully useful– and think about the server as a chemical

plant for the synthesis of liquid materials. Such a framework allows to intro-

duce the ontology of the server, that is, the set of elements that compose it and

their mutual relations. Each element will then be addressed analytically, in the

proper context of scsynth. The following discussion will start from Figure 5.3.

3 In particular, the element that makes sclang a privileged client is the opportune

formatting of SynthDefs that it provides, so that SynthDefs can be sent to the

server. This operation can be implemented into other clients, but it is objectively

cumbersome. We will discuss SynthDefs in detail later.

124 SC architecture and the server

Device Device Device

Device Device Device

Device Device

Machine

Plant

connection pipe

out pipe

in pipe

Machine

Machine

out pipe

containercontainer

Group

Archive

Figure 5.3 The audio server as chemical plant for the synthesis of liquids.

1. The whole production process is managed not by a machine but by a whole

plant;

2. To synthesize a liquid, a complex machinery is required;

3. A machine consists of specialized devices in which liquids are being trans-

formed. Devices are connected through inner pipes;

4. Machinery must be designed providing the relationships between device

components. From a project schematics, any number of identical machines

can be built. Projects are stored into the plant archive for future reuse;

5. Once built, the machine can not be changed in its internal structure;

6. But an employee can control its behavior from outside through levers and

controls, as well as monitor its operation;

7. A plant may comprise more machines working in parallel;

8. Groups of autonomous machines can be coordinated;

9. When the plant is in operation, fluids flow through the pipes at constant

rate, but can never stop;

10. The liquids can flow in the pipes at two (but always constant) different rates,

and in particular at control and synthesis rates;

11. Liquids, however, can be stored in limited quantities in special containers,

from which they can be drawn at need. These liquids do not flow, but,

through specialized devices, they can be poured into a a flowing liquid;

Introduction to SuperCollider 125

12. Typically (although not necessarily) a machine is given a device equipped

with a pipe that allows to let out the liquid outside. Other times, it can also

have a device with an incoming pipe from which to receive a liquid that

comes from other machinery;

13. The circulation of the liquids between the plant and the outside (e.g. wa-

ter from the inlet, the synthesized product in output) or between different

machines in the plant occurs through special pipes. The former are pipes

devised for entry/exit, the second are connection ones. Through the latter,

liquids can then circulate in the plant and are available to other machines.

These pipes therefore allow you to connect different machines;

14. The connecting pipes disperse liquids that not exited through the outlet

pipes of the plant in the waste plant. Liquids do not pollute and their dis-

persion is not relevant;

It is possible now to reconsider the previous points, by appropriately re-

placing the names in Figure 5.3with those in Figure 5.4.

UG UG UG

UG UG UG

UG UG

Synth

Synth

Synth
buffer

buffer

SERVER

bus

Out bus

In bus

Out bus

Group

SynthDef

Figure 5.4 Components of the audio server scsynth.

Observation 1

The whole production process is managed not by a machine but by a whole plant

126 SC architecture and the server

It is useful to consider the server not so much as a machine, rather as a real

audio synthesis plant, an environment with a complex internal organization.

The server must be set in motion (“booted”). Note that when you open the

IDE, the interpreter is already active (below left, its relative GUI is green), but

the server has not started yet. To start the server, you can use the GUI, that is,

press the window and select boot or evaluate s.boot, because the environment

variable s is associated by default in the interpreter to the sound server.

Observation 2

To synthesize a liquid, a complex machinery is required

In order to synthesize an audio signal, a software machine is needed. In

SC, the latter is termed Synth: a “synth” is precisely an audio synthesizer. Here

synthesizer is to be understood literally with a reference to an instrument, the

analog synthesizer. A synth is an instrument that sounds.

Observation 3

A machine consists of specialized devices in which liquids are being transformed. De-

vices are connected through inner pipes

To generate an audio signal, a synth requires the user to specify which syn-

thesis/processing algorithms for the audio signal have to be used. In SC, fol-

lowing the tradition of theMusic N family of languages, synthesis/processing

algorithms are implemented in “UGens” (→ Unit Generator): a UGen is sim-

ply a software device that processes or synthesizes audio signals. For example,

SinOsc is a UGen that generates sinusoidal signals. The UGen is the very ba-

sic component of a synth, an atomic object that is an audio primitive in SC4. A

synth is just a synthesizer, a synthesis device built with UGen components. A

UGen has its analog counterpart in a hardware component that can be wired to

other hardware components.

Observation 4

Machinery must be designed providing the relationships between device components.

From a project schematics, any number of identical machines can be built. Projects are

stored into the plant archive for future reuse

4 The equivalent in Csound is the opcode, and the same applies to the generating

units that correspond to a block in graphical languages such as Max/MSP or

Pure Data.

Introduction to SuperCollider 127

The SC client, therefore, asks the server to build and operate one (or more)

synth on its behalf. To meet the demand, the server has to know which pieces

(UGens) to use and how to combine them (how to “patch” them into a “UGen

graph”, a graph ofUGens). Since it is likely that the usermay need several times

the same devices, SC provides an extra step. The user first provides the server

a definition of a synth (a “SynthDef”), a kind of detailed schematics of how the

desired synth should be built, and then asks the server to effectively build a

synth following that project. View from the perspective of analog hardware,

a SynthDef is like the wiring diagram upon which to build a synthesizer. A

SynthDef associates a name 𝑛 to a configuration of UGens 𝑢, so that synths
of type 𝑛 can be built, that generate signals through the relationships defined

for the UGens 𝑢. Once created, the SynthDef can be eventually stored on the

hard disk and therefore remain always available to the user even after the SC

application is closed. In other words, the user can create a library of SynthDefs

(understood as projects or as templates fromwhich to create synths) and, when

appropriate, ask the server to create a synth from a certain SynthDef.

Essentially, to use SC as a synthesis engine, two steps at least have to be

taken:

1. define a SynthDef (define the design of the synthesizer)

2. instantiate a synth from a SynthDef (build the synthesizer)

Observation 5

Once built, the machine can not be changed in its internal structure

A SynthDef is a diagram, a schema: it is a static object. Once sent to the

server, it is immutable. If it has two inputs, other could not be added. On the

other hand, it is always possible to send the server a new SynthDef implement-

ing the desired changes, as well as to overwrite an existing SynthDef.

Observation 6

But an employee can control its behavior from outside through levers and controls, as

well as monitor its operation

The project of a synthesizer is described in a SynthDef by means of a UGen

graph. The latter may provide input arguments to be controlled by the user:

these arguments are precisely parameters for the computation –carried outwithin

the UGen graph– of the value (the amplitude of the signal, remember that a sig-

nal is a sequence of numbers) to be returned in output.

128 SC architecture and the server

Observation 7

A plant may comprise more machines working in parallel

Each machinery in the hydraulic example represents a synth, or, musically

speaking, an instrument -or even a voice. On the server a very large number

of synth can reside, the default value is 1024, but it can be increased by the

user (if computational resources are available). All synthesizers may operate in

parallel.

Observation 8

Groups of autonomous machines can be coordinated

Synths canwork in parallel, but it is also possible to control them as a single

group. That is, it is possible to send coordinate communications to different

synths if they are part of the same “group”.

Observation 9

When the plant is in operation, fluids flow through the pipes at constant rate, but can

never stop

We assumed that the liquid is the metaphoric counterpart of the audio sig-

nal. The choice of the liquid depends on the fact that at this point we are not

considering signals per se, but signals in real-time. In real-time, signals are in-

deed sequences of amplitude values, but with the added constraint that these

samples should be inexorably calculated at a uniform rate over time (typically,

but not necessarily, in the case of audio signals, 44, 100 times per second, the
sampling rate of the audio CD). At each instant of time, a new sample must be

computed: each synth performs all the calculations requested by all UGens that

compose it and returns a value. In other words, at each instant, all the UGen

graphmust be traversed, regardless of its complexity. Warning: if you consider

the hydraulic example, this means that if a drop enter from a pipe in the instant

𝑥, the instant later (𝑥 + 1), it must have passed through the entire machine, and
spit in output. That is: in each machine, the flowing of the liquid along the

pipes that connect internally the devices is literally instantaneous.

Observation 10

The liquids can flow in the pipes at two (but always constant) different rates, and in

particular at control and synthesis rates

Introduction to SuperCollider 129

So at each instant a new drop must come out by a machine after traversing

the entire complex of devices. The devices do not necessarily, however, update

their behavior on instant basis. In some cases, they may change their behavior

once every 𝑛 instants. A control signal is typically a signal that changes less

over time of an audio signal and that therefore can be calculated at a lower time

rate. For example, let us consider a signal that represents a vibrato, a frequency

oscillation. This oscillation will vary, by way of example, to a maximum of 10
times per second: it is a sub-audio signal. Thinking of the curve representing

such an oscillation, its frequency can be described as 𝑓 = 10 Hz. The Nyquist
theorem states that to represent a 10 Hz oscillation we need a sampling rate of
just 10 × 2 = 20 Hz. In such a situation, a rate of 44, 100 is a waste of compu-
tational resources, as we would update at audio rate a signal that changes at a

much lower rate. If we assume to work at audio rate (e.g., 44, 100Hz), the value
of the vibrato signal by which to multiply the audio signal can be computed at

time 0, kept constant for 𝑛 audio samples, then recomputed at time 𝑛 + 1, so
that the new value can be used to update the vibrato oscillation, again kept con-

stant for 𝑛 samples, and so on. A similar signal is not computed at audio rate,

rather at control rate. As we will see, the UGen compute signals when receiving

the messages ar or kr: the resulting signals will be updated respectively at au-

dio- or control ([k]ontrol) rates. Note that we are talking about an update rate

for signals, we are not considering an absolute number of samples. SC always

generates an audio signal in real-time by traversing the UGen graph at audio

rate: but some signals which intervene in the synthesis are updated at a lower

rate control.

Observation 11

Liquids, however, can be stored in limited quantities in special containers, from which

they can be drawn at need. These liquids do not flow, but, through specialized devices,

they can be poured into a a flowing liquid

A buffer is a temporarymemory that allows to store audio data required by

a certain synthesis algorithms. For example, consider reading a sound file for

playback. There are indeed UGens specialized in this operation. The content

of the audio file must then be read from the hard disk and stored in a block of

temporary memory (RAM). In SC a buffer is a block that the server allocates

on the RAM on request, so that it can be used to store data. The audio signal

stored in the buffer is in itself static (it is just a data sequence): and yet theremay

be a UGen that reads the contents from the buffer in real-time and sends it to

the sound card. Looking at Figure 5.4, it can be noted that there are two types

130 SC architecture and the server

of buffers. Some are internal to the synth, allocated directly when a synth is

created and not accessible from outside. Others are allocated outside the synths

and thus accessible to any synth.

Observation 12

Typically (although not necessarily) a machine is given a device equipped with a pipe

that allows to let out the liquid outside. Other times, it can also have a device with an

incoming pipe from which to receive a liquid that comes from other machinery

The synthesized digital signal must be sent to the sound card so that it con-

verts it into an electrical signal and sends it to the speakers. Some specialized

UGens are available to accomplish this task. They include inputs but not out-

puts: in fact, once the signal has passed through these UGens, it is no longer

available for further processing in SC, as it is sent to the sound card. A typical

example is the UGen Out. Typically, UGens of this type occupy the last places

in a UGen graph representing a synth. If an output UGen is omitted, the signal

is computed as required by other UGens in the UGen graph, but not sent out

from the synth, e.g. to the sound card (a waste of mental and computational

labor, and a classic mistake of the novice). Let us suppose then to connect an

input device to the sound card, such as a microphone. A specialized UGen can

make available to the synthesizer such a signal, so that it can be processed (e.g.

distorted). To do this, SC features the UGen SoundIn.

Observation 13

The circulation of the liquids between the plant and the outside (e.g. water from the

inlet, the synthesized product in output) or between different machines in the plant

occurs through special pipes. The former are pipes devised for entry/exit, the second

are connection ones. Through the latter, liquids can then circulate in the plant and are

available to other machines. These pipes therefore allow to connect different machines

Thus, the server provides UGens for the communication with the sound

card, in input (e.g from a microphone) and output (e.g. to speakers). These

communication channels are called “buses”, according to a term derived from

the technology of mixer5. Even if the notion of “channel” could be close to that

5 Just to be clear, the term has nothing to do with “bus” as a means of transport.

Even if a bus serves for transport, any comparison would be misleading in this

respect. A bus does not move anything in a proper sense. Wewill discuss buses

later

Introduction to SuperCollider 131

of bus, it is probably better and less misleading to think about buses in terms

of “pipes”. In any case, the bus system must not be thought of as a system of

pipes that statically connect various machines, rather as a system of available

pipes to which machines can be connected. For example, all synths meant to

process a signal that comes from the outside can be connected to the bus which

is responsible for reading the input from sound card (the pipe where a liquid

from outside flows). All synths sending their output signals to the sound card

may be connected to the bus that handles that task: in that case, as a digital

signal is just a sequence of numbers, the signals on the output bus simply add

up. The buses so far mentioned are specialized for audio signals (they are audio

buses), but there are also buses specifically dedicated to control signals (control

buses). Buses are identified by a progressive number, an index starting from 0.
For control buses, the indexing is progressive and there are no particular aspects

to be considered. Audio buses require extra attention, as indexing requires to

take into account also the special cases related to communicationwith the sound

card. The first indices are dedicated to “external”, “public” buses that handle

the I/O communication with the sound card. The next indices are dedicated to

the “internal”, “private” buses6. What is the role of the internal buses? They

are needed to connect several synths. For example, a synth routes its output

signal on the bus 4 while another synth can take from there. That is, a hydraulic

machinery is connected to a pipe and is feeding the liquid: further along the

pipe, a second machine can be joined to the same pipe, and draw the liquid

from the junction.

Observation 14

The connecting pipes disperse liquids that not exited through the outlet pipes of the

plant in the waste plant. Liquids do not pollute and their dispersion is not relevant

Once routed to a bus, signals are available for computation. If at the end

they are notwritten on a output bus connected to the sound card, there is simply

no audible result. In other words, to route a signal to a bus does not require to

know in advance what other synths will do of that signal, and the latter may

simply not be used anymore. In this sense, what happens to the signal on the

bus is irrelevant. This feature ensures the possibility of communication among

synths, but without making it mandatory or planned in advance.

6 In this book we will rely terminologically on this categorization, inside/out-

side or public/private. This is not an official terminology as in SC there is no

difference in design or implementation between the two “types”.

132 SC architecture and the server

In summary, the server includes:

• SynthDefs: designs for instruments, available for the construction;

• UGens: atomic units for signal processing, to be used in the design of in-

struments;

• Synths: real instruments, to be built and used in real-time;

• Groups: groups of synths, manageable as a unit;

• Buffers: memory blocks, to contain usable data for synthesis/processing;

• Buses: channels to route signals inside/outside the server;

What do we do when we use the server? We send commands that allow in

real-time to define, build, control, destroy, connect instruments that communi-

cate with each other and that can use available data on the server. It is time to

address these issues with the code under our fingers.

5.3 The server

The first thing to do in order to communicate with the server is booting it. The

server is represented in the language by the class Server that encapsulates all

its functionalities. It is possible to have multiple server instances that can be

controlled independently (for example, think of a network of computers, each

of which works on a server, all controllable from a single client). By convention

and convenience, an instance of Server, directly accessible by the interpreter,

is assigned to the environment variable s7. So it is not usually appropriate to

use this variable s for anything else in SC. The following example shows a set

of messages that can be sent to the server to check its operation. Lines 14-15

illustrate the assignment of the default server to another variable (~myServer).

In the IDE, the bottom left window displays some information to monitor the

server.

7 There are two types of servers: a “local” and an “internal” one. The latter shares

the same memory space with the interpreter and work necessarily on the same

machine of the interpreter. In the writer’s opinion, this is in contrast with the

underlying assumption of the client/server architecture. The internal server

was useful in some situations in previous versions of SC: now it is entirely ves-

tigial, and will not be discussed here.

Introduction to SuperCollider 133

1 s // SC replies with "localhost"

2 Server.default ; // the same, assigned to s

4 // Minimal control

5 s.boot ; // boot the server

6 s.quit ; // stop it

7 s.reboot ; // indeed, reboot the server

9 // Gathering information on the generated signals

10 s.scope ; // to visualize signals in time domain

11 s.freqscope ; // to visualize signals in frequency domain

13 Server.killAll ; // in case of zombie processes

15 ~myServer = Server.default ; // assigning the server to another variabile

16 ~myServer.boot ; // same as before

Once the server has booted, indications similar to the following are printed

on the post window.

• booting 57110: the server is booting and it will receivemessages on the port

57110 (an arbitrary, default port number));

• localhost: the default server is in fact a local server;

• lines 4-7: here scsynth interfaces with the operating system and ask for a

list of available audio devices, which may include different configurations

depending on the operating system, the presence of external devices, etc.;

• lines 9-15: at this point a device is selected, to be actually in use, in the ex-

ample the built-in sound card. It features two input buses (the microphone

here is stereo) and two output ones (the two channels related to the speaker

in a standard stereo setup);

• line 17: specifies the sampling rate;

• line 18: the server is ready;

• lines 19-20: a notification has been received back from the server, so there is

OSC communication over the network. The last line is not relevant here but

everything indicates that it was successful.

s // SC replies with "localhost"
Server.default ; // the same, assigned to s

// Minimal control
s.boot ; // boot the server
s.quit ; // stop it
s.reboot ; // indeed, reboot the server

// Gathering information on the generated signals
s.scope ; // to visualize signals in time domain
s.freqscope ; // to visualize signals in frequency domain

Server.killAll ; // in case of zombie processes

~myServer = Server.default ; // assigning the server to another variabile
~myServer.boot ; // same as before

code/server/server.scd
code/server/server.scd

134 SC architecture and the server

1 /*

2 booting 57110

3 localhost

4 Found 0 LADSPA plugins

5 Number of Devices: 2

6 0 : "Built-in Input"

7 1 : "Built-in Output"

8

9 "Built-in Input" Input Device

10 Streams: 1

11 0 channels 2

12

13 "Built-in Output" Output Device

14 Streams: 1

15 0 channels 2

16

17 SC_AudioDriver: sample rate = 44100.000000, driver’s block size = 512

18 SuperCollider 3 server ready.

19 Receiving notification messages from server localhost

20 Shared memory server interface initialized

21 */

Once the server has booted, we can nowproceed to exploit its potentialities.

Compared to themetaphorical framework introduced above, it is like powering

the chemical plant, that is at the moment completely empty. It is up to the user

to build and operate the machinery. A useful learning method (useful also in

troubleshooting) makes use of s.dumpOSC: with dumpOSC(1) all OSC messages

sent to the server are printed on the post window. In this way, the –otherwise

hidden– flow of OSC communications from client to server becomes evident.

Printing is disabled with dumpOSC(0).

5.4 SynthDefs

First, we need to build the instrument that generates the signal. An example of

minimal SynthDef is the following:

/*
booting 57110
localhost
Found 0 LADSPA plugins
Number of Devices: 2
 0 : "Built-in Input"
 1 : "Built-in Output"

"Built-in Input" Input Device
 Streams: 1
 0 channels 2

"Built-in Output" Output Device
 Streams: 1
 0 channels 2

SC_AudioDriver: sample rate = 44100.000000, driver's block size = 512
SuperCollider 3 server ready.
Receiving notification messages from server localhost
Shared memory server interface initialized
*/

code/server/post/boot.scd
code/server/post/boot.scd

Introduction to SuperCollider 135

1 SynthDef.new("bee",

2 { Out.ar(0, SinOsc.ar(567))}

3).add ;

• SynthDef: is the class on the language side that represents a SynthDef object

on the server;

• .new(...): new is the constructor method, which actually builds the Syn-

thDef (returns the SynthDef object). The method new provides a number of

arguments. Here, two are specified, for others we leave the default values;

• "bee": the first argument is a string that represents the name of the Syn-

thDef: that is, the name that will be associatedwith the UGen graph. Synths

generated from this SynthDef will be of “bee” type. Here "bee" is a string,

but it could also be a symbol (\bee). Note that the SynthDef is not assigned

to a variable. In fact, the only utility of a SynthDef is to be sent to the server,

not to be manipulated on the language side;

• {Out.ar(0, SinOsc.ar}: the UGen graph is enclosed in braces. All that is in

braces in SC is a function, as we already know. Therefore, the UGen graph is

described linguistically by means of a function. This UGen graph consists

of two UGens, Out and SinOsc: this fact is made explicit by the message

*ar that the two UGen receive. In general what answers the *ar or *kr is a

UGen. And, in order to generate a real-time signal, a UGen has to receive

an *ar or *krmessage.

Why a function to describe linguistically the relations between UGens?

Remember that a function is an object that returns a value every time it is

asked. A synth is then described by a function because at each sample pe-

riod it is asked to return a value of amplitude, the value of the audio sam-

ple. In other words, at every sample period (with the default sampling rate,

44, 100 times per second), it calculates the value of the function described by
the UGen graph.

Figure 5.5 shows, according to the previous conventions, a synth built

from the SynthDef "bee". As it may be seen, the resulting signal is “con-

nected” (routed) to the bus 0. In a more usual form, a UGen graph can be
described by means of a flow chart, like the graph in Figure 5.6. An inter-

esting aspect of this graph is that it was generated automatically from the

SynthDef.new("bee",
	{ Out.ar(0, SinOsc.ar(567))}
).add ;

code/server/SynthDefMinimal.scd
code/server/SynthDefMinimal.scd

136 SC architecture and the server

SinOsc Out

Synth: "bee"

Out bus: 0
Server

Figure 5.5 Schema of a minimal SynthDef.

SynthDef: therefore it is not a scheme but a real information visualization8.

Out is the UGen in charge of sending the generated signal to the sound card:

without Out there would not be communication with the sound card, and

no audible sound. Out has two arguments. The first is the index of the bus

on which to send the output signal, the second is the signal to be sent. Thus,

Out receives a signal and sends it to the bus audio 0, the first available out-

put channel of the sound card (it is an external, public bus). The signal to

be sent comes from SinOsc: it is a case of patching, as the UGen SinOsc is

plugged into another Out (see later). SinOsc generates a sinusoidal signal:

if frequency and phase are not specified, these will get their default values,

respectively 440 (Hz) and 0.0 (radians).

SinOsc freq: 440 phase: 0

Out bus: 0 channelsArray:

Figure 5.6 Visualization of the UGen graph.

• add: the SynthDef, in itself, is useless if it is not loaded on the server. The

method add, defined for SynthDef, tells a SynthDef to “dispatch itself” to

the server s. Thus, with add the SynthDef is compiled on the fly in a specific

binary format and sent to the server. Remember: everything in a SynthDef

8 The figure was obtained using a modified version of the extensions (“quarks”

in SC) dot by Rohann Drape.

Introduction to SuperCollider 137

consists of specific instructions for the synthesis of the signal, nothing else.

By invoking the method add, the SynthDef becomes resident (i.e. available)

on the server until this is on.

In addition to add, many methods defined for the class SynthDef are avail-

able. As an example, some allow to write the definition onto a file (this is what

the method writeDefFile does): once stored, the SynthDefs will be loaded on

the server each time it boots, and therefore will be immediately available for us-

age. Although at first glance it may seem logical to write libraries of SynthDefs

onto files so that they are loaded when the server starts, it is actually a common

practice to load them each time. The method add is therefore by far the usual

method when working with SynthDef.

Back to the example, the server now has prepared the project "bee" so that

synths of type "bee" may be created. What has been done? A SynthDef was

defined (by associating a name and a UGen graph), compiled into a binary for-

mat that the server accepts, finally sent to the server that keeps it available in

memory until it is running. By turning on the print of OSC messages onto the

post window (dumpOSC (1)), once sending the SynthDef we get:

1 ["/d_recv", DATA[106], 0]

Once built, the synth "bee" can be thought of as a kind of hardware mod-

ule without external controls, a black box that can simply be switched on or

off. It is worth reviewing the considerations on the functions expressed in the

discussion about syntax: a function can communicate with the outside through

its arguments. The following example shows a slightly more complex case:

["/d_recv", DATA[106], 0]

code/server/post/defPost.scd
code/server/post/defPost.scd

138 SC architecture and the server

1 SynthDef.new(\pulseSine , { arg out = 0, amp = 0.25, kfreq = 5 ;

2 Out.ar(

3 bus:out,

4 channelsArray: SinOsc.ar(

5 freq: kfreq*50,

6 mul: LFPulse.kr(

7 freq: kfreq,

8 width: 0.25

9)

10)

11 *amp);

12 }).add;

Note that in this case the UGen graph associated with the name \pulseSine

(this time expressed as a symbol) provides some input arguments, that allow

a real-time control. They are out, amp, kfreq. In this way, each synth of type

"pulseSine"will offer three controls in relation to the function arguments. Think-

ing in terms of a hardware module, this time the synth, once built, will present

three controls that can be operated from outside (say: three knobs). It is good

practice to include whenever possible default values for the arguments of a

SynthDef, so that a synth can be created with minimal effort and with “mean-

ingful” parameters. Line 12 closes the UGen graph and sends the SynthDef to

the server.

5.5 UGens and UGen graphs

UGens are atomic signal processing units. UGens may have more inputs, but

always only one output. AUGen can receive as its input the signal from another

UGen: this process is called patching. A set of interconnected UGens forms a

UGen graph, a graph of UGens, that is, a structure that describes the relations

between UGens. Since UGens generate signals, the UGen graph describes the

flow of signals that are progressively collected into the output signal. Another

metaphor: theUGen graph is the geographicalmap of a river that collectswater

from several tributaries, finally ending in the sea.

SynthDef.new(\pulseSine, { arg out = 0, amp = 0.25, kfreq = 5 ;
	Out.ar(
		bus:out,
		channelsArray: SinOsc.ar(
			freq: kfreq*50,
			mul: LFPulse.kr(
				freq: kfreq,
				width: 0.25
)
)
		*amp);
}).add;	

code/server/SynthDef.scd
code/server/SynthDef.scd

Introduction to SuperCollider 139

In the definition of the SynthDef "pulseSine", the program uses formatting

and an unusually verbose writing style to make as clear as possible the orga-

nization of patching. In the example, lines 2-11 describe the graph of UGens,

including an example of patching between Out, SinOsc, LFPulse. Notice that

the latter (a square wave generator) updates its values recalculating the output

value at control rate, in accordance with the message kr sent to LFPulse.

It is appropriate now to dwell more on a UGen, in particular on SinOsc.

To know how the UGen behaves one can obviously read the relative help file.

Another option, useful while studying, is to access the UGen definition in the

source code.

1 SinOsc : UGen {

2 *ar {

3 arg freq=440.0, phase=0.0, mul=1.0, add=0.0;

4 ^this.multiNew(’audio’, freq, phase).madd(mul, add)

5 }

6 *kr {

7 arg freq=440.0, phase=0.0, mul=1.0, add=0.0;

8 ^this.multiNew(’control’, freq, phase).madd(mul, add)

9 }

10 }

Note that SinOsc inherits from UGen, the generic superclass of all UGens. In

addition, it defines only two methods for the class, ar and kr. Leaving aside

the last line of each method, we see that the methods provide a number of ar-

guments which can be passed a value. Still, all the arguments typically are

provided with a default value. The following three lines are equivalent9:

1 SinOsc.ar;

2 SinOsc.ar(440.0, 0.0, 1.0, 0.0);

3 SinOsc.ar(freq: 440.0, phase: 0.0, mul: 1.0, add: 0.0);

9 Of course it is useless to evaluate them in the interpreter, because they describe

objects that are meaningful only if placed in a SynthDef and sent to the server.

SinOsc : UGen {
	*ar {
		arg freq=440.0, phase=0.0, mul=1.0, add=0.0;
		^this.multiNew('audio', freq, phase).madd(mul, add)
	}
	*kr {
		arg freq=440.0, phase=0.0, mul=1.0, add=0.0;
		^this.multiNew('control', freq, phase).madd(mul, add)
	}
}

code/server/sinOscSource.scd
code/server/sinOscSource.scd

SinOsc.ar;
SinOsc.ar(440.0, 0.0, 1.0, 0.0);
SinOsc.ar(freq: 440.0, phase: 0.0, mul: 1.0, add: 0.0);

code/server/keywords.scd
code/server/keywords.scd

140 SC architecture and the server

The first, in the absence of any indication, uses the default values for the

method ar. The second specifies a value for every argument. The third one

makes use of keywords, which, as we already know, allow a free order of argu-

ments. The last two arguments are mul and add, and are shared bymost UGens:

mul is a multiplier for the signal while add is an amount (positive or negative)

that is added to the signal. The signal generated by aUGen is by default normal-

ized, its amplitude oscillating in the range [−1, 1] (sometimes, in case of UGens
dedicated to unipolar signals, the range is [0, 1]). The argument mul defines a
multiplier that scales the normalized amplitude, while add is an increase that is

added to the same signal. The default values for mul and add are respectively 1
and 0: thus, by default the signal is multiplied by 1 and a value of 0 is added. In
this way, it is left unchanged with respect to the default range. For the avoid-

ance of doubt, “multiply” and “add” means that each sample of the signal is

multiplied and added to the values specified in the two arguments. Instead in

this example:

1 SinOsc.ar(220, mul:0.5, add:0) ;

2 SinOsc.ar(220, mul:0.5, add:0.5) ;

at line 1 the signal generated by the method ar is multiplied by 0.5 (with
0 added, the latter operation is thus irrelevant): the signal’s amplitude will be
included in the range [−1.0, 1.0] × 0.5 = [−0.5, 0.5]; at line 2, 0.5 is added to

the signal: its amplitude will be included in the range [−1.0, 1.0] × 0.5 + 0.5 =
[−0.5, 0.5] + 0.5 = [0.0, 1.0]. It will be unipolar, asymmetrical with respect to
0. To assign mul a constant value = 0.5 indicates that each new sample is mul-

tiplied by 0.5. In order to generalize the approach, we might think then that
mul is a signal, but a constant one. In this regard, the UGen Line provides an

example. In the words of the help file, it is a generator of “lines”: a line here

is a signal that results from “generat[ing] a line from the start value to the end

value". The first three arguments of Line are start, end, dur: Line generates

a sequence of values linearly from start to end in dur seconds.

In the following code

1 SinOsc.ar(220)*Line.kr(0.5,0.5, 10) ;

SinOsc.ar(220, mul:0.5, add:0) ;
SinOsc.ar(220, mul:0.5, add:0.5) ;

code/server/keywords2.scd
code/server/keywords2.scd

Introduction to SuperCollider 141

Line generates for a duration of 10 seconds a sequence of values = 0.5 (i.e.
a progression from 0.5 to 0.5). The output signal from the oscillator SinOsc is

multiplied by the output of Line. At each sample period, the sample calculated

from the first UGen ismultiplied by the sample calculated by the second (which

has a constant value of 0.5). Note that the resulting signal is the same as the pre-
vious one. The example is meant to demonstrate how a constant (a value) can

be thought as a signal (a sequence of values): indeed, in general the interesting

feature of Line lies in that the UGen generates values that vary according to a

linear progression between the two extremes.

The following example produces a crescendo from silence, because start

= 0:

1 SinOsc.ar(220)*Line.ar(0.0,1.0, 10) ;

If, therefore, a constant can be thought of as a signal, then we can think of

each value of an argument in a UGen as a constant signal. And therefore, we

can consider the case where, rather than a UGen generating constants values,

there is a UGen outputting (as usual) a sequence of different values. Patching is

precisely the connection of a UGen to an argument of another UGen. The calcu-

lation of the signal will thus include the contribution offered by more UGens,

organised in a specific configuration of inputs and outputs. The example al-

lows us to understand how the arguments can receive not only constant values

but also variable ones, that is, other signals. In other words, signals can change

any controllable aspect of other signal generators. Remember that the sampling

rate determines the frequency at which the graph is to be traversed. In other

words, at every sample period 𝑇 = 1
𝑠𝑟 all the UGens recalculate their values, to

be used where required.

Figure 5.7 represents the flow chart of the SynthDef "pulseSineGraph". Gray

elements describe audio rate flow, the blue ones the control rate flow, the con-

nector boxes represents numeric values. LFPulse works at control rate, while

kfreq, amp, out are set at event rate (that is, each time a user changes the pa-

rameters). The blocks labelled “* a b” indicate multiplication. In UGens, un-

specified values for arguments are indicated by default values.

The multiplier signal is generated by LFPulse, a square wave generator,

with a frequency kfreq (thus associated with the frequency of the sinusoid).

The output signal from LFPulse is unipolar, that is, in the range [0, 1]. If we use

SinOsc.ar(220)*Line.kr(0.5,0.5, 10) ;

code/server/line.scd
code/server/line.scd

SinOsc.ar(220)*Line.ar(0.0,1.0, 10) ;

code/server/line2.scd
code/server/line2.scd

142 SC architecture and the server

out:0

Out bus: channelsArray:

amp:0.25

* a: b:

kfreq:5

* a: b: 50

LFPulse freq: iphase: 0 width: 0.25

SinOsc freq: phase: 0

* a: b:

Figure 5.7 Representations of the UGen graph.

a similar signal as a multiplier for another signal, then, when the amplitude is

0.0, the resulting signal has an amplitude 0.0 (silence), when the amplitude is
0.5, the output is the starting signal, scaled by 0.5. In essence, an intermittent
opening/closing of the patched signal result. Note that in the example the fre-

quency of the sine wave is related to the intermittent frequency (the more acute

the frequency is, the more frequently it is opened/closed).

To summarize: UGens are atomic processing units, described on the lan-

guage side as classes that receive the (class) methods *ar and *kr, the latter

receiving values for the arguments that act as parameters for the UGen. Dur-

ing the real-time synthesis process, UGens generate output signals, that is, se-

quences of values at audio rate. The values of these arguments may be other

signals (patching).

In the example of the SynthDef pulseSine, the writing style was rather ver-

bose, particularly in the extensive use of keywords for UGens. The following

Introduction to SuperCollider 143

two examples are totally identical to the previous version. The first is a form

of compact writing that is typical in SynthDefs but that is usually quite com-

plex to decipher for the novice (it requires some exercise). The second version

is instead quite lengthy but very clear. Remember, the UGen graph is described

linguistically as a function, then, all the considerations we did on functions ap-

ply. In the example, two variables are at use (pulser, sine) that are associated

with the two signals, with the aim of clarifying the information flow.

1 // compact

2 SynthDef.new(\pulseSine , { arg out = 0, amp = 0.25, kfreq = 5 ;

3 Out.ar(out, SinOsc.ar(

4 kfreq*50, mul: LFPulse.kr(kfreq, width: 0.25)

5)*amp);

6 }).add;

8 // expanded, more verbose

9 SynthDef.new(\pulseSine , { arg out = 0, amp = 0.25, kfreq = 5 ;

10 var pulser, sine;

11 pulser = LFPulse.kr(freq: kfreq, width: 0.25) ;

12 sine = SinOsc.ar(freq: kfreq*50, mul: pulser) ;

13 sine = sine*amp;

14 Out.ar(bus:out, channelsArray: sine);

15 }).add;

As we have seen, UGens are atomic signal processing units. Their number

is very large, and it can be checked by evaluating UGen.subclasses.size: in the

installation of thewriter, the number returned by the evaluation is 305. A rough

classification can distinguish:

• Generation: signal synthesis, both in deterministic and random fashion (os-

cillators, noise generators);

• Processing: transformation of an input signal (filtering, delaying, reverber-

ation) ;

• Spatialization: delivery of an input signal on several channels;

• Analysis: signal analysis and feature retrieval;

• Conversion: conversion of signals from audio to control and vice versa;

• Buffer: buffer allocation and access;

• Envelopes: generation and manipulation of envelopes;

• Triggers: trigger signals, of various types;

// compact
SynthDef.new(\pulseSine, { arg out = 0, amp = 0.25, kfreq = 5 ;
	Out.ar(out, SinOsc.ar(
			kfreq*50, mul: LFPulse.kr(kfreq, width: 0.25)
)*amp);
}).add;

// expanded, more verbose
SynthDef.new(\pulseSine, { arg out = 0, amp = 0.25, kfreq = 5 ;
	var pulser, sine;
	pulser = LFPulse.kr(freq: kfreq, width: 0.25) ;
	sine = SinOsc.ar(freq: kfreq*50, mul: pulser) ;
	sine = sine*amp;
	Out.ar(bus:out, channelsArray: sine);
}).add;	

code/server/SynthDefRedo.scd
code/server/SynthDefRedo.scd

144 SC architecture and the server

• Input/Output: I/O access to the sound card;

• Info: information retrieval on audio on the server side;

• User interaction: server-side user-interaction (e.g. via mouse);

SC provides the following internal classification for UGens, with their ac-

tual amount on the installation taken into account:

Algebraic (5)

Analysis (74)

Analysis:Synthesis (11)

Base (4)

Buffer (42)

Conversion (5)

Convolution (6)

Delays (34)

Demand (28)

Deprecated (1)

Dynamics (4)

Envelopes (8)

FFT (85)

Filters (107)

Generators (156)

GranularSynthesis (32)

InOut (20)

Info (15)

InfoUGens (1)

Maths (17)

Multichannel (126)

PhysicalModels (2)

Random (19)

Reverbs (3)

Synth control (13)

Triggers (31)

Unclassified (4)

Undocumented (218)

User interaction (4)

5.6 Synths and Groups

Once written and sent to the server the SynthDef, the server simply stores it as

a project available to build on the fly a synth, an instrument to produce sound

in real-time. The synth, in turn, can be controlled interactively by the user. A

typical, minimal program in SC is as follows:

Introduction to SuperCollider 145

1 // 1. booting the server

2 s.boot ;

3 // tracing OSC messagges

4 s.dumpOSC;

6 // 2. sending the synthDef

7 (

8 SynthDef.new(\pulseSine , { arg out = 0, amp = 0.25, kfreq = 5 ;

9 Out.ar(

10 bus:out,

11 channelsArray: SinOsc.ar(

12 freq: kfreq*50,

13 mul: LFPulse.kr(

14 freq: kfreq,

15 width: 0.25

16)

17)

18 *amp);

19 }).add;

20)

22 // 3. creating a synth

23 x = Synth(\pulseSine) ;

The program is made up of three blocks. First (8-19), the server is booted

(and we wait until this to have replied to the client). Then, the block containing

the SynthDef has to be evaluated. Again, we wait until the server has replied.

Finally, the synth is created (23). The three blocks are, therefore, three moments

of asynchronous interaction between client and server. In other words, in prin-

ciple the client does not know how much time the server will need to respond

to its requests. User experience working with SC will show that these waiting

times are reduced to some milliseconds, but this does not change the point: in-

teraction between server and client is asynchronous. In case of evaluating all

the code in once, the interpreter would execute all the sequence of expressions

as fast as possible. But, then, the server would still be booting when the Syn-

thDef is sent, and thus the latter would not be received. Once such an operation

has failed, the requesting for a synth would lead to:

// 1. booting the server
s.boot ;
// tracing OSC messagges
s.dumpOSC;

// 2. sending the synthDef
(
SynthDef.new(\pulseSine, { arg out = 0, amp = 0.25, kfreq = 5 ;
	Out.ar(
		bus:out,
		channelsArray: SinOsc.ar(
			freq: kfreq*50,
			mul: LFPulse.kr(
				freq: kfreq,
				width: 0.25
)
)
		*amp);
}).add;
)

// 3. creating a synth
x = Synth(\pulseSine) ;

code/server/synth.scd
code/server/synth.scd

146 SC architecture and the server

1 *** ERROR: SynthDef pulseSine not found

2 FAILURE IN SERVER /s_new SynthDef not found

An errormessage that indicates precisely that the SynthDef request to build

a synth is not available on the server.

Going back to the program, as can be imagined, SC provides a class named

Synth that encapsulates all commands pertaining to a synth on the server. The

constructor method new, as usual omissible and here omitted, includes as an

argument a string indicating the SynthDef fromwhich to manufcture the synth

("pulseSine"). Once created, the synth is immediately activated (= it plays).

This behavior is useful because a synth can be thought of as an instrument

(a synthesizer) but also as a sound event (e.g. a "note"): considering this sec-

ond option, it becomes obvious that creating a synth is like generating a sound

event. Once the synth has been created, the GUI text view dedicated to the

server in the IDE is updated, and the values of the fields “u” (active UGens)

and “s” (active synths) vary accordingly.

Before going into the details of synth control, a crucial question has to be

answered: how can we stop the sound? The “life-saving” command in the IDE

is Language→Stop, that interrupts every generation process (both sound syn-

thesis and scheduling)10.

Turning again to the previous program, but this time activating the printing

of OSC messages with dumpOsc, we get the following post window:

1 a SynthDef

2 ["/d_recv", DATA[343], 0]

3 Synth(’pulseSine’ : 1000)

4 [9, "pulseSine", 1000, 0, 1, 0]

5 ["/g_freeAll", 0]

6 ["/clearSched",]

7 ["/g_new", 1, 0, 0]

10 The keyboard shortcut depends on the platform, typically “CTRL or APPLE +

.”.

*** ERROR: SynthDef pulseSine not found
FAILURE IN SERVER /s_new SynthDef not found

code/server/post/notFoundPost.scd
code/server/post/notFoundPost.scd

a SynthDef
["/d_recv", DATA[343], 0]
Synth('pulseSine' : 1000)
[9, "pulseSine", 1000, 0, 1, 0]
["/g_freeAll", 0]
["/clearSched",]
["/g_new", 1, 0, 0]

code/server/post/synthPost.scd
code/server/post/synthPost.scd

Introduction to SuperCollider 147

Without going into too much detail, lines 1 and 2 indicate the receiving of

the SynthDef (in the form of a standard answer by the interpreter, including the

OSC message), then (3-4) the creation of the synth, finally (5-7) the sequence of

OSC messages that result from stopping the sound. As for the synth, an obser-

vation can be added: the number 1000 is an identifier that the server progres-

sively assigns to synths, starting from 1000 (the previous indices are reserved

for internal use). If another synth is created (without calling Stop), it will be

identified by the index 1001. In any case, while coding synths are usually re-

ferred not directly by their ID, rather by assigning an instance of the class Synth

to a certain variable. This is an example of the usefulness of abstracting server

constructs into language classes: by encapsulating all the functionalities of a

synth into an object (including its ID), the Synth object manages all the required

bookkeeping offering the user a unified interface. Lines 5-7 indicate that as a

result of the Stop command, the server was required to remove all the synths.

Here, g refers to a group that is active by default (see later).

The next example, abundantly commented, assumes that the SynthDef puls-

eSine is still available on the server. Line 4 shows how to instantiate a synth by

immediately setting the values of some of the arguments for the UGen graph

function (the arguments would otherwise receive their default values). The

syntax requires to provide an array alternating the names of the arguments and

their relative values. Lines 5-6 show how to play/pause a synth by means of

the method run. Lines 8-9 show how to change the values of some arguments

of the UGen graph function by using the method set that can receive a list of

arguments/values to set the desired parameters. Line 11 shows how to elimi-

nate (technically, “deallocate”) a synth through free. Finally, lines 14-15 show

how to create a synth without having it running immediately by using the con-

structor method newPaused: the synth can be activated at a later time (line 15).

148 SC architecture and the server

1 // Arguments and synth control

3 // intreactive control, you need to evaluate each line (= performance)

4 x = Synth(\pulseSine , [\kfreq , 14, \amp , 0.7]) ;

5 x.run(false) ; // = press the pause button on the synth

6 x.run(true) ; // = x.run, true is the default value

8 x.set(\kfreq , 15, \amp , 0.125) ; // control of arguments

9 x.set(\kfreq , 20) ; // control of arguments, just one

11 x.free ; // deallocation: synth is eliminated

13 // from beginning but starting with a paused synth

14 x = Synth.newPaused(\pulseSine , [\kfreq , 5, \amp , 0.5]) ;

15 x.run ;

The code above is an interactive session with the interpreter that controls

in real-time the server to process audio. Even if minimal, it is an example of

“live coding”, that is, of live, interactive programming. In fact, in SC it could

be said that the user (indeed at different degrees) always works in a live coding

fashion.

Synths can be coordinated in a group: a Group is simply a list of synths

to which is possible to send the same message. Groups and synths have sub-

stantially the same interface, i.e. the basic methods of synths (which we have

already discussed) also apply to groups. Consider the following example:

1 SynthDef(\sine , {arg freq = 100; Out.ar(0, SinOsc.ar(freq))}).add ;

2 SynthDef(\pulse , {arg freq = 100; Out.ar(1, Pulse.ar(freq))}).add ;

4 s.scope ;

5 g = Group.new ;

6 x = Synth(\sine , [\freq , 200], target:g) ;

7 y = Synth(\pulse , [\freq , 1000], target:g) ;

9 g.set(\freq , 400) ;

10 x.set(\freq , 1000) ;

11 g.free ;

// Arguments and synth control

// intreactive control, you need to evaluate each line (= performance)
x = Synth(\pulseSine, [\kfreq, 14, \amp, 0.7]) ;
x.run(false) ; // = press the pause button on the synth
x.run(true) ; // = x.run, true is the default value

x.set(\kfreq, 15, \amp, 0.125) ; // control of arguments
x.set(\kfreq, 20) ; // control of arguments, just one

x.free ; // deallocation: synth is eliminated

// from beginning but starting with a paused synth
x = Synth.newPaused(\pulseSine, [\kfreq, 5, \amp, 0.5]) ;
x.run ;

code/server/synthControllo.scd
code/server/synthControllo.scd

SynthDef(\sine, {arg freq = 100; Out.ar(0, SinOsc.ar(freq))}).add ;
SynthDef(\pulse, {arg freq = 100; Out.ar(1, Pulse.ar(freq))}).add ;

s.scope ;
g = Group.new ;
x = Synth(\sine, [\freq, 200], target:g) ;
y = Synth(\pulse, [\freq, 1000], target:g) ;

g.set(\freq, 400) ;
x.set(\freq, 1000) ;
g.free ;

code/server/group.scd
code/server/group.scd

Introduction to SuperCollider 149

Lines 1-2 define two minimal SynthDefs, respectively, a sine wave oscil-

lator and a square wave one. Both SynthDefs expose as an interface the argu-

ment freq that controls the frequency in both the oscillators. The two oscillators

route the signal respectively to the left and right channel through the argument

passed to Out that specifies the bus (0 vs 1). Calling s.scopemakesmore clearly

observable what happens (4). A group is then created through the class Group.

Two synths are then created (lines 6-7), without anything special except for the

specification of the argument target that allows to assign a synth to a group,

here the g. Once the group has been created, it becomes possible to control the

associated synths in one shot. Line 9 sends to all the synths belonging to the

group g a message that sets freq = 400. It should be noted that the syntax is the
same as for synths11. All the synths in the group that provide a freq argument

(both in our case) responds to the message sent to the group. The association

to a group does not prevent the control of individual synths (10). Note that the

entire group can be deallocated in one message, that is, all the synths that be-

long to it (11). Groups are useful to impose modularity (audio tasks can be split

among various synths) but at the same time coordination: a classic example is

scaling the volume ofmany synths together. Moreover, a group can in turn con-

tain other groups. When a synth is created without specifying the target group,

it is aggregated to the so-called “default group”.

5.7 A theremin

Thewell-known theremin is an electronic instrument invented by Russian Léon

Theremin in which two antennas control the amplitude and the frequency of an

oscillator. The performer plays without actually touching the antennas, as the

control is achieved as a function of the proximity of the hands to the same an-

tennas. Consider then the following example (commented to emphasize again

some issues about SynthDefs):

11 In fact, both Synth and Group are subclasses of the more general class Node, and

by the way Node’s help file contains relevant information for both synths and

groups.

150 SC architecture and the server

1 SynthDef.new(\theremin , // a symbolic name

2 // the ugen graph follows

3 {

4 // we always need the Out ugen

5 Out.ar(

6 0, // bus index

7 // then the signal generated by the digital oscillator

8 SinOsc.ar(// SineOsc is the oscillator UGen

9 freq: MouseX.kr(200, 5000, 1), // argument: frequecy

10 mul: MouseY.kr(0,1))) // argument: a multiplier for amplitude

11 }).add ;

The structure is very simple: a sine generator is controlled in its ampli-

tude and frequency by two peculiar UGens, MouseX and MouseY. These are two

“pseudo-UGens”, as they intercept the mouse (which is on the client side, ev-

idently) to generate control signals. They are very useful to quickly check the

behavior of other UGens by exploring interactively a range of values. The two

UGens refer to the mouse position on the horizontal and vertical axes of the

screen, and they allow to map the x/y coordinates in the range defined by min-

val and maxval. Also, the type of curve that connects the two extremes can

be selected (warp). In the example, the frequency range (handled by MouseX)

is [200, 5000] (it refers to Hz), while the amplitude range (handled by MouseY)

is [0, 1] (normalized amplitude). The curve is linear (0) for the amplitude and
exponential for frequencies (1), in order to better account for the perception of

pitches12. By using the mouse, the basic operations of a theremin can be simu-

lated.

TheUGengraph is shown in Figure 5.8. The graph allows to enter into some

details concerning the arguments mul and add, share bymost UGens. Internally,

there is actually a specialized UGen, MulAdd, which operates very efficiently.

The UGen is not intended to be explicitly invoked by the user, rather it is an

internal implementation solution. But the graph, being generated by inspecting

the structure of the actual SynthDef, detects it and draws it (the block labelled

*).

12 The argument lag, usually left unset, is a delay that prevents an excessive time

sensitivity to the mouse jitter.

SynthDef.new(\theremin, // a symbolic name
	// the ugen graph follows
	{
	// we always need the Out ugen
	Out.ar(
		0, // bus index
		// then the signal generated by the digital oscillator
		SinOsc.ar(// SineOsc is the oscillator UGen
			freq: MouseX.kr(200, 5000, 1), // argument: frequecy
			mul: MouseY.kr(0,1))) // argument: a multiplier for amplitude
}).add ;

code/server/theremin.scd
code/server/theremin.scd

Introduction to SuperCollider 151

MouseX minval: 200 maxval: 5000 warp: 1 lag: 0.2

SinOsc freq: phase: 0

* a: b:

MouseY : 0 : 1 : 0 : 0.2

Out bus: 0 channelsArray:

Figure 5.8 UGen graph of the theremin.

To see what happens in terms of waveform and spectrum, it is possible to eval-

uate s.scope and s.freqscope.

5.8 An example of real-time synthesis and control

It is now worth discussing an example that combines graphical control and au-

dio synthesis: a first, minimal program that relates structurally the client and

the server.

152 SC architecture and the server

1 Server.local.boot ; // same as s.boot

3 (

4 // audio

5 SynthDef.new("square", { arg out = 0, freq = 400, amp = 0.75, width = 0.5;

6 Out.ar(out, Pulse.ar(freq, width: width, mul: amp));

7 }).add;

8)

10 (

11 // variables

12 var aSynth, window, knob1, knob2, button;

14 aSynth = Synth.new(\square); // the synth

16 // GUI: creation

17 window = Window.new("Knob", Rect(300,300,240,100));

18 window.front;

20 knob1 = Knob.new(window, Rect(30, 30, 50, 50));

21 knob1.valueAction_(0.25);

23 knob2 = Knob.new(window, Rect(90, 30, 50, 50));

24 knob2.valueAction_(0.3);

26 button = Button.new(window, Rect(150, 30, 50, 50)) ;

27 button.states = [// state array

28 ["stop", Color.black], ["start", Color.red]] ;

30 // GUI: controlling audio

31 knob1.action_({arg me; aSynth.set(\amp , me.value) });

32 knob2.action_({arg me; aSynth.set(\freq , me.value.linlin(0,1, 200, 2000)) });

33 button.action = ({ arg me;

34 var val = me.value.postln;

35 if (val == 1) { aSynth.run(false) } { aSynth.run }

36 });

38 window.onClose_({aSynth.free})

39)

The SynthDef is a simplewrapper for the UGen Pulse that generates square

waves, and permits to control its parameters: width is the duty cycle, i.e. the

ratio between positive and negative part of the signal (in the range [0, 1], where

Server.local.boot ;	// same as s.boot

(
// audio
SynthDef.new("square", { arg out = 0, freq = 400, amp = 0.75, width = 0.5;
	Out.ar(out, Pulse.ar(freq, width: width, mul: amp));
}).add;
)

(
// variables
var aSynth, window, knob1, knob2, button;

aSynth = Synth.new(\square); // the synth

// GUI: creation
window = Window.new("Knob", Rect(300,300,240,100));
window.front;

knob1 = Knob.new(window, Rect(30, 30, 50, 50));
knob1.valueAction_(0.25);

knob2 = Knob.new(window, Rect(90, 30, 50, 50));
knob2.valueAction_(0.3);

button = Button.new(window, Rect(150, 30, 50, 50)) ;
button.states = [// state array
			["stop", Color.black], ["start", Color.red]] ;

// GUI: controlling audio
knob1.action_({arg me; aSynth.set(\amp, me.value) });
knob2.action_({arg me; aSynth.set(\freq, me.value.linlin(0,1, 200, 2000)) });
button.action = ({ arg me;
	var val = me.value.postln;
	if (val == 1) { aSynth.run(false) } { aSynth.run }
});

window.onClose_({aSynth.free})
)

code/server/simpleKnob.scd
code/server/simpleKnob.scd

Introduction to SuperCollider 153

the default is 0.5, indicating an equal proportion). The block 10-38 is instead
deputed to instantiate the synth and its control via GUI. Line 14 creates a synth,

and assigns it to the variable aSynth.

Notmuch left to say about creating theGUI elements. Twoknobs are placed

inside a window, according to the technique already discussed. The actions

related to the rotation of the knobs and button are more interesting.

Line 31 defines the connection between the GUI controller Knob1 and the

audio synthesis. The action is associated with the knob through the method

action. Every time the value of the knob changes, the set method is invoked

on the synth aSynth, that assigns the specified parameter (amp) a value, here v.

value. Since a Knob object generates values in the range [0, 1], i.e. in the same
amplitude range of a normalized audio signal, the knob’s range can be used di-

rectly to control the amplitude (i.e. its “volume”). Similarly, line 32 assigns the

argument freq the value of the knob knob2. When frequencies come into play,

the knob’s default range [0, 1] is nomore appropriate. Themethod linlin easily

allows to linearly map an input range (defined by its first two arguments) to an

output one (defined by the second two arguments), here [200, 2000]. Similarly,
it would have been possible to use the method linexp that has the same syntax

of linlin, but provides an exponential mapping. The situation is represented

in Figure 5.9.

0 1

200 2000

0.5

1100

0.5.linlin(0, 1, 200, 2000) = 1100

Figure 5.9 Linear interpolation with linlin.

The GUI button button is assigned an action too, according to a syntax similar

to that of Knob: me.value provides access to the state of the button (more pre-

cisely, to the index of the state in the array of states button.states). Each time

the button is pressed, the action function is evaluated. The action checks the

state of the button through the conditional (35). If the value val of the button

(printed on the post window) is 1, the method run (false) is called for aSynth,

pausing the synth. In the opposite case (thus, val = 0), the synth is activated
(aSynth.run). When running the code, the synth is up and the state is 0. After

the first button press, the state becomes 1, the GUI is updated and the condi-

tional branch that contains aSynth.run(false) is evaluated.

154 SC architecture and the server

Lines 21 e 24 set the value of the two knobs by the method valueAction

that not only modifies the graphic element but evaluates the associated action

by passing a value, in this way keeping in sync GUI and value. Finally, line

38 exploits the method onClose that associates to the window an action to be

performedwhen the former is closed: here, the deallocation of the synth aSynth.

5.9 Expressiveness of the language: algorithms

There are good chancec that the SuperCollider language would not be exactly

intuitive for a musician, yet it is very expressive. For example, consider the

following program:

1 (

2 SynthDef(\sine , {|freq = 440, amp = 1, gain = 1|

3 Out.ar(0, SinOsc.ar(freq, mul:amp*gain))}).add ;

4)

6 (

7 var base = 20, keys = 88 ;

8 var synths, group;

9 var window, step = 15, off = 20, len = 80 ;

10 group = Group.new;

11 synths = Array.fill(keys, {|i|

12 Synth(\sine , [\freq , (base+i).midicps, \amp , 0], group)});

13 window = Window.new("sliderPiano", Rect(10, 10, keys*step, off+len+off+10))

14 .front ;

15 keys.do{|i|

16 StaticText(window, Rect(i*step, 0, step, step))

17 .string_((base+i).midinote[0..1]);

18 Slider(window, Rect(i*step, off, step, len))

19 .action_{|me|synths[i].set(\amp , me.value/keys)}

20 };

21 Slider(window, Rect(0,step+len+10, step*keys, off))

22 .action_{|me| group.set(\gain , me.value.linlin(0, 1, 1, 9.dbamp))};

23 window.onClose_{group.free} ;

24)

(
SynthDef(\sine, {|freq = 440, amp = 1, gain = 1|
	Out.ar(0, SinOsc.ar(freq, mul:amp*gain))}).add ;
)

(
var base = 20, keys = 88 ;
var synths, group;
var window, step = 15, off = 20, len = 80 ;
group = Group.new;
synths = Array.fill(keys, {|i|
	Synth(\sine, [\freq, (base+i).midicps, \amp, 0], group)});
window = Window.new("sliderPiano", Rect(10, 10, keys*step, off+len+off+10))
 .front ;
keys.do{|i|
	StaticText(window, Rect(i*step, 0, step, step))
	 .string_((base+i).midinote[0..1]);
	Slider(window, Rect(i*step, off, step, len))
	 .action_{|me|synths[i].set(\amp, me.value/keys)}
};
Slider(window, Rect(0,step+len+10, step*keys, off))
 .action_{|me| group.set(\gain, me.value.linlin(0, 1, 1, 9.dbamp))};
window.onClose_{group.free} ;
)

code/server/sliderPiano.scd
code/server/sliderPiano.scd

Introduction to SuperCollider 155

The code creates a “piano keyboard” of sliders, each connectedwith a sinu-

soid generator whose frequency is related to the note indicated at its top. The

horizontal slider acts as a sort of “gain” control, increasing the volume of all the

generators. Three things are worth considering:

• only 2 lines (11-12) result in the creation of 88 synths: to be precise, it is

actually one single expression;

• similarly, lines 15-20 generate, again by means of a single expression, 88

sliders related to the synths;

• the extensive use of variables allows to parametrize the whole code. For

example, try base = 20 and keys = 12. You will get the octave of middle C.

The code exploits constructs that have been thoroughly discussed hitherto.

The SynthDef is very simple. The only relevant issue is themultiplier amp. It can

be thought of as a gain, hence the name gain. Figure 5.10 shows the structure

of the SynthDef as it appears to the server.

freq:440

SinOsc 0

amp:1

*

gain:1

*

Out 0

Figure 5.10 Structure of the SynthDef sine.

The variables base and keys respectively indicate the lowest note and the num-

ber of notes. Here pitches are expressed following themidi protocol that assigns

a progressive integer number every note, arbitrarily assuming 60 for themiddle
C. Instead the parameters step, off, len are related to graphic parameters, in

156 SC architecture and the server

particular step is the step uponwhich all the GUI elements have been built. Af-

ter defining a group group, the array synths has been created as a container for

the synths, their number being indicated by keys. The function passed to the

method fill allows to exploit the counter i. The synths will have a frequency

with progressive increase of 1 (semitone), starting from basis.

All the synths starts with amplitude = 0. They are all active, as they are
generating signals, but with zero amplitudes. The synths are aggregated in the

group group (12). The width of the main window is calculated according to

the number of synths (multiplied by step) (13). At this point, a number keys

of graphic elements are created in pairs (Sliders and StaticTexts, i.e. labels).

Note that the position of the objects is referred to the counter i and to step.

The class StaticText let the user define a static label element, with a string set

by the method string. Here, the text to be written is the note name, which is

retrieved through midinote, and by taking only the first two characters ([0..1])

of the returned string, for sake of compactness (17). The action associated to

the slider (19) first retrieves a synth from synths at the relative index i, then

assigns it the amplitude obtained from the value of the slider (19). For reasons

of safety, the amplitude is divided by the number of notes, to avoid any possible

clipping (according to a method that we have already described). The slider

(21-22) exploits the group organization, and sends to all the synths of the group

a value that is used as a multiplier for amp (19). Here the gain is expressed in

decibels (9.dbamp) and converted into amplitude. Note that we need to collect

the synths into an array (synths) exactly because they need to be addressed

in relation to sliders. On the contrary, the following GUI elements are simply

printed on the screen and no longer modified, so it is useless to collect them

into an array for future reference. The same applies to the slider that controls

the gain. A final control element is associated with the window. When it closes,

the whole group is deallocated (23). Note the compactness and the flexibility

of the code, that produces a real GUI-controllable, oscillator bank.

5.10 Expressiveness of the language: abbreviations

When there is sound from the server there are necessarily two elements:

• a SynthDef that specifies an organization of UGens;

• a synth built from it.

Introduction to SuperCollider 157

Law of excluded middle. Yet, especially while exploring the help files for

UGens, for example SinOsc, expressions of this kind pop up very often:

1 { SinOsc.ar(200, 0, 0.5) }.play;

If the expression is evaluated, a sine wave starts. Yet there is no SynthDef,

no synth, there is only one function (which, moreover, does not contain the

UGen Out) on which the method play is called. Indeed, what happens during

the interpretation is a complex process. As a result of the message play, the

interpreter:

• creates a SynthDef;

• defines an arbitrary name and associates it with the UGen graph func de-

fined by the function;

• add to the graph a block of type Out.ar(0, func)which routes the signal to

the bus 0;

• associates the name to the graph and sends the SynthDef to the server;

• waits until the SynthDef is compiled;

• creates a synth from it.

By evaluating the code, on the post window we get something like this:

1 Synth(’temp__0’ : 1000)

It can be seen that the SynthDef has a name ’temp__0’. Graphically inspect-

ing the graph of the SynthDef results in Figure 5.11. The only new fact is that

here Out (stroked in yellow) is not audio- or control rate, but instead gets a ir

rate (i.e. “initial rate”). This indicates that the UGen cannot be changed any-

more (it is static), a solution computationally more efficient as the user has not

requested control over it (s/he has not included Out at all).

The construct {…}.play is very useful for at least two reasons. First, it en-

able us to quickly experiment with UGens, skipping during the prototyping

{ SinOsc.ar(200, 0, 0.5) }.play;

code/server/sinOscHelp.scd
code/server/sinOscHelp.scd

Synth('temp__0' : 1000)

code/server/post/funcPost.scd
code/server/post/funcPost.scd

158 SC architecture and the server

i_out:0

Out bus: channelsArray:

SinOsc freq: 200 phase: 0

* a: b: 0.5

Figure 5.11 Graph of the temporary SynthDef.

stage the more structured but cumbersome path of writing a SynthDef and al-

locating a synth. Secondly, it makes it easy to create a synth. In fact, the evalua-

tion of such a function returns a reference to the created synth. In the following

example:

1 x = {|fr = 1000| SinOsc.ar(fr, 0, 0.5) }.play ;

2 x.set(\fr , 400) ;

3 x.free ;

The environment variable x is associated with the synth returned by the

function. From now on, the synth can be controlled as usual. Figure 5.12 visu-

alizes the relative UGen graph, that also shows the accessible argument.

Note that also the output bus can still be controlled. In the following exam-

ple (which introduces the UGen Saw, specialized for the generation of sawtooth

waves), the function argument out specifies the value for the argument out in

the UGen Out. Being explicitly introduced in the function, it can be controlled

in the resulting the synth.

x = {|fr = 1000| SinOsc.ar(fr, 0, 0.5) }.play ;
x.set(\fr, 400) ;
x.free ;

code/server/tempSynth.scd
code/server/tempSynth.scd

Introduction to SuperCollider 159

i_out:0

Out bus: channelsArray:

fr:1000

SinOsc freq: phase: 0

* a: b: 0.5

Figure 5.12 Graph of the temporary SynthDef, with argument.

1 x = {|fr = 1000, out = 0| Out.ar(out, Saw.ar(fr, 0.5)) }.play ;

2 x.set(\out , 1) ; // now on right chan, bus 1

3 x.free ;

The graph is shown in Figure 5.13, where it can be seen that i_out is created

anyway, but not used.

The method play has been deliberately introduced very lately, as it implies

a lot of behind-the-scenes activity. Though very useful, it might actually be a

x = {|fr = 1000, out = 0| Out.ar(out, Saw.ar(fr, 0.5)) }.play ;
x.set(\out, 1) ; // now on right chan, bus 1
x.free ;

code/server/tempSynth2.scd
code/server/tempSynth2.scd

160 SC architecture and the server

i_out:0 fr:1000

Saw freq:

out:0

Out bus: channelsArray:

* a: b: 0.5

Figure 5.13 Graph of the temporary SynthDef, with Out.

confusing shortpath for the SuperCollider novice. It will be very used onwards,

nevertheless.

5.11 Conclusions

Once introduced, the structure of the server (if one considers Figure 5.4) is not

all that complex. There are some elements (six to be exact) and a communication

protocol to control them by sending messages. What should be now very clear

is the following statement: if there is sound in real-time in SuperCollider, then there

is a synth on the server, that has been manufactured from a SynthDef. To clearly keep

in mind what is on the server and what is on the client is a basic requirement to

operate effectively with SuperCollider.

6 Control

The discussion on the ontology of the server is not yet complete: we still have

to introduce Bus and Buffer. Before discussing them, however, it is worth re-

visiting Envelopes. They are server-side resources that facilitate synthesis and

signal processing and, therefore, can be broadly understood as relevant to a

chapter about control.

6.1 Envelopes

As already demonstrated, we can forge dynamic control of a signal using Env.

But an instance of an Env is not really a signal, but rather an abstraction con-

sisting of times, values and descriptions that can be expanded (or condensed)

when desired/needed. While Env objects can be converted to signals by means

of the asSignal message, they are typically wrapped with a specialized enve-

lope-generator UGen, namely EnvGen, which generates the appropriate signal

within a synthesis graph. In that vein, Env’s times argument should not be

understood as absolute time, but instead should be thought of in respect to the

wrapper EnvGen’s state. Consider the arguments of EnvGen’s *armethod (which

are the same as those of *kr):

1 *ar { arg envelope, gate = 1.0, levelScale = 1.0, levelBias = 0.0,

2 timeScale = 1.0, doneAction = 0;

*ar { arg envelope, gate = 1.0, levelScale = 1.0, levelBias = 0.0,
	timeScale = 1.0, doneAction = 0;

code/controlli/envGen.scd
code/controlli/envGen.scd

162 Control

As explained in the help file, envelope is an instance of Env; levelScale,

levelBias, and timescale are transformation operators that operate on the val-

ues represented in an instance of Env. Consider the following example:

1 e = Env.new(

2 levels:[0.0, 1.0, 0.5, 0.5, 0.0],

3 times: [0.05, 0.1, 0.5, 0.35]

4).plot ;

• levelScale: all elements in the envelope’s array of values are multiplied

with this number. The default value is 1.0, thus leaving the original values
unchanged.

• levelBias: this number is added to the envelope’s values. E.g., if the latter

are into the [0.0, 1.0] range, they will be transposed to [0 + 𝑙𝑒𝑣𝑒𝑙𝐵𝑖𝑎𝑠, 1.0 +
𝑙𝑒𝑣𝑒𝑙𝐵𝑖𝑎𝑠]. The default value is 0.0, again leaving the original values un-

changed.

• timescale: all elements in the envelope’s array of durations are multiplied

by this number. The overall duration of the generated envelope is, therefore,

𝑡𝑖𝑚𝑒𝑆𝑐𝑎𝑙𝑒 × 𝑡𝑖𝑚𝑒𝑠. As far as the above example is concerned, the sum of

all durations equals 1; the duration of the generated envelope is, then, 1 ×
𝑡𝑖𝑚𝑒𝑆𝑐𝑎𝑙𝑒. The default value is 1.0, so that the original values are preserved
if no value is specified.

Therefore it is possible to stretch/shrink an envelope in both the time and

level dimensions. Accordingly, it is sometimes convenient to define our en-

velopeswithin nominal ranges—values should bewithin a normalized [0.0, 1.0]
range and the sum of all durations should be exactly 1 — and then rely on the

above arguments to transpose them as needed/desired. This is demonstrated

in the following piece of code (which is based on an example from the EnvGen’s

help file):

e = Env.new(
	levels:[0.0, 1.0, 0.5, 0.5, 0.0],
	times: [0.05, 0.1, 0.5, 0.35]
).plot ;

code/controlli/minimalEnv.scd
code/controlli/minimalEnv.scd

Introduction to SuperCollider 163

1 // explicit multiplication of signals

2 { EnvGen.kr(Env.perc, 1.0, doneAction: 0)

3 * SinOsc.ar(mul: 0.5) }.play ;

5 // effects of timeScale

6 { EnvGen.kr(Env.perc, 1.0, timeScale: 10, doneAction: 0)

7 * SinOsc.ar(mul: 0.5) }.play ;

9 // multiplication using mul

10 { SinOsc.ar(mul: 0.1

11 * EnvGen.kr(Env.perc, 1.0, timeScale: 10, doneAction: 0)) }.play ;

The effect of the timeScale argument is evident when comparing the first

two examples—the original duration is scaled by a factor of 10 in the second.

This serves, as well, as a typical example for implementing an amplitude enve-

lope: by means of multiplying the original audio signal with the one generated

by EnvGen. Amplitude envelopes are unipolar signals, so when they are mul-

tiplied with bipolar audio signals, the result will be an amplitude modulated

versions of the latter. An alternative way to arrive at the same result is the one

illustrated in the third example, where the envelope signal is used as a value

for SinOsc’s mul argument. Try replacing playwith plot in the above examples

to visualize the resulting signals.

The remaining two arguments, namely gate and doneAction, should be un-

derstood with respect to a rather complicated problem: how to apply a finite

signal (the envelope) to an infinite one (e.g. the one resulting from a SinOsc).

• gate: the envelope signal is generatedwhen a trigger occurs in the gate argu-

ment. Triggers are to be understood as signals that “cause something to hap-

pen”. They behave like photocells which emit a signal whenever they detect

light. In SuperCollider, triggers are simply some transitions from <= 0 to
a > 0 value. An EnvGen will generate a signal of constant zeroes (or of any

other default value) until a trigger is registered; it is only then that the actual

envelope signal is generated. In all the above examples the gate value has

been set to 1.0 (the default value), so that the envelopes are immediately gen-
erated. Consider, however, the first example in the following block of code:

here gate is 0 and the envelope is, in fact, never triggered. If 0 is replaced
with some signal, the envelope will be activated when a trigger happens,

and in fact, reactivated every time signal in the gate argument transitions

// explicit multiplication of signals
{ EnvGen.kr(Env.perc, 1.0, doneAction: 0)
	* SinOsc.ar(mul: 0.5) }.play ;

// effects of timeScale
{ EnvGen.kr(Env.perc, 1.0, timeScale: 10, doneAction: 0)
	* SinOsc.ar(mul: 0.5) }.play ;

// multiplication using mul
{ SinOsc.ar(mul: 0.1
	* EnvGen.kr(Env.perc, 1.0, timeScale: 10, doneAction: 0)) }.play ;

code/controlli/envGen2.scd
code/controlli/envGen2.scd

164 Control

from a <= 0 value to any positive one —note that transitions from >= 0
to 0 do not work as triggers. Consider the second example in the following
block of code, where a sinusoidal signal of frequency 4 modulates the gate.
In a Cartesian representation of the signal, each time there is a cross to the

positive plane in the y-axis (that is, whenever the output of the function is

greater than 0), a trigger is registered. In this case, this occurs 4 times per
second. In the last example, a MouseX is used to generate triggers. The hor-

izontal axis of the screen is mapped to a [−1, 1] range, 0 being, therefore, in
the middle of the screen. Whenever the mouse cursor crosses the middle

of the screen from left to right (that is, whenever there is a transition from

0 to a positive number), the envelope is triggered. All in all, gate is Super-
Collider’s way of handling the activation of envelopes —much in the same

fashion that commercial synthesizers adopt the solution of key-triggering.

1 // gate = 0

2 { EnvGen.kr(Env.perc, 0.0, doneAction: 0)

3 * SinOsc.ar(mul: 0.5) }.play ;

5 // controlling gate

6 // with a signal

7 { EnvGen.kr(Env.perc, SinOsc.kr(4), doneAction: 0)

8 * SinOsc.ar(mul: 0.5) }.play ;

9 // with mouse

10 { EnvGen.kr(Env.perc, MouseX.kr(-1,1), doneAction: 0)

11 * SinOsc.ar(mul: 0.5) }.play ;

• doneAction: consider a percussive-style envelope: what happens when it is

over? What about the corresponding synth? Well, it simply remains active

unless explicit de-allocation takes place. That is to say that EnvGen (silently)

keeps generating the last computed value. Therefore, when the latter is 0,
such as e.g. in the previous examples, the envelope does end, acoustically

speaking, but the EnvGen keeps outputting the last value in the envelope and

the enclosing synth remains active. Consider the first line of the following

block of code: the envelope’s last computed value is 1 and, accordingly, the

synth will keep producing sound until we manually free it. Even if we can

not hear it, this is exactlywhat happenswhen the envelope endswith a value

of 0: it is still up to the user tomanually free the synth. Note that, even if they

// gate = 0
{ EnvGen.kr(Env.perc, 0.0, doneAction: 0)
	* SinOsc.ar(mul: 0.5) }.play ;

// controlling gate
// with a signal
{ EnvGen.kr(Env.perc, SinOsc.kr(4), doneAction: 0)
	* SinOsc.ar(mul: 0.5) }.play ;
// with mouse
{ EnvGen.kr(Env.perc, MouseX.kr(-1,1), doneAction: 0)
	* SinOsc.ar(mul: 0.5) }.play ;

code/controlli/gate.scd
code/controlli/gate.scd

Introduction to SuperCollider 165

merely produce silence, running synths are a significant resource leak since

they reserve physical memory and they keep the CPU busy processing the

entire synthesis graph. The method doneAction is meant as a way to eas-

ily handle automatic de-allocation: with doneAction the user may specify

what should be done when an envelope is over. Currently there are 14 pos-

sible choices, such as e.g. doing nothing (doneAction: 0, the default value),

automatically deallocating the enclosing synth when the envelope is over

(doneAction: 2), and others. Done-actions that free the synth can be visu-

ally monitored in the Server’s GUI, which shows a count of all active synths

at any given time —notice the change in the count when evaluating line 12

in the example below. Of course, automatically freeing a synth means that

we have to create a new one if wewant the same sound again (it is no longer

possible to re-trigger the envelope).

1 { EnvGen.kr(Env([0,1], [2], doneAction: 0)) * SinOsc.ar(mul: 0.1) }.play ;

3 (

4 SynthDef.new("sinePerc",

5 { Out.ar(0,

6 EnvGen.kr(Env.perc, 1.0, doneAction: 2)

7 *

8 SinOsc.ar(mul: 0.1))

9 }).add ;

10)

12 Synth.new("sinePerc") ;

Consider the following example where the mouse is used to trigger the

synth. With doneAction: 0 (line 1) the synth remains allocated after the en-

velope is over and, hence, it can be re-triggered. Yet, if doneAction: 2 (line 3),

the synth is automatically freed and is no longer able to interact with themouse

or, really, in any other way.

1 {EnvGen.kr(Env.perc, MouseX.kr(-1,1),doneAction:0) * SinOsc.ar(mul:0.1)}.play;

3 {EnvGen.kr(Env.perc, MouseX.kr(-1,1),doneAction:2) * SinOsc.ar(mul:0.1)}.play;

{ EnvGen.kr(Env([0,1], [2], doneAction: 0)) * SinOsc.ar(mul: 0.1) }.play ;

(
SynthDef.new("sinePerc",
	{ Out.ar(0,
		EnvGen.kr(Env.perc, 1.0, doneAction: 2)
		*
		SinOsc.ar(mul: 0.1))
}).add ;
)

Synth.new("sinePerc") ;		

code/controlli/functionImplicit.scd
code/controlli/functionImplicit.scd

166 Control

These two different settings for doneAction essentially represent two dif-

ferent conceptualizations of what a synth is. On the one hand, a synthesizer

is supposed to be an instrument; so, once created, it should remain ever-avail-

able for the user to interact with it—much alike a hardware synthesizer which

is not supposed to self-destruct after the action of some button is over. On the

other hand, a synth can be thought of as a sound event per se, rather than its

generator. In that case it makes perfect sense to automatically deallocate any

associated process once a sonic event is over.

In the following example, a minimal instrument with a GUI is created: an

one octave long keyboard. The code block includes just two expressions; the

first creates the GUI window (line 1), the second is an iterative structure which

does all the rest, that is, 12 times (one per note) do:

1. define a note by means of adding the iteration counter to midi note 60 (the
middle C);

2. make a button for the note and place it sequentially from left to right in the

parent window (line 4).

3. define the button’s state: the name of the corresponding note is retrieved

by accessing an array containing note names by the index resulting from

modulo 12 on the the note number (6, 7). It is then set in white color (line 8)
on a varying background —the color hue follows the counter (line 9);

4. associate each button with the creation of a synth —of an envelope-con-

trolled squarewave, the frequency ofwhich is that of the desired note. There

is no need to assign the synth to any variable; it will automatically free itself

when the envelope is over (doneAction: 2). A synth here is to be under-

stood simply as an abstraction of a singleton note.

{EnvGen.kr(Env.perc, MouseX.kr(-1,1),doneAction:0) * SinOsc.ar(mul:0.1)}.play;

{EnvGen.kr(Env.perc, MouseX.kr(-1,1),doneAction:2) * SinOsc.ar(mul:0.1)}.play;

code/controlli/envGen3.scd
code/controlli/envGen3.scd

Introduction to SuperCollider 167

1 w = Window("miniHarp", Rect(100, 100, 12*50, 50)).front ;

2 12.do{|i|

3 var note = 60+i;

4 Button(w, Rect(i*50, 0, 50, 50))

5 .states_([[

6 ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]

7 [note%12],

8 Color.white,

9 Color.hsv(i/12, 0.7, 0.4)]])

10 .action_{

11 {Pulse.ar(note.midicps)*EnvGen.kr(Env.perc, doneAction:2)}.play

12 }

13 } ;

6.2 Generalizing envelopes

Although their most common application is to modulate amplitude, envelopes

can be used to control any kind of parameter. Env objects are very similar to the

so-called tables —tabulated breakpoints that describe some data distribution.

EnvGen is, then, a reading module for such kind of tables, whatever value they

may hold. Consider the following piece of code:

1 {

2 var levels, times, env ;

3 levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;

4 times = Array.fill(49, 1).normalizeSum ;

5 env = Env.new(levels, times) ;

7 Pulse.ar(EnvGen.kr(env, 1, 100, 200, 20, 2))

8 }.play

There are several things to consider herein. An envelope is defined in lines

2–5, which comprises 50 break-points, representing the amplitude (line 3), in-
terspersed by 49 points, representing in-between durations (line 4). levels is

w = Window("miniHarp", Rect(100, 100, 12*50, 50)).front ;
12.do{|i|
	var note = 60+i;
	Button(w, Rect(i*50, 0, 50, 50))
	.states_([[
	["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
		[note%12],
		Color.white,
		Color.hsv(i/12, 0.7, 0.4)]])
	.action_{
		{Pulse.ar(note.midicps)*EnvGen.kr(Env.perc, doneAction:2)}.play
	}
} ;

code/controlli/miniHarp.scd
code/controlli/miniHarp.scd

{
	var levels, times, env ;
	levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;
	times = Array.fill(49, 1).normalizeSum ;
	env = Env.new(levels, times) ;

	Pulse.ar(EnvGen.kr(env, 1, 100, 200, 20, 2))
}.play

code/controlli/invGen1.scd
code/controlli/invGen1.scd

168 Control

an array containing the results of 2 different iterative loops where the modulo

(%) operation is applied to an incrementing counter (x). The modulo operator

makes it easy to produce complex, albeit not random, curves. The resultant

curve is shown in Figure 4.15.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0

1

2

3

4

5

6

7

8

Figure 6.1 Array built by the modulo operator.

The period of each cycle is given by 7 and 3, respectively, so that they are in
phase at their minimum common multiple (21). Accordingly, the maximum of

their sum is given by 6 + 2 = 8 (the sum of their local maxima) and the mini-

mum by 0 + 0 = 0. The normalize method then scales all values to a nominal
range of [0.0, 1.0]. times is defined as an array filled with the constant 1, this
way suggesting that all amplitude break-points are equally-spaced in time. The

normalizeSum method returns array / array.sum, so that each element of the

new array is the original value divided by the sum of all elements in the original

array. The effects of normalize, sum, normalizeSum are illustrated in the follow-

ing code snippet.

Introduction to SuperCollider 169

1 [1,2,3,4,5].sum // sum

2 15

4 [1,2,3,4,5].normalize // max and min in [0, 1]

5 [0, 0.25, 0.5, 0.75, 1]

7 [1,2,3,4,5].normalizeSum // sum of the elements = 1

8 [0.066666666666667, 0.13333333333333, 0.2, 0.26666666666667,

9 0.33333333333333]

11 [1,2,3,4,5].normalizeSum.sum // summing the normalized sum = 1

12 1

levels and times are, in this way, converted to a normalized form which is

easier to deal with. The idea is to use EnvGen’s parameters to scale the resulting

envelopes and to eventually modulate the frequency of Pulse. Accordingly,

levelScale is set to 100 and levelBias to 200, so that the envelope is transposed
to the [200, 300] range. timeScale is, then, set to 20 so that its total duration

is 20 seconds. Note also that doneAction is set to 2, so that the synth will be

automatically de-allocated when the envelope is over. This envelope is a ramp

and will, therefore, generate a glissando effect. A portamento can be achieved,

instead, by means of wrapping the envelope with a Latch UGen.

1 {

2 var levels, times, env ;

3 levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;

4 times = Array.fill(49, 1).normalizeSum ;

5 env = Env.new(levels, times) ;

7 Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 100, 200, 20, 2), Impulse.kr(6)))

8 }.play

Latch is an implementation of the classic Sample & Hold module. On each

registered trigger Latch samples its input signal, and keeps generating that

value on its output until a new trigger occurs. In the above example, an Im-

pulse—a train of distinct samples— is used to generate triggers, at a frequency

of 6. Thus, every 𝑇 = 1
6 , Impulse generates a unique sample of amplitude mul.

[1,2,3,4,5].sum // sum
15

[1,2,3,4,5].normalize // max and min in [0, 1]
[0, 0.25, 0.5, 0.75, 1]

[1,2,3,4,5].normalizeSum // sum of the elements = 1
[0.066666666666667, 0.13333333333333, 0.2, 0.26666666666667,
	0.33333333333333]

[1,2,3,4,5].normalizeSum.sum // summing the normalized sum = 1
1

code/controlli/post/sumPost.scd
code/controlli/post/sumPost.scd

{
	var levels, times, env ;
	levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;
	times = Array.fill(49, 1).normalizeSum ;
	env = Env.new(levels, times) ;

	Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 100, 200, 20, 2), Impulse.kr(6)))
}.play

code/controlli/invGen2.scd
code/controlli/invGen2.scd

170 Control

Remember that it does not really matter what value a triggering signal has, as

long as there is a transition from <= 0 to > 0. Accordingly, the 20-seconds
envelope curve is sampled every 𝑇 = 1

6 = 0.16666666666667 seconds. The re-
sulting effect is further emphasized if levelScale is set to 24 and levelBias to

60:

1 {

2 var levels, times, env ;

3 levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;

4 times = Array.fill(49, 1).normalizeSum ;

5 env = Env.new(levels, times) ;

7 Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 24, 60, 20, 2).poll.midicps.poll,

8 Impulse.kr(6)))

9 }.play

The output range of the envelope is now [60, 84]. The idea is to represent
pitch rather than frequency: a two-octaves interval starting at middle C (60 in
MIDI notation) is converted to cycle-per-seconds (that is, a frequency in Hz) by

invoking the midicpsmethod. Generally speaking any algebraic operation can

be applied to the output of any UGen, e.g. squared or abs, to mention a couple

that we have already seen elsewhere. The poll method, which is encountered

two times in the above example, is, roughly speaking, the server-side equiva-

lent of postln. The need for such a specialized pollmethod is related with the

client/server architecture of SuperCollider: even if audio synthesis processes

are controlled by the client, they are implemented on the server. The former

merely instructs the latter which is responsible for actually carrying out the in-

struction. So, how can the client probe the internals of the server? How can

a user check for potential implementation errors? Audio monitoring is not al-

ways sufficient to debug some particular algorithm. Of course, it could happen

that some particular errors are audible (it could be that they sound interesting,

too); it is not recommended to debug in serendipity, however. It is important

to also remark that scoping and plotting are not analytic tools —that is, they

cannot show information at the level of audio samples. On the contrary, poll

instructs the server to send amessage to the client with the values of individual

audio samples and at a given rate; the client, then, automatically prints these

values to the postwindow. Thisway it is possible tomonitor the output of some

{
	var levels, times, env ;
	levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;
	times = Array.fill(49, 1).normalizeSum ;
	env = Env.new(levels, times) ;

	Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 24, 60, 20, 2).poll.midicps.poll,
		Impulse.kr(6)))
}.play

code/controlli/invGen3.scd
code/controlli/invGen3.scd

Introduction to SuperCollider 171

UGen with the desired degree of accuracy. (Note that poll is applicable to both

ar and kr signals.) For example:

1 {SinOsc.ar(Line.ar(50, 10000, 10).poll).poll}.play ;

produces

1 Synth("temp__1198652111" : 1001)

2 UGen(Line): 50.0226

3 UGen(SinOsc): 0.00712373

4 UGen(Line): 149.523

5 UGen(SinOsc): -0.142406

6 UGen(Line): 249.023

7 UGen(SinOsc): -0.570459

8 UGen(Line): 348.523

9 UGen(SinOsc): -0.982863

10 UGen(Line): 448.023

11 UGen(SinOsc): -0.616042

12 UGen(Line): 547.523

13 UGen(SinOsc): 0.676455

The output of each UGen can now be printed to the post window. The

SinOsc object oscillates in the [−1, 1] range, while the LineUGen linearly progress
from 50 to 10, 000.

Going back to the original SynthDef above, poll.round.poll.midicps.poll

prints the EnvGen’s output before and after its rounding, as well as after its con-

version to Hz. Notice that in the post window, midi notes are expressed as float

numbers. Indeed, midi conversion within SuperCollider can handle any note

value and not just the “tempered” ones. Consider the following example:

{SinOsc.ar(Line.ar(50, 10000, 10).poll).poll}.play ;

code/controlli/poll.scd
code/controlli/poll.scd

Synth("temp__1198652111" : 1001)
UGen(Line): 50.0226
UGen(SinOsc): 0.00712373
UGen(Line): 149.523
UGen(SinOsc): -0.142406
UGen(Line): 249.023
UGen(SinOsc): -0.570459
UGen(Line): 348.523
UGen(SinOsc): -0.982863
UGen(Line): 448.023
UGen(SinOsc): -0.616042
UGen(Line): 547.523
UGen(SinOsc): 0.676455

code/controlli/post/pollPost.scd
code/controlli/post/pollPost.scd

172 Control

1 {

2 var levels, times, env ;

3 levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;

4 times = Array.fill(49, 1).normalizeSum ;

5 env = Env.new(levels, times) ;

7 Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 24, 60, 20, 2)

8 .poll.round.poll.midicps.poll,

9 Impulse.kr(6)))

10 }.play

Here, a continuous signal is converted to a discreet one in two different

respects: on one hand, Latch generates 6 notes per second and, on the other

hand, all pitches are quantized so that only integers within the [60, 84] range
are possible. This acts as a digitalization process, the depth of which is defined

by round’s argument; a value of 0.5 in the example above, for instance, would
quantize all pitches to quarter tones.

Figure 6.2 shows apart of the resultingUGengraph (Env’s structure is rather

large, since there are 50 breakpoints). Note the existence of Poll UGens, their
internal trigger —an ImpulseUGen with its frequency set to 10—and the oper-

ators Round and MIDICPS.

i_out:0

Out

EnvGen 1 24 60 20 2 0 49 -99 -99 0.25 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.875 0.020408163265306 1 0 0.75 0.020408163265306 1 0 0.125 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.75 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.875 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.125 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.75 0.020408163265306 1 0 1 0.020408163265306 1 0 0 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.875 0.020408163265306 1 0 0.75 0.020408163265306 1 0 0.125 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.75 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.875 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.125 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.75 0.020408163265306 1 0 1 0.020408163265306 1 0 0 0.020408163265306 1 0 0.25 0.020408163265306 1 0 0.5 0.020408163265306 1 0 0.375 0.020408163265306 1 0 0.625 0.020408163265306 1 0 0.875 0.020408163265306 1 0 0.75 0.020408163265306 1 0 0.125 0.020408163265306 1 0

Round 1

Poll -1 12 85 71 101 110 40 69 110 118 71 101 110 41

MIDICPS

Poll -1 18 85 71 101 110 40 66 105 110 97 114 121 79 112 85 71 101 110 41

Poll -1 17 85 71 101 110 40 85 110 97 114 121 79 112 85 71 101 110 41

Latch

Impulse 10 0

Impulse 10 0

Impulse 10 0

Impulse 6 0

Pulse 0.5

Figure 6.2 UGen graph of the SynthDef.

{
	var levels, times, env ;
	levels = Array.fill(50, { arg x ; (x%7)+(x%3)}).normalize ;
	times = Array.fill(49, 1).normalizeSum ;
	env = Env.new(levels, times) ;

	Pulse.ar(Latch.kr(EnvGen.kr(env, 1, 24, 60, 20, 2)
		.poll.round.poll.midicps.poll,
		Impulse.kr(6)))
}.play

code/controlli/invGen4.scd
code/controlli/invGen4.scd

Introduction to SuperCollider 173

As clearly illustrated in Figure 6.2, mathematical operatorswithin aUGengraph

are also UGens themselves. In particular, they are instances of BinaryOpUGen or

of UnaryOpUGen. You do not have to worry about their meaning; it is important,

nevertheless, to remark that all scsynth can understand and operate on within

a synth is UGens. Consider the following code snippet:

1 {SinOsc.ar(200).round(0.5)}.play ;

2 {SinOsc.ar(200).abs-0.5}.play ;

The resulting graphs and signals are illustrate in Figure 6.3.

{SinOsc.ar(200).round(0.5)}.play ;
{SinOsc.ar(200).abs-0.5}.play ;

code/controlli/opUGen.scd
code/controlli/opUGen.scd

174 Control

i_out:0

Out

SinOsc 200 0

Abs

- 0.5

 i_out:0

Out

SinOsc 200 0

Round 0.5

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.3 OpUGen: graphs and signals.

6.3 Sinusoids & sinusoids

It has been already been discussed that we can generate more “complex”, “nat-

ural”, or otherwise “interesting” signals by means of envelopes that control

the amplitude or other synthesis parameters. Envelopes are (typically) unipo-

lar signals, yet it is possible to also use bipolar signals in order to modulate

synthesis parameters. Sinusoidal waveforms, for example, are more than just

the means to produce the simplest of all sounds (a tone at a given frequency);

they are also functions that describe regular variation around some equilibrium.

Consider the following cases:

Introduction to SuperCollider 175

1 // minimal tremolo

2 { SinOsc.ar(mul: 0.5+SinOsc.kr(5, mul: 0.1)) }.play ;

3 // minimal vibrato

4 { SinOsc.ar(freq: 440+SinOsc.kr(5, mul: 5)) }.play ;

6 // with MouseX/Y

7 // tremolo

8 { SinOsc.ar(mul: 0.5 + SinOsc.kr(

9 freq: MouseX.kr(0, 10),

10 mul: MouseY.kr(0.0, 0.5))) }.play ;

11 // vibrato

12 { SinOsc.ar(freq: 440 + SinOsc.kr(

13 freq: MouseX.kr(0, 10),

14 mul: MouseY.kr(0, 10))) }.play ;

• tremolo: in music, a tremolo is a periodic variation of the perceived dy-

namics. Implementing a tremolo is actually very simple to synthesize. It

suffices that we add to the amplitude of some oscillator (or of some other

carrier signal) the output of another oscillator (or of some other modulat-

ing signal). This way, the carrier’s amplitude will vary periodically accord-

ing to the modulating oscillator’s frequency and with respect to the latter’s

amplitude offset. In the example above, the original amplitude is 0.5 (the
value of mul), to which a modulating signal that oscillates 5 times per sec-
ond between−0.1 and 0.1 is added. The result is a sine tone of an amplitude
that periodically varies within the [0.4, 0.6] range. In lines 8–10 the mouse is
used as the means to interact with the two parameters of the tremolo. With

such techniques it is possible to emulate the characteristic qualities of certain

real-world instruments that use this technique, e.g. the wind ones.

• vibrato: the same modulation technique applied to frequency results in a

vibrato effect. Here, the modulating oscillator controls the variation of the

carrier’s frequency. Assuming that 𝑓1, 𝑎𝑚𝑝1, 𝑓2, 𝑎𝑚𝑝2 are, respectively, the

frequencies/amplitudes of the audio and control oscillators, then the car-

rier’s frequency (𝑓1, constant so far) would periodically vary (with respect

to 𝑓2) between 𝑓1–𝑎𝑚𝑝2 and 𝑓1 + 𝑎𝑚𝑝2. Remember that the output of the

modulating oscillator varies in the ±𝑎𝑚𝑝2 (that is [−5, 5] herein) range, so
that when added to 𝑓1 (that is 440 herein) a sine tone with a frequency that
periodically (and at a speed of 5 times per second) oscillates between 435 and

// minimal tremolo
{ SinOsc.ar(mul: 0.5+SinOsc.kr(5, mul: 0.1)) }.play ;
// minimal vibrato
{ SinOsc.ar(freq: 440+SinOsc.kr(5, mul: 5)) }.play ;

// with MouseX/Y
// tremolo
{ SinOsc.ar(mul: 0.5 + SinOsc.kr(
			freq: MouseX.kr(0, 10),
			mul: MouseY.kr(0.0, 0.5))) }.play ;
// vibrato
{ SinOsc.ar(freq: 440 + SinOsc.kr(
			freq: MouseX.kr(0, 10),
			mul: MouseY.kr(0, 10))) }.play ;

code/controlli/tremoloVibrato.scd
code/controlli/tremoloVibrato.scd

176 Control

445 will be produced. An example with mouse interaction is also given in
the code above. Vibrati are often encountered in a musical context; consider

e.g. a violinist who slightly, but continuously, slides their finger around a

particular stop. Note also that both tremolo and vibrato are standard tech-

niques in operatic singing.

The following example summarizes the above:

1 SynthDef("tremVibr",

2 { arg freq = 440, mul = 0.15,

3 tremoloFreq = 5 , tremoloMulPercent = 5,

4 vibratoFreq = 10, vibratoMulPercent = 5 ;

5 var tremoloMul = mul*tremoloMulPercent*0.01 ;

6 var vibratoMul = freq*vibratoMulPercent*0.01 ;

7 var tremolo = SinOsc.kr(tremoloFreq, 0, tremoloMul) ;

8 var vibrato = SinOsc.kr(vibratoFreq, 0, vibratoMul) ;

9 var sinOsc = SinOsc.ar(freq+vibrato, 0, mul+tremolo) ;

10 Out.ar(0, sinOsc) ;

12 }).add ;

In lines 8 and 9, tremolo and vibrato are defined as two sinusoidal oscilla-

tors with frequency tremoloFreq and vibratoFreq, respectively. The “depths”

of the tremolo and the vibrato effects are expressed proportionally: In line 5,

tremoloMulPercent is first converted to a percentage (being multiplied with

0.01) and thenmultipliedwith mul, so that the tremolodepth coefficient tremolo-
Mul is computed. If mul = 0.5 and tremoloMulPercent = 10, then tremoloMul

will be 10 % of mul, that is 0.05. Therefore, the signal would have a tremolo

effect within the [−0.05, 0.05] range and its amplitude would fluctuate between
[0.45, 0.55]. vibratoMul is computed in a similar way. The sinOsc variable (note
that this is just the name of a variable and should not be confused with the

SinOsc UGen) holds the resulting signal which is, eventually, passed to the Out

UGen so that audio output is generated in our speakers.

Given such a SynthDef, it is possible to build a GUI in order to control its

arguments. The idea is to have sliders, labels and value indicators for every

parameter. As we are dealing with just a few parameters here, we can “manu-

ally” define all individual components as needed. Another scenario would be

to algorithmically generate the GUI elements. In both cases we would rely on

the following GUI classes:

SynthDef("tremVibr",
		{ arg 	freq = 440, mul = 0.15,
				tremoloFreq = 5 , tremoloMulPercent = 5,
				vibratoFreq = 10, vibratoMulPercent = 5 ;
		var tremoloMul = mul*tremoloMulPercent*0.01 ;
		var vibratoMul = freq*vibratoMulPercent*0.01 ;
		var tremolo = SinOsc.kr(tremoloFreq, 0, tremoloMul) ;
		var vibrato = SinOsc.kr(vibratoFreq, 0, vibratoMul) ;
		var sinOsc = SinOsc.ar(freq+vibrato, 0, mul+tremolo) ;
		Out.ar(0, sinOsc) ;

}).add ;

code/controlli/tremoloVibratoPatchDef.scd
code/controlli/tremoloVibratoPatchDef.scd

Introduction to SuperCollider 177

1. Slider: its semantics are rather straightforward: a parent window (an in-

stance of Window in the example code below1) and a rectangle (an instance of

Rect) that defines the Slider’s coordinates and dimension.

2. StaticText: a display-only text field. The syntax is similar: a parent Window

and a Rect with the coordinates/dimensions are expected. The text string

to be printed is defined using the string_method.

Given an array with the names of the SynthDef’s arguments, it is then pos-

sible to:

1. algorithmically generate the graphical objects

2. algorithmically define the actions associated with them

The only complexity lies in properly scaling the sliders’ values (all GUI

controls out values in the [0, 1] range) to the ones expected by each argument:
frequency freq could vary in the [50, 10000] range; amplitude mul in the [0, 1]
range; tremolo/vibrato rates are typically expected to be in a lower frequency

(subsonic) region, e.g. [0, 15]. Their depths should be in the [0, 100] range, since
they are expressed as percentages. It is possible to scale the sliders’ output

within our SynthDef, yet this is considered bad practice —it breaks the rule

of modularity and makes our SynthDef GUI-dependent. Generally speaking,

it is best to keep data models and sound synthesis processes completely inde-

pendent from GUI elements. This way, it is possible to easily switch between

different interfaces without having to change our original models (the SynthDef

in this case). A SynthDef cannot impose any particular constraints (invariables)

to a GUI, so there cannot be any guarantee that the latter’s components will

have their values properly scaled to the expected ranges. In the following ex-

ample this problem is addressed by means of an IdentityDictionary—a data

structure that associates a unique key to a value, much the same way that an

ordinary dictionary associates a lemma with a definition— which binds argu-

ments with their expected ranges ([minval, maxval]). In particular, there are

three arrays containing the labels, the control sliders and the value fields for

all arguments (lines 14–24). The functionality of the GUI is defined within a

loop that iterates through all available elements in controlDict. value indi-

cates the expected range, thus the key name may be retrieved by calling the

controlDict.findKeyForValue(value) method —e.g. if value is [50, 1000],

1 Note that window’s height is calculated by adding 30 × 2 pixels to the height
of the tallest element.

178 Control

the associated key name would be "freq". Then, the slider’s value (originally

in the [0, 1] range) is appropriately scaled by means of a simple multiplication
with the 𝑟𝑎𝑛𝑔𝑒𝑚𝑎𝑥 − 𝑟𝑎𝑛𝑔𝑒𝑚𝑖𝑛 difference (1000 − 50 in this case) and the ad-

dition of the 𝑟𝑎𝑛𝑔𝑒𝑚𝑖𝑛 (here: 50) to create the lower offset. We can, then, use

labelArr[index].string = … and the slidArr[index].action = … to assign

each label with the name for an argument and each slider with the correspond-

ing synth’s parameter. Within the slider’s action, valueArr[index].string is

also used so that the value of the value field and that of the slider are identical.

In detail, each slider’s action performs four tasks (lines 32–35):

1. it scales the value of the slider so that it matches the expected range (as

explained above).

2. it prints the name of the corresponding synthesis parameter and its value to

the post window.

3. it sets the synth’s name parameter to paramValue.

4. it, finally, updates the textField index in valueArr to show the paramValue.

Introduction to SuperCollider 179

1 var aSynth = Synth.new("tremVibr");

2 var controlDict = IdentityDictionary[

3 "freq" -> [50, 1000],

4 "mul" -> [0,1],

5 "tremoloFreq" -> [0, 15],

6 "tremoloMulPercent" -> [0, 50],

7 "vibratoFreq" -> [0, 15],

8 "vibratoMulPercent" -> [0, 50]

9];

11 var window = Window.new("Vibrato + tremolo",

12 Rect(30,30, 900, controlDict.size+2*30)) ;

14 var labelArr = Array.fill(controlDict.size, { arg index ;

15 StaticText(window, Rect(20, index+1*30, 200, 30)).string_(0) ;

16 }) ;

18 var slidArr = Array.fill(controlDict.size,

19 { |index| Slider(window, Rect(240, index+1*30, 340, 30)) }) ;

21 var valueArr = Array.fill(controlDict.size,

22 { |index| StaticText(window, Rect(600, index+1*30, 200, 30))

23 .string_(0) ;

24 }) ;

26 controlDict.do({ arg value, index ;

27 var name = controlDict.findKeyForValue(value) ;

28 var range = value[1]-value[0] ;

29 var offset = value[0] ;

30 labelArr[index].string_(name) ;

31 slidArr[index].action = { arg theSlid ;

32 var paramValue = theSlid.value*range + offset ;

33 [name, paramValue].postln ;

34 aSynth.set(name, paramValue) ;

35 valueArr[index].string_(paramValue.trunc(0.001)) ;

36 }

37 }) ;

39 window.front ;

180 Control

6.4 Pseudo-random signals

The idea of controlling an oscillator with another can be generalized to account

for all sorts of UGens —both as carriers and modulators. The time-profile of

the control signal depends on the kind of UGen used. The following exam-

ples demonstrate how we can use other kinds of UGens to control the vibrato

of a sinusoid. The scope method is used to illustrate the waveform profile of

each control signal (frequency has been changed to 1000 Hz so that the latter is
clearly audible). Note that typically those UGens receive a LF prefix (shorthand

for Low Frequency), as they are meant to be primarily used as slower control

signals.

1 { SinOsc.ar(1000) }.scope ;

2 { SinOsc.ar(freq: 440+SinOsc.kr(2, mul: 50), mul: 0.5) }.play ;

4 { LFSaw.ar(1000) }.scope ;

5 { SinOsc.ar(freq: 440 + LFSaw.kr(2, mul: 50), mul: 0.5) }.play ;

7 { LFNoise0.ar(1000) }.scope ;

8 { SinOsc.ar(freq: 440 + LFNoise0.kr(2, mul: 50),mul: 0.5) }.play ;

10 { LFNoise1.ar(1000) }.scope ;

11 { SinOsc.ar(freq: 440 + LFNoise1.kr(2, mul: 50), mul: 0.5) }.play ;

The difference between the sinusoidal and the saw-tooth oscillators is strik-

ing. The other two UGens generate pseudo-random signals. LFNoise0, in par-

ticular, generates amplitude values that are sustained until a new value is calcu-

lated: notice the step pattern in the scope window. In the same vein, LFNoise1

generates a pseudo-random signal at a given frequency, yet this time the output

values are linearly interpolated. In other words, there are no “steps” between a

value and the next, but, instead, a gradual transition. The behavior of the two

UGens is clearly illustrated in the following piece of code:

var aSynth = Synth.new("tremVibr");
var controlDict = IdentityDictionary[
	"freq" 				->	[50, 1000],
	"mul" 				->	[0,1],
	"tremoloFreq"		->	[0, 15],
	"tremoloMulPercent"	->	[0, 50],
	"vibratoFreq"		->	[0, 15],
	"vibratoMulPercent"	->	[0, 50]
];

var window = Window.new("Vibrato + tremolo",
	Rect(30,30, 900, controlDict.size+2*30)) ;

var labelArr = Array.fill(controlDict.size, { arg index ;
	StaticText(window, Rect(20, index+1*30, 200, 30)).string_(0) ;
}) ;

var slidArr = Array.fill(controlDict.size,
	{ |index| Slider(window, Rect(240, index+1*30, 340, 30)) }) ;

var valueArr = Array.fill(controlDict.size,
	{ |index| StaticText(window, Rect(600, index+1*30, 200, 30))
		.string_(0) ;
}) ;

controlDict.do({ arg value, index ;
	var name = controlDict.findKeyForValue(value) ;
	var range = value[1]-value[0] ;
	var offset = value[0] ;
	labelArr[index].string_(name) ;
	slidArr[index].action = { arg theSlid ;
		var paramValue = theSlid.value*range + offset ;
		[name, paramValue].postln ;
		aSynth.set(name, paramValue) ;
		valueArr[index].string_(paramValue.trunc(0.001)) ;
	}
}) ;

window.front ;

code/controlli/tremoloVibratoPatch.scd
code/controlli/tremoloVibratoPatch.scd

{ SinOsc.ar(1000) }.scope ;
{ SinOsc.ar(freq: 440+SinOsc.kr(2, mul: 50), mul: 0.5) }.play ;

{ LFSaw.ar(1000) }.scope ;
{ SinOsc.ar(freq: 440 + LFSaw.kr(2, mul: 50), mul: 0.5) }.play ;

{ LFNoise0.ar(1000) }.scope ;
{ SinOsc.ar(freq: 440 + LFNoise0.kr(2, mul: 50),mul: 0.5) }.play ;

{ LFNoise1.ar(1000) }.scope ;
{ SinOsc.ar(freq: 440 + LFNoise1.kr(2, mul: 50), mul: 0.5) }.play ;

code/controlli/controlSources.scd
code/controlli/controlSources.scd

Introduction to SuperCollider 181

1 {SinOsc.ar(LFNoise1.ar(10, mul:200, add: 400))}.play ;

2 {SinOsc.ar(LFNoise0.ar(10, mul:200, add: 400))}.play ;

In both cases the frequency of the oscillator is controlled by a random num-

ber generator that updates its state 10 times per second. Following mul and

add arguments, the control signal varies randomly in the range of [−1, 1] ×
200 + 400 = [200, 600]. Then, LFNoise0 causes the oscillator to jump to differ-
ent frequencies while LFNoise1 causes continuous linear transitions (glissandi)

between random frequencies. LFNoise0 can be thought of as a “sampled and

held” version of LFNoise1: as if sampling the latter’s output, holding the value

for a cycle, sampling again, etc. It turns out that this is exactly how Latch be-

haves, as demonstated in the following code snippet:

1 { SinOsc.ar(LFNoise0.kr(9, 400, 500), 4, 0.2)}.play ;

3 // the same, but less efficient

4 { SinOsc.ar(Latch.ar(LFNoise1.ar, Impulse.ar(9)) * 400 + 500, 4, 0.2) }.play;

LFNoise0 can be also be used as (in a way) a sequencer, i.e. as a train of

unique discrete values. Consider the following example, implementing two

“improvisers”:

{SinOsc.ar(LFNoise1.ar(10, mul:200, add: 400))}.play ;
{SinOsc.ar(LFNoise0.ar(10, mul:200, add: 400))}.play ;

code/controlli/LFNoise.scd
code/controlli/LFNoise.scd

{ SinOsc.ar(LFNoise0.kr(9, 400, 500), 4, 0.2)}.play ;

// the same, but less efficient
{ SinOsc.ar(Latch.ar(LFNoise1.ar, Impulse.ar(9)) * 400 + 500, 4, 0.2) }.play;

code/controlli/LFNoiseLatch.scd
code/controlli/LFNoiseLatch.scd

182 Control

1 SynthDef(\chromaticImproviser , { arg freq = 10 ;

2 Out.ar(0, SinOsc.ar(

3 freq: LFNoise0.kr(freq, mul:15, add: 60).round.midicps,

4 mul:

5 EnvGen.kr(Env.perc(0.05), gate: Impulse.kr(freq), doneAction:2)

6)

7 }).play ;

9 SynthDef(\modalImproviser , { arg freq = 10;

10 var scale = [0, 0, 0, 0, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 10]+60 ;

11 var mode = scale.addAll(scale+12).midicps ;

12 var range = (mode.size*0.5).asInteger ;

13 Out.ar(0, SinOsc.ar(

14 freq: Select.kr(LFNoise0.kr(freq,

15 mul: range,

16 add: range).round, mode),

17 mul:

18 EnvGen.kr(Env.perc(0.05), gate: Impulse.kr(freq), doneAction:2)

19)

20 }).play ;

Both the “improvisers” generate random sequences of 10 notes per second
at a given register. In both cases the audio generator is a sinusoidal oscilla-

tor wrapped with a percussive envelope. (Note that, as shown in the example,

if message play is directly sent to a SynthDef, the server would automatically

create an instance of Synth once the SynthDef is created.) The first SynthDef

generates a sequence of chromatic intervals between [45, 75] in midi notation.
Midi notes are nothing but an indication of pitch, much in the same way a pi-

ano’s white and black keys are. In midi notation the piano’s “middle C” is 60;
therefore the first improviser’s output varies from the 15th key before the mid-

dle C (that is an A, 2 octaves lower) to the one the 15th after it (that is a E♭, 2
octaves up). The frequency of the oscillator is the LFNoise0’s output multiplied

by 15, with 60 added.
The second SynthDef calculates pitches differently. A scale is defined as

a given sequence of steps (each step is a semitone) starting at 0. Then, 60 is
added to the intervals so that all pitches are transposed to the desired octave.

In this way, a particular trajectory of pitches starting from themiddle C (60) and
ending at the next B♭ (70) is defined. The resultingmidi notes are the following:

SynthDef(\chromaticImproviser, { arg freq = 10 ;
	Out.ar(0, SinOsc.ar(
		freq: 	LFNoise0.kr(freq, mul:15, add: 60).round.midicps,
		mul:
		EnvGen.kr(Env.perc(0.05), gate: Impulse.kr(freq), doneAction:2))
)
}).play ;

SynthDef(\modalImproviser, { arg freq = 10;
	var scale = [0, 0, 0, 0, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 10]+60 ;
	var mode = scale.addAll(scale+12).midicps ;
	var range = (mode.size*0.5).asInteger ;
	Out.ar(0, SinOsc.ar(
		freq: 	Select.kr(LFNoise0.kr(freq,
			mul: range,
			add: range).round, mode),
		mul:
		EnvGen.kr(Env.perc(0.05), gate: Impulse.kr(freq), doneAction:2))
)
}).play ;

code/controlli/LFNoise0.scd
code/controlli/LFNoise0.scd

Introduction to SuperCollider 183

1 [0, 0, 0, 0, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 10]+60

2 [60, 60, 60, 60, 63, 63, 64, 65, 65, 66, 66, 67, 67, 67, 70]

orC, E♭, E, F, F♯, G, B♭, some ofwhich repeated. The actual sequence is given
by the scale, extendedwith a copy of itself transposed an octave up. Remember

that an octave interval inmidi notation is represented as an increase/decrease of

12. The mode array is then converted toHz by midicps. Frequency is determined

by a Select UGen; Select’s *ar and *krmethods expect two arguments, which

and array: given an array of signals, Select returns the one indexed by which.

In the above example, the idea is to randomly Select a frequency from the mode

array using LFNoise0. The latter generates a number in the [−𝑟, 𝑟]+𝑟 = [0, 𝑟×2]
range, where the variable 𝑟 (here range) is defined as half of the size of mode.

Therefore, if mode.size = 26, then range = 13, and LFNoise0 will fluctuate in

the [0, 26] range. Since the output values from LFNoise0 are used as indices,

they must be integer values, hence the use of round. It has been noted that

mode contains the same values more than once. This is a primitive, albeit effec-

tive, way to raise the probability of certain pitches. In this way, some steps in

the scale are emphasized as they are more likely to be selected: the fundamen-

tal and, then, the minor third, the fourth, the augmented fourth and the fifth

—thus achieving a somehow “bluesy” quality. Note that the oscillator’s output

should be enveloped each time there is a change in pitch, or in other words, the

oscillator should be “in sync” with LFNoise0. Accordingly, the gate argument

is driven by an Impulse which triggers the envelope at the same frequency as

that of LFNoise0.

Another UGen typically used to produce triggers is the pseudo-random

pulse-generator Dust. Dust produces a train of pulses in the [0, 1] range, but,
unlike Impulse, these pulses are stochastically distributed in time. The average

number of pulses per second is given by the first argument of the UGen (den-

sity). The arguments and their default values for both *ar and *kr methods

are: density = 0.0, mul = 1.0, add = 0.0. If we replace Impulse with Dust

in the previous example, leaving the rest of the code unchanged, we would still

get more or less the same number of triggers per second, yet not equally dis-

tributed in time. Consider the next example where the mouse is used to control

the density:

[0, 0, 0, 0, 3, 3, 4, 5, 5, 6, 6, 7, 7, 7, 10]+60
[60, 60, 60, 60, 63, 63, 64, 65, 65, 66, 66, 67, 67, 67, 70]

code/controlli/post/modalPost.scd
code/controlli/post/modalPost.scd

184 Control

1 { Dust.ar(MouseX.kr(1, 500)) }.play ;

Using Dust as a trigger is fairly common in SuperCollider. The following

example is taken from the help file of another interesting UGen, namely TRand.

TRand generates a pseudo-random value in a range defined by its first two ar-

guments lo = 0.0 and hi = 1.0. Each time a trigger is registered in the third

argument, a different value is generated at the UGen’s output. In the follow-

ing example, the first part generates a trigger Impulse so that at each new pulse,

TRandmodulates the frequency of SinOsc. This is yet another way to implement

a Sample & Hold technique. Replacing Impulse with Dust will result in a series

of randomly distributed pulses (and therefore of envelopes) having the average

density set by freq.

1 // deterministic

2 {

3 var trig = Impulse.kr(9);

4 SinOsc.ar(

5 TRand.kr(100, 900, trig)

6) * 0.1

7 }.play;

9 // stochastic

10 {

11 var trig = Dust.kr(9);

12 SinOsc.ar(

13 TRand.kr(100, 900, trig)

14) * 0.1

15 }.play;

6.5 Busses

It is now time to introduce busses. The bus concept derives from analog audio.

As the Figure 5.4 illustrates, a helpful metaphor is that of a pipe where signal

{ Dust.ar(MouseX.kr(1, 500)) }.play ;

code/controlli/dust.scd
code/controlli/dust.scd

// deterministic
{
	var trig = Impulse.kr(9);
	SinOsc.ar(
		TRand.kr(100, 900, trig)
) * 0.1
}.play;

// stochastic
{
	var trig = Dust.kr(9);
	SinOsc.ar(
		TRand.kr(100, 900, trig)
) * 0.1
}.play;

code/controlli/tRand.scd
code/controlli/tRand.scd

Introduction to SuperCollider 185

flows. Each Bus is associatedwith a unique index (a numerical identifier)which

can be used to refer to it. Both control and audio busses are available in Super-

Collider. The latter are intrinsic to the server in that the signals they carry are

both produced and consumed by the former. As far as audio rate busses are

concerned, however, we both encounter ones routing audio to other elements

within the Server as well as ones routing audio to the outside world —e.g. to

the drivers of some external audio interface, or from some external input (a mi-

crophone). In relation to audio busses, the server does not differentiate between

busses used internally, i.e. “private”, and busses used to connect with external

audio interfaces, i.e. “public” busses— both are assigned an index and their

structure is identical in all respects. There is an important convention, how-

ever: the first n audio busses (0, …, 𝑛) are reserved for the outputs and inputs
of the computer’s audio interface; the rest may then be used internally. The ex-

act number of public and private numbers depends on the type of soundcard

in use as well as on the SuperCollider settings. The standard configuration as-

sumes a stereo output at busses 0 and 1 and a stereo input at busses 2 and 3. By
default, from 4 forward, the busses can be used internally.

The following example illustrates how a simple SynthDef’s output can be

routed to more than one audio bus using the Out UGen. Out’s arguments indi-

cate the index of the Bus to write to and the signal to be written. In line 2 of

the code below we open a scope window to visually monitor the first 4 audio
busses (indices 0, 1, 2, 3). Bus 0 corresponds to the left channel of a classic stereo
configuration. In line 4 the signal is moved to the right channel (with index 1).
Then, in lines 5 and 6, the signal is routed to the busses 2 and 3, respectively. Of
course, with a stereophonic interface it is impossible to hear the sound in these

busses (we can still visually inspect them, however). The signal is, eventually,

moved back to the left channel (line 7).

1 SynthDef(\chan , {arg out; Out.ar(out, LFPulse.ar(5)*SinOsc.ar(400))}).add ;

2 s.scope(4) ; // monitor for busses

3 x = Synth(\chan) ;

4 x.set(\out , 1) ; // on the right

5 x.set(\out , 2) ; // it’s here but private

6 x.set(\out , 3) ; // same as before

7 x.set(\out , 0) ; // on the left

We can have multiple Outs (even operating at different rates) within the

same SynthDef. The following codewrites two different signals in two adjacent

SynthDef(\chan, {arg out; Out.ar(out, LFPulse.ar(5)*SinOsc.ar(400))}).add ;
s.scope(4) ; // monitor for busses
x = Synth(\chan) ;
x.set(\out, 1) ; // on the right
x.set(\out, 2) ; // it's here but private
x.set(\out, 3) ; // same as before
x.set(\out, 0) ; // on the left

code/controlli/busBasic.scd
code/controlli/busBasic.scd

186 Control

busses. Then, by varying out, we can “move” this arrangement to another set

of consecutive busses.

1 SynthDef(\chan , { arg out = 0;

2 Out.ar(out, LFPulse.ar(5)*SinOsc.ar(400)) ;

3 Out.ar(out+1, LFPulse.ar(7)*SinOsc.ar(600)) ;

4 }).add ;

5 s.scope(4) ; // monitor for busses

6 x = Synth(\chan) ;

7 x.set(\out , 1) ; // to right and to private

8 x.set(\out , 0) ; // from start

Managing multichannel systems is therefore straightforward: e.g. we can

use busses 0…7 to drive a sound card with 8 audio outputs, etc. Out can be used
to control the routing of the various signals. In reality, things are even simpler,

as to be shown briefly. A possible situation is outlined in Figure 6.4, in relation

to different possible hardware configurations.

0
1
2
3
4
5
6
7
8
.
.
n

s
o
u
n
d

c
a
r
d

0
1
2
3
4
5
6
7
8
.
.
n

s
o
u
n
d

c
a
r
d

0
1
2
3
4
5
6
7
8
9
.
n

s
o
u
n
d

c
a
r
d

I=2/O=2 I=3/O=4 I=2/O=8

Figure 6.4 Private and public busses in various hardware configurations.

In the following example a stethoscope is used to visualize the contents of busses

0…3: given a standard configuration these would be the stereo output and the
stereo inputs.

SynthDef(\chan, { arg out = 0;
	Out.ar(out, LFPulse.ar(5)*SinOsc.ar(400)) ;
	Out.ar(out+1, LFPulse.ar(7)*SinOsc.ar(600)) ;
}).add ;
s.scope(4) ; // monitor for busses
x = Synth(\chan) ;
x.set(\out, 1) ; // to right and to private
x.set(\out, 0) ; // from start

code/controlli/busBasic2.scd
code/controlli/busBasic2.scd

Introduction to SuperCollider 187

1 s.scope(4,0) ;

2 {Out.ar(0, In.ar(2))}.play ;

Then, in line 2:

1. the UGen In is introduced, which is Out’s equivalent and is used for reading

audio signal from a bus;

2. In reads from Bus 2, which is assumed to be one of the soundcard’s audio
inputs. The signal is now available within at scsynth;

3. using Out, the input signal is routed to the bus 0, which corresponds to the
left output of a standard stereo soundcard.

(Beware of possible feedback if a microphone close to the speakers is con-

nected in bus 2). The situation is shown in Figure 6.5.

0
1
2
3
4
5
6
7
8
.
.
n

s
o
u
n
d

c
a
r
d

I=2/O=2

In

Out

Figure 6.5 Routing among input and output busses.

Now suppose that we use a quadraphonic audio interface, such as the second

in Figure 6.4. In this case, bus 2 represents an output, rather than an input.

This can be very confusing: identical code could have dramatically different

semantics, depending on the audio interface used —this would be unaccept-

able. Hopefully there is a dedicated UGen we can use to read a soundcard’s

inputs irrespective of their indices, namely SoundIn. SoundIn’s first argument is

indeed an index, yet it will be automatically biased so that it always represents

s.scope(4,0) ;
{Out.ar(0, In.ar(2))}.play ;

code/controlli/in.scd
code/controlli/in.scd

188 Control

an input bus. Therefore, in=0 represents “the first available audio input”, rather

than the bus 0. In the next example, the first available audio input (typically the
computer’s built-in microphone) is routed to the output bus 0:

1 SynthDef(\in , {Out.ar(0, SoundIn.ar(0))}).add ;

2 x = Synth(\in) ;

On a typical computer with a stereo sound card, index 0 would represent
bus 2. However, given an audio interface with 10 outputs, it will represent bus
10. With SoundIn we can, therefore, use relative, rather than absolute, indices

which results in safer, portable and more efficient code.

0
1
2
3
4
5
6
7
8
.
.
n

s
o
u
n
d

c
a
r
d

I=2/O=2

SoundIn

Out

0
1

0
1
2
3
4
5
6
7
8
.
.
n

s
o
u
n
d

c
a
r
d

I=3/O=4

SoundIn

Out

0
1
2

Figure 6.6 Semantics of SoundIn.

While public busses are an interface to the outside world, private ones allow

for internal routing configurations of arbitrary complexity. They are particu-

larly useful in emulating classic analog audio synthesis: e.g. having several

synths that may be connected/disconnected at will. In this way we can create

more complex signals. Consider also delay lines and reverb. In space, each re-

flection causes an acoustic wave to be delayed so that live sound is always a

mixture of several delayed versions of some original sonic event. A minimal

delay unit would merely generate a copy of the input signal delayed for some

small amount of time. A series of such units could be, then, used to simulate

the effect of a reverberation. There are many ways to implement such units: in

SynthDef(\in, {Out.ar(0, SoundIn.ar(0))}).add ;
x = Synth(\in) ;

code/controlli/soundIn.scd
code/controlli/soundIn.scd

Introduction to SuperCollider 189

any case, SuperCollider already features an implementation of FreeVerb—a re-

verb widely used in open-source communities. The following code comprises

two synths: the first is a 50 ms pulse multiplied with a Line— a linear-ramp

envelope which, in this case, generates a constant 1 for the given duration and
then frees the wrapping synth; the second applies FreeVerb to the former:

1 {Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2)}.play ;

2 {FreeVerb.ar(Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2))}.play ;

There appears to be no audible difference between the original and its rever-

berated version. Line de-allocates the entire synth once the pulse is over and,

therefore, the reverberation never happens. The problem can be easily solved

using Bus.

1 (

2 SynthDef(\blip , {arg out = 0;

3 Out.ar(out, Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2))

4 }).add ;

6 SynthDef(\rev , {arg in, out = 0;

7 Out.ar(out, FreeVerb.ar(In.ar(in)))

8 }).add ;

9)

11 Synth(\blip , [\out , 0]) ;

13 //vs

14 (

15 ~revBus = Bus.audio(s,1) ;

16 ~rev = Synth(\rev) ;

17 ~rev.set(\in , ~revBus) ;

18 Synth(\blip , [\out , ~revBus]) ;

19)

21 x = {Out.ar(~revBus, Dust.ar(3))}.play ;

22 x.free ;

{Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2)}.play ;
{FreeVerb.ar(Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2))}.play ;

code/controlli/revPulses.scd
code/controlli/revPulses.scd

(
SynthDef(\blip, {arg out = 0;
	Out.ar(out, Pulse.ar(100)*Line.kr(1,1, 0.05, doneAction:2))
}).add ;

SynthDef(\rev, {arg in, out = 0;
	Out.ar(out, FreeVerb.ar(In.ar(in)))
}).add ;
)

Synth(\blip, [\out, 0]) ;

//vs
(
~revBus = Bus.audio(s,1) ;
~rev = Synth(\rev) ;
~rev.set(\in, ~revBus) ;
Synth(\blip, [\out, ~revBus]) ;
)

x = {Out.ar(~revBus, Dust.ar(3))}.play ;
x.free ;

code/controlli/revBus.scd
code/controlli/revBus.scd

190 Control

The first block of code (lines 1–9) defines two SynthDefs, the first being

the above short pulse generator and the second being a minimal reverberation

module —Figure 6.6 demonstrates the latter’s UGen Graph.

in:0

In

out:0

Out

FreeVerb 0.33 0.5 0.5

Figure 6.7 A minimal reverb module.

The synth in line 11 generates an impulse without any reverberation. Follow-

ing the code block, however, the output of the blip synth is routed to the re-

verberation module using a private Bus object. Note that we can directly pass

a Bus object as an argument to whatever UGen expects a bus index. Bus’ audio

method is a constructor for an audio rate bus —a 1-channel bus allocated on

server s, in this case— as specified by the two arguments. Even if the server

only understands monophonic busses, Bus can be used for the construction of

multichannel ones: the Bus objectwill allocate andhandle a series of busseswith

adjacent indices, to be used as a group. As far as the original problem is con-

cerned, in the above example the synth ~revwhich reads the bus ~revBus keeps

producing output even after the original source—that is, the synth blip—is au-

tomatically de-allocated. Try evaluating the code in line 18 again; a new blip

sound is sent through the reverberation unit which is still active. As shown in

line 21, we can also send any other kind of signal to revBus. Another benefit

comes from computational savings. Reverb units, for example, use a lot of pro-

cessing power. If each note had its own reverb, your computer would quickly

start to glitch from the load. But with a Bus, a single Reverb can be used with

all of your other note events.

Introduction to SuperCollider 191

When using busses, however, we have to consider the so-called order of

execution of the synths. In the server, all nodes (that is, groups and synths)

are arranged in a tree that determines the order they should be executed. For

each sampling period 𝑇 = 1
𝑠𝑟 , all synths’ graphs are scanned so that the output

values for each one are computed. Yet, it is according to the execution graph

that the server decides the output ofwhich graphs to compute first. When using

busses, we must ensure that signal we want to read off of a bus by other synths

are written to the busses first. Consider the following code:

1 (

2 SynthDef(\pulse , {arg out = 0, freq = 4;

3 Out.ar(out, Pulse.ar(freq, 0.05))}).add ;

4)

6 // 1.

7 ~revBus = Bus.audio(s) ;

8 ~src = Synth(\pulse , [\out , ~revBus]) ;

9 ~rev = Synth(\rev) ;

10 ~rev.set(\in , ~revBus) ;

12 // 2.

13 ~revBus = Bus.audio(s) ;

14 ~rev = Synth(\rev) ;

15 ~src = Synth(\pulse , [\out , ~revBus]) ;

16 ~rev.set(\in , ~revBus) ;

18 // 3.

19 ~revBus = Bus.audio(s) ;

20 ~src = Synth(\pulse , [\out , ~revBus]) ;

21 ~rev = Synth(\rev , addAction:\addToTail) ;

22 ~rev.set(\in , ~revBus) ;

25 // 4.

26 ~revBus = Bus.audio(s) ;

27 ~src = Synth(\pulse , [\out , ~revBus]) ;

28 ~rev = Synth.after(~src, \rev , addAction:\addToTail) ;

29 ~rev.set(\in , ~revBus) ;

In the first case, ~src is allocated before ~rev. This results in no sound.

Whenever a new synth is allocated, it is put by default in the head of the exe-

cution graph, so that its output is the first to be computed. We would expect

(
SynthDef(\pulse, {arg out = 0, freq = 4;
	Out.ar(out, Pulse.ar(freq, 0.05))}).add ;
)

// 1.
~revBus = Bus.audio(s) ;
~src = Synth(\pulse, [\out, ~revBus]) ;
~rev = Synth(\rev) ;
~rev.set(\in, ~revBus) ;

// 2.
~revBus = Bus.audio(s) ;
~rev = Synth(\rev) ;
~src = Synth(\pulse, [\out, ~revBus]) ;
~rev.set(\in, ~revBus) ;

// 3.
~revBus = Bus.audio(s) ;
~src = Synth(\pulse, [\out, ~revBus]) ;
~rev = Synth(\rev, addAction:\addToTail) ;
~rev.set(\in, ~revBus) ;

// 4.
~revBus = Bus.audio(s) ;
~src = Synth(\pulse, [\out, ~revBus]) ;
~rev = Synth.after(~src, \rev, addAction:\addToTail) ;
~rev.set(\in, ~revBus) ;

code/controlli/order.scd
code/controlli/order.scd

192 Control

the last allocated synth to be the one computed last, but this is not the case in

the server. The execution graph can be visualized in two ways, as shown in the

code below:

1 s.queryAllNodes ;

2 s.plotTree ;

The first method prints the graph on the post window; the latter rather

builds a GUI displaying the various synths/groups and their order. In the case

of the above example concerning reverberation, the resulting graphwould look

like this:

1 localhost

2 NODE TREE Group 0

3 1 group

4 1001 rev

5 1000 dust

There is a default group, here including two synths. The execution order is

~rev→ ~pulse. As shown, the reverb is calculated before the impulse signal, so

that the former will simply produce 0 at its output, given that there is no input
to process. The situation is illustrated in Figure 6.8.

The order of execution in the case of the second code block is exactly the

opposite: the reverberation unit is created before the pulse source, so that the

latter is computed first: therefore, there is a value for the reverb synth to process.

In the third code block, an addAction is used to explicitly place the reverberation

synth at the end (addToTail) of the execution graph —addToHead can be used

if the opposite result is desired. Finally, in the fourth code block, the synth is

created using the Synth’s after, rather than the new, constructor, as the method

enables us to place the resulting synth after a particular node (determined by

the first argument) —and indeed a before method does exists, that allows to

place a synth before another one in the execution graph.

As already mentioned, busses can be also used to read/write control sig-

nals. In the following example, the pseudo-UGens MouseX and MouseY are used

to manage two synths (~tri1 and ~tri2), that substantially wrap triangular

s.queryAllNodes ;
s.plotTree ;

code/controlli/query.scd
code/controlli/query.scd

localhost
NODE TREE Group 0
 1 group
 1001 rev
 1000 dust

code/controlli/post/queryPost.scd
code/controlli/post/queryPost.scd

Introduction to SuperCollider 193

Synth: "rev"

bus: 0

bus: ~revBus

Synth: "pulse"Server

Figure 6.8 Wrong order of execution.

wave oscillators (notice that low-frequency oscillators can be also used at audio

rate). Herein, the control interface is kept distinct from the audio generators. An

important distinction between audio and control busses is that, for the control

busses, the order of execution is not applicable. While audio signal on busses

are zeroed out after each control cycle, control busses retain their value until

updated directly. Accordingly, the ~tri1 and ~tri2 synths may both read the

input from the bus on which ~mouse writes to. The code block between lines

18–23 shows how to use the getmethod as an interface to retrieve values from

the control bus. The method get expects a callback function as an argument;

the argument of the latter will be, in turn, given the bus’ current value auto-

matically.2. In this particular case, the callback function converts the value to

a MIDI value, rounds it up and eventually posts it to the post window. The

same process is repeated for the ~yBus. The last lines in the above piece of code

demonstrate the set method: a new control bus ~vBus is allocated and used

2 We need a function to access this value because it is stored server-side and,

therefore, a series of OSC messages between the server and the client have to

be exchanged before it is available to the latter. Operations involving OSC com-

munication are asynchronous: it cannot be known in advance when exactly a

message will arrive. Accordingly, the provided function will be evaluated once

the desired value has indeed arrived, and the latter will be passed as an argu-

ment to the user-defined function.

194 Control

to control the frequency of yet another "tri" synth, which writes audio to the

right channel output (as shown in the scope window invoked at line 27); in line

26 we “get” the values from ~xBus, which are, then, transposed an octave up

and written to ~vBus. This way, we get a copy of the ~tri1 synth in the right

channel, only that the latter is transposed an octave higher.

1 (

2 SynthDef(\tri , {arg out = 0, inFreq = 0, amp = 1;

3 Out.ar(out, LFTri.ar(In.kr(inFreq), mul:amp))}).add ;

5 SynthDef(\mouse , {arg out1, out2 ;

6 Out.kr(out1, MouseX.kr(36, 96).round.midicps);

7 Out.kr(out2, MouseY.kr(36, 96).round.midicps);

8 }).add ;

9)

11 ~xBus = Bus.control(s) ;

12 ~yBus = Bus.control(s) ;

13 ~mouse = Synth(\mouse , [\out1 , ~xBus, \out2 , ~yBus]) ;

14 ~tri1 = Synth(\tri , [\amp , 0.5]) ;

15 ~tri2 = Synth(\tri , [\amp , 0.5]) ;

16 ~tri1.set(\inFreq , ~xBus) ;

17 ~tri2.set(\inFreq , ~yBus) ;

18 (

19 ~xBus.get{|v|

20 v.cpsmidi.round.postln;

21 ~yBus.get{|v| v.cpsmidi.round.postln};

22 } ;

23)

24 ~vBus = Bus.control(s) ;

25 ~tri3 = Synth(\tri , [\inFreq , ~vBus, \out , 1]) ;

26 ~xBus.get{|v| ~vBus.set(v*2); }

27 s.scope ;

Note that while control busses are very convenient, they typically require

the presence of one or more InUGens. This means that the corresponding Syn-

thDefs are necessarily context-dependent, since they assume the presence of

particular signals in their control inputs. An interesting alternative is the use of

the mapmethod.

(
SynthDef(\tri, {arg out = 0, inFreq = 0, amp = 1;
	Out.ar(out, LFTri.ar(In.kr(inFreq), mul:amp))}).add ;

SynthDef(\mouse, {arg out1, out2 ;
	Out.kr(out1, MouseX.kr(36, 96).round.midicps);
	Out.kr(out2, MouseY.kr(36, 96).round.midicps);
}).add ;
)

~xBus = Bus.control(s) ;
~yBus = Bus.control(s) ;
~mouse = Synth(\mouse, [\out1, ~xBus, \out2, ~yBus]) ;
~tri1 = Synth(\tri, [\amp, 0.5]) ;
~tri2 = Synth(\tri, [\amp, 0.5]) ;
~tri1.set(\inFreq, ~xBus) ;
~tri2.set(\inFreq, ~yBus) ;
(
~xBus.get{|v|
	v.cpsmidi.round.postln;
	~yBus.get{|v| v.cpsmidi.round.postln};
} ;
)
~vBus = Bus.control(s) ;
~tri3 = Synth(\tri, [\inFreq, ~vBus, \out, 1]) ;
~xBus.get{|v| ~vBus.set(v*2); }
s.scope ;

code/controlli/control.scd
code/controlli/control.scd

Introduction to SuperCollider 195

1 (

2 SynthDef(\tri , {arg out = 0, freq = 440;

3 Out.ar(out, LFTri.ar(freq))}).add ;

5 SynthDef(\mouse , {arg out ;

6 Out.kr(out, MouseX.kr(20, 5000, 1));

7 }).add ;

9 SynthDef(\sine , {arg out, freq = 10 ;

10 Out.kr(out, SinOsc.kr(freq, mul: 200, add:500));

11 }).add ;

12)

14 ~kBus = Bus.control(s) ;

15 ~mouse = Synth(\mouse , [\out , ~kBus]) ;

16 ~tri1 = Synth(\tri) ;

17 ~tri1.map(\freq , ~kBus) ; // from mouse

18 ~mouse.run(false) ; // las value from mouse

19 ~mouse.run ; // again

20 ~sine = Synth(\sine , [\out , ~kBus]) ; // from sine, overwritten

21 ~sine.run(false) ;

22 ~tri1.set(\freq , 100) ; // fixed

23 ~tri1.map(\freq , ~kBus) ; // from mouse

24 ~sine.run ; // from sine

In this example there are three SynthDefs, one is meant for the synthesis of

audio signals ("tri") and the remaining two for generating control ones. Af-

ter the allocation of a control bus (line 14), a control synth is defined (line 15)

that writes the mouse output to ~kBus. Then, an audio synth is created (line

16), the frequency of which (freq) is mapped (using map) onto ~kBus. This way,

the mouse directly controls the frequency of the audio synth without includ-

ing an explicit In UGen or invoking the get method. Notice that when mouse

interaction stops (line 18), the bus keeps on holding the last generated value.

On line 19, the mouse synth resumes and on line 20 a different control signal

(~sine) is routed on the same bus; the latter now overwrites the mouse synth

output and controls the frequency. When ~sine is paused (line 21) the mouse’s

output becomes once again available. When a value is passed to the synth’s

argument, however (line 22) the connection with the bus is lost. On line 23 the

mapping is re-established, but when ~sine resumes (line 24), the output of the

(
SynthDef(\tri, {arg out = 0, freq = 440;
	Out.ar(out, LFTri.ar(freq))}).add ;

SynthDef(\mouse, {arg out ;
	Out.kr(out, MouseX.kr(20, 5000, 1));
}).add ;

SynthDef(\sine, {arg out, freq = 10 ;
	Out.kr(out, SinOsc.kr(freq, mul: 200, add:500));
}).add ;
)

~kBus = Bus.control(s) ;
~mouse = Synth(\mouse, [\out, ~kBus]) ;
~tri1 = Synth(\tri) ;
~tri1.map(\freq, ~kBus) ; // from mouse
~mouse.run(false) ; // las value from mouse
~mouse.run ; // again
~sine = Synth(\sine, [\out, ~kBus]) ; // from sine, overwritten
~sine.run(false) ;
~tri1.set(\freq, 100) ; // fixed
~tri1.map(\freq, ~kBus) ; // from mouse
~sine.run ; // from sine

code/controlli/map.scd
code/controlli/map.scd

196 Control

mouse synth is, once again, overwritten. The mapmethod makes can make the

SynthDef independent of any interface and/or control I/O schemata.

It should be noted that audio and control signals behave differently when

more signals are simultaneouslywritten into them. As already discussed, in the

case of control busses, the last signal overwrites any previous ones. In the case

of audio busses, however, signals can be treated in a couple of different ways.

When routingmore than one signal with Out.ar(0, …), the signal that exists in

the bus and the new signal are summed together. It makes perfect sense since

we do want all these signals to “mix”. Consider the following code:

1 (

2 SynthDef(\tri , {arg out = 0;

3 Out.ar(out, LFTri.ar)}).add ;

5 SynthDef(\sin , {arg out ;

6 Out.ar(out, SinOsc.ar(1000));

7 }).add ;

9 SynthDef(\mix , {arg out = 0, in ;

10 Out.ar(out, In.ar(in));

11 }).add ;

12)

14 b = Bus.audio ;

15 x = Synth(\tri , [\out , b]) ;

16 y = Synth(\sin , [\out , b]) ;

17 b.scope ; // monitoring

18 z = Synth.tail(nil, \mix , [\in , b]) ;

Here, a SynthDef mixes the inputs of all private busses (9-11), and then

writes them to the sound card’s output. The mixer synth (z) is allocated last,

but the tailmethod ensures the proper order of execution. The two synths (x,

y) write on the same bus that z reads from and both signals are mixed in bus b.

As illustrated, it is possible to monitor a bus (both audio and control) using the

scopemethod (line 17).

However, otherUGens thatwrite to an audio bus can interactwith previous

sound on the bus in different ways: without entering into details, ReplaceOut

(
SynthDef(\tri, {arg out = 0;
	Out.ar(out, LFTri.ar)}).add ;

SynthDef(\sin, {arg out ;
	Out.ar(out, SinOsc.ar(1000));
}).add ;

SynthDef(\mix, {arg out = 0, in ;
	Out.ar(out, In.ar(in));
}).add ;
)

b = Bus.audio ;
x = Synth(\tri, [\out, b]) ;
y = Synth(\sin, [\out, b]) ;
b.scope ; // monitoring
z = Synth.tail(nil, \mix, [\in, b]) ;

code/controlli/audioBus.scd
code/controlli/audioBus.scd

Introduction to SuperCollider 197

will zero out the bus before writing new signal while XOut accepts an xfade

parameter that will mix the new and previously written signal.

6.6 Procedural structure of SynthDef

What is a SynthDef? It is the equivalent of a synthesizer’s electronic schemat-

ics. SynthDefs are written in the SuperCollider language (sclang), yet, when

they are sent to scsynth, they are compiled to an internally-used binary repre-

sentation. In fact, scsynth knows nothing about sclang. Given the existence of

an appropriate interpreter, SynthDefs could be written in any language, e.g. as

long as they are eventually translated to the appropriate binary format, it makes

no difference for the server. Therefore, a SynthDef is merely a description of a

virtual synthesizers’s structure—nevertheless, one that does take advantage of

the expressiveness of the SuperCollider language. Consider the following code:

1 SynthDef(\chan , { arg out = 0 ;

2 8.do({|i|

3 Out.ar(out+i, LFPulse.ar(i+5)*SinOsc.ar(i+1*200))

4 }) ;

5 }).add ;

Here, the UGen graph is described iteratively. For each of the 8 iterations
a pulse-modulated sinusoidal signal is created, its parameters being defined as

a function of the counter and its output being routed on a series of consecutive

busses for which the indexes of each are also given as a function of the counter.

Using the following code, we can hear the first two signals (of course, assuming

that a stereo sound card is available) and visually inspect all busses.

1 s.scope(8) ; // monitor for first 8 busses

2 x = Synth(\chan) ;

3 x.set(\out , 1) ; // move to the right

4 x.set(\out , 0) ; // from start

SynthDef(\chan, { arg out = 0 ;
	8.do({|i|
		Out.ar(out+i, LFPulse.ar(i+5)*SinOsc.ar(i+1*200))
	}) ;
}).add ;

code/controlli/busFunc.scd
code/controlli/busFunc.scd

s.scope(8) ; // monitor for first 8 busses
x = Synth(\chan) ;
x.set(\out, 1) ; // move to the right
x.set(\out, 0) ; // from start

code/controlli/busFunc2.scd
code/controlli/busFunc2.scd

198 Control

The code is very compact, and also specifies a set of relationships that can-

not be shown in the UGen graph. Consider the following code, too:

1 SynthDef(\chan , { arg out = 0, freq = 200, kFreq = 5 ;

2 8.do({|i|

3 Out.ar(out+i, LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq))

4 }) ;

5 }).add ;

The resulting graphs are shown in Figure 6.9. Remember that figures of

this type are obtained through automatic analysis of a SynthDef’s structure and,

therefore, what we see are the very same data structures accessible to the server

itself. The expressive power of the SuperCollider language is well exemplified

in these cases: with just a few lines of code we have created a very complex

UGen graph.

On a typical stereo interface only the first two signalswill be heard (busses 0
and 1). SuperCollider features a MixUGen, however, that can be used tomix to-
gether all existent channels in the case of a multi-channel signal —the expected

argument is an array of signals. The next code snippet is a modified version

of the example in discussion; Mix sums together all 8 signals before they are

eventually routed using Out (line 14). Mix sums the signals that are present in

its argument array (“sample by sample”) to create a monophonic signal. Note

that, from a technical point of view, Mix is not a UGen and, even if it does have

*ar and *kr methods, it is preferable to use the new method instead (the for-

mer methods are deprecated and will most likely be obsolete in some future

release). Note also that the overall amplitude has to be scaled in order to avoid

distortion.

SynthDef(\chan, { arg out = 0, freq = 200, kFreq = 5 ;
	8.do({|i|
		Out.ar(out+i, LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq))
	}) ;
}).add ;

code/controlli/busFunc3.scd
code/controlli/busFunc3.scd

Introduction to SuperCollider 199

ou
t:0

Ou
t

+

1

+

2

+

3

+

4

+

5

+

6

+

7

fre
q:2

00

Sin
Os

c

0

*
2

*
3

*
4

*
5

*
6

*
7

*
8

kF
req

:5

LF
Pu

lse

0
0.5

+
1

+
2

+
3

+
4

+
5

+
6

+
7

*

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

Ou
t

LF
Pu

lse

0
0.5

*

Sin
Os

c

0

ou
t:0

+

1

+

2

+

3

+

4

+

5

+

6

+

7

Ou

t

Ou
t

Ou
t

Ou
t

Ou
t

Ou
t

Ou
t

Ou
t

LF
Pu

lse
5

0
0.5

*

Sin
Os

c
20

0
0

LF
Pu

lse
6

0
0.5

*

Sin
Os

c
40

0
0

LF
Pu

lse
7

0
0.5

*

Sin
Os

c
60

0
0

LF
Pu

lse
8

0
0.5

*

Sin
Os

c
80

0
0

LF
Pu

lse
9

0
0.5

*

Sin
Os

c
10

00
0

LF
Pu

lse
10

0
0.5

*

Sin
Os

c
12

00
0

LF
Pu

lse
11

0
0.5

*

Sin
Os

c
14

00
0

LF
Pu

lse
12

0
0.5

*

Sin
Os

c
16

00
0

Figure 6.9 Two UGen graphs in a case of cycle.

200 Control

1 SynthDef(\chan , { arg out = 0, freq = 200, kFreq = 5 ;

2 var n = 8;

3 var arr = Array.newClear(n);

4 n.do({|i|

5 arr[i] = LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)

6 }) ;

8 Out.ar(out, Mix(arr)/n) ;

9 }).add ;

11 s.scope ; // 1 chan

12 Synth(\chan) ;

Using the fillmethod of Array, we can further shrink the code like this:

1 SynthDef(\chan , { arg out = 0, freq = 200, kFreq = 5 ;

2 var n = 8;

3 var arr = Array.fill(n, {|i| LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)

4 }) ;

5 Out.ar(out, Mix(arr)/n) ;

6 }).add ;

In fact, we can shrink it even more, by turning to Mix’s fillmethod.

1 SynthDef(\chan , { arg out = 0, freq = 200, kFreq = 5 ;

2 var n = 8;

3 var mix = Mix.fill(n, {|i| LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)}) ;

4 Out.ar(out, mix/n) ;

5 }).add ;

The UGen graph of the previous SynthDef is partially depicted in Figure

6.103.

SynthDef(\chan, { arg out = 0, freq = 200, kFreq = 5 ;
	var n = 8;
	var arr = Array.newClear(n);
	n.do({|i|
		arr[i] = LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)
	}) ;

	Out.ar(out, Mix(arr)/n) ;
}).add ;

s.scope ; // 1 chan
Synth(\chan) ;

code/controlli/busFunc4.scd
code/controlli/busFunc4.scd

SynthDef(\chan, { arg out = 0, freq = 200, kFreq = 5 ;
	var n = 8;
	var arr = Array.fill(n, {|i| LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)
	}) ;
	Out.ar(out, Mix(arr)/n) ;
}).add ;

code/controlli/busFunc5.scd
code/controlli/busFunc5.scd

SynthDef(\chan, { arg out = 0, freq = 200, kFreq = 5 ;
	var n = 8;
	var mix = Mix.fill(n, {|i| LFPulse.ar(i+kFreq)*SinOsc.ar(i+1*freq)}) ;
	Out.ar(out, mix/n) ;
}).add ;

code/controlli/busFunc6.scd
code/controlli/busFunc6.scd

Introduction to SuperCollider 201

out:0

Out

freq:200

SinOsc 0

* 2

* 3

* 4

* 5

* 6

* 7

* 8

kFreq:5

LFPulse 0 0.5

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7

*

Sum4

LFPulse 0 0.5

*

SinOsc 0

LFPulse 0 0.5

*

SinOsc 0

LFPulse 0 0.5

*

SinOsc 0

+

LFPulse 0 0.5

*

SinOsc 0

Sum4

LFPulse 0 0.5

*

SinOsc 0

LFPulse 0 0.5

*

SinOsc 0

LFPulse 0 0.5

*

SinOsc 0

/ 8

Figure 6.10 Graph of the SynthDef "chan".

6.7 Multichannel Expansion

We will conclude this chapter with a discussion on the “multichannel expan-

sion” feature. Consider the following example:

3 It is apparent that Mix is not a UGen: it is not present in the graph. Internally,

a series of Sum4 UGens are used, which are mixers optimized for blocks of 4

signals.

202 Control

1 SynthDef(\pan , {arg out;

2 Out.ar(out,

3 Pan2.ar(SinOsc.ar, MouseX.kr(-1,1))

4)

5 }).add ;

7 s.scope ;

8 Synth(\pan) ;

As shown in the stethoscope window, the mouse’s 𝑥 dimension controls

the stereophonic positioning of the sinusoidal signal. The arguments of the

Pan2 UGen —which is responsible for stereophonic panning— are in, posi-

tion and level, which correspond to: the signal to be positioned in the stereo

image; its spatial positioning encoded as a float number in the [−1, 1] range
(−1 maps to left and 1 maps to right); an amplitude scale factor. The UGen

Pan2 would then correctly position a signal in the stereo field. That is to say

that Pan2 appropriately distributes a monophonic signal on two consecutive

outputs. Such a stereo signal is nothing more but a pair of signals to be indi-

vidually processed and, eventually, listened to in parallel —typically using two

speakers. It has been already discussed that conventional stereophonic config-

urations map public busses 0 and 1 to the left and right channels, respectively.
Yet, in the above SynthDef only the index of the first public bus (channel 0)
is provided as an argument to Out. The latter, then, automatically distributes

the two input signals to both 0 and 1 busses. This feature of SuperCollider

is referred to as multichannel expansion. Figure 6.11 shows the resulting UGen

Graph. As shown, the Out UGen receives as a second argument (numChannels)

an array of signals —see also its help file. Hitherto, we have used the OutUGen

with monophonic signals alone, yet, it can be used with arrays as well —as in

the case of Pan2’s output. Consider the graph in Figure 6.11. There can be no

doubts: Pan2’s output is an array of two distinct signals. Consider also the next

code snippet, where we use the typical array notation to access the individual

signals.

SynthDef(\pan, {arg out;
	Out.ar(out,
		Pan2.ar(SinOsc.ar, MouseX.kr(-1,1))
)
}).add ;

s.scope ;
Synth(\pan) ;

code/controlli/pan2.scd
code/controlli/pan2.scd

Introduction to SuperCollider 203

1 s.scope ;

2 {SinOsc.ar([60.midicps, 69.midicps])}.play ;

3 {SinOsc.ar([60.midicps, 69.midicps][0])}.play ;

4 {SinOsc.ar([60.midicps, 69.midicps][1])}.play ;

out:0

Out

SinOsc 440 0

Pan2 1

MouseX -1 1 0 0.2

Figure 6.11 Graph of the SynthDef "pan2".

In the following example there are three versions of the same SynthDef:

1 // 1. explicit routing

2 SynthDef("multi1", {

3 Out.ar(0, SinOsc.ar(300)) ;

4 Out.ar(1, SinOsc.ar(650)) ;

5 }).add ;

7 // 2. channelsArray in Out

8 SynthDef("multi2", {

9 Out.ar(0,

10 [SinOsc.ar(300), SinOsc.ar(650)]

11)

12 }).add ;

14 // 3. array in an argument

15 SynthDef("multi1", {

16 Out.ar(0, SinOsc.ar([300, 650]))

17 }).add ;

s.scope ;
{SinOsc.ar([60.midicps, 69.midicps])}.play ;
{SinOsc.ar([60.midicps, 69.midicps][0])}.play ;
{SinOsc.ar([60.midicps, 69.midicps][1])}.play ;

code/controlli/proxy.scd
code/controlli/proxy.scd

204 Control

In the first case, two signals are explicitly written on bus 0 and 1. In the

second case, Out’s channelsArray argument is passed an array of two signals

which are written to channels 0 and 1 respectively. The third case is technically
identical with the second, only that it is described using a more expressive lan-

guage style. Here, an array of frequencies is passed as an argument to a sin-

gleton SinOsc UGen. Generally speaking, every time an array is passed as an

argument to some UGen, SuperCollider will implicitly expand the outer UGen

so that a new instance for each of the corresponding element of the array is cre-

ated. The output of that UGenwill, in turn, be a new array. Note, however, that

multichannel expansion occurs exclusively with instances of Array and not in

the case of its’ super/sub-classes. Therefore, the three cases above are techni-

cally identical, in that they result to the very same UGen graph, as shown in

Figure 6.12.

SinOsc 300 0

Out 0

SinOsc 650 0

Figure 6.12 Graph of the SynthDefs with multichannel expansion.

The following example demonstrates how multichannel expansion may be ex-

ploited to control complex processes.

// 1. explicit routing
SynthDef("multi1", {
	Out.ar(0, SinOsc.ar(300)) ;
	Out.ar(1, SinOsc.ar(650)) ;
}).add ;

// 2. channelsArray in Out
SynthDef("multi2", {
	Out.ar(0,
		[SinOsc.ar(300), SinOsc.ar(650)]
)
}).add ;

// 3. array in an argument
SynthDef("multi1", {
	Out.ar(0, SinOsc.ar([300, 650]))
}).add ;

code/controlli/multi.scd
code/controlli/multi.scd

Introduction to SuperCollider 205

1 (

2 SynthDef(\sum , { arg out = 2 ;

3 Out.ar(out, Array.fill(16, {

4 SinOsc.ar(

5 freq:Rand(48, 84).midicps,

6 mul: LFNoise1.kr(Rand(2, 0.1))

7)

8 })

9)

10 }).add ;

13 SynthDef(\mix , {arg in;

14 Out.ar(0, Mix(In.ar(in, 16)/16))

15 }).add ;

16)

18 b = Bus.audio(s, 16) ; b.scope ;

19 x = Synth(\sum , [\out , b]) ;

20 Synth.after(x, \mix , [\in , b]) ;

The output of the "sum" SynthDef is an array of 16 channels. If appropriate

equipment is available, the latter would represent actual audio signals routed

to speakers. Each signal is a sinusoidal wave with a random frequency selected

from a 3 octaves tempered scale (starting from the bass-clef C, or 48 in midi

notation). The amplitude of each channel is controlled by an LFNoise1 object

that is constrained in the [0, 1] output range and which is operating at some

arbitrary frequency between 2 and 0.1 Hz (so, a frequency of 0.1 indicates a pe-
riod of 10 seconds). The frequency is set using a Rand UGen which generates a
single random number on every instantiation of a new Synth. The "mix" Syn-

thDef is an auxiliary mixer for a 16-channel audio bus —note that a 16-channel

audio bus is expected in the In’s input. Accordingly, such a bus is registered

and subsequently visualized in line 18 (note how scope can be directly invoked

for instances of Bus). Synth x, then, writes 16 channels to the multichannel bus

b (as illustrated in the GUI). The mixer then reads from that bus, sums up all

channels and eventually writes a monophonic signal to the soundcard’s first

output.

Consider the following example, where we are explicitly generating an ar-

ray of 16 signals.

(
SynthDef(\sum, { arg out = 2 ;
	Out.ar(out, Array.fill(16, {
		SinOsc.ar(
			freq:Rand(48, 84).midicps,
			mul: LFNoise1.kr(Rand(2, 0.1))
)
	})
)
}).add ;

SynthDef(\mix, {arg in;
	Out.ar(0, Mix(In.ar(in, 16)/16))
}).add ;
)

b = Bus.audio(s, 16) ; b.scope ;
x = Synth(\sum, [\out, b]) ;
Synth.after(x, \mix, [\in, b]) ;

code/controlli/sum.scd
code/controlli/sum.scd

206 Control

1 SynthDef("multi16mixPan", { arg bFreq = 100 ; // base freq

2 var left, right ;

3 var sigArr = Array.fill(16,

4 { arg ind ;

5 var index = ind+1 ;

6 Pan2.ar(

7 in: SinOsc.ar(

8 freq: bFreq*index+(LFNoise1.kr(

9 freq: index,

10 mul: 0.5,

11 add: 0.5)*bFreq*index*0.02) ,

12 mul: 1/16 ;

13),

14 pos: LFNoise1.kr(freq: index)

15)

16 }) ;

17 sigArr.postln ;

18 sigArr = sigArr.flop.postln ;

19 left = Mix.new(sigArr[0]) ;

20 right = Mix.new(sigArr[1]) ;

21 Out.ar(0, [left, right])

22 }

23).add ;

25 a = Synth(\multi16mixPan) ;

27 c = Bus.control ;

28 a.map(\bFreq , c) ;

30 x = {Out.kr(c, LFPulse.kr(

31 MouseX.kr(1,20), mul:MouseY.kr(1, 100), add:250).poll)}.play ;

32 x.free ;

33 x = {Out.kr(c, Saw.kr(MouseX.kr(0.1, 20, 1), 50, 50))}.play ;

The most complicated part of the code is between lines 7–13, where control

UGens are associated with oscillators —it is left as an exercise to the reader to

analyze this part of the code. Remember that sigArr includes 16 stereo signals,

each of them being the output of a Pan2. Then, for each sinusoid, pos varies

randomly between [−1, 1] at a frequency equal to index (line 14). The bigger

the index , the higher the frequency of the oscillator and, therefore, the faster

the modulation of the signal’s spatial positioning. Note that LFNoise1 UGen is

SynthDef("multi16mixPan", { arg bFreq = 100 ; // base freq
			var left, right ;
			var sigArr = Array.fill(16,
				{ arg ind ;
				var index = ind+1 ;
					Pan2.ar(
						in:	SinOsc.ar(
							freq: bFreq*index+(LFNoise1.kr(
									freq: index,
									mul: 0.5,
									add: 0.5)*bFreq*index*0.02) ,
							mul: 1/16 ;
),
						pos: LFNoise1.kr(freq: index)
)
				 }) ;
		sigArr.postln ;
		sigArr = sigArr.flop.postln ;
		left = Mix.new(sigArr[0]) ;
		right = Mix.new(sigArr[1]) ;
		Out.ar(0, [left, right])
		}
).add ;

a = Synth(\multi16mixPan) ;

c = Bus.control ;
a.map(\bFreq, c) ;

x = {Out.kr(c, LFPulse.kr(
	MouseX.kr(1,20), mul:MouseY.kr(1, 100), add:250).poll)}.play ;
x.free ;
x = {Out.kr(c, Saw.kr(MouseX.kr(0.1, 20, 1), 50, 50))}.play ;

code/controlli/multi16mixPan.scd
code/controlli/multi16mixPan.scd

Introduction to SuperCollider 207

used, which interpolates between successive values, so that no sudden “jumps”

occur in the stereo image.

Upon evaluation, a message similar to the one below is expected in the post

window.

1 [[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],

2 [an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],

3 [an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],

4 [an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],

5 [an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],

6 ...etc...

8 [[an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,

9 an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,

10 an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,

11 an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy],

12 [an OutputProxy, ...etc...

SuperCollider refers to the output of some UGen with multiple outputs

(such as Pan2) as an OutputProxy. Albeit not relevant here, it is interesting to

note that each element of the resulting array is in turn another instance of Array

composed of two elements, one per audio channel. The first postln is invoked

in line 17 and represents an array of 16 arrays, each containing 2 signals. The

method flop, then, rearranges the array so that it now comprises of 2 arrays

containing 16 signals each —see the second printed block. The arrangement of

the elements in sigArr is therefore

[[sig0sx, sig0dx], [sig1sx, sig1dx], [sig3sx, sig3dx]

…, [sig15sx, sig15sx]]

Invoking the flop method will result in a new array with the following

structure:

[[sig0sx, sig1sx, sig2, sx, sig3sx, …, sig15sx],

[sig0dx, sig1dx, sig2, dx, sig3dx, …, sig15dx]]

It is composed of 2 arrays —one per channel— each of which contains an

array made up of the first or second element of each of the original 16-element

arrays. It is then possible to mix the two arrays in two individual monophonic

[[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],
	[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],
	[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],
	[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],
	[an OutputProxy, an OutputProxy], [an OutputProxy, an OutputProxy],
	...etc...

[[an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,
		an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,
		an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy,
		an OutputProxy, an OutputProxy, an OutputProxy, an OutputProxy],
	[an OutputProxy, ...etc...

code/controlli/post/sigArrPost.scd
code/controlli/post/sigArrPost.scd

208 Control

signals which are assigned to the variables left and right (lines 19–20), respec-

tively. Then, passing the [left,right] array to Out results again in amultichan-

nel expansion so that the first signal will be sent to the left speaker via bus 0 and
the second to the right via bus 1. In the rest of the code, an instance of this synth
is created and a bus is used to map the output of a MouseX to control bFreq. The

reader should be able to understand this code easily by now.

Figure 6.13 shows the UGen graph of the "multi16mixPanGraph" SynthDef.

6.8 Conclusions

In this chapter, under the broader topic of “control”, a series of different, albeit

relevant, topics have been examined. By now several of the most important as-

pects of SuperCollider have been already dealt with. The next chapter is again

dedicated to control structures, but this time the focus is on the temporal orga-

nization of events.

Introduction to SuperCollider 209

bF
req

:10
0

*

Mu
lAd

d

0.0
2

*

Mu
lAd

d

2

*

Mu
lAd

d

3

*

Mu
lAd

d

4

*

Mu
lAd

d

5

*

Mu
lAd

d

6

*

Mu
lAd

d

7

*

Mu
lAd

d

8

*

Mu
lAd

d

9

*

Mu
lAd

d

10

*

Mu
lAd

d

11

*

Mu
lAd

d

12

*

Mu
lAd

d

13

*

Mu
lAd

d

14

*

Mu
lAd

d

15

*

Mu
lAd

d

16

LF
No

ise
1

1

Mu
lAd

d

0.5
0.5

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

1

Su
m4

Su
m4

LF
No

ise
1

2

Mu
lAd

d

0.5
0.5

*

2

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

2

LF
No

ise
1

3

Mu
lAd

d

0.5
0.5

*

3

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

3

LF
No

ise
1

4

Mu
lAd

d

0.5
0.5

*

4

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

4

Su
m4

Su
m4

LF
No

ise
1

5

Mu
lAd

d

0.5
0.5

*

5

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

5

Su
m4

Su
m4

LF
No

ise
1

6

Mu
lAd

d

0.5
0.5

*

6

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

6

LF
No

ise
1

7

Mu
lAd

d

0.5
0.5

*

7

*

0.0
2

 Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

7

LF
No

ise
1

8

Mu
lAd

d

0.5
0.5

*

8

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

8

LF
No

ise
1

9

Mu
lAd

d

0.5
0.5

*

9

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

 Pa
n2

1

 LF

No
ise

1
9

Su
m4

Su
m4

LF
No

ise
1

10

Mu
lAd

d

0.5
0.5

*

10

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

10

LF
No

ise
1

11

Mu
lAd

d

0.5
0.5

*

11

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

11

LF
No

ise
1

12

Mu
lAd

d

0.5
0.5

*

12

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

12

LF
No

ise
1

13

Mu
lAd

d

0.5
0.5

*

13

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

13

Su
m4

Su
m4

LF
No

ise
1

14

Mu
lAd

d

0.5
0.5

*

14

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

14

LF
No

ise
1

15

Mu
lAd

d

0.5
0.5

*

15

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

15

LF
No

ise
1

16

Mu
lAd

d

0.5
0.5

*

16

*

0.0
2

Sin
Os

c

0

*

0.0
62

5

Pa
n2

1

LF
No

ise
1

16

Ou
t

0

Figure 6.13 Graph of the SynthDef "multi16mixPan".

210 Control

7 Organized sound: scheduling

Over the previous chapters, many aspects of SuperCollider have been intro-

duced. Starting from UGens provided by SC and the possibility of building

patches, it is already possible to experiment with sound generation and with

interactive control in real-time. Before briefly introducing the implementation

in SC of the most common techniques for sound synthesis, it is appropriate to

discuss certain aspects of time management. SuperCollider excels in this task

when compared to other programming environments because it seamlessly in-

tegrates audio synthesis and algorithmic composition. The control of informa-

tion and its processes, through the SC language, and audio signal synthesis,

through the management of UGens using SynthDefs, are two key ideas that

have to be understood: borrowing an expression by Edgar Varèse, it is time to

get to “organized sound”. The term is interesting because it combines the work

on soundmatter and its temporal organization: it is a very general definition of

both music and composition, intended as a set of sound events. In very general

terms, ’scheduling’ is precisely the allocation of resources for the realization of

an event at a certain time1. As usual in SC, there are many different ways to

manage scheduling.

7.1 Server-side, 1: through UGens

One option that comes from analog synthesizers is tomanage the sequencing of

events directly through audio signals. The following example, despite its sim-

plicity, shows an aspect that has already been discussed: an envelope applied

to a continuous signal can transform the signal into a set of discrete events.

1 For example, http://en.wikipedia.org/wiki/Scheduling

212 Organized sound: scheduling

1 (

2 SynthDef.new("pulseEvent", {|seqFreq = 4, sawFreq = 0.125, sinFreq = 0.14|

3 Out.ar(0,

4 Pulse.kr(seqFreq, width:0.1, mul:0.5, add:0.5)

5 *

6 Formant.ar(fundfreq:(

7 LFSaw.kr(sawFreq, mul:6, add:60)

8 +

9 SinOsc.ar(sinFreq, mul:3)

10).round.midicps),

11)

12 }).add ;

13)

15 x = Synth.new("pulseEvent", [\seqFreq , 4]) ;

16 x.set(\seqFreq , 5) ;

17 x.set(\sawFreq , 1/4) ;

18 x.set(\sinFreq , 1/2) ;

In this case, the envelope is provided by a signal in the form of a unipo-

lar square wave ([0, 1]), with a duty cycle of 10% (0.1). The signal “windows”

a signal generated by the UGen Formant, which in turn generates a complex

harmonic signal from a fundamental frequency, plus another set of frequencies

to be specified (on the model of the human voice). The frequency of the latter

is given by a complex control curve that results from the interaction of a saw-

tooth wave (an iterating ramp) and by a sine wave (that increases/decreases

it). Through round the curve, which is meant to represent pitches expressed

in MIDI notation, is “jagged” and converted into frequency. Note that the se-

quence of pitches depends on the interrelation among the three frequencies se-

qFreq, sawFreq, sinFreq, as shown by lines 16-18.

The next example (which the reader is invited to implement in anotherway)

exploits the UGen InRange. The latter returns a signal whose value depends on

the inclusion (or not) of the value of the input sample in the specified range

(here [0, 1]). If the value is inside the range, InRange returns the same value,
otherwise it returns 0. The method sign returns 1 if the signal is positive, 0 if
it is 0. Therefore, the output signal will consist of 1 or 0 if the input exceeds or
not the threshold of 0.35. A similar envelope signal creates “holes” in the audio

signal every time the value is 0, therefore transforming a continuous signal into
a set of events.

(
SynthDef.new("pulseEvent", {|seqFreq = 4, sawFreq = 0.125, sinFreq = 0.14|
	Out.ar(0,
		Pulse.kr(seqFreq, width:0.1, mul:0.5, add:0.5)
		*
		Formant.ar(fundfreq:(
			LFSaw.kr(sawFreq, mul:6, add:60)
			+
			SinOsc.ar(sinFreq, mul:3)
).round.midicps),
)
}).add ;
)

x = Synth.new("pulseEvent", [\seqFreq, 4]) ;
x.set(\seqFreq, 5) ;
x.set(\sawFreq, 1/4) ;
x.set(\sinFreq, 1/2) ;

code/scheduling/bySig.scd
code/scheduling/bySig.scd

Introduction to SuperCollider 213

1 (

2 SynthDef.new("pulseEventThresh", {

3 |seqFreq = 4,
 sawFreq = 0.125,
 sinFreq = 0.14|

4 Out.ar(0,

5 InRange.kr(LFNoise0.kr(15), 0, 1).sign

6 *

7 Formant.ar(fundfreq:(

8 LFSaw.kr(sawFreq, mul:6, add:60)

9 +

10 SinOsc.ar(sinFreq, mul:3)

11).round.midicps),

12)

13 }).add ;

14)

16 x = Synth.new("pulseEventThresh") ;

The following code shows what happens in 3 seconds.

1 {InRange.ar(LFNoise2.ar(15), 0, 1).sign}.plot(3)

If we evaluate the line 15 more times, it becomes clear that multiple synths

are created. While obvious, this is a general point in relation to scheduling:

parallelism (voices, layers, as the reader may want to refer to them) is handled

by SC simply creating (literally ’expanding’) more synths, the result of interac-

tively evaluating the code. For example, the following code uses a variant of

the previous SynthDef to instantiate 100 parallel synths:

(
SynthDef.new("pulseEventThresh", {
	|seqFreq = 4,
	sawFreq = 0.125,
	sinFreq = 0.14|
	Out.ar(0,
		InRange.kr(LFNoise0.kr(15), 0, 1).sign
		*
		Formant.ar(fundfreq:(
			LFSaw.kr(sawFreq, mul:6, add:60)
			+
			SinOsc.ar(sinFreq, mul:3)
).round.midicps),
)
}).add ;
)

x = Synth.new("pulseEventThresh") ;

code/scheduling/bySigThresh.scd
code/scheduling/bySigThresh.scd

{InRange.ar(LFNoise2.ar(15), 0, 1).sign}.plot(3)

code/scheduling/inrange.scd
code/scheduling/inrange.scd

214 Organized sound: scheduling

1 (

2 SynthDef.new("schedEnv", {

3 Out.ar(0,

4 Pan2.ar(// panner

5 InRange.ar(LFNoise2.ar(10), 0.35, 1).sign

6 *

7 Formant.ar(LFNoise0.kr(1, mul: 60, add: 30).midicps, mul:0.15),

8 LFNoise1.kr(3, mul:1)) // random panning

9)

10 }).send(s) ;

11)

13 (

14 100.do({

15 Synth.new("schedEnv") ;

16 })

17)

As shown, one (1) linguistic expression (100.do) results in 100 (one hun-

dred) synths. And they might be more, computational resources permitting.

From an audio perspective, as the multiplying factor jumps from 0 to 1 and

vice versa, there is a strong pulsing background noise (that remotely resembles

a sort of old vinyl).

The next example –even if very simple– is an example of procedural sound

design in SC.Usually, the sounddesigner for cinema and video (the gaming sce-

nario requires more innovative perspectives) works in non-real-time, by sound

editing in a DAW (Digital Audio Workstation). This type of work is strictly

related to “fixed media”, the output being a coded text/object (just think of a

film). But other productive situations require a different type of organization,

and impose other constraints: for example, an interactive installation asks for

audio generation on demand, that not only has to be controllable in real-time,

butmaybe also without a predefined duration. The following code is dedicated

to model a very typical sound, that even if certainly not very complex, played

a pivotal role in the soundscape of modernity: the phone signal, and in par-

ticular the Italian one. In the absence of an accesible technical specification of

its features (even though there must be details somewhere), we may proceed

empirically. Analyzing a recording of the sound, we observe that, first, the sig-

nal is a sine wave with a frequency of 422 Hz (between A and A♭, you can

check this by evaluating 68.midicps= 415.30469757995 and 69.midicps= 440.

(
SynthDef.new("schedEnv", {
	Out.ar(0,
	Pan2.ar(// panner
		InRange.ar(LFNoise2.ar(10), 0.35, 1).sign
		*
	 	Formant.ar(LFNoise0.kr(1, mul: 60, add: 30).midicps, mul:0.15),
	LFNoise1.kr(3, mul:1)) // random panning
)
 }).send(s) ;
)

(
100.do({
	Synth.new("schedEnv") ;
})
)

code/scheduling/bySig2.scd
code/scheduling/bySig2.scd

Introduction to SuperCollider 215

The Italian signal representing ’busy’ is the simplest sound imaginable: it is a

regular sequence of pulses and silences, regularly spaced with 200 ms. The se-
quencing can easily be obtained with an unipolar square wave that acts as a

“gate”: [0, 1]. Since each half cycle must be equal to 200 ms, then the period

will be 200 × 2 = 400 ms. The implementation simply uses the UGen LFPulse

enveloping a SinOsc (7). The case for the dial tone is a bit more complex tem-

porally. By analyzing the signal a more musical pattern emerges, one that has

been shaped by means of an envelope, also taking into account that the basic

time unit is 1. Empirically (by ear), the time segments do not look exactly pro-
portional. This has prompted some adjustments (see the durations 2.5 and 1.5)
(15): If we consider the factor timescale then the envelope takes 1.2 seconds
(i.e. env.sum * 1/5). The repeat period is instead 2 seconds (cycleDur), which
in turn determines the frequency of the trigger (1/cycleDur).

1 // Phone signal (Italian)

3 (

4 // busy: pulses at 200 msec intervals

5 {

6 var freq = 422, dur = 0.2;

7 LFPulse.kr(1/(dur*2))*SinOsc.ar(freq)

8 }.play ;

9)

11 (

12 // free

13 {

14 var freq = 422, cycleDur = 2 ;

15 var env = Env([0,1,1,0,0,1,1,0, 0], [0,1,0, 1, 0, 2.5, 0, 1.5]);

16 EnvGen.kr(env, 1,

17 gate: Impulse.kr(1/cycleDur),

18 timeScale:1/5, doneAction:0)

19 * SinOsc.ar(freq)

20 }.play

21)

Apart from the exercise of modeling per se, which helps to understand the

organization of sound materials, a possible application could be applied to an

interactive installation in which a certain condition determines if the phone is

free or busy.

// Phone signal (Italian)

(
// busy: pulses at 200 msec intervals
{
	var freq = 422, dur = 0.2;
	LFPulse.kr(1/(dur*2))*SinOsc.ar(freq)
}.play ;
)

(
// free
{
	var freq = 422, cycleDur = 2 ;
	var env = Env([0,1,1,0,0,1,1,0, 0], [0,1,0, 1, 0, 2.5, 0, 1.5]);
	EnvGen.kr(env, 1,
		gate: Impulse.kr(1/cycleDur),
		timeScale:1/5, doneAction:0)
	* SinOsc.ar(freq)
}.play
)

code/scheduling/telefono.scd
code/scheduling/telefono.scd

216 Organized sound: scheduling

The UGen Select.kr (which, arrays) implements on the server side a

typical function of sequencing: using control rate (kr), each time a new value is

calculated a new element which is selected from the array array.

1 (

2 SynthDef(\select , {

3 var array ;

4 array = Array.fill(64, {|i| (i%4) + (i%7) + (i%11) + 60}) ;

5 array = array.add(90).postln.midicps;

6 Out.ar(0,

7 Saw.ar(

8 Select.kr(

9 LFSaw.kr(1/6).linlin(-1.0,1.0, 0, array.size),

10 array

11),

12 0.2

13));

14 }).add;

15)

17 Synth(\select) ;

The previous code has two relevant aspects. First, array is built using a

variable (operator) modulo for the counter i. The result is the sequence of

pitches in Figure 7.1. The last element (90) has been added to provide a clear

acoustic index for the end of the cycle.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

50

54

58

62

66

70

74

78

82

86

90

Figure 7.1 Sequence built with multiple applications of the modulo operator.

(
SynthDef(\select, {
	var array ;
	array = Array.fill(64, {|i| (i%4) + (i%7) + (i%11) + 60}) ;
	array = array.add(90).postln.midicps;
	Out.ar(0,
		Saw.ar(
			Select.kr(
				LFSaw.kr(1/6).linlin(-1.0,1.0, 0, array.size),
				array
),
			0.2
));
}).add;
)

Synth(\select) ;

code/scheduling/select.scd
code/scheduling/select.scd

Introduction to SuperCollider 217

Select controls the frequency of Saw. In output, it cycles on array in relation

to a signal providing it with indexes. In this case the signal is LFSaw, which is a

ramp (a signal which increases linearly between a minimum and a maximum,

and then is reset to zero): LFSaw is scaled by means of the operator linlin so

as to cycle through all the indices of the array (0, array.size). Its periodicity

indicates by how much the ramp is increasing, in this case, 6 seconds. The

frequency is in fact 1
6 , expressed in order to make it immediately apparent that

the period is𝑇 = 62. It is interesting to note that the use of ramp signals is typical
in analog synths3, where scheduling is often managed through appropriately

generated, continuous signals.

7.2 Server side, 2: Demand UGen

A UGen such as Sequencer introduces in the generation of an audio signal (in

a SynthDef) aspects of control typically associated to a higher level. In this di-

rection, SC implements a very unique approach to scheduling by means of the

so-calledDemandUGens, where the term refers, aswewill discuss, to “demand

rate”. The UGen Demand.ar(trig, reset, [..ugens..]) operates in relation

to a trigger (trig). Whenever a trigger signal is received4, the UGen requires a

value from each of the other UGens in the array [..ugens ..]. These UGens

must be a certain type, in this case Demand, as they generate a value (and only

one) on request. In the following example, the trigger signal to Demand is gener-

ated by the UGen Impulse. Each of the generated pulses provides a transition

between a minimum (0) and maximum (here 1), which act as a trigger. There
is no point in discussing the synthesis process (line 7), except to note that the

frequency of Pulse is handled by freq. Line 6 assigns a value to freq via the

UGen Demand. Whenever a trigger is received, Demand asks for the next value

in the demand array a. The latter is filled with a Dseq UGen (line 4): it gener-

ates a sequence of values as specified in the list provided as its first argument

2 Another UGen that allows to generate discrete events in a similar way is Step-

per.
3 The most common implementation is called a “phasor”: see the UGen with the

same name in SC and the next chapter.
4 Remember that a triggering event occurs whenever a signal moves from 0 a

positive value.

218 Organized sound: scheduling

([1,3,2,7,8]), and repeated –in this case– 3 times. By listening to the result,
it is clear that the sequence a is made up by the repeating 3 times a segment:
when the segment is completed, Demand returns the last value in the sequence.

By the way, at the synthesis level it is interesting to notice how the audio signal

implements a kind of chorus effect. It is the sum of 10 square waves oscillat-
ing in their frequency with a random variation in the range [0, 5] Hz: a kind of
variable pitch (but not enough to introduce dissonance) typical of many instru-

ments playing together.

1 (

2 {

3 var a, freq, trig;

4 a = Dseq([1, 3, 2, 7, 8]+60, 3);

5 trig = Impulse.kr(4);

6 freq = Demand.kr(trig, 0, a.midicps);

7 Mix.fill(10, { Pulse.ar(freq+5.rand)}) * 0.1

9 }.play;

10)

Thus, Demand UGens are essentially generators of values on request, and

differ from each other for the sequences of values that they can produce. These

sequences are encoded in an interesting form: they are described in the form

of a “pattern”. In fact, the sequence is not described per se, but by defining a

production rule. In the previous example the generated sequence would be:

1 [61, 63, 62, 67, 68 , 61, 63, 62, 67, 68, 61, 63, 62, 67, 68]

A pattern is therefore a form that is described by a procedure. For example,

Dseq generates sequences of values by iterating 𝑛 times an array, where 𝑛 can

be infinite, a value that SC represents through the reservedword inf. UGens as

Drand describe a different pattern. Drand expects two arguments: the first is an

array of values, the second (repeats) a number that represents the number of

values picked up randomly from the provided array. In the example, the array

is the same as in the previous case, and freq is a sequence with the length inf of

(
{
	var a, freq, trig;
	a = Dseq([1, 3, 2, 7, 8]+60, 3);
	trig = Impulse.kr(4);
	freq = Demand.kr(trig, 0, a.midicps);
	Mix.fill(10, { Pulse.ar(freq+5.rand)}) * 0.1

}.play;
)

code/scheduling/demand1.scd
code/scheduling/demand1.scd

[61, 63, 62, 67, 68 , 61, 63, 62, 67, 68, 61, 63, 62, 67, 68]

code/scheduling/post/seqPattern.scd
code/scheduling/post/seqPattern.scd

Introduction to SuperCollider 219

values taken pseudo-causally from the same array a. In addition, the triggering

frequency has been increased from 4 to 10.

1 (

2 {

3 var a, freq, trig;

4 a = Drand([1, 3, 2, 7, 8]+60, inf);

5 trig = Impulse.kr(10);

6 freq = Demand.kr(trig, 0, a.midicps);

7 Mix.fill(10, { Pulse.ar(freq+5.rand)}) * 0.1

9 }.play;

10)

The result is a kind of improvisation on a finite set of pitches (a mode, one

could say). The expressive power of Demand type UGen lies in recursive nest-

ing. The following example is quite similar to the first case discussed here,

except that one of the elements of the array on which it operates Dseq uses a

Dxrand.

1 (

2 x = {|trigFr = 1|

3 var freq, trig, reset, seq;

4 trig = Impulse.kr(trigFr);

5 seq = Dseq(

6 [42, 45, 49, 50,

7 Dxrand([78, 81, 85, 86], LFNoise0.kr(4).unipolar*4)

8], inf).midicps;

9 freq = Demand.kr(trig, 0, seq);

10 Pulse.ar(freq + [0,0.7] + LFPulse.kr(trigFr, 0, 0.1,freq*2))* 0.5;

11 }.play;

12)

14 x.set(\trigFr , 10) ;

In this case seq is a sequence that repeats infinite number of times (inf)

a pattern consisting of the numbers 42, 45, 49, 50, and a fifth item defined by

Dxrand: a cousin of Drand, this UGen randomly chooses a value from the pro-

vided array ([78, 81, 85, 86]), but ensures that the output sequence does not

(
{
	var a, freq, trig;
	a = Drand([1, 3, 2, 7, 8]+60, inf);
	trig = Impulse.kr(10);
	freq = Demand.kr(trig, 0, a.midicps);
	Mix.fill(10, { Pulse.ar(freq+5.rand)}) * 0.1

}.play;
)

code/scheduling/demand2.scd
code/scheduling/demand2.scd

(
x = {|trigFr = 1|
	var freq, trig, reset, seq;
	trig = Impulse.kr(trigFr);
	seq = Dseq(
		[42, 45, 49, 50,
		Dxrand([78, 81, 85, 86], LFNoise0.kr(4).unipolar*4)
], inf).midicps;
	freq = Demand.kr(trig, 0, seq);
	Pulse.ar(freq + [0,0.7] + LFPulse.kr(trigFr, 0, 0.1,freq*2))* 0.5;
}.play;
)

x.set(\trigFr, 10) ;

code/scheduling/demand3.scd
code/scheduling/demand3.scd

220 Organized sound: scheduling

include adjacent repetitions of the same element. When Demand reaches the ele-

ment of the array Dseq consisting of Dxrand, its encodedprocedure is performed,

generating a number of elements equal to repeats. The size of the output se-

quence (i.e. the value of repeats) is controlled by LFNoise0: in essence, it varies

pseudo-randomly in the range [0, 4]. If the minimum is chosen, the contribu-

tion of Dxrand is zero, if the maximum is picked up, then the sequence consists

of all four values, in pseudo-random order but with no adjacent repeats. From

the point of view of audio, the presence of the array [0,0.7] in the argument

freq results in multichannel expansion: the right channel will be “detuned” by

0.7 Hz. In addition, LFPulse produces a kind of grace note an octave above

the initial tone, which is coupled with the triggering of the demanded event

through trigFr.

1 (

2 SynthDef("randMelody",

3 { arg base = 40, trigFreq = 10;

4 var freq, trig, reset, seq;

5 var structure = base+[0, 2, 3, 5, 6, 8] ;

6 trig = Impulse.kr(trigFreq);

7 seq = Dseq(

8 structure.add(

9 Dxrand(structure+12, LFNoise0.kr(6).unipolar*6))

10 , inf).midicps;

11 freq = Demand.kr(trig, 0, seq);

12 Out.ar(0,

13 Mix.fill(5, {Saw.ar(freq +0.1.rand + [0,0.7])* 0.1}));

14 }).add;

15)

17 x = Synth.new("randMelody") ;

18 x.free ;

20 (

21 15.do({ arg i ;

22 Synth.new("randMelody",

23 [\base , 20+(i*[3, 5, 7].choose), \trigFreq , 7+(i/10)])

24 })

25)

In the previous example a SynthDef (constructed in a similar manner to

previous examples) provides as arguments base and trigFreq: the first is the

(
SynthDef("randMelody",
	{ arg base = 40, trigFreq = 10;
	var freq, trig, reset, seq;
	var structure = base+[0, 2, 3, 5, 6, 8] ;
	trig = Impulse.kr(trigFreq);
	seq = Dseq(
		structure.add(
		Dxrand(structure+12, LFNoise0.kr(6).unipolar*6))
		, inf).midicps;
	freq = Demand.kr(trig, 0, seq);
	Out.ar(0,
		Mix.fill(5, {Saw.ar(freq +0.1.rand + [0,0.7])* 0.1}));
}).add;
)

x = Synth.new("randMelody") ;
x.free ;

(
15.do({ arg i ;
	Synth.new("randMelody",
		[\base, 20+(i*[3, 5, 7].choose), \trigFreq, 7+(i/10)])
})
)

code/scheduling/demand4.scd
code/scheduling/demand4.scd

Introduction to SuperCollider 221

base frequency in MIDI notation, the second the triggering frequency. Here

Dxrand adds to the sequence of pitches the same sequence but shifted an octave

up, with the already discussed mechanism of random selection of pitches and

length (9). In relation to audio synthesis, it is a simple variation of the previ-

ous example(13), as can be heard by instantiating a synth (17). The next cycle

overlaps 15 voices: in each voice, the base frequency is increased by i multi-

plied by a value chosen from [3, 5, 7] (musical intervals of: a minor third,

fourth and fifth). In addition, at each iteration (for each synth) the triggering

frequency (7) increases by an amount equal to i/10. In this way a progressive

dephasing is obtained: timings of the layers are slightly different, and the initial

synchronization gradually disappears.

The idea at the basis of Demand UGen is to provide the ability to include

within a SynthDef aspects typically associated with a higher level of control.

A SynthDef becomes a sequencer for all purposes. Moreover, the possibility of

nesting UGens is extremely powerful. But it maybe argued that it is concep-

tually straightforward to separate two aspects, which typically work at differ-

ent rates: synthesis (audio rate) and scheduling (event rate). Not surprisingly,

Demand UGens are closely related to the so-called “Patterns”, language-side,

high level, data structures for composition. In fact, Demand UGens are a sort

of server-side counterpart of Patterns, which will be discussed later.

7.3 Language-side: Clocks and routines

The most usual (and perhaps more conceptually straightforward) way to per-

form the scheduling of events is tomanage it from the language side. In order to

define the execution of events in time, SC provides the abstract class Clock from

which three classes inherit, SystemClock, TempoClock and AppClock. Therefore,

an event can be scheduled as follows:

1 (

2 "waiting for 3 seconds".postln ;

3 SystemClock.sched(3.0, { "done".postln });

4)

(
"waiting for 3 seconds".postln ;
SystemClock.sched(3.0, { "done".postln });
)

code/scheduling/clock.scd
code/scheduling/clock.scd

222 Organized sound: scheduling

Themethod sched available for the class SystemClock requires as two argu-

ments, a time interval and a function that will be evaluated after it. By evaluat-

ing the code, we get:

1 waiting for 3 seconds

2 SystemClock

3 done

The interpreter immediately executes line 2 (and prints on the post win-

dow), then moves to the next line and evaluates it, completing the interpre-

tation process: it can be seen that SystemClock is immediately printed on the

screen, that is, the object that is returned by the last espression. The scheduling

is started, after 3 seconds the function is evaluated, and “done” is printed on

the post window. The three types of clock differ in priorities and versatility.

SystemClock is the clock with the highest priority and implements a concept

of absolute (not musical) time, like a chronograph. TempoClock has a working

mode similar to SystemClock but additionally it enables the user to manage a

concept of musical time/tempo. TempoClock assumes that the default time-unit

of 1 beat lasts 1 seconds (tempo = 60 bpm). In this way, time as calculated

with reference to tempo coincides with absolute (chronographic) time. But the

tempo property of TempoClock can be changed at will, according to a desired

music tempo. In the following example, three clocks are in action, a System-

Clock and two instances of TempoClockwith different tempos. Note that tempo

is not specified in beats per minute (bpm), rather as beats per second: So, 240
bpm equivalent to 240/60 “bps”. Lines 7-9manage the scheduling, and by eval-
uating them it becomes evident that the time value of 4.0 depends on, is relative
to, the defined tempo.

waiting for 3 seconds
SystemClock
done

code/scheduling/post/clockPost.scd
code/scheduling/post/clockPost.scd

Introduction to SuperCollider 223

1 (

2 "go".postln ;

3 // two TempoClocks: t, u

4 t = TempoClock(240/60) ;

5 u = TempoClock(120/60) ;

6 // scheduling

7 d = thisThread.seconds;

8 SystemClock.sched(4.0, { "done with chronometer".postln; });

9 t.sched(4.0, { "done with bmp 240".postln });

10 u.sched(4.0, { "done with bpm 120".postln });

11)

Finally, AppClock is a clock with low priority to be used for scheduling

GUI-related events. In SC, GUIs (must) have a lower priority than audio. This

means that the calculation of audio has always priority over GUIs, which are

updated only if computational resources are available. GUI elements should

therefore be scheduled via AppClock.

The use of the subclasses of Clock is at the basis of scheduling in SC, but typ-

ically not directly: rather, other data structures are available to control schedul-

ing in relation to a clock. The fundamental control structure for scheduling in

SC is the “routine”. By themselves, routines are data structures that extend the

modus operandi of functions, and their use is not limited to scheduling: that is,

scheduling is only one of the possible applications of routines, although they

are often used in this role. The following example shows a minimal routine.

As shown, the routine receives as an argument a function. The only unknown

message in the code is wait, received by 2, which is a floating-point number.

Intuitively, wait concerns time management, i.e. scheduling. The routine r de-

fines a program to be executed. In the program, a message wait received by

a number indicates a waiting time (equal to the receiver of the message) that

pauses the execution before the next expression. There are three expressions

(4-6): two are print requests, the third (between them) is the call to wait.

(
"go".postln ;
// two TempoClocks: t, u
t = TempoClock(240/60) ;
u = TempoClock(120/60) ;
// scheduling
d = thisThread.seconds;
SystemClock.sched(4.0, { "done with chronometer".postln; });
t.sched(4.0, { "done with bmp 240".postln });
u.sched(4.0, { "done with bpm 120".postln });
)

code/scheduling/tempoClock.scd
code/scheduling/tempoClock.scd

224 Organized sound: scheduling

1 (

2 // Minimal routine

3 r = Routine.new({

4 "waiting 2 seconds".postln ;

5 2.wait;

6 "done".postln ;

7 }) ;

8)

10 SystemClock.play(r) ;

The management of the function over time is controlled by a clock, here

SystemClock: the clock is asked to schedule (play) the routine (r, 10). The clock

interprets the objects receiving the message wait as an amount of time in which

to suspend the execution of the sequence of expressions contained in the func-

tion body. When the execution is resumed, the expressions are evaluated as

quickly as possible (i.e., at a rate determined by CPU cycles, which should be

immediately).

One could argue that the example is not qualitatively very different from

the previous one in which the method sched of SystemClock was in use. But

there is a radical difference: by means of a routine, it becomes possible to im-

plement a complex sequence of expressions, dynamically related to time. In the

next example, the function contains a loop that for 10 times prints out "slowing
down", each time assigning a time value of i * 0.1, that is, it determines the

scheduling procedurally by referring to the counter i. The routine r waits for

an amount time that is progressively increasing. Once the cycle is endend, r

waits for 1 second, writes "the", waits for another second, and writes "end".

(
// Minimal routine
r = Routine.new({
	"waiting 2 seconds".postln ;
	2.wait;
	"done".postln ;
}) ;
)

SystemClock.play(r) ;

code/scheduling/routine1.scd
code/scheduling/routine1.scd

Introduction to SuperCollider 225

1 (

2 // Some more expressions

3 r = Routine.new(

4 { var time ;

5 10.do ({ arg i ;

6 "slowing down".postln ;

7 time = (i*0.1).postln ;

8 time.wait ;

9 }) ;

10 1.wait ;

11 "the".postln ;

12 1.wait ;

13 "end".postln ;

14 }

15) ;

16)

18 SystemClock.play(r) ;

19 r.reset ;

20 SystemClock.play(r) ;

Note that the routine “remembers” its internal state: if SystemClock.play(r)

(18) is evaluated again, the post window shows SystemClock. The clock is re-

turned because the routine has been completed. To reset the routine’s internal

state to its initial condition is necessary to send r the message reset (19). At

this point, the routine can be run again (20).

As usual, the SC language allows us towrite evenmore concise expressions,

by relying on the so-called “polymorphism”, i.e. the fact that certain methods

have the same name but different semantics on different objects. Let us consider

the following example.

(
// Some more expressions
r = Routine.new(
 { 	var time ;
	10.do ({ arg i ;
		"slowing down".postln ;
		time = (i*0.1).postln ;
		time.wait ;
	}) ;
	1.wait ;
	"the".postln ;
	1.wait ;
	"end".postln ;
 }
) ;
)

SystemClock.play(r) ;
r.reset ;
SystemClock.play(r) ;

code/scheduling/minimal.scd
code/scheduling/minimal.scd

226 Organized sound: scheduling

1 (

2 // polymorphism, 1

3 r = Routine({

4 10.do{|i| i.postln; 1.wait}

5 })

6)

7 r.play ;

9 // polymorphism, 2

10 { 10.do{|i| i.postln; 1.wait} }.fork ;

Upon defining the routine r (3-5), it can be executed by directly calling the

method play on the routine itseld. The method play is responsible for instanti-

ating a clock (the default one, that is, TempoClock) that in turn will schedule the

process. Yet, the method fork is defined directly on a function. The function

(10) is thenwrapped into a routine and the latter is executed on the default clock

(with respect to functions, the user may be reminded of the “behind the scenes”

processes activated by the interpreter in the case of the method play). As a side

remark, it is useful to mention an interactive control element: a routine may be

stopped by selecting stop from the menu Language (i.e. also with the usual key

combination available to stop audio synthesis).

From these simple examples it should be clear that routines constitute the

basis for the management of temporal processes, that can be of any complexity.

Put simply, when the user wants to execute expressions according to a certain

temporal organisation, it is enought to envelope them in a routine and provide

the opportune wait expressions. In its simplest form, such a sequence of expres-

sions can be thought of as a list to be performed in sequence, and exactly the

same process as in aMIDI file or in a textual Csound “score” file. But obviously

the most interesting aspect lies in the use of control structures in the function,

together with the possibility of interacting with running processes by means of

variables.

7.4 Clocks

The next example discusses generating aGUI that works as a simple stopwatch,

and allows to introduce some more elements in the discussion about schedul-

(
// polymorphism, 1
r = Routine({
	10.do{|i| i.postln; 1.wait}
})
)
r.play ;

// polymorphism, 2
{ 10.do{|i| i.postln; 1.wait} }.fork ;

code/scheduling/routine2.scd
code/scheduling/routine2.scd

Introduction to SuperCollider 227

ing. By running the code, a small window pops up that displays the progress

of time starting from 0: The clock starts and is stopped respectively when the
window opens and closes.

1 (

2 var w, x = 10, y = 120, title = "Tempus fugit" ; // GUI var

3 var clockField ;

4 var r, startTime = thisThread.seconds ; // scheduling

6 w = Window.new(title, Rect(x, y, 200, 60)) ;

7 clockField = StaticText.new(w, Rect(5,5, 190, 30))

8 .align_(\center)

9 .stringColor_(Color(1.0, 0.0, 0.0))

10 .background_(Color(0,0,0))

11 .font_(Font(Font.defaultMonoFace, 24));

12 r = Routine.new({

13 loop({

14 clockField.string_((thisThread.seconds-startTime)

15 .asInteger.asTimeString) ;

16 1.wait }) // the clock is updated each sec

17 }).play(AppClock) ;

18 w.front ;

19 w.onClose_({ r.stop }) ;

20)

The first few lines declare the variables to be used. Basically the code pro-

vides two types of elements: GUI elements (lines 2, 3) and elements that handle

timeupdating. In particular, line 4 assigns startTime the value of thisThread.sec-

onds: thisThread is a peculiar object, a pseudo-environmental variable that con-

tains an instance of the class Thread, which keeps track of how much time has

passed since the beginning of the session of the interpreter. If you evaluate

the expression thisThread.seconds a couple of times you will notice how the

returned values increase accordingly (matching the seconds passed since the

interpreter has started). Therefore, startTime contains a value that represents

the time inwhich the code is evaluated (themoment 0 for the stopwatch). There
is no point in dwelling in detail on the construction of the graphic elements, as

it does not have anything special. Note only the style of programming in the

GUI that makes use of message chaining (lines 8-11) to set the different graph-

ical properties. Note also that the font is defined by a specific object Font and

takes as the font name the string returned by Font.defaultMonoFace, that is, the

(
var w, x = 10, y = 120, title = "Tempus fugit" ; // GUI var
var clockField ;
var r, startTime = thisThread.seconds ; // scheduling

w = Window.new(title, Rect(x, y, 200, 60)) ;
clockField = StaticText.new(w, Rect(5,5, 190, 30))
	.align_(\center)
	.stringColor_(Color(1.0, 0.0, 0.0))
	.background_(Color(0,0,0))
	.font_(Font(Font.defaultMonoFace, 24));
r = Routine.new({
	loop({
		clockField.string_((thisThread.seconds-startTime)
			.asInteger.asTimeString) ;
		1.wait }) // the clock is updated each sec
	}).play(AppClock) ;
w.front ;
w.onClose_({ r.stop }) ;
)

code/scheduling/chrono.scd
code/scheduling/chrono.scd

228 Organized sound: scheduling

default monospaced font (“mono”) in the operating system. Lines 12-17 define

instead a routine that calculates the new value to be displayed by the stopwatch

and updates the relative GUI element every second. The function in the rou-

tine contains an infinite loop. The infinite loop is defined by the value loop, that

is synonymous with inf.do. The cycle executes two expressions: the first one

updates the time display by setting the string of clockField (lines 13-14); the

second one requires the process to wait for a second before repeating the cycle

(1.wait, line 16). The new value for the time display is computed in three steps.

First the interpreter is asked to return the amount of time since it has started,

thanks to thisThread.seconds: this value is subtracted from the starting time

at initizalization phase, stored in startTime to retrieve the amount of time that

has passed by. The result is converted into integers (as seconds are the intended

resolution): therefore, we now have the number of seconds since the stopwatch

existed. Finally, the method asTimeString, defined for the class SimpleNumber,

returns a string in the form “hours: minutes: seconds”. For example:

1 20345.asTimeString

2 05:39:05:000

The method play receives as an argument an object of type Clock but it

is not SystemClock: in fact, the latter can not be used in the event of a GUI.

AppClock must be used in its place. Finally, line 19 defines the property of the

window w: onClose takes as its argument a function that is executed when w is

closed. Here the function contains r.stop: the routine r is stopped when the

window closes.

The following code is a variant of the definition of routine r, demonstrat-

ing the last considerations. As we said, the use of AppClock is required be-

cause of computing priorities: in the case of scheduling, audio messages to the

server have priority over other features, including GUI. This would not allow

us to manage from the same routine the control of a synth and a GUI element.

However, such an operation is possible using the method defer available for

functions. In essence, the routine expressions concerning the GUI are collected

within a function to which the message defer is sent: in this way, their evalu-

ation is deferred when computational resources are available (i.e. without af-

fecting the computation of audio). In the example, GUI updating is enclosed

in a function that is sent a defer message (Line 3-6): it is then possible to use

SystemClock (8) to schedule the routine.

20345.asTimeString
05:39:05:000

code/scheduling/post/timeStringPost.scd
code/scheduling/post/timeStringPost.scd

Introduction to SuperCollider 229

1 r = Routine.new({

2 loop({

3 {

4 clockField.string_((thisThread.seconds-startTime)

5 .asInteger.asTimeString.postln) ;

6 }.defer ; // GUI elements must be "deferred"

7 1.wait })

8 }).play(SystemClock) ;

7.5 Synthesizers vs. events

Quite evidently, the previous approach can be extended to audio. Except for

the problem of priorities in the management of the scheduling discussed ear-

lier there is nothing specifically related to graphical interfaces. The following

SynthDef generates a signal made up from the sum of 5 sawtooth waves whose

frequencies are related harmonically. In addition, there is a “detune” compo-

nent controlled by a sine wave which frequency depends on each harmonic

component (through the counter i). The signal is enveloped by a ramp (6) that

increases from 0 to 1 with a ratio of 9
10 of its development, and decreases down

to 0 for the last 1
10 . An important point to notice concerns the trigger: in this

case, it is not generated by a UGen, rather it is passed from outside, by means

of the argument t_trig. Once the trigger has value> 0, in order to shoot again,
it should be reset (by sending another message) to a value of≤ 0, which is quite
inconvenient. But if the name of the argument indicating a trigger begins with

t_, then by convention it is enough to send a single message to activate the

trigger again, without forcing the reset.

r = Routine.new({
	loop({
		{
			clockField.string_((thisThread.seconds-startTime)
				.asInteger.asTimeString.postln) ;
		}.defer ; // GUI elements must be "deferred"
		1.wait })
}).play(SystemClock) ;

code/scheduling/chrono2.scd
code/scheduling/chrono2.scd

230 Organized sound: scheduling

1 (

2 SynthDef(\saw , { arg freq = 440, detune = 0.1, dur = 0.1, t_trig = 1;

3 Out.ar(0,

4 Pan2.ar(

5 Mix.fill(5, {|i|

6 EnvGen.kr(Env([0,1,0], [dur*0.9,dur*0.1]), t_trig)

7 *

8 Saw.ar(

9 freq:freq*(i+1)+

10 (SinOsc.kr((i+1)*0.2, 0, detune, detune*2)),

11 mul:1/5)})

12))

13 }).add

14)

16 (

17 x = Synth(\saw) ;

18 ~mul = 1 ;

19 ~base = 60 ;

20 Routine.new({

21 var dur ;

22 inf.do {|i|

23 dur = [1,2,3,4,2,2].choose*~mul ;

24 x.set(

25 \t _trig, 1,

26 \freq , ([0,2,3,4,5,7, 9,10,12].choose+~base).midicps,

27 \detune , rrand(1.0, 3.0),

28 \dur , dur*0.95

29) ;

30 dur.wait ;

31 };

32 }

33).play(SystemClock)

34)

35 // controlling interactively the routine

36 ~mul = 1/16; ~base = 72 ;

37 ~mul = 1/32; ~base = 48 ;

Once the synth x is built, the scheduling is run through an infinite routine

(inf.do, 20). At each iteration, the routine sets (x.set, 22) the values for the

synth’s arguments. The routine regularly exploits pseudo-random values: for

example, it chooses among a set of durations (21) and pitches (24) and it sets the

detune in the range [1.0, 3.0] (25). Two environment variables are used in the

(
SynthDef(\saw, { arg freq = 440, detune = 0.1, dur = 0.1, t_trig = 1;
	Out.ar(0,
		Pan2.ar(
			Mix.fill(5, {|i|
				EnvGen.kr(Env([0,1,0], [dur*0.9,dur*0.1]), t_trig)
				*
				Saw.ar(
					freq:freq*(i+1)+
					(SinOsc.kr((i+1)*0.2, 0, detune, detune*2)),
					mul:1/5)})
))
}).add
)

(
x = Synth(\saw) ;
~mul = 1 ;
~base = 60 ;
Routine.new({
	var dur ;
	inf.do {|i|
		dur = [1,2,3,4,2,2].choose*~mul ;
		x.set(
			\t_trig, 1,
			\freq, ([0,2,3,4,5,7, 9,10,12].choose+~base).midicps,
			\detune, rrand(1.0, 3.0),
			\dur, dur*0.95
) ;
		dur.wait ;
	};
	}
).play(SystemClock)
)
// controlling interactively the routine
~mul = 1/16; ~base = 72 ;
~mul = 1/32; ~base = 48 ;

code/scheduling/sched1.scd
code/scheduling/sched1.scd

Introduction to SuperCollider 231

routine to handle the speed of events and the base pitch, respectively ~mul and

~base. In this way, it becomes possible to manage the scheduling interactively

(e.g. by evaluating lines 34 and 35).

In the above example the basic idea is to build a synthesizer (a tool) and

control it through a routine. The following SynthDef allows us to introduce

a second, different approach. It provides a simple sine wave to which some

vibrato and an amplitude envelope are added. The parameters of both can be

controlled from the outside: a, b, c represent the envelope points, vibrato

and vibratoFreq, two parameters for the vibrato.

1 (

2 SynthDef("sineMe1",{ arg out = 0, freq = 440, dur = 1.0, mul = 0.5, pan = 0,

3 a, b, c,

4 vibrato, vibratoFreq;

6 var env;

7 env = Env.new([0,a,b,c,0], [dur*0.05,dur*0.3,dur*0.15,dur*0.5], ’welch’);

8 Out.ar(out,

9 Pan2.ar(

10 SinOsc.ar(

11 freq: freq+SinOsc.kr(mul:vibrato, freq: vibratoFreq),

12 mul:mul

13) * EnvGen.kr(env, doneAction:2)

14), pan)

15 }).add;

16)

The amplitude envelope is used by a UGen EnvGen, its argument doneAc-

tion receives the value = 2. This means that, once the envelope is finished, the
synth is deallocated from the server. This implies that the synth no longer ex-

ists: thus, the synth acts not so much as an instrument, rather as an event. Let

us observe what happens in the routine:

(
SynthDef("sineMe1",{ arg out = 0, freq = 440, dur = 1.0, mul = 0.5, pan = 0,
	a, b, c,
	vibrato, vibratoFreq;

	var env;
	env = Env.new([0,a,b,c,0], [dur*0.05,dur*0.3,dur*0.15,dur*0.5], 'welch');
	Out.ar(out,
		Pan2.ar(
			SinOsc.ar(
				freq: freq+SinOsc.kr(mul:vibrato, freq: vibratoFreq),
				mul:mul
) * EnvGen.kr(env, doneAction:2)
), pan)
}).add;
)

code/scheduling/microInstallationDef.scd
code/scheduling/microInstallationDef.scd

232 Organized sound: scheduling

1 (

2 var r = Routine.new({

3 inf.do({ arg i ;

4 var env, dur = 0.5, freq, end, mul, pan, vibrato, vibratoFreq ;

5 a = 1.0.rand ;

6 b = 0.7.rand ;

7 c = 0.5.rand ;

8 pan = 2.0.rand-1 ;

9 // 13 pitches on a non-octavizing modal fragment

10 freq = ([0,2,3,5,6,8,10,12,13,15,16,18].choose+70).midicps ;

11 dur = rrand(0.015, 0.5) ;

12 mul = rrand(0.05, 0.8) ;

13 vibrato = (dur-0.015)*100 ;

14 vibratoFreq = dur*10 ;

15 Synth.new(\sineMe1 , [

16 \vibrato , vibrato,

17 \vibratoFreq , vibratoFreq,

18 \a , a,

19 \b , b,

20 \c , c,

21 \freq , freq,

22 \dur , dur,

23 \mul , mul,

24 \env , env]

25) ;

26 end = 0.15.rand;

27 (dur+end).wait;

28 });

29 });

31 SystemClock.play(r);

32)

At each iteration in the cycle, a synthesizer is created: it is deallocated

when the envelope is concluded. In this second example, the object synth is not

treated as an instrument, that is, as a persistent device (a trumpet, a bass, a vi-

olin) to be controlled in time. Rather, here the synth properly becomes a sound

event, the equivalent of a musical note. The method doneAction: 2 shows (in

this case) how it ismost typically used. So, this is an example of a simple genera-

tive procedure that can last for an indefinite time, e.g. in the context of a perma-

nent installation. Again, the SynthDef makes extensive use of pseudo-random

values, that are responsible for the typical “whistled” quality of the sine wave.

(
var r = Routine.new({
	inf.do({ arg i ;
		var env, dur = 0.5, freq, end, mul, pan, vibrato, vibratoFreq ;
		a = 1.0.rand ;
		b = 0.7.rand ;
		c = 0.5.rand ;
		pan = 2.0.rand-1 ;
		// 13 pitches on a non-octavizing modal fragment
		freq = ([0,2,3,5,6,8,10,12,13,15,16,18].choose+70).midicps ;
		dur = rrand(0.015, 0.5) ;
		mul = rrand(0.05, 0.8) ;
		vibrato = (dur-0.015)*100 ;
		vibratoFreq = dur*10 ;
		Synth.new(\sineMe1, [
			\vibrato, vibrato,
			\vibratoFreq, vibratoFreq,
			\a, a,
			\b, b,
			\c, c,
			\freq, freq,
			\dur, dur,
			\mul, mul,
			\env, env]
) ;
		end = 0.15.rand;
		(dur+end).wait;
	});
});

SystemClock.play(r);
)

code/scheduling/microInstallation.scd
code/scheduling/microInstallation.scd

Introduction to SuperCollider 233

The only important aspect is frequency control (line 10). The array defines a se-

quence of pitches resulting in a non-octaving mode of 13 pitches, stochastically
selecting one of them, and then adding to it a value of 70 (base pitch).

The next example again takes into account the issue of signals from the tech-

nological soundscape, as we did before with the phone. The exact time signal

emitted by the Italian National Broadcast Corporation, Radio RAI, is a signal

of “synchronization and dissemination” which is called “Segnale orario RAI

Codificato (SRC)” (“Hourly coded RAI signal”) and generated by the National

Institute of Metrological Research (INRIM). As indicated by the Institute:

“The hourly time signal generated by the Institute and diffused by

RAI (SRC) consists of a date code divided into two information seg-

ments, generated in correspondence with the seconds 52 and 53, and
six acoustic pulses synchronized with the seconds 54, 55, 56, 57, 58, and
00. The six acoustic pulses are each formed by 100 sinusoidal cycles of a
1000 Hz note. The duration of each pulse is 100 milliseconds5.”

Figure 7.2 is the official encoding scheme for SRC provided by INRIM. The

signal is formed by two blocks of binary data encoded with segments of 30 ms
duration, in which a 2000 Hz sine wave represents 0, and a 2500 Hz sine wave
represents 1. At 52 seconds, a first block of 32 bits (total: 32 × 30 = 960 ms) is
emitted. It is followed at 53 seconds by a second block of 16 bits (total: 16×30 =
480ms). Then 5 sinusoids are emitted, each of 100ms (seconds 54−58); second
59 is silent; finally, there is a last emission at second 60. As discussed, the 48 bits
represent a set of time information, and the irregular alternation between the

two frequencies of 2 and 2.5 kHz is responsible for the typical opening sound
chirp.

The following example reproduces the SRC signal in SuperCollider. Lines

5 and 6 generate two random sequences of 32 and 16 bit. It would obviously

be possible to generate the correct sequences, and in this way the subsequent

implementation would not change. The two cycles (9-13 and 16-20) generate

the two blocks of 960 and 480 ms. Here we chose to use synths as events. The
generation of a sequence of 1000Hz pulses follows (22). To differentiate the ap-
proaches, the first block of 5 pulses is obtained by enveloping a sine wave with

a signal of type LFPulse, suitably parameterized. The last impulse is instead a

synth-event of 100ms. In all cases, the UGen Line is used essentially as a timed

“deallocator” for the synth6.

5 http://www.inrim.it/res/tf/src_i.shtml

234 Organized sound: scheduling

Figure 7.2 “Time diagram for the emissions of the various components of the

SRC”.

6 From an acoustic perspective, both this signal and the previous phone example

sound a bit too clean and bright. This is because they are usually heard through

an analog transmission, frequently a low quality one. To get such an effect, it is

possible e.g. to apply a filter or to add some background noise, as we will see

in the next chapter.

Introduction to SuperCollider 235

1 (

2 // Hour signal SRC

3 {

4 var amp = 0.125 ;

5 var firstBit = Array.fill(32, {[0,1].choose}) ;

6 var secondBit = Array.fill(16, {[0,1].choose}) ;

7 var freq ;

8 // first 32 bits

9 firstBit.do{|i|

10 freq = [2000, 2500][i] ;

11 {SinOsc.ar(freq, mul:amp)*Line.kr(1,1,0.30, doneAction:2)}.play ;

12 0.03.wait

13 } ;

14 0.04.wait ;

15 // second 16 bits

16 secondBit.do{|i|

17 freq = [2000, 2500][i] ;

18 {SinOsc.ar(freq, mul:amp)*Line.kr(1,1,0.30, doneAction:2)}.play ;

19 0.03.wait

20 } ;

21 0.52.wait;

22 // 5 impulses with 1000 Hz

23 {

24 SinOsc.ar(1000, mul:amp)

25 *

26 LFPulse.ar(1, width:0.1)*Line.kr(1,1,5, doneAction:2)

27 }.play ;

28 6.wait;

29 // last

30 {SinOsc.ar(1000, mul:amp)*Line.ar(1, 1, 0.1, doneAction:2)}.play ;

31 }.fork ;

32)

In the example, there is no explicit mention of the routine. In fact, the

method fork defined for functions (that are the real conceptual and operational

keys in SC) assumes that the function on which it is called is a scheduling one

(that is, a function as those to be provided to routines). Therefore, fork incor-

porates the function into a routine and executes it with TempoClock.

Routines (and processes in general) can always take place in parallel. In the

next example, 20 routines are running simultaneously. Pitches are generated

by an array (pitches) which increases with a step of 4: being pitches, it results
in a sequence of major thirds. The starting pitch is very low (20, less than 26

(
// Hour signal SRC
{
	var amp = 0.125 ;
	var firstBit = Array.fill(32, {[0,1].choose}) ;
	var secondBit = Array.fill(16, {[0,1].choose}) ;
	var freq ;
	// first 32 bits
	firstBit.do{|i|
		freq = [2000, 2500][i] ;
		{SinOsc.ar(freq, mul:amp)*Line.kr(1,1,0.30, doneAction:2)}.play ;
		0.03.wait
	} ;
	0.04.wait ;
	// second 16 bits
	secondBit.do{|i|
		freq = [2000, 2500][i] ;
		{SinOsc.ar(freq, mul:amp)*Line.kr(1,1,0.30, doneAction:2)}.play ;
		0.03.wait
	} ;
	0.52.wait;
	// 5 impulses with 1000 Hz
	{
		SinOsc.ar(1000, mul:amp)
		*
		LFPulse.ar(1, width:0.1)*Line.kr(1,1,5, doneAction:2)
	}.play ;
	6.wait;
	// last
	{SinOsc.ar(1000, mul:amp)*Line.ar(1, 1, 0.1, doneAction:2)}.play ;
}.fork ;
)

code/scheduling/segnali.scd
code/scheduling/segnali.scd

236 Organized sound: scheduling

Hz). Each routine repeatedly generates an event (a square wave that is per-

cussively enveloped). The generation interval is given by the geometric series

times. Pitch, repetition interval and stereo panning are linked to the counter (it

is the so-called parameter linking), so that low pitches are more frequent and are

placed on the left, while high pitches are less frequent and placed more on the

right. The effect is a sort of crumbled arpeggio that produces a progressive de-

phasing, before returning tominimumduration given by the commonmultiple

of durations. The delay in the attacks depends on the fact that first the routines

wait (a variable time), and then a synth is created.

1 (

2 var num = 20 ;

3 var pitches = Array.series(num, 0, 4)+20 ;

4 var times = Array.geom(num, 1, 1.01) ;

5 num.do{|i|

6 { inf.do{

7 times[i].wait;

8 {

9 Pan2.ar(

10 in: Pulse.ar(pitches[i].midicps)

11 *

12 EnvGen.kr(Env.perc, 1, 0.2, doneAction:2),

13 pos: i.linlin(0, num.size-1, -1, 1)

14)

15 }.play

16 }}.fork

17 } ;

18 s.scope ;

19)

7.6 Graphic interlude: drawings and animations

SuperCollider provides great graphical capabilities, not only within the set of

objects that directly implement user interaction (e.g. buttons, sliders, knobs,

and so on), but also in relation to generative graphics. The next example illus-

trates some basic aspects.

(
var num = 20 ;
var pitches = Array.series(num, 0, 4)+20 ;
var times = Array.geom(num, 1, 1.01) ;
num.do{|i|
	{ inf.do{
		times[i].wait;
		{
			Pan2.ar(
				in:	Pulse.ar(pitches[i].midicps)
			*
				EnvGen.kr(Env.perc, 1, 0.2, doneAction:2),
				pos: i.linlin(0, num.size-1, -1, 1)
)
		}.play
	}}.fork
} ;
s.scope ;
)

code/scheduling/multipleRoutines.scd
code/scheduling/multipleRoutines.scd

Introduction to SuperCollider 237

1 w = Window("tester", Rect(10, 10, 500, 500))

2 .background_(Color.white).front ;

3 w.drawFunc = {

4 Pen.strokeColor = Color.rand(0.1, 0.9) ;

5 Pen.moveTo(0@250) ;

6 Pen.lineTo(250@250) ;

7 Pen.lineTo(500@500) ;

8 Pen.stroke ;

9 } ;

11 w.refresh ;

As shown, a window (the same also applies to the graphical class that is

specifically designed as a “canvas”, UserView) includes, among its methods

drawFunc, literally, a drawing function (3-9). This method is evaluated when

the window is built (if defined at initialization), but can be called on demand

by the method refresh (11). By evaluating again line 11, the color of the line

changes, as it depends on a randomly chosen color (line 4). Since the choice is

random inside the function, any new evaluation, that can be forced with re-

fresh, actually results in a new color (or even better, drawing a new line with

a random color). Inside drawFunc, and only there, it is possible to use the class

Pen, which does not have instance methods but only class ones: very simply,

the user does not create Pen-like objects, rather s/he directly uses the methods

provided by the class. Pen implements a working mode that is typical of many

graphic programming languages (primarily PostScript, but also Processing or

NodeBox), and that stems directly from the control of mechanical plotters, that

were provided with a mechanical arm. This detail is not inessential to under-

stand the way in which Penworks. Basically, Pen is like a pen that can be asked

to move to a certain position, to draw a line, change the color of the ink, to

fill an area, to draw an oval, and so on. In this example the stroking color is

first defined (strokeColor, 4); then the pen is moved to the point (0, 250). Two
observations: the syntax 0@250 is an abbreviation (“syntactic sugar”) for con-

structing an instance of the class Point, i.e. it is the same as Point (0,250).

Here, Point intuitively implements the geometrical notion of a point in a plane;

move does not indicate tracing a line, rather to move the pen to the specified

position (it is like moving the arm in the plotter without drawing). Then two

lines are drawn through the method lineTo. Note that the process is incremen-

tal, that is, the pen moves to a point, where it remains until further notice: the

w = Window("tester", Rect(10, 10, 500, 500))
.background_(Color.white).front ;
w.drawFunc = {
	Pen.strokeColor = Color.rand(0.1, 0.9) ;
	Pen.moveTo(0@250) ;
	Pen.lineTo(250@250) ;
	Pen.lineTo(500@500) ;
	Pen.stroke ;
} ;

w.refresh ;

code/scheduling/penBasic.scd
code/scheduling/penBasic.scd

238 Organized sound: scheduling

point is its starting position. Until this moment, we have provided a descrip-

tion of what the plotter Pen should do, but the action is performed only when

the stroke method is invoked on Pen. Only at that point, the instructions are

actually taken over by the drawing process. In short, Pen defines a finite state

machine for drawing, and a very efficient one.

The next example shows how to interact with Pen.

1 // circle dimensions

2 ~dim = 50 ; ~dim2 = 25 ;

3 // color parameters

4 ~hue = 0; ~sat = 0.7; ~val = 0.7;

6 w = Window("tester", Rect(10, 10, 500, 500))

7 .background_(Color.white).front ;

8 w.drawFunc = {

9 var oo = 250-(~dim*0.5) ; // to place the circle in the middle

10 Pen.addOval(Rect(oo, oo, ~dim, ~dim)) ; // the circle

11 Pen.color_(Color.hsv(~hue, ~sat, ~val)) ; // color

12 Pen.fill ; // fill it

13 oo = 250-(~dim2*0.5) ; // to place the circle in the middle

14 Pen.addOval(Rect(oo, oo, ~dim2, ~dim2)) ; // the circle

15 Pen.color_(Color.white) ; // color

16 Pen.fill ; // fill it

17 } ;

19 ~hue = 0.2; w.refresh ;

20 ~dim = 200; w.refresh ;

21 ~dim2 = 10; w.refresh ;

The function assigned to drawFunc draws a circle using themethod addOval.

The method draws an oval by defininig the rectangle in which it is included:

or, in the case of a square, the result would be a circle (10). The oval’s side is

given by the environmental variable ~dim. The circle is centered in the window

in line 9 (the square is in fact defined by its top left vertex, and therefore it must

be shifted appropriately). Then, the circle is colored: first the color of the pen is

defined (11) by three environmental variables(4), then the pen is asked to fill the

surface with the method fill (note: not with stroke, 12). In the next lines, the

process is repeated by adding a second circle with a size ~dim2 and filled with

the background color (white), thus producing a “hole” effect as it overlaps the

previous circle. Remember that Pen is incremental: if ~dim2 would be greater

than ~dim, the second circle would cover the first, and nothingwould be visible.

// circle dimensions
~dim = 50 ; ~dim2 = 25 ;
// color parameters
~hue = 0; ~sat = 0.7; ~val = 0.7;

w = Window("tester", Rect(10, 10, 500, 500))
.background_(Color.white).front ;
w.drawFunc = {
	var oo = 250-(~dim*0.5) ; // to place the circle in the middle
	Pen.addOval(Rect(oo, oo, ~dim, ~dim)) ; // the circle
	Pen.color_(Color.hsv(~hue, ~sat, ~val)) ; // color
	Pen.fill ; // fill it
	oo = 250-(~dim2*0.5) ; // to place the circle in the middle
	Pen.addOval(Rect(oo, oo, ~dim2, ~dim2)) ; // the circle
	Pen.color_(Color.white) ; // color
	Pen.fill ; // fill it
} ;

~hue = 0.2; w.refresh ;
~dim = 200; w.refresh ;
~dim2 = 10; w.refresh ;

code/scheduling/circle.scd
code/scheduling/circle.scd

Introduction to SuperCollider 239

Lines 19-21 show the interactionmade possible by the environmental variables.

It is possible to change their values and to force the window to upgrade by

calling drawFunc through refresh. Pen offersmany possibilities, the exploration

of which is outside the scope of this text and it is left to the reader, who can

discover more from the help file. Also, as it is possible to trace the position of

the mouse, it is thus possible to visually interact with the generative graphics.

But what is mostly relevant in this chapter is scheduling applied to graphics

(that is, animation). The following code, which assumes that the former has

been evaluated, is now easy to understand:

1 (

2 {inf.do{|i|

3 k = i*3 ;

4 ~hue = k%500/500;

5 ~dim = k%500;

6 ~dim2 = ~dim*0.25 ;

7 w.refresh ;

8 0.1.wait ;

9 }}.fork(AppClock)

10)

An infinite routine uses the counter i to calculate a second counter that

increases at a faster rate, k. So, the variable associated with the color, ~hue,

is obtained by the modulo 500 on the counter, and divided by 500 (4). The

rationale is that the maximum value must be 1, which is the maximum allowed

for the argument hue in Color.hsv. Similarly, ~dim is applied the same module

(5), so that it does not exceed the window size (a fact that per se does not throw

an error, but that evidently is not desired). Then, dim2~ is calculated as 1
4 (0.25,

6) of ~dim. The window is updated and the operation is repeated after 100 ms.
Finally, the routine is scheduled on AppClock (otherwise, defer should be used).

7.7 Routines vs. Tasks

Routines can be reset in the initial condition through the message reset and

ended by the message stop. However, when they receive the message stop, in

order to start again, theymust first receive themessage reset that resets them to

(
{inf.do{|i|
	k = i*3 ;
	~hue = k%500/500;
	~dim = k%500;
	~dim2 = ~dim*0.25 ;
	w.refresh ;
	0.1.wait ;
}}.fork(AppClock)
)

code/scheduling/circle2.scd
code/scheduling/circle2.scd

240 Organized sound: scheduling

the starting condition. This aspect represents a potentially important limitation

in their musical use. The class Task implements a process “that can be paused”

(a pauseable process). In terms of implementation, the behavior of a task is very

similar to that of a routine, as the following example demonstrates:

1 (

2 t = Task({

3 inf.do({|i| i.post; " steps toward nothing".postln; 1.wait})

4 }) ;

5)

7 // start

8 t.play ;

10 // pause: internal state is stored

11 t.pause ;

13 // restart from last state

14 t.resume ;

16 // restart from state 0

17 t.reset ;

19 // stop: same as pause

20 t.stop ;

22 // play: same as resume

23 t.play ;

As we see, the methods stop/pause, and play/resume behave exactly the

same way. Looking in detail, a routine is –in certain conditions– slightly more

accurate in case of stop/restart. In any case, as a general rule, if a process does

not have to be controlled (because it ends by itself, or it never ends at all) a rou-

tine should be used; if it has to be stopped and resumed, then a task is the right

choice. The following example uses a task to “pause” a process. The SynthDef

"bink" also gives us a chance to discuss some aspects of signal processing.

(
t = Task({
		inf.do({|i| i.post; " steps toward nothing".postln; 1.wait})
	}) ;
)

// start
t.play ;

// pause: internal state is stored
t.pause ;

// restart from last state
t.resume ;

// restart from state 0
t.reset ;

// stop: same as pause
t.stop ;

// play: same as resume
t.play ;

code/scheduling/taskBasic.scd
code/scheduling/taskBasic.scd

Introduction to SuperCollider 241

1 (

2 SynthDef("bink", { arg freq = 440, pan = 1;

3 var sig, del;

4 // source

5 sig = Pulse.ar(freq

6 *Line.kr(1,

7 LFNoise1.kr(0.1)

8 .linlin(-1,1, -0.5, 0).midiratio, 0.1),

9 width:0.1

10) ;

11 // delay tail

12 del = Mix.fill(20, {|i|

13 DelayL.ar(sig,

14 delaytime: LFNoise1.kr(0.1)

15 .linlin(-1,1, 0.01, 0.1)

16)

17 }) ;

18 // mix, envelope, spatialization

19 Out.ar(0,

20 Pan2.ar(

21 (sig+del)*EnvGen.kr(Env.perc, doneAction:2),

22 LFNoise1.kr(pan), 0.1

23))

24 }).add;

25)

26 s.scope ;

27 x = Synth(\bink) ;

28 x = Synth(\bink , [\freq , 60.midicps]) ;

The SynthDef is logically divided into 3 blocks. In the first one, a sound

source is defined as a “tight” square wave, that is, with a reduced duty cycle

(width: 0.1). Its base frequency freq is multiplied by a ramp signal that goes

from 1 (therefore, no change) to a pseudo-random value in the range [−0.5, 0],
expressing a “detuning” in semitones. In fact, midiratio converts a value in

semitones into a multiplier for frequency: 0.midiratio indicates 0 semitones
and is equal to 1, 12.midiratio indicates 12 semitones and is equal to 27. The
use of LFNoise1 ensures that the transition between the consecutive generated

values is continuous. In essence, the result is a glissando decreasing from the

7 Because of approximations in floating point notation, once evaluated the ex-

pression prints 1.9999999999945, but this is quite normal.

(
SynthDef("bink", { arg freq = 440, pan = 1;
	var sig, del;
	// source
	sig = Pulse.ar(freq
		*Line.kr(1,
			LFNoise1.kr(0.1)
			.linlin(-1,1, -0.5, 0).midiratio, 0.1),
		width:0.1
) ;
	// delay tail
	del = Mix.fill(20, {|i|
		DelayL.ar(sig,
			delaytime: LFNoise1.kr(0.1)
			.linlin(-1,1, 0.01, 0.1)
)
	}) ;
	// mix, envelope, spatialization
	Out.ar(0,
		Pan2.ar(
			(sig+del)*EnvGen.kr(Env.perc, doneAction:2),
			LFNoise1.kr(pan), 0.1
))
}).add;
)
s.scope ;
x = Synth(\bink) ;
x = Synth(\bink, [\freq, 60.midicps]) ;

code/scheduling/task.scd
code/scheduling/task.scd

242 Organized sound: scheduling

frequency freq, for a maximum of a quarter tone (half a semitone). The second

block (11) uses theUGen Delay to create copies of the delayed signal through the

argument delaytime, that intuitively defines howmuch the signal has to be de-

layed. The delayed signal is againmanaged in a pseudo-randomway bymeans

of LFNoise1, the output of which oscillates in a range of [10, 100] ms. The delay
is placed inside Mix.fill, which then produces 20 copies with pseudo-random
delayed signals whilst mixing them. In the third block (19), the non delayed

copy is mixed with the delayed signal and enveloped by a percussive envelope

(it is a “note”-like synth). At the end, the whole is distributed on the stereo

front with a pseudo-random panning. The obtained sound ressembles a kind

of plucked metal string tone, where the metallic feature is provided by the full

spectrum of the square wave, the percussive pizzicato by the envelope, and the

(vague) physical simulation effect by the presence of delays, which in someway

simulates an acoustic resonator, as the latter behaves like a kind of small echo

room. The following code defines a set of processes that exploit the SynthDef.

1 (

2 var arr, window ;

3 arr = Array.fill(8, { arg i ;

4 Task({

5 var pitch ;

6 inf.do({

7 pitch = (i*[3, 5, 7].choose+40)%80+20 ;

8 Synth(\bink , [\freq , pitch.midicps,

9 \pan , pitch/50]) ;

10 ((9-i)/8).wait ;

11 })

12 })

13 }) ;

15 arr.do({ |t| t.play}) ; // play all

17 // GUI for tasks

18 window = Window("control", Rect(100, 100, 8*50, 50)).front ;

19 8.do {|i|

20 Button(window, Rect(i*50, 0, 50, 50))

21 .states_([[i.asString, Color.red],[i.asString, Color.black]])

22 .action_{|me| if(me.value == 1) {arr[i].pause}{arr[i].play}}

24 }

25)

Introduction to SuperCollider 243

The variable arr is assigned an array that contains 8 tasks. Each of them
generates a voice in which the pitches depend on the counter (in substance the

voices are differentiated in relation to register). The task selects a value between

[3, 5, 7], multiplies it by the index (the voice register, so to say). The starting
point is the pitch 40, and the progression is blocked to a value of 80. The pitch
sequence in each layer is complex because it depends on the relationship be-

tween the counter i, the array [3,5,7] and the modulo operator 20. Each layer
has its own autonomous development rate: the lower ones move slower, the

higher one faster, in the range of [0.251, 125] seconds (respectively i = 7 and i

= 0). Note the quantization to a sixteenth note at bpm = 60. The progression
proceeds inexorably (15) in parallel. The next block (17-24) allows one to inter-

actively explore the layers and to vary their relative phase. A window contains

8 two-state buttons. Quite simply, by pressing them, the relative task is dis/ac-
tivated. This makes it possible to listen to the individual layers and also change

their timing.

7.8 Patterns

It is quite clear that routines and tasks offer a greater flexibility in time control.

But SuperCollider also makes available certain types of data structures that,

while not necessarily related to scheduling, also find their most typical appli-

cation in the management of events in time, Patterns. In some sense, such an

organization of information has already been discussed in the context of theDe-

mand UGens. Better said, Demand UGens implement on the server side some

features that Patterns define on the client side. However, the latter are in reality

more often used.

Let us reconsider what has been discussed above. A pattern is the form,

described procedurally, of a data sequence. It is not the sequence that is de-

scribed as such, rather a rule for its production. For example, Pseq describes

sequences obtained by repeating a certain sequence: so, Pseq ([1,2,3,4], 3)

describes a sequence obtained by repeating three times the four values con-

tained in [1,2,3,4]. The following code:

(
var arr, window ;
arr = Array.fill(8, { arg i ;
	Task({
		var pitch ;
		inf.do({
			pitch = (i*[3, 5, 7].choose+40)%80+20 ;
			Synth(\bink, [\freq, pitch.midicps,
				\pan, pitch/50]) ;
			((9-i)/8).wait ;
		})
	})
}) ;

arr.do({ |t| t.play}) ; // play all

// GUI for tasks
window = Window("control", Rect(100, 100, 8*50, 50)).front ;
8.do {|i|
	Button(window, Rect(i*50, 0, 50, 50))
	.states_([[i.asString, Color.red],[i.asString, Color.black]])
	.action_{|me| if(me.value == 1) {arr[i].pause}{arr[i].play}}

}
)

code/scheduling/task2.scd
code/scheduling/task2.scd

244 Organized sound: scheduling

1 p = Pseq([1,2,3,4], 3).asStream ;

2 13.do{ "next...? -> ".post; p.next.postln } ;

Once evaluated, prints on the post window:

1 next...? -> 1

2 next...? -> 2

3 next...? -> 3

4 next...? -> 4

5 next...? -> 1

6 next...? -> 2

7 next...? -> 3

8 next...? -> 4

9 next...? -> 1

10 next...? -> 2

11 next...? -> 3

12 next...? -> 4

13 next...? -> nil

14 13

Theprevious code assigns the variable p a Pattern Pseq, but not only: through

themessage asStream, it generates the actual sequence. In other terms, Pseq is a

form that, in order to be used, must first be converted into a stream (stream) of

data. Note that the message asStream returns a routine. In fact, on the routine

it is possible to call the method next for 13 times, so as to access the next value:
when the sequence is over (the thirteenth time), next returns nil .

The next SynthDef computes a signal sig by summing 10 sinusoids, their
frequencies varying by (a maximum of) 2.5% (3): the result is a sort of chorus

effect, with a slight vibrato. A reverberated version is enveloped percussively

(4). To let the reverb develop fully, the SynthDef relies on the UGen DetectSi-

lence (5). This UGen analyzes the input signal and when the amplitude of the

latter falls below a threshold, executes doneAction. The UGen returns a binary

signal, 0 or 1 relative to exceeding the threshold. This value can be used to an
advantage as a trigger. This is not the case of the example. Here, DetectSi-

lence verifies that, once the signal is terminated (i.e. its amplitude falls below

a threshold), the synth is automatically deallocated through doneAction: 2. In

p = Pseq([1,2,3,4], 3).asStream ;
13.do{ "next...? -> ".post; p.next.postln } ;

code/scheduling/pseq.scd
code/scheduling/pseq.scd

next...? -> 1
next...? -> 2
next...? -> 3
next...? -> 4
next...? -> 1
next...? -> 2
next...? -> 3
next...? -> 4
next...? -> 1
next...? -> 2
next...? -> 3
next...? -> 4
next...? -> nil
13

code/scheduling/post/pseqPost.scd
code/scheduling/post/pseqPost.scd

Introduction to SuperCollider 245

this way, it is not necessary to use a bus to route the signal to a reverb unit synth

in order to have a complete reverberation. The signal sig is spatialized as usual

on two channels (6).

1 SynthDef(\sinPerc , { |freq = 440, pos = 0, level = 0.125, detune = 0.025|

2 var sig =

3 Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))}) ;

4 sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;

5 DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;

6 Out.ar(0, Pan2.ar(sig, pos, level))

7 }).add ;

The next example includes three processes that use the pattern Pseq. In the

first, a sequence of 10 pitches is coded by intervals (in semitones) from a base

(= 0). The routine (4-9) generates a set of notes every 1
4 of a second, starting

from p, adding 70, and converting them into frequencies. The second block

(12-22) uses the same sequence, but it defines another sequence for durations,

expressed in units (15) and later scaled (19). Since the sequence of pitches has

a different size from that of durations (respectively, 10 vs 9), it implements a
classic situation, the dephasing process known as talea vs color. The two sys-

tems will be in phase again after 10 × 9 = 90 events. The third case is much

more complex to look at, but it simply extends the same principle of asymme-

try talea/color to other dimensions. In particular, it defines a pattern that controls

density, ~density: an event can include from 1 to 4 parallel synths (i.e. ranging
from a note to a tetrachord). Each note is then harmonized according to the

pattern ~interval that defines an interval starting from the departing pitch. Fi-

nally, the calculation of the actual pitch takes into account ~octave, that shifts

the value in relation to the octaves. Note also that the amplitude is scaled ac-

cording to the density, so that chords with different densities will all have the

same amplitude.

SynthDef(\sinPerc, { |freq = 440, pos = 0, level = 0.125, detune = 0.025|
	var sig =
	Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))}) ;
	sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;
	DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;
	Out.ar(0, Pan2.ar(sig, pos, level))
}).add ;

code/scheduling/canonsDef.scd
code/scheduling/canonsDef.scd

246 Organized sound: scheduling

1 (

2 // 1. a sequence

3 p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;

4 {

5 inf.do{

6 Synth(\sinPerc , [\freq , (p.next+70).midicps]) ;

7 0.25.wait ;

8 }

9 }.fork

10)

12 (

13 // 2. color vs. talea (10 vs 9)

14 p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;

15 q = Pseq([1,1,2,1,4,1,3,3,1], inf).asStream ;

16 {

17 inf.do{

18 Synth(\sinPerc , [\freq , (p.next+70).midicps]) ;

19 (q.next*0.125).wait ;

20 }

21 }.fork

22)

24 (

25 // 3. color vs. talea (10 vs 9)

26 // vs. chord dimension vs. interval vs. octave...

27 p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;

28 q = Pseq([1,1,2,1,4,1,3,3,1], inf).asStream ;

29 ~density = Pseq([1,2,4,1,3], inf).asStream ;

30 ~interval = Pseq([3,4,7,6], inf).asStream ;

31 ~octave = Pseq([-1,0,0,1], inf).asStream ;

32 {

33 inf.do{

34 var den = ~density.next ;

35 den.do{

36 var delta = ~interval.next ;

37 var oct = ~octave.next ;

38 Synth(\sinPerc ,

39 [

40 \freq , (p.next+70+delta+(12*oct)).midicps,

41 \level , 0.1/den

42]) } ;

43 (q.next*0.125).wait ;

44 }

45 }.fork

46)

Introduction to SuperCollider 247

A canon structure is at the basis of the next program, which defines a se-

quence of pitches, durations and panning positions (2-3). It builds 3 arrays of 4
routines, as indicated by Pseq().asStream. Each array contains the control data

for a musical sequence. The next cycle starts 4 parallel routines. Each routine
refers by means of the counter i to the relative element in the routine. In addi-

tion, a multiplier for pitches and durations is calculated from i. The result is a

four voice canon in different octaves.

1 (

2 var mel = [0,3,5,6,7,9,10], rhy = [1,1,3,2,1,2] ;

3 var pan = Array.series(5, -1, 2/4) ;

4 var arrPseq = Array.fill(4, { Pseq(mel, inf).asStream }) ;

5 var durPseq = Array.fill(4, { Pseq(rhy, inf).asStream }) ;

6 var panPseq = Array.fill(4, { Pseq(pan, inf).asStream }) ;

8 4.do{|i|

9 { inf.do{

10 var freqSeq = arrPseq[i] ;

11 var freq = (12*i+freqSeq.next+48).midicps ;

12 var durSeq = durPseq[i] ;

13 var dur = durSeq.next*0.125*(i+1) ;

14 var pan = panPseq[i].next ;

15 Synth(\sinPerc , [\freq , freq, \pos , pan, \level , 0.07]) ;

16 dur.wait ;

17 }

18 }.fork

19 }

20)

Two more examples of algorithmic composition. The next uses three Syn-

thDefs:

(
// 1. a sequence
p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;
{
	inf.do{
		Synth(\sinPerc, [\freq, (p.next+70).midicps]) ;
		0.25.wait ;
	}
}.fork
)

(
// 2. color vs. talea (10 vs 9)
p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;
q = Pseq([1,1,2,1,4,1,3,3,1], inf).asStream ;
{
	inf.do{
		Synth(\sinPerc, [\freq, (p.next+70).midicps]) ;
		(q.next*0.125).wait ;
	}
}.fork
)

(
// 3. color vs. talea (10 vs 9)
// vs. chord dimension vs. interval vs. octave...
p = Pseq([0,2,4,3,10,13,12,6,5,7], inf).asStream ;
q = Pseq([1,1,2,1,4,1,3,3,1], inf).asStream ;
~density = Pseq([1,2,4,1,3], inf).asStream ;
~interval = Pseq([3,4,7,6], inf).asStream ;
~octave = Pseq([-1,0,0,1], inf).asStream ;
{
	inf.do{
		var den = ~density.next ;
		den.do{
			var delta = ~interval.next ;
			var oct = ~octave.next ;
			Synth(\sinPerc,
				[
					\freq, (p.next+70+delta+(12*oct)).midicps,
					\level, 0.1/den
]) } ;
		(q.next*0.125).wait ;
	}
}.fork
)

code/scheduling/canons.scd
code/scheduling/canons.scd

(
var mel = [0,3,5,6,7,9,10], rhy = [1,1,3,2,1,2] ;
var pan = Array.series(5, -1, 2/4) ;
var arrPseq = Array.fill(4, { Pseq(mel, inf).asStream }) ;
var durPseq = Array.fill(4, { Pseq(rhy, inf).asStream }) ;
var panPseq = Array.fill(4, { Pseq(pan, inf).asStream }) ;

4.do{|i|
	{ inf.do{
		var freqSeq = arrPseq[i] ;
		var freq = (12*i+freqSeq.next+48).midicps ;
		var durSeq = durPseq[i] ;
		var dur = durSeq.next*0.125*(i+1) ;
		var pan = panPseq[i].next ;
		Synth(\sinPerc, [\freq, freq, \pos, pan, \level, 0.07]) ;
		dur.wait ;
	}
	}.fork
}
)

code/scheduling/bluesyCanon.scd
code/scheduling/bluesyCanon.scd

248 Organized sound: scheduling

1 SynthDef(\sinPerc , {

2 |out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|

3 var sig =

4 Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))}) ;

5 sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;

6 DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;

7 Out.ar(out, Pan2.ar(sig, pos, level))

8 }).add ;

10 SynthDef(\impPerc , {

11 |out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|

12 var sig =

13 Mix.fill(10, {Impulse.ar(freq+Rand(0, freq*detune))}) ;

14 sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;

15 DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;

16 Out.ar(out, Pan2.ar(sig, pos, level))

17 }).add ;

19 SynthDef(\pulsePerc , {

20 |out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|

21 var sig =

22 Mix.fill(10, {Pulse.ar(freq+Rand(0, freq*detune), width:0.1)}) ;

23 sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;

24 DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;

25 Out.ar(out, Pan2.ar(sig, pos, level))

26 }).add ;

that are used in the following process:

SynthDef(\sinPerc, {
	|out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|
	var sig =
	Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))}) ;
	sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;
	DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;
	Out.ar(out, Pan2.ar(sig, pos, level))
}).add ;

SynthDef(\impPerc, {
	|out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|
	var sig =
	Mix.fill(10, {Impulse.ar(freq+Rand(0, freq*detune))}) ;
	sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;
	DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;
	Out.ar(out, Pan2.ar(sig, pos, level))
}).add ;

SynthDef(\pulsePerc, {
	|out = 0, freq = 440, pos = 0, level = 0.125, detune = 0.025|
	var sig =
	Mix.fill(10, {Pulse.ar(freq+Rand(0, freq*detune), width:0.1)}) ;
	sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;
	DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;
	Out.ar(out, Pan2.ar(sig, pos, level))
}).add ;

code/scheduling/strata.scd
code/scheduling/strata.scd

Introduction to SuperCollider 249

1 (

2 ~bs = Bus.audio(s, 2) ;

4 a = Pseq([1,3,4,1,1], 2) ;

5 b = Pseq([1,1,1]/3, 1) ;

6 c = Pseq([1,1,2]/2, 2) ;

7 d = Pseq([-1], 1);

8 e = Prand([5,0], 3);

10 f = Pseq([0,0, 1,0,0,1,2, 2,0,1,2,0,1,2], inf).asStream ;

12 p = Pxrand([a,b,c, d,e], inf).asStream ;

14 {

15 inf.do{

16 var which, id ;

17 n = p.next ;

18 if (n == -1) {

19 [20,40].do{|i|

20 Synth(\sinPerc ,

21 [\freq , i.midicps, \detune , 0.0125, \level , 0.2,

22 \out , ~bs]);

23 } ;

24 n = 1/8 ;

25 } {

26 id = f.next ;

27 which = [\sinPerc , \impPerc ,\pulsePerc][id] ;

28 Synth(which,

29 [\freq , (n*3+70).midicps,

30 \detune , 0.05, \out , ~bs, \pos , id-1*0.75]);

31 Synth(which, [\freq , (n*3+46).midicps,

32 \detune , 0.025, \out , ~bs, \pos , id-1*0.75]);

33 } ;

34 (n*0.25*60/84).wait

35 }

36 }.fork ;

38 x = {|vol = 0.5| Out.ar(0, In.ar(~bs, 2)*vol)}.play(addAction:\addToTail) ;

39 s.scope ;

40 x.set(\vol , 0.15)

41)

The details are left to the reader. It is worth to highlight three aspects. First,

the presence of a conditionalwithin the routine that takes into account the value

(
~bs = Bus.audio(s, 2) ;

a = Pseq([1,3,4,1,1], 2) ;
b = Pseq([1,1,1]/3, 1) ;
c = Pseq([1,1,2]/2, 2) ;
d = Pseq([-1], 1);
e = Prand([5,0], 3);

f = Pseq([0,0, 1,0,0,1,2, 2,0,1,2,0,1,2], inf).asStream ;

p = Pxrand([a,b,c, d,e], inf).asStream ;

{
	inf.do{
		var which, id ;
		n = p.next ;
		if (n == -1) {
			[20,40].do{|i|
				Synth(\sinPerc,
					[\freq, i.midicps, \detune, 0.0125, \level, 0.2,
						\out, ~bs]);
			} ;
			n = 1/8 ;
		} {
			id = f.next ;
			which = [\sinPerc, \impPerc,\pulsePerc][id] ;
			Synth(which,
				[\freq, (n*3+70).midicps,
					\detune, 0.05, \out, ~bs, \pos, id-1*0.75]);
			Synth(which, [\freq, (n*3+46).midicps,
				\detune, 0.025, \out, ~bs, \pos, id-1*0.75]);
		} ;
		(n*0.25*60/84).wait
	}
}.fork ;

x = {|vol = 0.5| Out.ar(0, In.ar(~bs, 2)*vol)}.play(addAction:\addToTail) ;
s.scope ;
x.set(\vol, 0.15)
)

code/scheduling/strata2.scd
code/scheduling/strata2.scd

250 Organized sound: scheduling

of p.next. If the value is−1 then the first block is executed, which then redefines
the value of n, overwriting the one initially assigned through p.next. Secondly,

note that the SynthDef in the second block is chosen from a pattern (f). Finally,

to control the amplitude of the overall signal in a effective and efficient way, all

the signals are written on the bus ~bs. The bus content is routed into the synth

x which has a function to scale the overall signal amplitude before sending it

out.

The following example uses the SynthDef sinPerc to generate a set of arpeg-

gios that are vaguely reminiscent of an electric piano or celesta. The first block

defines the control data structures. In particular, the array ~arr contains a set

of patterns intended to handle the harmonization (i.e. the pitches composing

the arpeggio). The array p contains a base pitch that will be added to 60 (21).
The array q contains the values that define the speed of the arpeggio, while the

time between arpeggios is set by timebase (31). Note that this value is related

to the parameter oct that defines the octave transposition for the pitch base by

means of the control structure case (17-20). Lower arpeggios are played more

slowly than the higher ones.

Introduction to SuperCollider 251

1 (

2 a = Pseq([3,4,4,3,3], inf) ;

3 b = Pseq([6,7,7], inf) ;

4 c = Pseq([9,10, 9, 9], inf) ;

5 d = Pseq([11,12,13,12,14], inf) ;

6 e = Pseq([5, 6,5]+12, inf) ;

7 f = Pseq([8,9,9,8,9]+12, inf) ;

9 ~arr = [a,b,c,d,e,f].collect{|i| i.asStream} ;

10 p = Pseq([0,3,3,2,2, 3,0, 7, 6, 11,11, 10, 9, 12], inf).asStream ;

11 q = Prand([1/64, 1/32, 1/16], inf).asStream ;

12 r = Pseq(

13 Array.fill(12, {0})++

14 Array.fill(3, {-12})++

15 Array.fill(8, {7}),

16 inf).asStream ;

17)

18 (

19 var base, harm, timeBase, oct ;

20 {

21 inf.do{

22 oct = r.next ;

23 case

24 {oct == 7} { timeBase = 1/16}

25 {oct == -12} { timeBase = 2/3}

26 {oct == 0} { timeBase = 1/4} ;

27 base = p.next+60+oct ;

28 Synth(\sinPerc ,

29 [\freq , base.midicps, \detune , 0.01,\level , -30.dbamp]) ;

30 6.do{|i|

31 harm = base+~arr[i].next ;

32 Synth(\sinPerc ,

33 [\freq , harm.midicps, \detune , 0.01,

34 \level ,-30.dbamp, \pos , i.linlin(0,1.0, -0.5,0.5)]) ;

35 q.next.wait;

36 } ;

37 timeBase.wait ;

39 }}.fork ;

40)

There aremanypatterns defined in SuperCollider, not only Pseq and Pxrand:

for example, some are also designed to manage the audio, not just the control

of events, while others allow one to filter the content of data streams generated

(
a = Pseq([3,4,4,3,3], inf) ;
b = Pseq([6,7,7], inf) ;
c = Pseq([9,10, 9, 9], inf) ;
d = Pseq([11,12,13,12,14], inf) ;
e = Pseq([5, 6,5]+12, inf) ;
f = Pseq([8,9,9,8,9]+12, inf) ;

~arr = [a,b,c,d,e,f].collect{|i| i.asStream} ;
p = Pseq([0,3,3,2,2, 3,0, 7, 6, 11,11, 10, 9, 12], inf).asStream ;
q = Prand([1/64, 1/32, 1/16], inf).asStream ;
r = Pseq(
	Array.fill(12, {0})++
	Array.fill(3, {-12})++
	Array.fill(8, {7}),
	inf).asStream ;
)
(
var base, harm, timeBase, oct ;
{
	inf.do{
		oct = r.next ;
		case
		{oct == 7} { timeBase = 1/16}
		{oct == -12} { timeBase = 2/3}
		{oct == 0} { timeBase = 1/4} ;
		base = p.next+60+oct ;
		Synth(\sinPerc,
			[\freq, base.midicps, \detune, 0.01,\level, -30.dbamp]) ;
		6.do{|i|
			harm = base+~arr[i].next ;
			Synth(\sinPerc,
				[\freq, harm.midicps, \detune, 0.01,
					\level,-30.dbamp, \pos, i.linlin(0,1.0, -0.5,0.5)]) ;
		q.next.wait;
		} ;
		timeBase.wait ;

}}.fork ;
)

code/scheduling/arpeggi.scd
code/scheduling/arpeggi.scd

252 Organized sound: scheduling

by other patterns (the so-called filter patterns). It could be said that patterns are

a sort of sublanguage of SC specifically dedicated to the representation of data

streams.

7.9 Events and Event patterns

Patterns are data structures that encode in compact form data sequences. As

seen in the previous examples, they can be used within the usual scheduling

processes, that is as, routines or tasks. They are however also a vital component

of a very peculiar logic of sequencing, which is based on the concept of “event”.

For example, the following mysterious expression generates sound:

1 ().play ;

Empty brackets are an abbreviation for the creation of an instance of the

class Event, and therefore the expression is the same as

1 Event.new.play ;

An “event” in SC is simply an association between environmental variables

and values, which can respond to the method play. Technically, it is in fact

nothing more than a dictionary mapping names to values. The class Event pre-

defines many of these names, as well as functions that are associatedwith those

names, in order to specify their semantics. If we evaluate the above line, two

things happen, we hear a sound andwe see on the post window something like

the following:

1 (’instrument’: default, ’msgFunc’: a Function, ’amp’: 0.1, ’sustain’: 0.8,

2 ’server’: localhost, ’isPlaying’: true, ’freq’: 261.6255653006,

3 ’hasGate’: true, ’detunedFreq’: 261.6255653006, ’id’: [1002])

().play ;

code/scheduling/event.scd
code/scheduling/event.scd

Event.new.play ;

code/scheduling/event2.scd
code/scheduling/event2.scd

Introduction to SuperCollider 253

It is possible to recognize names typically related to synthesis, and associ-

ated with values. This is because SC defines a default event in which a synth

built from the SynthDef \default (variable ’instrument’)8plays a 261.6255653006
Hz tone (’freq’) with an amplitude 0.1 (’amp’), and with other parameters.

This event is created when the method play is run. The following example

makes the situation clearer:

1 (\instrument : \sinPerc , \midinote : 65).play ;

Here the instrument is instead \sinPerc (the SynthDef from previous ex-

amples) while the frequency is not explicitly defined with a reference to ’freq’

but by setting ’midinote’: this variable is internally associated with a function

that automatically defines the relative value of ’freq’ (note the post window).

Two considerations are important:

1. Event predefines many variables. In this way, it is possible to manage in a

very simple way various pitch systems (scales, modes, and not necessarily

equally temperate tunings) without having to calculate individual frequen-

cies. The same applies for other parameters. The reader is invited to read

the relative help files;

2. in order to use the variables in relation to a SynthDef, the latter must be

equipped with arguments with the variables’ names. For example, an event

is considered as a note, so it is necessary to use doneAction: 2 in the Syn-

thDef, otherwise the instantiated synth will not be deallocated. Still, some

names –such as freq, amp, gate– are conventionally ’in use’ with Event,

and must be respected in the SynthDef provided by the user.

In the next example, a SynthDef includes freq but not doneAction: 2. Pitches

are correct (freq is properly calculated from the variable midinote), but the

event does not end, as every synth remains active.

8 The SynthDef \default is loaded on the server on booting.

('instrument': default, 'msgFunc': a Function, 'amp': 0.1, 'sustain': 0.8,
'server': localhost, 'isPlaying': true, 'freq': 261.6255653006,
'hasGate': true, 'detunedFreq': 261.6255653006, 'id': [1002])

code/scheduling/post/eventPost.scd
code/scheduling/post/eventPost.scd

(\instrument: \sinPerc, \midinote: 65).play ;

code/scheduling/event3.scd
code/scheduling/event3.scd

254 Organized sound: scheduling

1 SynthDef(\cont , {arg freq = 440; Out.ar(0, SinOsc.ar(freq))}).add ;

3 (\instrument : \cont , \midinote : 80).play ;

4 (\instrument : \cont , \midinote : 60).play ;

In the next example the concept of the event is used in conjunction with a

Pattern.

1 (

2 SynthDef(\sinPerc , { |freq = 440, pos = 0, amp = 1, detune = 0.025|

3 var sig =

4 Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))*0.1}) ;

5 sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;

6 DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;

7 Out.ar(0, Pan2.ar(sig, pos, amp))

8 }).add ;

9)

11 p = Pseq([0,2,5,7,9], inf).asStream ;

13 {

14 inf.do{

15 (\instrument :\sinPerc , \amp :0.5, \ctranspose :p.next).play ;

16 0.25.wait ;

17 }

18 }.fork ;

First, the SynthDef ’sinPerc’ is rewritten so as to comply with the model

provided by Event. The amplitude is normalized so that the mix at most results

in a peak value = 1 (4), and the argument level is replaced by amp. The pattern

p represents a pentatonicmelody (11). The next routine instantiates each 250ms
(16) a new event using sinPerc, defines the argument amp and passes the next

value of p to the variable \ctranspose, yet another model for the definition of

pitches, that adds the passed value to midi base note (by default = 60) and
converts it into the relative frequency.

It is perfectly legitimate to use the concept of event in this way, but themost

common use (and in some way the rationale underlying the concept) is linked

SynthDef(\cont, {arg freq = 440; Out.ar(0, SinOsc.ar(freq))}).add ;

(\instrument: \cont, \midinote: 80).play ;
(\instrument: \cont, \midinote: 60).play ;

code/scheduling/event4.scd
code/scheduling/event4.scd

(
SynthDef(\sinPerc, { |freq = 440, pos = 0, amp = 1, detune = 0.025|
	var sig =
	Mix.fill(10, {SinOsc.ar(freq+Rand(0, freq*detune))*0.1}) ;
	sig = FreeVerb.ar(sig* EnvGen.kr(Env.perc)) ;
	DetectSilence.ar(sig, -96.dbamp, doneAction:2) ;
	Out.ar(0, Pan2.ar(sig, pos, amp))
}).add ;
)

p = Pseq([0,2,5,7,9], inf).asStream ;

{
	inf.do{
		(\instrument:\sinPerc, \amp:0.5, \ctranspose:p.next).play ;
		0.25.wait ;
	}
}.fork ;

code/scheduling/event5.scd
code/scheduling/event5.scd

Introduction to SuperCollider 255

to “event patterns”. The patterns discussed so far are usually described as a

“value” pattern or “based on the list”. Event patterns provides further possi-

bilities. An event pattern, typically Pbind, associates events with data patterns,

which can then be executed. This results in a compact and elegant notation for

the specification of streams of sound events. In the minimal example that fol-

lows, first an event pattern p is defined (as in the example above); then, an event

pattern that associates the variable \ctranspose with the pattern p (3) and the

other variables with the values described in the previous example. Finally, play

is invoked: it returns an object of type EventStreamPlayer, literally a performer

of event streams, a kind of player that generates sound from given specifica-

tions. The player, f (5), can be controlled interactively in real-time (6-9). Note

that it is the EventStreamPlayer that takes care of generating streams from the

pattern.

1 p = Pseq([0,2,5,7,9], inf) ;

3 e = Pbind(\ctranspose ,p,\instrument ,\sinPerc ,\amp ,0.5,\dur ,0.25) ;

5 f = e.play ;

6 f.pause ;

7 f.play ;

8 f.mute ;

9 f.unmute ;

The next example introduces two patterns p and d for pitches and dura-

tions, following the model talea/color (1-3). A single sequence can be played

with the block 2 (1-5). Block 3 builds a polyphony of 4 voices in different oc-
taves and wherein pitch is proportional to the multiplier for the dynamic range

(17-18). Note that line 21 reassigns to a (which contained the first instances of

Pbind)) their relative EvenStreamPlayers. If block 3 is still running, it is possi-

ble to evaluate the block 4, this starts routines that pause and then restore the

layers (once per second). Finally, block 5 stops the routine r and pauses all the

EventStreamPlayer.

p = Pseq([0,2,5,7,9], inf) ;

e = Pbind(\ctranspose,p,\instrument,\sinPerc,\amp,0.5,\dur,0.25) ;

f = e.play ;
f.pause ;
f.play ;
f.mute ;
f.unmute ;

code/scheduling/event6.scd
code/scheduling/event6.scd

256 Organized sound: scheduling

1 // 1. pattern

2 p = Pseq([0,2,3, 5, 6, 0,2,3, 5, 7, 8,0,7], inf);

3 d = Pseq([1,1,2,1,1,2,3,1,1,2], inf);

5 // 2. first test, talea vs. color

6 (

7 Pbind(

8 \instrument , \sinPerc , \amp , 0.25,

9 \ctranspose , p, \dur , d*0.125).play ;

10)

12 // 3. canon

13 (

14 a = Array.fill(4, {|i|

15 Pbind(

16 \instrument , \sinPerc , \amp , 0.25,

17 \root , i*12-24,

18 \ctranspose , p, \dur , d*0.125*(i+1))

19 }) ;

21 a = a.collect{|i| i.play} ; // a now contains the players

22)

24 // 4. a process that pauses selectively

25 (

26 r = {

27 inf.do{|i|

28 {b = a[i%4].mute ;

29 2.wait ;

30 b.unmute ;}.fork;

31 1.wait ;

32 }

33 }.fork

34)

36 // 5. all paused

37 r.stop; a = a.do{|i| i.pause} ;

It may not always be intuitive to interact with event patterns, because in

some way the environmental variables that are organized in the events always

require us to operate within a specific “pattern logic”. To this purpose, the fol-

lowing example demonstrates the use of Pfunc, a pattern that, at each call, re-

turns a value calculated by a function. In this situation, the function is used to

// 1. pattern
p = Pseq([0,2,3, 5, 6, 0,2,3, 5, 7, 8,0,7], inf);
d = Pseq([1,1,2,1,1,2,3,1,1,2], inf);

// 2. first test, talea vs. color
(
Pbind(
	\instrument, \sinPerc, \amp, 0.25,
	\ctranspose, p, \dur, d*0.125).play ;
)

// 3. canon
(
a = Array.fill(4, {|i|
	Pbind(
		\instrument, \sinPerc, \amp, 0.25,
		\root, i*12-24,
		\ctranspose, p, \dur, d*0.125*(i+1))
}) ;

a = a.collect{|i| i.play} ; // a now contains the players
)

// 4. a process that pauses selectively
(
r = {
	inf.do{|i|
		{b = a[i%4].mute ;
			2.wait ;
			b.unmute ;}.fork;
		1.wait ;
	}
}.fork
)

// 5. all paused
r.stop; a = a.do{|i| i.pause} ;

code/scheduling/feldman.scd
code/scheduling/feldman.scd

Introduction to SuperCollider 257

access the value i from the array r, an operation that allows us to define for each

event pattern a different transposition. Line 16 then defines a sequence [-12,

-5, 2, 9, 16]while line 17 restores the original sequence [0, 0, 0, 0, 0], in

which the four voices sound a canon in unison.

1 Pbind(\ctranspose , p, \stretch , 1/2, \dur , d, \root , 1).play ;

3 ~seq = [0,2,5,7,9] ;

4 p = Pseq(~seq, inf) ;

5 d = Pseq([1,1,2,1,1,3,1,4,1,1], inf) ;

6 r = Array.series(~seq.size, 0, 0) ;

8 (

9 8.do{|i|

10 Pbind(\ctranspose , p+Pfunc({r[i]}), \stretch , 1/(i+1), \dur , d,

11).play ;

12 } ;

13)

15 // control

16 r = Array.series(~seq.size,-12,7) ;

17 r = Array.series(~seq.size,0,0) ;

The last example also intends to highlight the expressive potential arising

from pattern nesting. The SynthDef is a slightly modified version of a previous

one. In particular, we have added the argument amp and panning which are

now no longer run by a pseudo-random UGen.

Pbind(\ctranspose, p, \stretch, 1/2, \dur, d, \root, 1).play ;

~seq = [0,2,5,7,9] ;
p = Pseq(~seq, inf) ;
d = Pseq([1,1,2,1,1,3,1,4,1,1], inf) ;
r = Array.series(~seq.size, 0, 0) ;

(
8.do{|i|
	Pbind(\ctranspose, p+Pfunc({r[i]}), \stretch, 1/(i+1), \dur, d,
).play ;
} ;
)

// control
r = Array.series(~seq.size,-12,7) ;
r = Array.series(~seq.size,0,0) ;

code/scheduling/pfunc.scd
code/scheduling/pfunc.scd

258 Organized sound: scheduling

1 SynthDef("bink", { arg freq = 440, pan = 0, amp = 0.1;

2 var sig, del;

3 // source

4 sig = Pulse.ar(freq

5 *Line.kr(1,

6 LFNoise1.kr(0.1)

7 .linlin(-1,1, -0.5, 0).midiratio, 0.1),

8 width:0.1

9) ;

10 // delay tail

11 del = Mix.fill(20, {|i|

12 DelayL.ar(sig,

13 delaytime: LFNoise1.kr(0.1)

14 .linlin(-1,1, 0.01, 0.1)

15)

16 }) ;

17 // mix, envelope, spatialization

18 Out.ar(0,

19 Pan2.ar(

20 (sig+del)*EnvGen.kr(Env.perc, doneAction:2),

21 pan, amp

22))

23 }).add;

The first block (1-24) organizes durations. The extensive, messy use of en-

vironment variables was left as an “ethnographic” evidence of the incremental

and interactive composition work. The basic idea in relation to time organiza-

tion is to divide the process into sections. The first section presents two variants;

a “fill-like” section follows, that selects between a set of fairly extensive rhyth-

mic possibilities. As we see, durations are specified using integers, that ensure

a simpler management. The two patterns a and b last both 24 units, and the

first of them alternate the durations of 7 and 5 units for the pattern. The sec-
tions "fill" (7, 15) always last 16 units and organize rhythmically denser patterns
(e.g. note the durations). Lines 17 and 18 define two pattern Prand that choose

at random one of the phrases (h) and one of the fill (i). Thus, the pattern i is an

infinite sequence of h and i, that is, a phrase with a fill. The lower voice is made

up of three “measures” of a duration of 40 units (j), plus a specific sequence of
pitches s. This pattern also shows the rhythmically denser special use of the \r

to indicate a pause. The two Pbind use \stretch as an indication of tempo (de-

fined empirically). The bass voice ~e2 proceeds in an ordinary way. The higher

SynthDef("bink", { arg freq = 440, pan = 0, amp = 0.1;
	var sig, del;
	// source
	sig = Pulse.ar(freq
		*Line.kr(1,
			LFNoise1.kr(0.1)
			.linlin(-1,1, -0.5, 0).midiratio, 0.1),
		width:0.1
) ;
	// delay tail
	del = Mix.fill(20, {|i|
		DelayL.ar(sig,
			delaytime: LFNoise1.kr(0.1)
			.linlin(-1,1, 0.01, 0.1)
)
	}) ;
	// mix, envelope, spatialization
	Out.ar(0,
		Pan2.ar(
			(sig+del)*EnvGen.kr(Env.perc, doneAction:2),
			pan, amp
))
}).add;

code/scheduling/indieDef.scd
code/scheduling/indieDef.scd

Introduction to SuperCollider 259

voice ~e1 uses Pkey, a special pattern that allows to access the value of another

variable in Pbind. Midi notes to be played are defined in this way: through a

linear interpolation (a mapping), from durations to pitches (thus, longer dura-

tions result in lower pitches, and vice versa).

1 (

2 // duration organisation

3 // phrase

4 a = Pseq([7,5], 2) ;

5 b = Pseq([8], 3) ;

6 // fills

7 c = Pseq([4], 4) ;

8 d = Pseq([16/3], 3) ;

9 e = Pseq([1,2,3,4,6], 1) ;

10 f = Pseq([8/3, 16/3], 2) ;

11 g = Pseq([6,5,4,1], 1) ;

12 y = Pseq([5,5,1,5], 1) ;

13 z = Pseq([4,3,2,5,2], 1) ;

14 w = Pseq([30/5, 25/5, 15/5, 10/5], 1) ;

15 u = Pseq([30/5, 25/5, 15/5, 10/5].reverse, 1) ;

16 // first nesting

17 h = Prand([a, b],1) ;

18 i = Prand([c,d,e, f,g, y,z,w,u], 1) ;

19 // second

20 k = Pseq([h, i], inf) ;

21 // a bass line

22 j = Pseq([10, 20, 10, 40, 40/3, 40/3, 40/3], inf) ;

23 l = Pseq([

24 -24, -24, -12, -24, \r , -26, -25,

25 -24, -14, -12, -24, -13, \r , -25,

26], inf) ;

27)

29 (

30 // two parallel voices

31 ~e1 = Pbind(\instrument , \bink , \stretch , 60/32/60, \dur , k.next,

32 \ctranspose , Pkey(\dur).linlin(0, 12, 12, 0.0), \pan , rrand(-0.5, 0.5)

33).play ;

35 ~e2 = Pbind(\instrument , \bink , \ctranspose , l.next, \amp , 0.1,

36 \stretch , 60/32/60, \dur , j.next).play

37)

38 // stop

39 [~e1, ~e2].do{|i| i.pause} ;

260 Organized sound: scheduling

7.10 Conclusions

Time is obviously a key issue in themanagement of sound and this chapter was

simply an attempt to suggest some early indications about the many possibili-

ties (conceptual and operational) that SuperCollider provides. This expressive

richness makes SC suitable for many different situations, benefiting from spe-

cific modes of conceptualization. However, what has been discussed is only,

one could say, the visible part of a very deep iceberg, which the reader is invited

to explore through the help files. The constant interaction between program-

ming and sound output that SC provides makes the task extremely inspiring.

(
// duration organisation
// phrase
a = Pseq([7,5], 2) ;
b = Pseq([8], 3) ;
// fills
c = Pseq([4], 4) ;
d = Pseq([16/3], 3) ;
e = Pseq([1,2,3,4,6], 1) ;
f = Pseq([8/3, 16/3], 2) ;
g = Pseq([6,5,4,1], 1) ;
y = Pseq([5,5,1,5], 1) ;
z = Pseq([4,3,2,5,2], 1) ;
w = Pseq([30/5, 25/5, 15/5, 10/5], 1) ;
u = Pseq([30/5, 25/5, 15/5, 10/5].reverse, 1) ;
// first nesting
h = Prand([a, b],1) ;
i = Prand([c,d,e, f,g, y,z,w,u], 1) ;
// second
k = Pseq([h, i], inf) ;
// a bass line
j = Pseq([10, 20, 10, 40, 40/3, 40/3, 40/3], inf) ;
l = Pseq([
	-24, -24, -12, -24, \r, -26, -25,
	-24, -14, -12, -24, -13, \r, -25,
], inf) ;
)

(
// two parallel voices
~e1 = Pbind(\instrument, \bink, \stretch, 60/32/60, \dur, k.next,
	\ctranspose, Pkey(\dur).linlin(0, 12, 12, 0.0), \pan, rrand(-0.5, 0.5)
).play ;

~e2 = Pbind(\instrument, \bink, \ctranspose, l.next, \amp, 0.1,
	\stretch, 60/32/60, \dur, j.next).play
)
// stop
[~e1, ~e2].do{|i| i.pause} ;

code/scheduling/indie.scd
code/scheduling/indie.scd

8 Synthesis, II: introduction to

basic real-time techniques

So far, audio synthesis has been introduced with respect to acoustics and to

control signals. The next chapter will focus on real-time audio synthesis tech-

niques1 in regard to SuperCollider’s implementation.

In the following we will extensively use the syntax shortcuts for func.play

(or scope, freqscope, plot), which are compact andparticularly usefulwhen ex-

perimenting with UGen graphs for audio processing/synthesis; amongst other

things they are also abundantly used in the help files of the various UGens. In

the few examples that involve SynthDefs, the latterwill not be particularly com-

plicated, given that the focus here is on audio synthesis techniques themselves

rather than their optimal implementation.

8.1 Oscillators and tables

Asound synthesis algorithm is a formalized procedurewith the purpose of gen-

erating a streamof numbers that represent an audio signal. When non-real-time

sound synthesis is concerned, the signal generation could begin from just a

mathematical function such as 𝑠𝑖𝑛(𝑥). Albeit conceptually elegant, such an

approach would be highly inefficient from a computational point of view in

real-time audio synthesis: it would cause the CPU to calculate such a function

1 The chapter closely follows the approach proposed in Audio and multimedia,

which the interested reader may refer to.

262 Synthesis, II: introduction to basic real-time techniques

asmany times per second as that of theworking sampling rate chosen (i.e.44.100
which is the default sampling rate in SC). It becomes immediately clear that the

audio synthesis also revolves around the choice of those particular algorith-

mic strategies that achieve the desired effect while also being computational

“cheap”. Regarding the construction of a periodic waveform, there is another

method, one with a rather long tradition in computer music: building a digi-

tal oscillator. Digital oscillators are fundamental algorithms in computer music

since they are both used in order to generate audio/control signals directly,

as well as within the context of more complex sound generators. As far as a

sinusoidal signal is concerned (and in general, as far as the stationary part of

every periodic sound is concerned), it is predicable to a great extent: it typically

repeats the very same values at each period. Such a period can be easily rep-

resented in the form of sampled values stored equidistantly in a 𝑛-sized table.
Such a table is called a wavetable.

As an example consider the following code that uses an array to calculate

a sine-wave sampled as 16 points and having a cycle of 2𝜋 :

1 // a 16-point array, freq = 1 in 2pi

2 ~sig = Array.fill(16, {|i| sin(i/16*2pi)});

4 // posting the table

5 ~sig.do{|i,j| ("["++j++"] = "++i).postln } ;

The table is the following:

// a 16-point array, freq = 1 in 2pi
~sig = Array.fill(16, {|i| sin(i/16*2pi)});

// posting the table
~sig.do{|i,j| ("["++j++"] = "++i).postln } ;

code/sintesi/sineArray.scd
code/sintesi/sineArray.scd

Introduction to SuperCollider 263

1 [0] = 0

2 [1] = 0.38268343236509

3 [2] = 0.70710678118655

4 [3] = 0.92387953251129

5 [4] = 1

6 [5] = 0.92387953251129

7 [6] = 0.70710678118655

8 [7] = 0.38268343236509

9 [8] = 1.2246467991474e-16

10 [9] = -0.38268343236509

11 [10] = -0.70710678118655

12 [11] = -0.92387953251129

13 [12] = -1

14 [13] = -0.92387953251129

15 [14] = -0.70710678118655

16 [15] = -0.38268343236509

The resulting signal is shown in Figure 8.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.1 Sampled waveform.

If we assume that such a data structure represents a table, a digital oscillator

basically performs two operations:

1. reads the sample values from a part of memory that holds them;

[0] = 0
[1] = 0.38268343236509
[2] = 0.70710678118655
[3] = 0.92387953251129
[4] = 1
[5] = 0.92387953251129
[6] = 0.70710678118655
[7] = 0.38268343236509
[8] = 1.2246467991474e-16
[9] = -0.38268343236509
[10] = -0.70710678118655
[11] = -0.92387953251129
[12] = -1
[13] = -0.92387953251129
[14] = -0.70710678118655
[15] = -0.38268343236509

code/sintesi/post/sineArrayPost.scd
code/sintesi/post/sineArrayPost.scd

264 Synthesis, II: introduction to basic real-time techniques

2. when it arrives at the final sample (that is 15 in our example) it goes back to
the first (0) and starts over again. This last operation is defined aswrappping

around.

The described synthesis method (Table Look-Up Synthesis) is extremely effi-

cient: reading the values frommemory is, indeed, several degrees ofmagnitude

faster than calculating the values of a function. Storing information in memory

and later retrieving it is, among other things, the very same idea that we dis-

cussed when introducing envelopes. The table is nothing but a static model

(loaded at initialization): it is then up to the user to decide the amplitude and

frequency of the synthesized signal. Regarding the amplitude, the operation

should be obvious: we can simplymultiply the signalwith a scalar so that given

the original sample stored in the lookup table of [−1, 1], the output ones will be
scaled accordingly (e.g. to a [−0.5, 0.5] range for a multiplication factor of 0.5,
Figure 8.2).

1 // a 16-point array, freq = 1 in 2pi, amp = 0.5

2 ~sig = Array.fill(16, {|i| sin(i/16*2pi)*0.5});

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.2 Amplitude scaling.

As far as sinusoidal signals are concerned, we can always use the specialized

SinOscUGenwhich is implemented using table look-up synthesis. The internal

table has a size of 8192 samples2. However, the use of wavetables is not limited

// a 16-point array, freq = 1 in 2pi, amp = 0.5
~sig = Array.fill(16, {|i| sin(i/16*2pi)*0.5});

code/sintesi/sineArray2.scd
code/sintesi/sineArray2.scd

Introduction to SuperCollider 265

in implementing sinusoidal waves: it can be a more general approach for the

synthesis of all sorts of periodic signals.

In SC, there are a number of specialized UGens that can utilize waveta-

bles, the most basic and important of which is Osc—its first argument being a

wavetable’s buffer ID (the buffer should a have size equal to some power of 2,
for reasons of optimization), and the second being the frequency in which the

table should be read through. If the table represents a single period from the

desired signal, the look-up frequency will actually represent the frequency of

the audio signal. The wavetable must be loaded into a buffer that can then be

used by Osc. As we saw when discussing the server, a buffer corresponds to

a location in temporary memory which the server allocates from RAM. Every

buffer, like every bus, corresponds to a numerical address that we use when

referring to it.

SC implements a Buffer class that manages this memory. In other words,

using Bufferwe can ask the server to reserve space from RAM and to load data

(and to perform certain operations on them, if needed). Buffer features a num-

ber of different allocation/filling methods; among others, there are dedicated

methods to read an audio file directly into the buffer as well as methods to fill

the space in memory with specific types of signals that are generally useful for

sound synthesis.

1 (

2 var buf = Buffer.alloc(s, 2.pow(10)) ;

3 // 1 component with normalized amplitude

4 buf.sine1([1]) ;

5 {Osc.ar(buf, 440)}.play ;

6)

8 (

9 var buf = Buffer.alloc(s, 2.pow(10)) ;

10 // 20 components with random amplitudes

11 buf.sine1(Array.fill(20, { 1.0.rand })) ;

12 {Osc.ar(buf, 440, mul: 0.6)}.play

13)

2 Another UGen for sine generation is FSinOsc, but is actually implemented dif-

ferently, which is why there are certain limitations on its use.

(
var buf = Buffer.alloc(s, 2.pow(10)) ;
// 1 component with normalized amplitude
buf.sine1([1]) ;
{Osc.ar(buf, 440)}.play ;
)

(
var buf = Buffer.alloc(s, 2.pow(10)) ;
// 20 components with random amplitudes
buf.sine1(Array.fill(20, { 1.0.rand })) ;
{Osc.ar(buf, 440, mul: 0.6)}.play
)

code/sintesi/buffer.scd
code/sintesi/buffer.scd

266 Synthesis, II: introduction to basic real-time techniques

The code above comprises two examples. In the first, we rely on the alloc

method that asks the server s3 to construct a buffer of specific size for us. The di-

mension of the buffer is specified internally as a power of 2 (2.pow(10)). Then,
by means of sending a sine1 message to buf, we fill it with a sum of harmon-

ically-related sinusoidal signals. The syntax is comparable to that of Array’s

waveFill method: an array with the amplitudes for each harmonic in the de-

sired signal. In the first example we only load the fundamental of a sine-wave.

Osc’s first argument is the identifier of the table to scan. Using the frequency ar-

gument, the table will be scanned with a frequency of 440 times per second. In
the second example, the amplitude array is generated employing Array’s fill

method which, in this particular case, returns an array of 20 pseudo-random
numbers within a [0.0, 1.0] range: this stochasticly represents the amplitudes of
the first 20 harmonic partials. It is also possible to read a wave-table directly

from the hard disc.

In the following example we first generate a signal using the Signal class

and its sineFill method, which generates a sum of sinusoids: it is noted that

the dimension of the array (the first argument of the sineFill method) is im-

mediately calculated as a power of 2, so that 216 = 65536. Then, the signal has
to be converted into the appropriate format, like that of the Wavetable class, so

that it may be read by Osc: this is done using the asWavetable method. The

following SynthDef simply bundles Out and Osc UGens and passes buf as an

argument.

Finally, after having stored the signal as an audio file (10–14), it is possible

to load it into a buffer: in line 28 we use the read method that first allocates

a buffer on the server s and then immediately loads the file specified by the

path argument. The buffer is assigned to the variable buf. The buffer size (the

memory it occupies) is inferred so that it equals the size of the specified file.

Thus, the newly generated Synth (31) uses the buf buffer.

3 Remember that the global variable s by default represents the audio server.

Introduction to SuperCollider 267

1 (

2 var sig ;

3 var soundFile ;

4 //--> generating a signal

5 sig = Signal.sineFill(2.pow(16), [1]) ; // 65536

6 sig = sig.asWavetable ; // mandatory!

7 //--> writing the audio signal on a file

8 soundFile = SoundFile.new ;

9 soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;

10 soundFile.openWrite("/Users/andrea/musica/signalTest.aiff") ;

11 soundFile.writeData(sig) ;

12 soundFile.close ;

13)

15 (

16 //--> reading synthDef

17 SynthDef("tableOsc",{ arg buf, freq = 440, amp = 0.4 ;

18 Out.ar(0,

19 Osc.ar(buf, freq, mul: amp))

20 }).add ;

21)

23 (

24 var freq = 440 ;

25 var buf, aSynth;

27 //--> allocating a buffer e immediately filling with file

28 buf = Buffer.read(s, "/Users/andrea/musica/signalTest.aiff") ;

30 //--> reading from buffer

31 aSynth = Synth.new("tableOsc", ["buf", buf]) ;

32)

This oscillator generates samples by means of scanning the wavetable: the

waveform stored in the buffer does not have to be sinusoidal. It is, indeed,

possible to store in the buffer any kind of waveform. It is possible as well to

load a part of any pre-existent signal.

In the following example, the wavetable is filled with pseudo-random val-

ues: in line 11 each element of the array (of the Signal type) is assigned to a

randomly chosen value within a [0.0, 2.0] − 1 = [−1.0, 1.0] range. The resulting

(
var sig ;
var soundFile ;
//--> generating a signal
sig = Signal.sineFill(2.pow(16), [1]) ; // 65536
sig = sig.asWavetable ; // mandatory!
//--> writing the audio signal on a file
soundFile = SoundFile.new ;
soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;
soundFile.openWrite("/Users/andrea/musica/signalTest.aiff") ;
soundFile.writeData(sig) ;
soundFile.close ;
)

(
//--> reading synthDef
SynthDef("tableOsc",{ arg buf, freq = 440, amp = 0.4 ;
		Out.ar(0,
			Osc.ar(buf, freq, mul: amp))
	}).add ;
)

(
var freq = 440 ;
var buf, aSynth;

//--> allocating a buffer e immediately filling with file
buf = Buffer.read(s, "/Users/andrea/musica/signalTest.aiff") ;

//--> reading from buffer
aSynth = Synth.new("tableOsc", ["buf", buf]) ;
)

code/sintesi/table.scd
code/sintesi/table.scd

268 Synthesis, II: introduction to basic real-time techniques

Signal is then converted to a Wavetable. The rest of the code makes use of the

previously used SynthDef (tableOsc). The size of the table (line 11) is deter-

mined by exp (line 10), the exponent of 2. Any oscillator that does not immedi-

ately stop after the wavetable is over (in which case there would be not point

in discussing frequency), by definition produces a periodic signal. Regarding

the wavetable, the greater the table and the more complicated its “shape”, the

more noisy the resulting signal. Conversely, smaller wavetables will produce

signals with a simpler time profile (less randomness involved), which would

be, therefore, "less dissonant”. Try for example to vary exp in the [1, 20] range
while visualizing the contents of the buffer using plot. In the lines 23 and 24,

we can modulate the frequency according to which the wavetable is scanned;

smaller values will make the noisy profile of the latter more evident.

1 /*

2 Periodic-aperiodic oscillator:

3 reads from a pseudo-random value table

4 */

6 (

7 var sig, exp ;

8 var soundFile;

9 // generating the table

10 exp = 6 ; // try in range [1, 20]

11 sig = Signal.fill(2.pow(exp), {2.0.rand-1}).asWavetable ;

12 sig.plot ; // visualizing the table

13 //--> writing the signal on file

14 soundFile = SoundFile.new ;

15 soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;

16 soundFile.openWrite("/Users/andrea/musica/signalTest.aiff") ;

17 soundFile.writeData(sig) ;

18 soundFile.close ;

19)

21 ~buf = Buffer.read(s, "/Users/andrea/musica/signalTest.aiff") ;

22 ~aSynth = Synth.new(\tableOsc , [\buf , ~buf, "amp", 0.1]) ;

23 ~aSynth.set(\freq , 10) ;

24 ~aSynth.set(\freq , 1) ;

The oscillator’s frequency, thence, indicates how fast/slow the wavetable

is read. Specifically, the value passed in tells the oscillator howmany times per

/*
	Periodic-aperiodic oscillator:
	reads from a pseudo-random value table
*/

(
var sig, exp ;
var soundFile;
// generating the table
exp = 6 ;		// try in range [1, 20]
sig = Signal.fill(2.pow(exp), {2.0.rand-1}).asWavetable ;
sig.plot ; // visualizing the table
//--> writing the signal on file
soundFile = SoundFile.new ;
soundFile.headerFormat_("AIFF").sampleFormat_("int16").numChannels_(1) ;
soundFile.openWrite("/Users/andrea/musica/signalTest.aiff") ;
soundFile.writeData(sig) ;
soundFile.close ;
)

~buf = Buffer.read(s, "/Users/andrea/musica/signalTest.aiff") ;
~aSynth = Synth.new(\tableOsc, [\buf, ~buf, "amp", 0.1]) ;
~aSynth.set(\freq, 10) ;
~aSynth.set(\freq, 1) ;

code/sintesi/tableNoise.scd
code/sintesi/tableNoise.scd

Introduction to SuperCollider 269

second to read through the table. In the following SynthDef we modulate this

rate with the aid of LFNoise0 in a way we have already described before.

1 // modulating the freq

2 SynthDef(\tableOsc ,{ arg buf = 0, freq = 440, amp = 0.4 ;

3 Out.ar(0, Osc.ar(buf,

4 LFNoise0.ar(10, mul: 400, add: 400), mul: amp))

5 }).add ;

8.1.1 Synthesis by sampling

A conceptually simpler audio synthesis technique is that of sampling. Essen-

tially, a “sample”4 is an audio signal, typically short in duration, that has been

either directly recorded or extracted from an audio file through editing. In any

case, sampling synthesis revolves around the playback of pre-existent audio.

Basic sampling looks a lot like a table-lookup synthesis. As we already dis-

cussed, however, the latter primarily concerns the repetition of rather simple

single-period waveforms (albeit it is possible to use any kind of waveform re-

ally). Instead, sampling deals with more complex audio excerpts, the duration

of which only depends upon hardware limitations. Regardless of the sample’s

origin, once loaded into the memory it may be reproduced whenever needed

through some specialized kind of UGen. Despite this conceptual simplicity,

such an approach is powerful since it enables us to access all sorts of already

existent sounds. These days one can easily find sampled sound of all sorts bun-

dled as libraries, e.g. an entire drum set or the sounds of various orchestral

instruments5.

Although it is possible to playback the samples using an oscillator such

as Osc, a specialized UGen for this purpose exists, namely PlayBuf. With the

4 Note that a “sample” in this context has a different meaning that what we have

hitherto encountered—that is, when discussing sampling rate.
5 While this is not the place to advertise websites, it is worth mentioning The

Freesound Project which features tens of thousands of indexed audio samples

available under aCreativeCommons license (http://freesound.iua.upf.edu/).

// modulating the freq
SynthDef(\tableOsc,{ arg buf = 0, freq = 440, amp = 0.4 ;
	Out.ar(0, Osc.ar(buf,
		LFNoise0.ar(10, mul: 400, add: 400), mul: amp))
}).add ;

code/sintesi/oscDef.scd
code/sintesi/oscDef.scd

270 Synthesis, II: introduction to basic real-time techniques

latter we can use buffers of any possible size and not solely those with sizes

that correspond to some power of 2.

1 (

2 SynthDef(\playBuf , { arg buf, loop = 0 ;

3 Out.ar(0, PlayBuf.ar(1, buf, loop: loop))

4 }).add ;

5)

6 (

7 var buf, aSynth ;

8 buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

9 aSynth = Synth(\playBuf , [\buf , buf, "loop", -1]) ;

10)

In the previous example, the SynthDef simply “wraps” PlayBuf which ex-

poses three of its available arguments, the first two and the last.

• the first argument indicates the number of the channels (typically mono or

stereo): if its value is 1, the buffer should also bemono. Note that differences

between the indicated and the real number of channels could lead to failure,

even if the interpreter will not always report it. Rather than crashing, many

buffer reading UGens may just fail silently;

• the second argument specifies the buffer to read from, here buf;

• loop argument indicates the mode of playback and can have either of two

values: 0 stands for single-shot mode, and 1 for looping (cyclic playback).

After a buffer is allocated to buf, audio from the hard drive can be read

into it. The use of Platform.resourceDir is a cross platform utility method

that always points to SC’s resources directory. The a11wlk01-44_1.aiff file is

included with SC. Even if this file is sampled in a sampling rate of 44.100 Hz
(like its name implies), SC will play it back on the server’s sampling rate (also

(
SynthDef(\playBuf, { arg buf, loop = 0 ;
	Out.ar(0, PlayBuf.ar(1, buf, loop: loop))
}).add ;
)
(
var buf, aSynth ;
buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;
aSynth = Synth(\playBuf, [\buf, buf, "loop", -1]) ;
)

code/sintesi/PlayBuf1.scd
code/sintesi/PlayBuf1.scd

Introduction to SuperCollider 271

44.100 Hz by default): if those two differ the file will be played back faster or
slower than expected.

8.1.2 Resampling and interpolation

When simply reading a bufferwith PlayBuf, the resultwill be an identical signal

to the one loaded in the former. In the case of Osc there is a way of specifying

the frequency according to which the buffer should be read, meaning that the

wavetable is read through in terms of cycles per second. It would be possible to

vary the speed according to which we read a buffer with PlayBuf by changing

the server’s sample rate: but this would be highly inefficient, however, since

we cannot modulate the server’s sampling rate in real-time. There is, indeed,

a more efficient way. Using PlayBuf’s rate method we can “tune” a sample

in much the same way as we did with wavetables. This process is typically

referred to as resampling.

Assuming that a simplewavetable has a period𝑇 = 16/44100 = 0.00036281…
seconds. If looped, the resulting signal’s frequency would be 𝑓 = 1/𝑇 =
2756.25 Hz. If instead we only read one sample every 2 available ones, the

new period would be 𝑇 = 16/2 → 8/44100 = 0.00018140… seconds and, there-

fore, the frequency of the resulting signal would be → 𝑓 = 1/𝑇 = 5512.5 Hz,
that is two times the original frequency. Reading the table in this fashion es-

sentially “skips” every other value in the table. Figure 8.3 (a) demonstrates a

sinusoidal signal with a frequency of 8
𝑇 , sampled at 𝑇 = 512 points. Reading

one sample every two results in the signal in Figure 8.3 (b-c): In (b), every cycle

of the downsampled signal is only represented by half the number of samples

that were present in the original; in (c) we see that within the same duration the

number of peaks and valleys of the resulting signal are doubled. That is to say

that the downsampled signal has a frequency of 16
512 and a duration for the cycle

is equal to half of the original.

If the reading speed is 2 the frequency is doubled and, as a result, trans-

posed an octave up, while the relationship 4 : 1 indicates a transposition of 4
octaves up. This operation is called downsampling. Upsampling then, is a similar

operation where we make it is possible to lower the frequency of the original

sample: for each of the original samples in the table an intermediate one is

somehow generated; The resulting frequency will be half of the original one

which is the musical equivalent of a transposition of one octave lower. In this

272 Synthesis, II: introduction to basic real-time techniques

0 64 128 192 256 320 384 448 512

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 64 128 192 256

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

0 64 128 192 256 320 384 448 512

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 64 128 192 256 320 384 448 512

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c) (d)

Figure 8.3 Sinusoidal signals with frequency 𝑓 and period 𝑇 (a), downsam-

pled version of this signal (reading a sample every two) with 2𝑓 and 𝑇
2 (b-c),

downsampled version of the signal with 𝑓 = 4 and 𝑇
4 (d).

case, the added samples are not present in the original wavetable but are in-

stead produced with respect to the existent ones. These are typically inferred

by means of an interpolation function that takes into account some number of

the original samples around the missing sample point that we want to calcu-

late. There are numerous interpolation functions that would be valid in this

context: the simpler being a linear interpolation scheme which is the geomet-

rical equivalent of drawing a line between two adjacent points and retrieving

the value in the middle. For example, if the first value is 0 and the second 1,
then the inferred value would be 0.5. Other interpolation schemes –not to be
discussed here– are also possible; usually these are based on the same geomet-

rical principle where the line could also be curved and a value inferred from

the contribution of more values.

Interpolation also enables the determination of the value of samples with

any fractional relationship between two samples that already exist: that is, we

are able not only to retrieve an extra sample every two, three, etc, but also at

distances of 0.9, 0.234, between two given samples. This means that we can

Introduction to SuperCollider 273

transpose the original sample in terms of all kinds of interval ratios, including

integer and non-integer ones. For instance, the ratio between two frequencies

that form a semitone interval (on a guitar fretboard, the distance between two

consecutive frets, e.g. between C and C♯) is 12
√

2 ≈ 1.06. In SC we can easily

calculate such ratios (remember that in midi notation 60 indicates the middle
C) and this way easily represent the semitone:

1 61.midicps / 60.midicps // -> 1.0594630943593

In order to obtain a semitone transposition it would be necessary to get an

extra sample every ≈ 1.06 samples. Such an operation is possible via some

interpolation scheme. It has to be noticed, however, that as far as timbre is

concerned, doubling the frequency is very different than instrumentally trans-

posing notes; if one is interested in properly emulating the sounds of real in-

struments, it is more appropriate to sample many different registers of an in-

strument and limit the amount of transposition that is needed to cover an entire

range of notes.

With an oscillator like Osc, the idea is to calculate ahead of time the sam-

ples needed for a signal’s period, then control its frequency. The frequency

is expressed in terms of an absolute value that indicates the number of times

the entire wavetable is to be read every second. PlayBuf, on the contrary, is

designed to read buffers that contain more complex signals where we do not

necessarily know (or care about) the size of the buffer (and prefer not to think

in terms of a cyclical period). In this case the frequency is expressed proportion-

ally to the original sound, or in other words, in terms of how fast or slow the

sample is played back to provide the opportune adjustment. This relationship

can be formalized as 𝑇1
𝑇2
, where 𝑇1 is the number of samples a buffer contains and

𝑇2 the number of samples of the resulting signal. The same relationship can be

also expressed in terms of frequency with 𝑓2
𝑓1
, where 𝑓1 indicates the frequency

of the original signal and 𝑓2 that of the resulting one. PlayBuf lets us specify

such relationships in terms of its rate argument: if 𝑟𝑎𝑡𝑒 = 1, the buffer is read
according to the server’s sampling rate; if 𝑟𝑎𝑡𝑒 = 0.5, then 𝑇2 = 2 and, thence,
the buffer is effectively “stretched” to two times its original duration and the re-

sulting signal will have a frequency of 𝑓2—that is an octave down with respect

to the original. If rate is negative, the buffer is played back in reverse, from the

last sample to the first, and at the speed the argument indicates.

61.midicps / 60.midicps // -> 1.0594630943593

code/sintesi/midiSemitone.scd
code/sintesi/midiSemitone.scd

274 Synthesis, II: introduction to basic real-time techniques

In the following example, the rate argument is given in terms of the output

of a Line UGen. The last generates a signal that linearly goes from 1 to -2. This

means that the buffer will be initially read at its original 𝑟𝑎𝑡𝑒 = 1 (given, of

course, that the rate according to which the signal has been sampled equals the

server’s sampling rate) and is then progressively played at a slower speed (this

will also result in the sample having greater duration) until 𝑟𝑎𝑡𝑒 = 0. From this

point and on, the playback speed becomes progressively greater, but the buffer

is read in reverse. The final value generated from Line is −2, which stands for
twice the original playback speed and for reverse playbackmode. Note that the

synth will be immediately deallocated once Line reaches this value, given that

doneAction is set to 2.

1 (

2 SynthDef(\playBuf2 , { arg buf = 0;

3 Out.ar(0, PlayBuf.ar(1, buf,

4 rate: Line.kr(1, -2, 100, doneAction:2), loop: 1))

5 }).add ;

6)

8 (

9 var buf, aSynth ;

10 buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

11 aSynth = Synth(\playBuf2 , [\buf , buf]) ;

12)

The following example demonstrates the expressive power and efficiency

of SC while drawing upon several aspects that we have already discussed. The

array source includes 100 stereophonic signals generated bymeans of Pan2 and
PlayBuf. The variable level is an amplitude factor that has been determined

empirically. A LFNoise0 UGen controls the rate argument of each PlayBuf, so

that it modulates within a [−2.0, 2.0] range—an octave up in both normal and

reverse playbackmodes. Accordingly, all of the 100 PlayBufs read from the very

same buffer, each having its playback speed modulated in a pseudo-random

way by LFNoise0. The stereo signals are then grouped using flop (line 13) and

mixed (line 14-15) so that eventually an array of just two channels is sent to Out.

(
SynthDef(\playBuf2, { arg buf = 0;
	Out.ar(0, PlayBuf.ar(1, buf,
		rate: Line.kr(1, -2, 100, doneAction:2), loop: 1))
}).add ;
)

(
var buf, aSynth ;
buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;
aSynth = Synth(\playBuf2, [\buf, buf]) ;
)

code/sintesi/playBuf2.scd
code/sintesi/playBuf2.scd

Introduction to SuperCollider 275

1 (

2 SynthDef(\playBuf3 , { arg buf = 0;

3 var left, right ;

4 var num = 100 ;

5 var level = 10/num ;

6 var source = Array.fill(num, { arg i ;

7 Pan2.ar(

8 in: PlayBuf.ar(1, buf, rate:

9 LFNoise0.kr(1+i, mul: 2), loop: 1),

10 pos: LFNoise0.kr(1+i),

11 level: level) ;

12 }) ;

13 source = source.flop ;

14 left = Mix.new(source[0]) ;

15 right = Mix.new(source[1]) ;

16 Out.ar(0, [left, right])

17 }).add ;

18)

20 (

21 var buf, aSynth ;

22 buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

23 aSynth = Synth(\playBuf3 , [\buf , buf]) ;

24)

8.2 Direct generation

Unlike sampling, the synthesis methods we will present from here on do not

rely on pre-existent audio material, but rather revolve around the generation

(
SynthDef(\playBuf3, { arg buf = 0;
	var left, right ;
	var num = 100 ;
	var level = 10/num ;
	var source = Array.fill(num, { arg i ;
		Pan2.ar(
			in: PlayBuf.ar(1, buf, rate:
				LFNoise0.kr(1+i, mul: 2), loop: 1),
			pos: LFNoise0.kr(1+i),
			level: level) ;
	}) ;
	source = source.flop ;
	left = Mix.new(source[0]) ;
	right = Mix.new(source[1]) ;
	Out.ar(0, [left, right])
}).add ;
)

(
var buf, aSynth ;
buf = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;
aSynth = Synth(\playBuf3, [\buf, buf]) ;
)

code/sintesi/playBuf3.scd
code/sintesi/playBuf3.scd

276 Synthesis, II: introduction to basic real-time techniques

of signals by means of mathematical computations. Emphasis is put, therefore,

on how to generate a signal ex-novo and not on its subsequent modulation.

8.2.1 Synthesis by fixed waveform

The conceptually simplest method to generate an acoustic signal is with respect

to a periodical mathematical function which describes its (fixed waveform) in

terms of sinusoidal integrals. Even if it is possible to simply calculate the am-

plitude values for each individual partial, the already described Table Look-Up

method is more often used: a waveform is stored into a buffer and is read cycli-

cally. It is then possible to generate all kinds of waveforms and not only si-

nusoidal-based ones: e.g. square, triangle, sawtooth, etc. However, in these

last cases a digital oscillator is not necessarily the most optimal solution. For

example, certain square or rectangular waveforms can be simply described in

terms of a fixed amplitude value and of a particular frequency (or temporal in-

terval) according to which the former alternates. Apart from SinOsc, SC offers

a wide variety of periodic signal generators. For example Pulse, that generates

square pulses having a variable duty cycle—the term indicates the relationship

between the positive and negative parts of thewaveform’s cycle—Saw, that gen-

erates sawtooth waveforms, and Impulse, that generates a signal comprised of

a single sample repeated at a given frequency. Several of those cases also have

dedicated control UGen counterparts (e.g., LFPulse, LFSaw).

An interesting case is noise generators. Noise is a signal where a given sam-

ple cannot be predicted in a deterministic way—that is, its amplitude value

varies pseudo-randomly with respect to some particular formula: “pseudo”,

because computers are only capable of deterministic calculations. Thus, noise

generators rely on complex formulas that essentially emulate stochastic opera-

tions within the confines of computer hardware—such operations are not sim-

ple to define. Acoustically speaking, noise is an umbrella-term that accounts

for a wide range of diverse phenomena which, nevertheless, have some com-

mon sonic features. In the case of white noise, the amplitude values vary in

a completely random fashion: the resulting spectrum has energy distributed

uniformly in all frequencies. There are other kinds of “colored’ noises with

different spectral features: brown noise, for instance, is characterized by a con-

stant amplitude attenuation of 6 dB per octave. Those two spectra, obtained by
WhiteNoise and BrownNoise UGens, respectively, are demonstrated in Figure

8.4 (a) and (b).

Introduction to SuperCollider 277

Another interesting noise generator is Dust, which distributes single sam-

ples in time in a non uniformway and according to a probabilistic density distri-

bution. In Figure 8.4 (c) we can see such a signal with a density of 100; compare
this waveform with that of Impulse, which also produces single samples but in

a periodic fashion. The code is the following:

1 // white vs pink noise

2 {WhiteNoise.ar(0.5)}.play ;

3 {BrownNoise.ar(0.5)}.play ;

4 // Dust vs Impulse

5 {Dust.ar(100)}.play ;

6 {Impulse.ar(100)}.play ;

The output of a pseudo-random number generator can be used as an au-

dio signal on its own, as a source signal that can be further processed (see later,

subtractive/additive synthesis) or as a control signal to modulate some syn-

thesis parameter—this way introducing stochastic behavior into deterministic

systems.

8.2.2 Modulation

We may speak of modulation whenever an oscillator’s argument (e.g. ampli-

tude, frequency, phase) is varied according to some other signal. The signal

which is modulated is referred to as the carrier and the signal that is doing the

modulating as the modulator. While the simplest oscillator is defined by fixed

amplitude and fixed frequency, a modulating version would have one, or both,

of these parameters controlled by the output of someother oscillator or dynamic

signal. Tremolo and vibrato are two examples where the carrier’s amplitude

and frequency, respectively, is controlled by another periodical signal. Ampli-

tude and frequency modulation, in their simplest form, are implemented in the

same fashion as tremolo and vibrato are. In the case of tremolo and vibrato

the modulation takes place in sub-audio ranges—the modulator’s frequency

typically is lower than 20Hz so that modulation is not perceived as a change

of timbre. Faster modulating frequencies will begin to perceptually alter the

spectral disposition of the resulting output creating more complex timbres.

// white vs pink noise
{WhiteNoise.ar(0.5)}.play ;
{BrownNoise.ar(0.5)}.play ;
// Dust vs Impulse
{Dust.ar(100)}.play ;
{Impulse.ar(100)}.play ;

code/sintesi/rumore.scd
code/sintesi/rumore.scd

278 Synthesis, II: introduction to basic real-time techniques

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

(a) (b)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

(c) (d)

Figure 8.4 Spectra: WhiteNoise (a), BrownNoise (b), Dust (c) e Impulse (d), with

density/frequency = 100.

In general, the result of the signal modulation is a new signal where the

final sonic features depend upon the frequency and the amplitude of both the

carrier and the modulator. Modulation is a widely used technique because it is

convenient, predictable and computationally cheap: while additive synthesis

requires several oscillators (see later), each with its own control parameters,

modulation only requires a couple of oscillators to create signals of equal or

greater complexity.

8.2.3 Ring and Amplitude modulation

When the modulating signal (𝑀) controls the amplitude of the carrier (𝐶), we

generally consider there to be two different types of amplitudemodulation, de-

pending on the characteristics of the modulator. A bipolar signal would cause

the carrier’s amplitude to vary between a positive and a negative value, while

Introduction to SuperCollider 279

Time (s)
0 15.343

0

5000

F
re

qu
en

cy
 (

H
z)

Time (s)
0 13.7314

0

5000

F
re

qu
en

cy
 (

H
z)

Time (s)
1 3

–1

1

0

Time (s)
1 1.1

–1

1

0

Figure 8.5 Increase of vibrato (left) and tremolo (right) frequency: sonogram

(top) and waveform (bottom).

an unipolar one betweenpositive values only. Consider the next examplewhere

both unipolar and bipolar approaches are demonstrated for a sine wave with a

frequency of 440 Hz—notice the use of the unipolarmethod.

1 // bipolar

2 {SinOsc.ar}.plot(minval:-1, maxval:1) ;

3 // unipolar

4 {SinOsc.ar(mul: 0.5, add:0.5)}.plot(minval:-1, maxval:1) ;

5 {SinOsc.ar.unipolar}.plot(minval:-1, maxval:1) ;

Audio signals are typically bipolar (having an amplitude typically normal-

ized in the [−1.0, 1.0] range). To transform a bipolar signal to a unipolar one

it is sufficient to multiply it with a factor and to add it with an offset (in this

example: [−1.0, 1.0] → [−0.5, 0.5] → [0.0, 1.0]).

// bipolar
{SinOsc.ar}.plot(minval:-1, maxval:1) ;
// unipolar
{SinOsc.ar(mul: 0.5, add:0.5)}.plot(minval:-1, maxval:1) ;
{SinOsc.ar.unipolar}.plot(minval:-1, maxval:1) ;

code/sintesi/uniBipo.scd
code/sintesi/uniBipo.scd

280 Synthesis, II: introduction to basic real-time techniques

When the signal that modulates the amplitude is bipolar, we may refer to

this as Ring Modulation (RM); whereas a unipolar modulator is usually referred

to as simplyAmplitudeModulation (AM). Assuming a carrier and a bipolarmod-

ulator with frequencies of 𝐶 and 𝑀 , respectively, the resulting signal would

create two spectral components (referred to as side-bands) of 𝐶 −𝑀 and 𝐶 +𝑀 .

If 𝐶 = 440 Hz e 𝑀 = 110 Hz, the resulting spectrum would have two compo-

nents of 330 and 550 Hz. A unipolar modulator would result in a signal where

the carrier’s original frequency is also present. In the above case, keeping all

other parameters the same, a unipolar modulator creates a spectrum with the

following partials: 𝐶 − 𝑀 = 330, 𝐶 = 440, 𝐶 + 𝑀 = 550. Note that a coef-
ficient with a negative value is to be understood as a coefficient with inverted

phase—such a partial would “rival” the positive equivalent; accordingly, a co-

efficient of −200 Hz would be represented as a having a frequency of 200 Hz
but would also cause a coefficient of 200 Hz to attenuate.

The following example demonstrates two possible implementations with

otherwise identical results. In the former (3–7), the modulator controls the car-

rier’s mul argument. In the latter, the two signals are multiplied together. The

mul argument indicates a value according towhich the signal is to bemultiplied,

accordingly the two implementations essentially represent the very same oper-

ation and differ only syntactically.

1 // better set logarithmic scale in visualization

2 // RM: 2 components

3 { SinOsc.ar(440, mul: SinOsc.ar(110))}.freqscope ;

4 { SinOsc.ar(440)*SinOsc.ar(110) }.freqscope ; // the same

6 // AM: 3 components

7 { SinOsc.ar(440, mul: SinOsc.ar(110, mul: 0.5, add:0.5))}.freqscope ;

8 { SinOsc.ar(440)*SinOsc.ar(110, mul:0.5, add:0.5) }.freqscope ; // the same

8.2.4 Ring modulation as a processing technique

AMis typically understood as a technique to build complex spectra from scratch

and by means of simple sinusoidal signals. RM is rather understood as a tech-

// better set logarithmic scale in visualization
// RM: 2 components
{ SinOsc.ar(440, mul: SinOsc.ar(110))}.freqscope ;
{ SinOsc.ar(440)*SinOsc.ar(110) }.freqscope ; // the same

// AM: 3 components
{ SinOsc.ar(440, mul: SinOsc.ar(110, mul: 0.5, add:0.5))}.freqscope ;
{ SinOsc.ar(440)*SinOsc.ar(110, mul:0.5, add:0.5) }.freqscope ; // the same

code/sintesi/rm1.scd
code/sintesi/rm1.scd

Introduction to SuperCollider 281

nique to further process existent signals6, given its long history in analogue

synthesis7. Consider modulating a more complex signal (e.g. of instrumental

origin) with a sinusoidal one: the former would have a spectrum made up of a

series of partials 𝐶𝑛:

𝐶 = 𝐶1, 𝐶2, 𝐶3…, 𝐶𝑛

Given a sinusoidal 𝑀 , ring modulation 𝐶 × 𝑀 would, therefore, apply to

each component so that the resulting signal would contain all the generated

side-bands—a unipolar 𝑀 means that the original 𝐶 would be also present in

the final spectrum:

𝐶1 − 𝑀, (𝐶1), 𝐶1 + 𝑀;
𝐶2 − 𝑀, (𝐶2), 𝐶2 + 𝑀 ,

…
𝐶𝑛 − 𝑀, (𝐶𝑛), 𝐶𝑛 + 𝑀

With a smaller 𝑀 , 𝐶𝑛 − 𝑀 and 𝐶𝑛 + 𝑀 would be closer to 𝐶𝑛: for example,

an inharmonic spectrum of 𝐶𝑛 = 100, 140, 350, 470, 𝑒𝑡𝑐 and 𝑀 = 10, results in
90, 110, 130, 150, 340, 360, 460, 480, 𝑒𝑡𝑐−𝑀, 𝑒𝑡𝑐+𝑀 . Essentially, the spectral en-

velope remains the same but with two times the original density. Conversely,

greater 𝑀 would cause a spectral expansion. In the previous example, if 𝑀 =
2000 the resulting spectrumwould comprise 1900, 2100, 1860, 2140, 1650, 2350, 1730, 2470, …−
𝑀, … + 𝑀—conisder Figure 8.6.

In the following example an audio file is ring-modulated with a sine wave

of a frequency that is exponentially incremented from 1 to 10000 Hz within a
period of 30 seconds. Notice the initial effect of “doubling” which eventually
leads to the emergence of spectral component around the frequencies of the sine

wave.

6 Some references and figures are fromMiller Puckette’s, Theory and Techniques of

Electronic Music.
7 The name derives from the “ring” configuration of the diodes used to approxi-

mate multiplication in analogue synthesizers.

282 Synthesis, II: introduction to basic real-time techniques

5.2. MULTIPLYING AUDIO SIGNALS 125

frequency

amplitude

(a)

(b)

(c)

Figure 5.4: Result of ring modulation of a complex signal by a pure sinusoid:
(a) the original signal’s spectrum and spectral envelope; (b) modulated by a
relatively low modulating frequency (1/3 of the fundamental); (c) modulated
by a higher frequency, 10/3 of the fundamental.

Multiplying by the signal of frequency β gives partials at frequencies equal to:

α1 + β,α1 − β, . . . ,αk + β,αk − β.

As before if any frequency is negative we take its absolute value.
Figure 5.4 shows the result of multiplying a complex periodic signal (with

several components tuned in the ratio 0:1:2:· · ·) by a sinusoid. Both the spectral
envelope and the component frequencies of the result transform by relatively
simple rules.

The resulting spectrum is essentially the original spectrum combined with
its reflection about the vertical axis. This combined spectrum is then shifted to
the right by the modulating frequency. Finally, if any components of the shifted
spectrum are still left of the vertical axis, they are reflected about it to make
positive frequencies again.

In part (b) of the figure, the modulating frequency (the frequency of the
sinusoid) is below the fundamental frequency of the complex signal. In this case

Figure 8.6 𝑀 as a modulator of the spectral envelope: contraction and expan-

sion (from Puckette Theory cit.).

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

3 (

4 { PlayBuf.ar(1, b, loop: 1)

5 *

6 SinOsc.ar(XLine.kr(1, 10000, 30))

7 }.freqscope

8)

The same approach is valid when 𝑀 is a complex signal: this is often the

case in analogue RM, when two complex signals modulate each other8. When

both 𝐶 and 𝑀 are complex signals, side-bands are reciprocally generated for

all component combinations. If 𝐶 and 𝑀 have 𝑖 and 𝑘 spectral components,

respectively, then 𝐶 × 𝑀 would have 𝑖 × 𝑘 components—a signal with great

complexity.

8 For example, this happens in several important works by K.H.Stockhausen:

Kontakte, Hymnen,Mikrophonie, Prozession.

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

(
{ PlayBuf.ar(1, b, loop: 1)
	*
	SinOsc.ar(XLine.kr(1, 10000, 30))
}.freqscope
)

code/sintesi/rm2.scd
code/sintesi/rm2.scd

Introduction to SuperCollider 283

The following example employs the same audio file we have used hithero.

The first modulator is a copy of this file having its playback speed modulated

exponentially in the [0.1−10.0] range (you can listen to this alone by evaluating
the first block only). It can be seen that the resulting signal (lines 8–14) has a

very complex spectral envelope—traces of the original may be still perceived,

nonetheless.

1 (// the modulating signal

2 { PlayBuf.ar(1, b,

3 rate: XLine.kr(0.1, 10.0, 30, doneAction:0),

4 loop: 1) }.play ;

5)

7 (

8 {

9 PlayBuf.ar(1, b, loop: 1)

10 *

11 PlayBuf.ar(1, b,

12 rate: XLine.kr(0.1, 10.0, 30, doneAction:0),

13 loop: 1)

14 *5

15 }.freqscope

16)

In the following example, the same audio file is multipliedwith a quadratic

waveform having a frequency that increments from 0.5 (so that 𝑇 = 2) to 100
Hz in 30 seconds. Note thatwhen the frequency is in the subaudio range (where

𝑓𝑟𝑒𝑞 <≈ 20), the modulator largely operates as a percussive envelope.

1 { PlayBuf.ar(1, b, loop: 1)

2 *

3 Pulse.ar(XLine.kr(0.5, 100, 30, doneAction:2))

4 }.freqscope

Another interesting case occurs when a complex harmonic signal with a

fundamental frequency𝐶 is used as a carrier and a sinusoidal signal with a fre-

quency of 𝑀 = 𝐶
2 as a modulator. The resulting spectrum would be harmonic

(// the modulating signal
{ PlayBuf.ar(1, b,
	rate: XLine.kr(0.1, 10.0, 30, doneAction:0),
	loop: 1) }.play ;
)

(
{
	PlayBuf.ar(1, b, loop: 1)
	*
	PlayBuf.ar(1, b,
	rate: XLine.kr(0.1, 10.0, 30, doneAction:0),
	loop: 1)
	*5
}.freqscope
)

code/sintesi/rm3.scd
code/sintesi/rm3.scd

{ 	PlayBuf.ar(1, b, loop: 1)
	*
	Pulse.ar(XLine.kr(0.5, 100, 30, doneAction:2))
}.freqscope

code/sintesi/rm4.scd
code/sintesi/rm4.scd

284 Synthesis, II: introduction to basic real-time techniques

with a frequency of 𝑀 = 𝐶
2 and would only comprise odd harmonics. This,

essentially, transposes the carrier down an octave.

For example, if 𝐶1−𝑛 = 100, 200, 300, …𝑛 and 𝑀 = 50, the resulting signal
would consist of the following components:

100 ± 50, 200 ± 50, 300 ± 50
=

50, 150, 150, 250, 250, 350, 350

Which are the odd harmonics of 𝐶
2 ; indeed, the ratios between the resulting

partials and the original frequency are 1, 3, 5, 7, …. In order to retrieve the even

harmonics, simply add the original to this signal.

This way we get a simple digital implementation of an analogue effect typ-

ically used in pop/rock music, the octaver.

1 //RM octaver

2 (

3 SynthDef.new(\RmOctaver , {

4 var in, an, freq ;

5 in = SoundIn.ar(0) ; // audio from mic

6 an = Pitch.kr(in).poll ; // analysis signal

7 freq = an[0] ; // the retrieved fundamental freq

8 Out.ar(0, SinOsc.ar(freq: freq*0.5)*in+in);

9 // RM freq/2 + source

10 }).add ;

11)

13 Synth.new(\RmOctaver) ;

The RmOctaver SynthDef processes the soundcard’s input (typically con-

nected to some microphone) via the SoundIn UGen—remember that the first

argument of the latter stands for the bus’ index and that the index 0 always

stands for the first available input. Pitch is a pitch-tracking analysis UGen that

attempts to detect the fundamental frequency of the signal in its input. Pitch

outputs an array of two signals: the first is a value for the detected pitch in Hz

while the second indicates whether the algorithm is confident in its analysis.

The algorithm’s maximum amount of certainty in its analysis results in a value

of 1, and if not, this signal will have a value of 09. The frequency 𝑓
2 is then used

//RM octaver
(
SynthDef.new(\RmOctaver, {
	var in, an, freq ;
	in = SoundIn.ar(0) ; 	// audio from mic
	an = Pitch.kr(in).poll ; // analysis signal
	freq = an[0] ;	// the retrieved fundamental freq
	Out.ar(0, SinOsc.ar(freq: freq*0.5)*in+in);
	// RM freq/2 + source
}).add ;
)

Synth.new(\RmOctaver) ;

code/sintesi/octaver.scd
code/sintesi/octaver.scd

Introduction to SuperCollider 285

to control the oscillator which is ring-modulated with the in signal; the latter

is, then, added to the result.

In a similar fashion, when 𝑀 = 𝑛 × 𝐶 the carrier’s higher-end partials are

affected. If𝐶 = 100, 200, 300, 𝑛×100 and𝑀 = 200(𝑛×2), the resulting spectrum
would be: 100 − 200 = 100, 100 + 200 = 300, 200 − 200 = 0, 200 + 200 = 400, ….

8.2.5 Frequency modulation

In the case of frequency modulation (FM), it is the carrier’s frequency which is

controlled by the modulator. Considering two oscillators, to implement FMwe

typically add the output of the modulator to the carrier’s frequency 𝐶 . In this

way 𝐶 ’s frequency deviates towards greater (when the output of the modula-

tor is positive) and smaller (when the modulator’s output is negative) values.

The peak frequency deviation term, or simply deviation 𝐷 is often referred to as

the index of the carrier’s frequency maximum traversal in Hz. A fundamental

difference between FMwith RM or AM is that with FM, the process produces a

theoretically infinite number of side-bands for each 𝐶 ± 𝑛 × 𝑀 , though in prac-

tice the amplitude of these sidebands is strictly controlled based on the index

of modulation. If, e.g. 𝐶 = 220 and 𝑀 = 110, then for 𝑛 = 1 → 330 and 110; for
𝑛 = 2 → 440 and 0; for 𝑛 = 3 → 550 and 110 (–110 stands for inverse phase), etc.
FM then opens up the way for generating signals of arbitrary complexity using

just a couple of oscillators. It is precisely for this reason that FM became the

very first audio synthesis technique to be met with commercial success, thanks

to a series of Yamaha synthesizers (in particular the famous DX7). FM has been

used from the beginning of the 20th century in telecommunications (“radio fre-

quency modulation” is often abbreviated as FM). In the latter 1960s, however,

John Chowning—still a student at Stanford University— had been experiment-

ing with very fast vibrati. He eventually implemented a digital version of FM

and mathematically formalized it (1973). Turenas (1972) is the first piece to be

written using FM techniques extensively (it should be noted that the first-ever

attempt is 1966’s Sabelithe, which was finally finished in 1988). Employing just

a couple of oscillators, Chowning achieved timbres that would have taken 50 or

9 Note that analyses UGens typically implement a *kr method only. In fact, to

analyze a signal it is necessary to take into account several samples from the

input; there is no such thing as the frequency of a single sample.

286 Synthesis, II: introduction to basic real-time techniques

more oscillators to realize with additive synthesis. Yamaha bought this patent

(which came to be themost profitable in the history of Stanford University) and

produced a number of synthesizers that revolved around these FM techniques.

FM is characterized by its ample potential for the generation of complex

sounds. However, from the theoretically infinite side-bands, just a few are sig-

nificant: such a number can be determined through the modulation index 𝐼 .
The modulation index is defined in terms of deviation and the modulator’s

frequency: 𝐼 = 𝐷
𝑀 . Following, 𝐷 can be said to represent the “depth” of the

modulation. The value given from 𝐼 + 1 is considered as an approximation

of how many “significant” side-bands are present in the resulting FM’s output

spectrum. The utility of the formula lies in that, if 𝐷 and 𝑀 are constants, 𝐼 ,
then, constitutes a measure of the output signal’s complexity. It follows that

the modulator’s amplitude is given by 𝐷 = 𝐼 × 𝑀 . If 𝐼 = 0, the deviation is
zero and the carrier is not modulated at all. To increment the modulation index

is to increase the frequency deviation and, following, to add complexity to the

resulting spectrum.

Frequency (Hz)
0 22050

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

20

40

60

Frequency (Hz)
0 22050

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

20

40

60

Frequency (Hz)
0 22050

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

/
H

z)

20

40

60

Figure 8.7 𝐼 = 1, 3, 7.

To summarize: In FM the nature of the generated spectrum (that is, the posi-

tioning of the generated side-bands) is determined by the relationship between

the carrier and the modulator, while the richness of the spectrum (the number

of the generated side-bands) can be thought of in relation to the amplitude of

the modulator.

The following two examples are meant to be visualized, rather than lis-

tened to. Note that linear spectral plotting would better account for the par-

tials’ symmetrical expansion caused by controlling the modulator’s frequency

with respect to that of the carrier (line 1). In the first example a 5000 Hz carrier
is gradually modulated with 𝑀 moving from 10 to 1000 Hz.

Introduction to SuperCollider 287

1 s.freqscope ; // better set linear visualization

3 (

4 { SinOsc.ar(5000 // carrier C

5 + SinOsc.ar(XLine.kr(10, 1000, 60, doneAction:2), mul: 1000),

6 mul: 0.5

7)}.play

8)

The following example pinpoints the modulator’s amplitude which draws

energy from the carrier’s fundamental anddistributes it to the various side-bands.

Note that the spectral envelope follows a rather symmetrical pattern centered

at the carrier, even if the former is not always lance-shaped. The exact shape of

the spectral envelope can be predicted through a set of functions referred to as

“Bessel functions”.

1 (

2 { SinOsc.ar(

3 10000 // carrier C

4 + SinOsc.ar(500, mul: XLine.kr(1, 20000, 60, doneAction:2)),

5 mul: 0.5

6)}.play

7)

The last example is ratherminimal as it only employs twooscillators. Herein,

using the mouse we can interactively explore the effect of FM and to immedi-

ately appreciate the possible complexity of the resulting signal.

s.freqscope ; // better set linear visualization

(
{ SinOsc.ar(5000 	// carrier C
	+ SinOsc.ar(XLine.kr(10, 1000, 60, doneAction:2), mul: 1000),
 mul: 0.5
)}.play
)

code/sintesi/fm1.scd
code/sintesi/fm1.scd

(
{ SinOsc.ar(
	10000 	// carrier C
	+ SinOsc.ar(500, mul: XLine.kr(1, 20000, 60, doneAction:2)),
 mul: 0.5
)}.play
)

code/sintesi/fm2.scd
code/sintesi/fm2.scd

288 Synthesis, II: introduction to basic real-time techniques

1 (

2 { SinOsc.ar(

3 2000 // carrier C

4 + SinOsc.ar(// modulator M

5 freq: MouseX.kr(0, 1200), // freq for M

6 mul: MouseY.kr(0, 20000) // amp for M

7),

8 mul: 0.5

9)}.freqscope

10)

8.2.6 C:M ratio

As far as the spectral characteristics of FM’s output, in addition to the mod-

ulator’s amplitude, another important factor to take into account is the ratio

between 𝐶 and 𝑀 . This factor is of particular importance both in the case of

FM and complex RM where, unlike AM or simple RM (when both signals are

sinusoids), the generated spectra includes numerous components.

The relationship between the frequencies of the two signals is usually re-

ferred to as C:M ratio, hence on cmr. Since the resulting spectrum contains fre-

quencies that are the sums and differences of 𝐶 and 𝑀 , an integer cmr would

create a harmonic spectrum that includes multiples of the component’s great-

est common divisor. For 𝐶 = 5000 Hz and 𝑀 = 2500 Hz (𝑐𝑚𝑟 = 2 : 1), the
resulting spectrum in AM would comprise 2500, 5000 and 7500 Hz: that is,

a harmonic spectrum formulated from a fundamental (2500) and its first two

harmonic partials. Two interesting cases in both RM and FM emerge when

𝑐𝑚𝑟 = 1 : 2 and 𝑐𝑚𝑟 = 1 : 1. In the first case only the odd harmonics will be
present: with e.g. 𝐶 = 1000 and 𝑀 = 2000, RM results in (−)1000, 3000, and
FM in (−)3000, 5000, (−)5000, 7000, etc. In the second case, all the harmonics

are present in the output signal: for 𝐶 = 𝑀 = 1000, RM results in 0, 2000, and
FM in 0, (−)1000, 3000, (−)2000, 4000 etc.

If the ratio has a denominator of 1 (such as in the preceding example), the
resulting frequencies would be multiples of the modulator’s frequency that,

as a result, becomes a new fundamental. If the denominator is greater than

(
{ SinOsc.ar(
	2000 	// carrier C
	+ SinOsc.ar(// modulator M
		freq: MouseX.kr(0, 1200), // freq for M
		mul: MouseY.kr(0, 20000)	// amp for M
),
 mul: 0.5
)}.freqscope
)

code/sintesi/fm3.scd
code/sintesi/fm3.scd

Introduction to SuperCollider 289

1, then the greatest common divider of 𝐶 and 𝑀 becomes the fundamental of

the generated signal: for 𝐶 = 3000 and 𝑀 = 2000 (𝑐𝑚𝑟 = 3 : 2) the new
fundamental would be 1000 Hz and the spectrum would comprise 1000 Hz

(3000−2000), to whichwe should add (in AM) 3000Hz (𝐶) and 5000Hz (3000+
2000). In this case it is also possible that the fundamental may be “lost”. For
example, if 𝐶 = 5000 and 𝑀 = 2000, (that is 𝑐𝑚𝑟 = 5 : 2) the new fundamental

is always 1000 Hz (the GCD of 5000 and 2000), yet the spectrum comprises

3000 Hz (5000 − 2000), 5000 (AM), and 7000 (5000 + 2000). The fundamental
of 1000Hz is considered “missing” (also “suppressed” or “phantom”), because
even if it is not physically present, it is reconstituted by our ears given that its

III, V and VII harmonics are present. This is due a complex psychoacoustic

phenomenon according to which our ears reconstruct the missing fundamental

once a sufficient number of higher harmonics imply its presence.

The latter is also true for FM, as well as for RM and simple AM where 𝐶
and 𝑀 are sinusoidal signals, and where the generated sidebands are only 2 or
3. In the previous example, with 𝐶 = 5000 Hz and 𝑀 = 2000 Hz, AM would

produce the following frequencies: 3000, 5000, 7000Hz, i.e. the 3rd , the 5th, and
the 7th harmonic of 1000 Hz. The cmr is, therefore, an indicator of how “har-

monic” the resulting spectrum is: the simpler the fraction (that is, the lower the

product 𝐶 × 𝑀) , the denser the resulting harmonics. An almost integer cmr

(e.g. 2.001 : 1) result in spectra with some inharmonic elements that, never-

theless, sound even more harmonic and “natural”—which is precisely because

acoustic instruments are typically characterized by the presence of some inhar-

monic elements.

In general, cmr of 𝑁 : 1 and 1 : 𝑁 , will generate the same spectrum, given

that the rest of the modulation parameters are identical. The number of partials

can be, then, calculated from cmr’s components. E.g. if cmr is 2 : 3, then |2 ±
3 × 𝑛| = 1, 2, 4, 5, 8, 11…. If 𝐶 > 1, then the resulting spectrum will feature

inharmonic elements (or a “lost” fundamental). E.g. If 𝑐𝑚𝑟 = 2 : 5, the resulting
spectrum would be 2, 3, 7, 8, 12, 13, …, which apparently lacks the fundamental

(i.e. 1) as well as many other harmonics. To boot, the spectrum is rather sharp.

Consider 𝑐𝑚𝑟 = 5 : 7, which results in a particularly inharmonic spectrum:

2, 5, 9, 12, 16, 19, 23, 26, ….

The following SynthDef lets us control FM employing, other than the car-

rier’s frequency freq (𝐶), parameters that derive from cmr: these are c, m, a.

The first two indicate the numerator and denominator of cmr, and the third the

modulator’s amplitude.

290 Synthesis, II: introduction to basic real-time techniques

1 (

2 SynthDef(\cm , { arg f = 440, c = 1, m = 1, a = 100, amp = 0.5 ;

3 Out.ar(0,

4 SinOsc.ar(

5 f // base freq for carrier C

6 + SinOsc.ar(// modulator M

7 freq: f * m / c, // freq for M, calculated from cmr

8 mul: a // amplitude for M

9),

10 mul: amp) // amplitude for C

11)

12 }).add ;

13)

The graphic interface in the following example lets us control f, c, m, a

with number boxes. The code produces values for just 𝐶 and 𝑀 , internally.

Even if a procedural kind of syntax is employed (Array.fill), the code is rather

long since each graphic element has to be associated with a synth’s parameter.

(
SynthDef(\cm, { arg f = 440, c = 1, m = 1, a = 100, amp = 0.5 ;
	Out.ar(0,
	SinOsc.ar(
	f 	// base freq for carrier C
	+ SinOsc.ar(// modulator M
		freq: f * m / c, // freq for M, calculated from cmr
		mul: a	// amplitude for M
),
 mul: amp) // amplitude for C
)
}).add ;
)

code/sintesi/cmDef.scd
code/sintesi/cmDef.scd

Introduction to SuperCollider 291

1 var cmsynth = Synth("cm") ;

2 var freq = 2000 ; // f C: 0-2000 Hz

3 var num = 30 ; // ratio for c:m

4 var w = Window("C:M player", Rect(100, 100, 220, 420)).front ;

5 var sl = Array.fill(4, {|i| Slider(w, Rect(i*50+10, 10, 50, 350))}) ;

6 var nb = Array.fill(4, {|i| NumberBox(w, Rect(i*50+10, 360, 40, 20))}) ;

7 ["freq C", "C", "M", "amp M"].do{|i,j|

8 StaticText(w, Rect(j*50+10, 390, 40, 20)).string_(i).align_(\center)

9 } ;

11 sl[0].action = { arg sl ; // base freq

12 var val = sl.value*freq ;

13 cmsynth.set("f", val) ; nb[0].value = val ;

14 } ;

15 nb[0].action = { arg nb ;

16 var val = nb.value ; // 0-1000 Hz

17 cmsynth.set("f", val) ; sl[0].value = val/freq ;

18 } ;

20 sl[1].action = { arg sl ; // numerator C

21 var val = (sl.value*(num-1)).asInteger+1 ;

22 cmsynth.set("c", val) ; nb[1].value = val ;

23 } ;

24 nb[1].action = { arg nb ;

25 var val = nb.value.asInteger ;

26 cmsynth.set("c", val) ; sl[1].value = val/num ;

27 } ;

29 sl[2].action = { arg sl ; // denominator M

30 var val = (sl.value*(num-1)).asInteger+1 ;

31 cmsynth.set("m", val) ; nb[2].value = val ;

32 } ;

33 nb[2].action = { arg nb ;

34 var val = nb.value.asInteger ;

35 cmsynth.set("m", val) ; sl[2].value = val/num ;

36 } ;

38 sl[3].action = { arg sl ; // amplitude M

39 var val = sl.value*10000 ;

40 cmsynth.set("a", val) ; nb[3].value = val ;

41 } ;

42 nb[3].action = { arg nb ;

43 var val = nb.value ;

44 cmsynth.set("a", val) ; sl[3].value = val/10000 ;

45 } ;

292 Synthesis, II: introduction to basic real-time techniques

8.2.7 Waveshaping

The technique of waveshaping, also referred to as non-linear distortion, reflects

aspects of both wavetable synthesis and modulation.

If a signal is multiplied by a constant 𝑘, the structure of its waveform re-

mains unchanged; its amplitude, instead, increases or decreases proportionally

to 𝑘. Waveshaping is a linear operation, according to which the input wave-

form (most typically, but not necessarily, a sine wave) is expected to be dis-

torted. Such distortions in the waveform correspond to the addition of har-

monic elements to the signal’s spectrum. For example, in the case of clipping,

a contingency of waveform synthesis which is very famous in pop/rock music

contexts, the input waveform is “cut” above a certain threshold to introduce a

“squaring” effect in the signal.

In analogue circuits, clipping is the result of failing components which can

no longer result in signals that are proportional to their input. In the digital

domain, waveshaping occurs with respect to a wavetable that associates the

values of the input samples to output ones.

input

output

-1 +1

+1

-1

Figure 8.8 Waveshaping: a transfer function stored to a wavetable.

Such a wavetable associates each possible input value to an output one, as

shown in Figure 8.8, and is referred to as “transfer function”. If the function is

a straight line with a 45∘ angle against the horizontal axis, each value in the out-

put would be unchanged in the output. But any deviation in the shape of such

a line generates distortion of some sort. A possible implementation is shown in

the next example.

var cmsynth = Synth("cm") ;
var freq = 2000 ; // f C: 0-2000 Hz
var num = 30 ; // ratio for c:m
var w = Window("C:M player", Rect(100, 100, 220, 420)).front ;
var sl = Array.fill(4, {|i| Slider(w, Rect(i*50+10, 10, 50, 350))}) ;
var nb = Array.fill(4, {|i| NumberBox(w, Rect(i*50+10, 360, 40, 20))}) ;
["freq C", "C", "M", "amp M"].do{|i,j|
	StaticText(w, Rect(j*50+10, 390, 40, 20)).string_(i).align_(\center)
} ;

sl[0].action = { arg sl ; // base freq
	var val = sl.value*freq ;
	cmsynth.set("f", val) ; nb[0].value = val ;
	} ;
nb[0].action = { arg nb ;
	var val = nb.value ; // 0-1000 Hz
	cmsynth.set("f", val) ;	sl[0].value = val/freq ;
	} ;

sl[1].action = { arg sl ; // numerator C
	var val = (sl.value*(num-1)).asInteger+1 ;
	cmsynth.set("c", val) ;	nb[1].value = val ;
	} ;
nb[1].action = { arg nb ;
	var val = nb.value.asInteger ;
	cmsynth.set("c", val) ; sl[1].value = val/num ;
	} ;

sl[2].action = { arg sl ; // denominator M
	var val = (sl.value*(num-1)).asInteger+1 ;
	cmsynth.set("m", val) ;	nb[2].value = val ;
	} ;
nb[2].action = { arg nb ;
	var val = nb.value.asInteger ;
	cmsynth.set("m", val) ;	sl[2].value = val/num ;
	} ;

sl[3].action = { arg sl ; // amplitude M
	var val = sl.value*10000 ;
	cmsynth.set("a", val) ;	nb[3].value = val ;
	} ;
nb[3].action = { arg nb ;
	var val = nb.value ;
	cmsynth.set("a", val) ;	sl[3].value = val/10000 ;
	} ;

code/sintesi/cm.scd
code/sintesi/cm.scd

Introduction to SuperCollider 293

1 // waveshaping

2 t = FloatArray.fill(512, { |i| i.linlin(0.0, 512.0, -1.0, 1.0) });

3 t.plot ;

4 b = Buffer.sendCollection(Server.local, t)

6 {

7 var sig = SinOsc.ar(100) ;

8 Out.ar(0, BufRd.ar(1, bufnum: b,

9 phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1)

10))

11 }.scope

The array t comprises 512 values scaled within the [−1, 1] range. As shown
in the diagram, t is a ramp which can be thought of as a nominal transfer func-

tion. Buffer has several methods that we can use to directly send to the server

such transfer functions that we have calculated client-side—e.g. using sendCol-

lectionwe can load t to the buffer b. The following SynthDef assumes a 100Hz

sine-wave as its source. BufRd generates an output that corresponds to the value

present in the given buffer (here b) and at the index specified by phase—the lat-

ter is modulated by the input signal. In this case, the sine wave controls the

buffer’s index so that BufRd’s output would be an accelerated bi-directional

reading of b, as long as the sine wave is properly scaled to within the table’s

bounds. Since the wavetable consists of 512 point only, the oscillator’s output

(originally in the [-1,1] range) has to be scaled to a range of [0,511]. Here we rely

on the utility UGen BufFrames to calculate this number: the latter returns the

number of frames in the buffer; since buffers are indexed from 0, however, we

need to subtract 1 from this value to get the actual index of the last frame. Note

that the rate of the BufFrames is ir, which stands for “instrument rate”—mean-

ing, output is only updated once, when the synth is allocated.

Under this premise, the next few examples explore ways to generate algo-

rithmic content for the array and demonstrate that the effect of waveshaping

is sensitive to the the input’s dynamics. The first wavetable squeezes all val-

ues below 0.5 and expands all those above it. Then, input values that exceed

1 will be clipped (which is preferable in this context). The normalize method

helps keep the input signal within the expected ranges. The overall distortion

depends on the input’s amplitude (controlled here via the Mouse).

// waveshaping
t = FloatArray.fill(512, { |i| i.linlin(0.0, 512.0, -1.0, 1.0) });
t.plot ;
b = Buffer.sendCollection(Server.local, t)

{
	var sig = SinOsc.ar(100) ;
	Out.ar(0, BufRd.ar(1, bufnum: b,
		phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1)
))
}.scope

code/sintesi/waveshaping1.scd
code/sintesi/waveshaping1.scd

294 Synthesis, II: introduction to basic real-time techniques

1 // 1

2 (

3 t = FloatArray.fill(512, { |i|

4 v = i.linlin(0.0, 512.0, -1.0, 1.0) ;

5 if (abs(v) < 0.5){v*0.5} { v*1.25}

6 }).normalize(-1.0, 1.0);

7 t.plot ;

8 b = Buffer.sendCollection(Server.local, t)

9)

11 (

12 {

13 var sig = SinOsc.ar(100, mul:MouseX.kr(0,1)) ;

14 Out.ar(0, BufRd.ar(1, bufnum: b,

15 phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1)

16))

17 }.scope

18)

The second example employs a very complex table (built empirically) that

produces a rich spectrum that is, again, sensitive to changes in dynamics. Note

that, at low amplitudes, the wavetable produces signals that are not balanced

around zero—that is, signals with “DC offsets”. DC offset is a term originating

from analog synthesis where it stands for the presence of a direct current (DC)

in the signal (by the way, SuperCollider does contain a UGen for removing DC

offset, LeakDC).

// 1
(
t = FloatArray.fill(512, { |i|
	v = i.linlin(0.0, 512.0, -1.0, 1.0) ;
	if (abs(v) < 0.5){v*0.5} { v*1.25}
}).normalize(-1.0, 1.0);
t.plot ;
b = Buffer.sendCollection(Server.local, t)
)

(
{
	var sig = SinOsc.ar(100, mul:MouseX.kr(0,1)) ;
	Out.ar(0, BufRd.ar(1, bufnum: b,
		phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1)
))
}.scope
)

code/sintesi/waveshaping2.scd
code/sintesi/waveshaping2.scd

Introduction to SuperCollider 295

1 // 2

2 (

3 t = FloatArray.fill(512, { |i|

4 v = i.linlin(0.0, 512.0, -1.0, 1.0) ;

5 v.round(0.125+(v*1.4*(i%4)))

6 }).normalize(-1.0, 1.0);

7 t.plot ;

8 b = Buffer.sendCollection(Server.local, t)

9)

11 (

12 {

13 var sig = SinOsc.ar(100, mul:MouseX.kr(0,1)) ;

14 Out.ar(0, LeakDC.ar(

15 BufRd.ar(1,

16 bufnum: b,

17 phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1))

18))

19 }.scope

20)

The Figure shows the two spectra generated when the SinOsc’s amplitude

is 0.0001 and 1.0, respectively. The two signals have been normalized also so

that the differences in their spectral structure, rather than their amplitude, are

apparent.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

Figure 8.9 Spectra when SinOsc’s amplitude is 0.0001 and 1.0.

In reality, the standard way to implement waveshaping in SC is via a dedicated

UGen–Shaper– as demonstrated in the next example. The table is built via the

Signal class. Note that an instance of Signal must have a size equal to some

power of 2 plus 1 (513 in this case) in order to be used as a transfer functionwith

// 2
(
t = FloatArray.fill(512, { |i|
	v = i.linlin(0.0, 512.0, -1.0, 1.0) ;
	v.round(0.125+(v*1.4*(i%4)))
}).normalize(-1.0, 1.0);
t.plot ;
b = Buffer.sendCollection(Server.local, t)
)

(
{
	var sig = SinOsc.ar(100, mul:MouseX.kr(0,1)) ;
	Out.ar(0, LeakDC.ar(
		BufRd.ar(1,
			bufnum: b,
			phase: sig.linlin(-1.0, 1.0, 0, BufFrames.ir(b)-1))
))
}.scope
)

code/sintesi/waveshaping3.scd
code/sintesi/waveshaping3.scd

296 Synthesis, II: introduction to basic real-time techniques

Shaper. A buffer of double this size (without counting the extra sample in the

Signal, that is 1024 in our case) is then allocated. The buffer must be double the
size of the original data because Shaper expects buffers with data represented in

a special “wavetable” format that optimizes the performance of the UGen. Ac-

cordingly, data is converted to a wavetable using the WavetableNoWrapmethod.

Shaper’s parameters are rather straightforward: the buffer with the transfer

function and the input signal.

1 // dimension: power of 2 + 1

2 t = Signal.fill(513, { |i|

3 var v = i.linlin(0.0, 512.0, -1.0, 1.0);

4 if (abs(v) < 0.5){v*0.5} { v*1.25}

5 }).normalize(-1.0,1.0);

6 t.plot ;

8 // double buffer

9 b = Buffer.alloc(s, 1024, 1);

10 b.sendCollection(t.asWavetableNoWrap);

12 { Shaper.ar(b, SinOsc.ar(440, 0, MouseX.kr(0,1)))*0.75 }.scope ;

Shaper is particularly useful in order to easily implement a series of specific

transfer functions, the so-called Chebysev polynomials, that allow to precisely

calculate their effect on some sinusoid signal. Waveshaping typically produces

rich spectra which are, nonetheless, hard to understand or deal with theoreti-

cally. In this respect, waveshaping is similar to modulation. In the following

example a buffer is filled with the appropriate polynomials that will result in

the first 20 harmonics of an input sine-wave—each having a pseudo-random

amplitude in this case.

1 b = Buffer.alloc(s, 1024, 1);

2 b.cheby(Array.fill(20, {1.0.rand}));

4 { Shaper.ar(b, SinOsc.ar(440, 0, 0.4)) }.scope;

// dimension: power of 2 + 1
t = Signal.fill(513, { |i|
	var v = i.linlin(0.0, 512.0, -1.0, 1.0);
	if (abs(v) < 0.5){v*0.5} { v*1.25}
}).normalize(-1.0,1.0);
t.plot ;

// double buffer
b = Buffer.alloc(s, 1024, 1);
b.sendCollection(t.asWavetableNoWrap);

{ Shaper.ar(b, SinOsc.ar(440, 0, MouseX.kr(0,1)))*0.75 }.scope ;

code/sintesi/shaper1.scd
code/sintesi/shaper1.scd

b = Buffer.alloc(s, 1024, 1);
b.cheby(Array.fill(20, {1.0.rand}));

{ Shaper.ar(b, SinOsc.ar(440, 0, 0.4)) }.scope;

code/sintesi/shaper2.scd
code/sintesi/shaper2.scd

Introduction to SuperCollider 297

In conclusion, while with modulation techniques we can easily and effi-

ciently (computationally speaking) generate signals of great complexity (think

of e.g. the spectral complexity we can achieve with just two sinusoidal signals),

to control the result is not intuitive. More, modulation techniques are rather

inappropriate for analysis applications: it is extremely difficult to represent ex-

istent audio material in terms of modulation.

8.3 Spectral modelling

Spectral modeling techniques are techniques that generates spectra typically

expressed in terms of what spectral components need to be present and with

what strength. Accordingly, all of the following techniques foreground the fre-

quency, rather than the time, domain.

8.3.1 Additive synthesis

According to the Fourier theorem, every periodic signal, however complex it

may be, can be represented in terms of a sum of simple sinusoidal components.

Additive synthesis takes its basis around this simple fact. In additive synthesis,

we add a series of sine waves, each having a dedicated amplitude envelope, to

synthesize complex signals.

Figure 8.10 illustrates a bank of oscillators that operate in parallel. Their

𝑛 outputs are added together to result in a complex and rich spectrum. In

classic additive synthesis, we use “tuned” oscillators, the frequencies of which

(𝑓2…𝑓𝑛) follow the harmonic series of some fundamental (𝑓1).
Additive synthesis is one of the oldest sound synthesis methods, due to

fact that it is fairly simple to implement it. In audio synthesis, when we speak

theoretically about “adding”, we typically refer to ordinary “mixing”. In SC,

Mix is a specialized UGen for such an operation; given an array of signals in its

input, it will return a new monophonic signal comprised of the sum of all the

elements in this array.

The following example, albeit minimal, is instructive and demonstrates the

expressive power of SC. As seen in line 3 we introduce a Mix object with an ar-

ray of 20 signals (generated by a SinOsc) passed as an argument. Notice how

298 Synthesis, II: introduction to basic real-time techniques

f 1

f 2

f 3

f 4

f n

harmonics oscillators

out

Figure 8.10 Bank of oscillators.

counter i is multiplied with a fundamental frequency (200 Hz) to generate its
higher harmonics—of course, since i’s initial value is 0, we have to add 1 to

achieve the desired results. Mixing is a linear operation which means that if

𝑛 signals normalized in the [−1, 1] range are mixed, the result will be a signal
oscillating in the 𝑛 × [−1.0, 1.0] = [−𝑛, 𝑛] range: this would result in an unac-
ceptable level of distortion due to clipping our output. In our example, we set

mul: 1/20 to scale all signals accordingly so the final mix is always normalized.

1 { Mix.new // mix

2 (Array.fill(20, { arg i ; // 20 harmonics

3 SinOsc.ar(200*(i+1), mul: 1/20)}))

4 }.scope ;

In linewith the algorithmic orientation of SC, a specialized fillmethod for

Mix does exist. The following example is acoustically identical to the previous

one.

1 {

2 // the same

3 Mix.fill(20, { arg i ;

4 SinOsc.ar(200*(i+1), mul: 1/20)})

5 }.scope ;

{ Mix.new	// mix
	(Array.fill(20, { arg i ; // 20 harmonics
		SinOsc.ar(200*(i+1), mul: 1/20)}))
}.scope ;

code/sintesi/additive1.scd
code/sintesi/additive1.scd

{
// the same
Mix.fill(20, { arg i ;
	SinOsc.ar(200*(i+1), mul: 1/20)})
}.scope ;

code/sintesi/additive2.scd
code/sintesi/additive2.scd

Introduction to SuperCollider 299

So far we have only used “synced” sine waves, that is, their cycles start

at the same time. This causes peaks in the final output. Generally speaking,

phase differences in stationary signals are inaudible—the audible system focus

on spectral components. But of interest here is the frequency relationships be-

tween the various spectral components. However, it is best to avoid having all

oscillators in phase (which with enough components, will create an impulse).

In the following example, each oscillator operates at a random phase with re-

spect to 2pi.rand to avoid this phenomenon.

1 // avoiding phase sync

2 { Mix.fill(20, { arg i ;

3 SinOsc.ar(200*(i+1), 2pi.rand, mul: 1/20)})

4 }.scope ;

Varying the amplitude of the harmonic components affects their relative

contribution to the synthesized spectrum. Below, a stereo signal is generated

as the sum of 40 sinusoids that begin at 50 Hz. The amplitudes of the left-chan-
nel components are modulated differently that those of the right-channel ones.

The former vary randomly at a rate of 1 per second, while the latter with respect
to a sinusoidal oscillator in which the frequency randomly changes within the

[0.3, 0.5] range. Then, with the appropriate mul and add values, the signal be-

comes unipolar. Note that in order to normalize the output, we divide by 20
rather than by 40. Given the amplitude variations of the components, the out-
put is no longer characterized by great peaks and as such we have empirically

estimated that a value of 20 would be sufficient to avoid clipping.

1 // stereo spectral motion

2 { Mix.fill(40, { arg i ;

3 var right = LFNoise1.kr(1, 1/20) ;

4 var left = SinOsc.kr(rrand(0.3, 0.5), 2pi.rand, mul: 0.5, add: 0.5) ;

5 SinOsc.ar(50*(i+1), [2pi.rand, 2pi.rand], mul: [left/20, right]) })

6 }.scope ;

In the following example, the amplitude of each component is scaled pro-

portionally to the reciprocal of harmonic indexes: the greater the index, the

lower the amplitude, following the typical behavior of musical instruments.

// avoiding phase sync
{ Mix.fill(20, { arg i ;
	SinOsc.ar(200*(i+1), 2pi.rand, mul: 1/20)})
}.scope ;

code/sintesi/additive3.scd
code/sintesi/additive3.scd

// stereo spectral motion
{ Mix.fill(40, { arg i ;
	var right = LFNoise1.kr(1, 1/20) ;
	var left = SinOsc.kr(rrand(0.3, 0.5), 2pi.rand, mul: 0.5, add: 0.5) ;
	SinOsc.ar(50*(i+1), [2pi.rand, 2pi.rand], mul: [left/20, right]) })
}.scope ;

code/sintesi/additive4.scd
code/sintesi/additive4.scd

300 Synthesis, II: introduction to basic real-time techniques

The array arr is made up of a linear sequence of integers from 1 to 20, the order
of which is, subsequently, reversed and normalized so that the sum of all com-

ponents eventually equals 1. Given that the sum of all elements in arr would

be 1, we can safely use the former to set the amplitudes of our oscillators and
avoid clipping. The oscillator’s frequency is expressed in midi notation which

is then converted to Hz through midicps.

1 {

2 var arr = Array.series(20, 1).reverse.normalizeSum ;

3 Mix.new // mix

4 (Array.fill(20, { arg i ; // 20 partials

5 SinOsc.ar(60.midicps*(i+1), 2pi.rand, mul: arr[i])}))

6 }.scope ;

With additive synthesis we can procedurally generate all sorts of harmonic

waveforms. For instance, the square wave can be defined as an infinite sum of

odd harmonics whose amplitude is proportional to the inverse of the harmonic

number, following this equation: 𝑓1 × 1, 𝑓3 × 1/3, 𝑓5 × 1/5, 𝑓7 × 1/7…

0 0.002 0.005 0.007 0.009

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.005 0.007 0.009

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.005 0.007 0.009

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.002 0.005 0.007 0.009

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.11 Square wave: first 3, 6, 12, 24 harmonics.

{
var arr = Array.series(20, 1).reverse.normalizeSum ;
Mix.new	// mix
	(Array.fill(20, { arg i ; // 20 partials
		SinOsc.ar(60.midicps*(i+1), 2pi.rand, mul: arr[i])}))
}.scope ;

code/sintesi/additive5.scd
code/sintesi/additive5.scd

Introduction to SuperCollider 301

As shown in Figure 8.11, the more harmonics the better the approximation of

the square wave. Theoretically speaking, it takes infinite sinusoidal compo-

nents to generate a square wave; on this respect it is preferable to generate the

latter by other means or using the dedicated generators. A sawtooth wave can

be also generated in a similar fashion, with the exception that all harmonics,

and not just the odd ones, should be present. As seen in the figure, the steep-

ness of the waveforms’ edges is proportional to the number harmonics that are

present. Generally speaking, more roundedwaveforms suggest the presence of

a few harmonics only and, conversely, steep ones suggest the presence of many.

The following code demonstrates the difference between sawtooth and square

waves. The environment variable ~numArm and ~baseFreq allow to experiment

with various values.

1 ~numArm = 10 ; ~baseFreq = 69.midicps ;

3 // square wave

4 {Mix.fill(~numArm, {|i|

5 SinOsc.ar(~baseFreq*(i*2+1), mul:1/(i+1))

6 })}.play ;

8 // sawtooth wave

9 {Mix.fill(~numArm, {|i|

10 SinOsc.ar(~baseFreq*(i+1), mul:1/(i+1))

11 })}.play ;

It is not accidental that we first introduced Mix when discussing additive

synthesis. In fact, the additive paradigm can be generalized in terms of mi-

cro-mixing/editing: the idea is to generate complex signals on the account of

simpler ones that are mixed together. In this case, a sum of partials stands for

arbitrary spectra and not necessarily for harmonic ones. The latter may as well

include inharmonic components and/or noises. Then, the sinusoidal elements

of such a spectrum can be understood in terms of their harmonic ratios, much

like the way cmr was used to understand the relationship between carrier and

modulator in the FM paradigm.

Accordingly, harmonic signals are characterized by an integer ratio between

some fundamental and its harmonics and partially harmonic ones by a non-in-

teger ratio, that is 𝑝𝑎𝑟𝑡𝑖𝑎𝑙
𝑓1

is not an integer. The following example is different

from the previous one only in line 10, where we introduce randomness to the

~numArm = 10 ; ~baseFreq = 69.midicps ;

// square wave
{Mix.fill(~numArm, {|i|
	SinOsc.ar(~baseFreq*(i*2+1), mul:1/(i+1))
})}.play ;

// sawtooth wave
{Mix.fill(~numArm, {|i|
	SinOsc.ar(~baseFreq*(i+1), mul:1/(i+1))
})}.play ;

code/sintesi/sommaSin.scd
code/sintesi/sommaSin.scd

302 Synthesis, II: introduction to basic real-time techniques

frequencies of our components. Among other thing, inharmonicity is an im-

portant component of many acoustic instruments and, accordingly, it is desired

if one wishes to have real instrumental timbres somehow echoed in their syn-

thesizers. Note that new random values are generated each time the code is

evaluated.

1 // variable envelopes with quasi-integer ratio

2 {

3 Mix.new(Array.fill(50,

4 { arg k ;

5 var incr = 1 ; // quasi-integer. Try increasing to 2, 5, ...

6 var env ;

7 i = k+1 ;

8 env = LFNoise1.ar(LFNoise0.ar(10, add:1.75, mul:0.75), add:0.5, mul:0.5) ;

9 SinOsc.ar(50*i

10 +(i*incr).rand,

11 mul: 0.02/i.asFloat.rand)*env })

12)}.scope

A partially harmonic spectrum can be also obtained employing simple si-

nusoidal components—80 in the following example:

1 // A generic partial spectrum

2 {

3 var num = 80 ;

4 Mix.new(Array.fill(num, { SinOsc.ar(20 + 10000.0.rand, 2pi.rand, 1/num) }));

5 }.scope

It is, then, possible to mix sinusoids at a reduced interval around 500 Hz:

// variable envelopes with quasi-integer ratio
{
Mix.new(Array.fill(50,
	{ arg k ;
	var incr = 1 ; // quasi-integer. Try increasing to 2, 5, ...
	var env ;
	i = k+1 ;
	env = LFNoise1.ar(LFNoise0.ar(10, add:1.75, mul:0.75), add:0.5, mul:0.5) ;
	SinOsc.ar(50*i
		+(i*incr).rand,
		mul: 0.02/i.asFloat.rand)*env })
)}.scope

code/sintesi/quasiInteger.scd
code/sintesi/quasiInteger.scd

// A generic partial spectrum
{
var num = 80 ;
Mix.new(Array.fill(num, { SinOsc.ar(20 + 10000.0.rand, 2pi.rand, 1/num) }));
}.scope

code/sintesi/partials1.scd
code/sintesi/partials1.scd

Introduction to SuperCollider 303

1 // Modulation around 500 Hz

2 {

3 Mix.new(Array.fill(20, {

4 SinOsc.ar(500 +

5 LFNoise1.ar(

6 LFNoise1.ar(1, add:1.5, mul:1.5),

7 add:500, mul: 500.0.rand), 0, 0.05) }));

8 }.scope ;

Finally, in the following example we add together signals obtained with a

diverse range of techniques (employing SinOsc, Blip, HPF, Dust, Formant)

which are all defined in terms of the same fundamental frequency f and a

pseudo-randomly controlled amplitude (contained in arr). The signal is then

panned into stereo by employing Pan2. Note also that the selection of pitches is

also controlled pseudo-randomly. The result is an algorithmic micro-composi-

tion.

1 // Additive in wide sense:

2 // 4 UGens tuned around a freq

3 // mix and pseudo-random panning

4 {

5 var arr = Array.fill(4, {LFNoise1.ar(1, add:0.15, mul:0.15)}) ;

7 f = LFNoise0.ar(LFNoise0.ar(

8 SinOsc.kr(0.25, 0, 0.75, 1).unipolar.round(0.0625),

9 add:0.95, mul: 0.95),

10 add: 48, mul:12).round.midicps; // 24 semitones, 36-60 MIDI

11 Pan2.ar(

12 Mix.new([

13 SinOsc.ar(f, mul:arr[0]),

14 Blip.ar(f, mul:arr[1]),

15 RLPF.ar(Dust.ar(f*0.2), f, mul:arr[2]),

16 Formant.ar(f,mul:arr[3]),

17])

18 , LFNoise1.ar(0.2, mul:1)

19) }.scope;

// Modulation around 500 Hz
{
Mix.new(Array.fill(20, {
		SinOsc.ar(500 +
		LFNoise1.ar(
				LFNoise1.ar(1, add:1.5, mul:1.5),
				add:500, mul: 500.0.rand), 0, 0.05) }));
}.scope ;

code/sintesi/partials2.scd
code/sintesi/partials2.scd

// Additive in wide sense:
// 4 UGens tuned around a freq
// mix and pseudo-random panning
{
	var arr = Array.fill(4, {LFNoise1.ar(1, add:0.15, mul:0.15)}) ;

	f = LFNoise0.ar(LFNoise0.ar(
		SinOsc.kr(0.25, 0, 0.75, 1).unipolar.round(0.0625),
		add:0.95, mul: 0.95),
		add: 48, mul:12).round.midicps; // 24 semitones, 36-60 MIDI
	Pan2.ar(
		Mix.new([
			SinOsc.ar(f, mul:arr[0]),
			Blip.ar(f, mul:arr[1]),
			RLPF.ar(Dust.ar(f*0.2), f, mul:arr[2]),
			Formant.ar(f,mul:arr[3]),
])
		, LFNoise1.ar(0.2, mul:1)
) }.scope;

code/sintesi/partials3.scd
code/sintesi/partials3.scd

304 Synthesis, II: introduction to basic real-time techniques

Additive synthesis is particularly suitable for static sounds, where it is suffi-

cient to definewhat partials should be present. Buildingwaveformswith edges

(such as in the cases of square, triangular, or sawtooth waves) theoretically re-

quires an infinite number of partials, however. Accordingly SC provides us

with dedicated generators: for example Pulse, to generates quadratic pulses

(including square ones) and Saw, to generated sawtooth like ones10. It is then

possible to produce largely aperiodic, albeit not “noisy”, signals using a series

of sinusoids that are not harmonically related with each other; the result has a

sort of “liquid”-like quality.

1 // Filling the spectrum with sinusoids: fractions of tone

2 (

3 x = {|base = 30| // 30 MIDI = low rumble

4 var comp = 350; // number of components

5 var res = 0.1; // semitone resolution

6 Mix.new(Array.fill(comp,

7 { arg i;

8 SinOsc.ar(freq: (base+(i*res)).midicps,

9 phase: 2pi.rand, mul: 4.0/comp)}) // random phase

10)}.scope ;

11)

12 // we change the base pitch

13 x.set(\base , 50)

In this example, 350 sinusoids are created in parallel (quite of a number…).

Their number is determined with comp. Our filling strategy calculates frequen-

cies with respect to midi notation, so that components are distributed with re-

spect to the pitch perceived and not according to physical frequencies. The

variable res controls the fraction of a semitone that increments counter i from

the base fundamental.

It should be noted that, historically, the main problem in additive synthesis

has been to perform all calculations needed. Consider, for example, the amount

of computational power needed to compute as signal that includes 20 harmonic
components, each with its own envelope. Given the advances in digital tech-

nology and the efficiency of SC, demanding additive synthesis is not impossible

10 There is also Blip.ar(freq, numharm, mul, add) which generates a numharm

number of harmonics with respect to the fundamental frequency freq, all hav-

ing the same amplitude.

// Filling the spectrum with sinusoids: fractions of tone
(
x = {|base = 30| // 30 MIDI = low rumble
	var comp = 350; // number of components
	var res = 0.1; // semitone resolution
	Mix.new(Array.fill(comp,
		{ arg i;
			SinOsc.ar(freq: (base+(i*res)).midicps,
				phase: 2pi.rand, mul: 4.0/comp)}) // random phase
)}.scope ;
)
// we change the base pitch
x.set(\base, 50)

code/sintesi/filling.scd
code/sintesi/filling.scd

Introduction to SuperCollider 305

these days. Yet, it remains a rather expensive way to synthesize complex spec-

tra. For instance, the synthesis of percussive sounds, which are largely charac-

terized by noisy components (i.e. ones that are not harmonically related with

each other), would require an incredible number of components and envelopes.

Such cases are better addressed by subtractive synthesis.

8.3.2 Subtractive synthesis

In the case of subtractive synthesis, the input signal is usually a complex signal

with a substantial spectrum. This signal is then filtered so that only the desired

spectral components are emphasized and the unwanted ones are attenuated or

removed completely.

In general, a filter is an operation that alters an input signal. Filters typically

attenuate or emphasize particular frequency components. Its fundamental ar-

guments design includes: filter type, cut-off frequency, order. The most com-

mon types of filter fall in either of those categories: low-pass, high-pass, band-pass

and band-reject (or notch), depending on the frequency bands they affect. Figure

8.12 visualizes these basic approaches.

dB

dB
dB

dB

cut frequency cut frequency

central frequencycentral frequency

bandwidth bandwidth

Hz

HzHz

Hz

Figure 8.12 Types of filters: low-pass, high-pass, band-pass, band-reject. The

grayed area represents the frequency intervals the filters leaves unaffected.

A low-pass or high-pass filter should, ideally, maintain all the frequencies be-

low or above, respectively, a given cut-off frequency. In the same way, band-pass

or band-reject filters should, ideally, eliminate frequencies that lie outside or

inside, respectively, the given frequency band. The latter is typically defined

306 Synthesis, II: introduction to basic real-time techniques

in terms of a bandwidth and a central frequency: given a spectral frequency, the

bandwidth parameter defines an area around the cut-off frequency. For exam-

ple, a filter that passes all the frequencies in a range of [100, 110]Hzwould have
a bandwith of 10Hz and a cut-off frequency of 105Hz. Note that the filters rep-
resented in the figure are ideal filters. The difference between an ideal world

and the reality is demonstrated with the following example:

1 { LPF.ar(WhiteNoise.ar, freq: 1000) }.freqscope ;

The LPF UGen is, as the name may suggest, a low pass filter; freq indi-

cates the cut-off frequency. Since the source is white noise (note the patching),

when visualized the result should look similar that in Figure 8.12. In reality,

the attenuation is always progressive (or sloped) rather than an abrupt cut-off;

the steepness of the attenuation curve is defined by the filter’s order. Since

there is no known implementation to create ideal filters, the cut-off frequency

is defined as the point in the curve where a 3 dB attenuation can be achieved.
If the passage from the unaltered to the altered region of the filter is gradual,

there is one more argument to consider: the slope of the curve, measured in dB

per octave. It is the latter that determines the order of the filter. For example, a

first-order filter is characterized by a progressive attenuation of 6dB per octave,

a second-order filter should give us a slope of 12vdB/octave, a third-order by
18 dB/octave, etc. LPF UGen implements a second-order low pass filter. We

can implement filters of greater orders through a nesting technique; consider

the following example:

1 { LPF.ar(

2 in: LPF.ar(in:WhiteNoise.ar, freq: 1000),

3 freq: 1000)

4 }.freqscope ;

The resulting spectra (from both examples) are illustrated in Figure 8.13.

In the case of white noise we see that all the regions above the cut-off fre-

quency have (ideally) 0 energy. This attenuation reduces the overall volume

of the signal in the time domain. Typically, the more consistent the filter, the

more the attenuation. Accordingly, when so much energy is lost in the result,

{ LPF.ar(WhiteNoise.ar, freq: 1000) }.freqscope ;

code/sintesi/lpf.scd
code/sintesi/lpf.scd

{ LPF.ar(
	in: LPF.ar(in:WhiteNoise.ar, freq: 1000),
	freq: 1000)
}.freqscope ;

code/sintesi/lpf2.scd
code/sintesi/lpf2.scd

Introduction to SuperCollider 307

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

-60

-40

-20

0

Figure 8.13 LPF filter, spectra: single filter and two cascaded ones.

we typically raise the amplitude of the output—a process often referred to as

balancing).

A parameter relevant to band pass filters is that of Q. Q intuitively repre-

sents the degree of the filter’s resonance. More formally:

𝑄 = 𝑓𝑐𝑢𝑡𝑜𝑓𝑓
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Therefore, Q is the relationship between the cut-off frequency and the band-

width. Such a factor lets us compensate for the known problem of frequency

perception (which, as already explained, is perceived logarithmically rather

than linearly). When Q is constant, the bandwidth adjusts with respect to the

cut-off frequency so that the perceived size of filter’s active band is always iden-

tical. For example, if:

𝑓𝑐𝑒𝑛𝑡𝑟𝑎𝑙 = 105
𝑓ℎ𝑖𝑔ℎ = 110
𝑓𝑙𝑜𝑤 = 100

then

𝑄 = 105
110−100 = 10, 5

If Q is kept constant and the cut-off frequency is incremented to 10, 500Hz,
the band’s limits become 11, 000 and 10, 000. This way the bandwidth has in-
creased from 10 to 1000 Hz, conforming to the perceived frequency sensation.
Therefore, 𝑄 ∝ 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒, because if Q is high enough, the bandwidth is per-

ceptually stretched and resonates at a given frequency. Accordingly, Q indicates

the selectness of the filter, that is, its resonance.

Subtractive synthesis is rather efficient, computationally speaking. At the

same time it provides a way to model complex acoustic systems. E.g. the body

308 Synthesis, II: introduction to basic real-time techniques

of a guitar can be thought of as a filter that selectively attenuates certain fre-

quencies and emphasizes others. There are several cases of other instrumental

models based on the idea of filtering some initial excitation. A flute, for in-

stance, can be thought of as a filter (the pipe) operating on the sound of the

breath flow (which can be approximated as white noise). The human voice is

also a typical case: in this case, a glottal excitation is filtered by all the parts of

the phonetic apparatus, otherwise thought of as the cavities which transform

the excitation accordingly. This explains why subtractive synthesis is central to

all standard voice simulating methods, from VOSIM to Linear Predictive Coding

(LPC)11).

In the rather usual case where we deal with multiple filters, these can be

placed in either parallel or in series. In the first case all filters simultaneously

operate on the same signal (much like what happens with a bank of oscilla-

tors). In the second, the output of each filters constitutes the input of the next

one. In not strictly accurate terms, subtractive can be thought of as symmet-

rical to additive synthesis: if additive synthesis is meant to generate complex

signals out of simple ones, subtractive is meant to sculpt a spectra out of denser

ones. Even if we could use any kind of complex signal as the source of subtrac-

tive synthesis, we typically use spectrally dense signals, such as noises that are

characterized by rich spectra (sine waves, for instance, would not make much

sense, having just one component). Figure 8.14 illustrates the bandwidths of

four filters (with central frequencies 400, 800, 1200, 1600, respectively) that in
parallel process a fragment of white noise which is decreased from 1000, to 10,
to 1 Hz, transforming the noise into a harmonic sound.

Time (s)
0 10

0

5000

F
re

qu
en

cy
 (

H
z)

Figure 8.14 Filtering: from white noise to harmonic spectrum.

11 These techniques could be also put under the category of physical modeling,

see later

Introduction to SuperCollider 309

For reasons related with computational efficiency, SC’s standard filters take as

an argument the reciprocal of Q, that is rq, rather that Q itself. Accordingly, the

smaller the rq argument in the UGen, the narrower the filter. In the following

example we implement harmonic filtering in SC: a is an array made up of 10
values that will be used as cut-off frequencies. a is then passed as an argument

to a BPF (band pass filter) UGen, which resulting in a 10-channel signal (because
of multichannel expansion). In the case of a stereo soundcard, only the first

two channels are audible, those that correspond to filtering at 100 and 200 Hz.
Employing scope, however, we can visualize all channels and see that thewhite

noise causes each filter to resonate around its cut-off frequency. The following

example is similar, but this time the signals are routed into a MixUGen, resulting

in a signal that is subsequently plotted in both the time (with scope) and the

frequency (freqscope) domains.

1 // Filtering resulting in a harmonic spectrum

2 (

3 var sound = {

4 var rq, i, f, w;

5 i = 10; rq = 0.01; f = 100; // rq = reciprocal of Q -> bw/cutoff

6 w = WhiteNoise.ar; // source

7 a = Array.series(i, f, f);

8 // a = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

9 m = BPF.ar(w, a, rq, i*0.5);

10 } ;

11 sound.scope(10) ; // see 10 channels of audio, listen to first

12)

14 (

15 var sound = {

16 var rq, i, f, w;

17 i = 10; rq = 0.01;f = 100; // rq = reciprocal of Q -> bw/cutoff

18 w = WhiteNoise.ar; // source

19 a = Array.series(i, f, f);

20 // a = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]

21 n = BPF.ar(w, a, rq, i*0.5);

22 m = Mix.ar(n); // mixDown

23 } ;

24 sound.scope ; // mixdown: waveform

25 sound.freqscope ; // mixdown: spectrum

26)

// Filtering resulting in a harmonic spectrum
(
var sound = {
	var rq, i, f, w;
	i = 10; rq = 0.01; f = 100; 	// rq = reciprocal of Q -> bw/cutoff
	w = WhiteNoise.ar; 			// source
	a = Array.series(i, f, f);
	// a = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
	m = BPF.ar(w, a, rq, i*0.5);
} ;
sound.scope(10) ;	// see 10 channels of audio, listen to first
)

(
var sound = {
	var rq, i, f, w;
	i = 10; rq = 0.01;f = 100;		// rq = reciprocal of Q -> bw/cutoff
	w = WhiteNoise.ar;				// source
	a = Array.series(i, f, f);
	// a = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
	n = BPF.ar(w, a, rq, i*0.5);
	m = Mix.ar(n);				// mixDown
} ;
sound.scope ;				// mixdown: waveform
sound.freqscope ;				// mixdown: spectrum
)

code/sintesi/filtri.scd
code/sintesi/filtri.scd

310 Synthesis, II: introduction to basic real-time techniques

In the next example you can compare several sources and verify the output

of the filters. The code also makes use of a bus: the filter synth reads from the

bus ~buswhere the rest of synths write (remember that these are placed before

the former in terms of order of execution).

1 // Sources

3 ~bus = Bus.audio(s, 1) ; // bus where to route

5 (

6 // a filtering synth

7 ~filt = {|in|

8 var input = In.ar(in) ; // reads from the in bus

9 var i = 10; q = 0.01; f = 100;

10 a = Array.series(i, f, f);

11 n = BPF.ar(input, a, q, i);

12 m = Mix.ar(n)*0.2;

13 [m, Silent.ar(1), input] // writes on 3 buses to visualize

14 }.scope ;

15)

17 ~filt.set(\in , ~bus) ; // reads from ~bus

19 // various source synths writing on ~bus

20 ~source = { Out.ar(~bus, Pulse.ar(100, 0.1, mul: 0.1)) }.play

21 ~source.free ; // and are deallocated

22 ~source = { Out.ar(~bus, Dust2.ar(100, mul: 1)) }.play

23 ~source.free ;

24 ~source = { Out.ar(~bus,LFNoise0.ar(100, 0.1, mul: 1)) }.play

25 ~source.free ;

26 ~source = { Out.ar(~bus, WhiteNoise.ar(mul: 0.1)) }.play

27 ~source.free ;

28 ~source = { Out.ar(~bus, BrownNoise.ar(mul: 0.1)) }.play

29 ~source.free ; ~filt.free ;

Note that the 3 channels are plotted herein, the first two being the public

audio buses—the ones we hear—and the 3rd being the original source—which

is shown here for comparison only and is not actually heard on a two channel

// Sources

~bus = Bus.audio(s, 1) ; // bus where to route

(
// a filtering synth
~filt = {|in|
	var input = In.ar(in) ; // reads from the in bus
	var i = 10; q = 0.01; f = 100;
	a = Array.series(i, f, f);
	n = BPF.ar(input, a, q, i);
	m = Mix.ar(n)*0.2;
	[m, Silent.ar(1), input] // writes on 3 buses to visualize
}.scope ;
)

~filt.set(\in, ~bus) ; // reads from ~bus

// various source synths writing on ~bus
~source = { Out.ar(~bus, Pulse.ar(100, 0.1, mul: 0.1)) }.play
~source.free ; // and are deallocated
~source = { Out.ar(~bus, Dust2.ar(100, mul: 1)) }.play
~source.free ;
~source = { Out.ar(~bus,LFNoise0.ar(100, 0.1, mul: 1)) }.play
~source.free ;
~source = { Out.ar(~bus, WhiteNoise.ar(mul: 0.1)) }.play
~source.free ;
~source = { Out.ar(~bus, BrownNoise.ar(mul: 0.1)) }.play
~source.free ; ~filt.free ;

code/sintesi/sources.scd
code/sintesi/sources.scd

Introduction to SuperCollider 311

system. Bus 1 (the second) carries the output of a Silent UGen, which is just a
signal with 0 amplitude.

8.3.3 Analysis and resynthesis: Phase vocoder

As already discussed, with both additive and subtractive synthesis, it is of fun-

damental importance to control the parameters that define the (in)harmonic

components of the resulting spectrum. In this respect, additive and subtractive

synthesis are analogous, but opposite in their approach. Consider e.g. that sev-

eral systems can be implemented both in terms of oscillator or filter banks. In

the case of the various analysis and resynthesis techniques, the values of the

various parameters are set with respect to data derived from the analysis of a

pre-existent signal. The process typically comprises three phases:

1. creation of some data structure to hold the analysis data;

2. modification of the analysis data;

3. resynthesis based on the modified data.

There are several ways to implement such an architecture. The case of the

Phase Vocoder is particularly interesting and easily implemented in SC. In PV,

the signal is typically analyzed with respect to STFT (Short Time Fourier Trans-

form). In STFT the signal is separated in frames (windows, or segments of

the signal), each of which is routed to a bank of parallel filters linearly distrib-

uted between 0 and 𝑠𝑟 (sampling rate) frequencies. The result of the analysis
for every filter and for every frame determines a series of sinusoidal compo-

nents—the frequencies of the latter equal the cut-off frequencies of the filter.

Essentially:

1. each frame of the original signal is broken down into a set of components

that determine values for amplitude and phase.

2. frequency envelopes are constructed with respect to the above values; the

amplitude, phase and instantaneous frequency of each sinusoidal compo-

nent are calculated by interpolating between the values of successive frames.

Accordingly, the envelopes exceed the limits of the single frame and may

be used to control a bank of oscillators so that the original signal is reproduced

312 Synthesis, II: introduction to basic real-time techniques

by means of additive synthesis. A particularly efficient implementation of the

STFT is the FFT (Fast Fourier Transform).

If the analysis file is not modified, the FFT-based synthesis theoretically

reproduces a signal identical to the original. In reality, however, data is always

altered/lost in some way. The PV leverages the most interesting aspect of the

FFT analysis: the relationship between time and frequency. It is thus possible to

change one of the parameters without altering the other. More, it is possible to

independently control each individual component or to extract the envelopes

of only some of them.

Since analysis is necessary prior to the actual synthesis, and given its be-

ing computationally expensive, the classical implementations keeps these two

stages distinct: the analysis’ results are written to files which can be loaded into

memory and re-synthesized at some later time. Real-time implementations are

also possible; they would require the allocation of a buffer where the analysis

data would be written once calculated form the source. The size of the buffer

(that must be a power of 2 for reasons of efficiency) would, then, correspond
to the size of the analysis window (the frame). Essentially, every frame drawn

from the signal is to be stored in the buffer, replacing the previous one. The

data stored in the buffer is the instantaneous spectrum of the frame, which is

dealt with as a single time unit. This operation is carried out by the FFT UGen

which implements a Fast Fourier Transform on the window. The data, or in-

stantaneous spectrum, stored in its buffer can be then processed according to

set of extremely powerful Phase Vocoder UGens (all prefixed with PV_). Phase

vocoder operations are typically performed on the same buffer so that they re-

place the existent spectral data. When all processing is done, the buffer still

contains frequency-domain data, and as such it has to be converted back to a

time-domain waveform before we can send it to the audio output. This con-

version is carried out by IFFT UGen which performs the Inverse Fast Fourier

Transform on the signal. The entire schema can be conceptualized this way:

input signal → FFT → PV_… → IFFT → output signal

PV_ elements are optional in theory, in the sense that the analysis data can

at any time be re-synthesized directly. Such a scenario is not particularly mean-

ingful; nevertheless, it enables an explanation to the process:

Introduction to SuperCollider 313

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

3 (

4 SynthDef("noOperation", { arg soundBuf, out = 0 ;

5 var in, chain ;

6 var fftBuf = LocalBuf(2048, 1) ;

7 in = PlayBuf.ar(1, soundBuf, loop:1) ;

8 chain = FFT(fftBuf, in) ; // time --> freq

9 Out.ar(out,

10 IFFT(chain) // freq --> time

11);

12 }).play(s,[\soundBuf , b]) ;

13)

In this example, the audio file is loaded to the buffer b and read by the

synth; the latter converts the former to the frequency domain, via FFT and later

re-converts it back to a time-domain waveform, via IFFT. The signal in, which

results from the playing back the buffer (via PlayBuf), is converted to a fre-

quency-domain signal via FFT (note the variable assigned to the spectrum is

typically named chain to indicate that it refers to a series of successive frames).

The analysis data is stored in the fftBuf buffer, created by the convenience Lo-

calBuf UGen. This construct is useful whenever a buffer is contained within

a synth, like here12. Also note that the buffer’s size is 2048, which is the 11th

power of 2. Therefore, Out’s output is the resultant signal from the inverse con-

version of the data from the frequency to the time domain. In an ideal world,

there would be no audible loss or artifacts in such a case, and the resultant sig-

nal would be identical to the input. In the real world, however, all sorts of

artifacts occur which are congenital to the FFT/IFFT operations; such artifacts

are typically unnoticeable or bearable, but in certain cases they might result in

very noisy signals. Using PV_, the above schema is the basis to a very powerful

synthesis technique as demonstrated in the following examples. Consider the

following example: the SynthDef implements a “noise gate”; that is, it only lets

out input signals that are louder than a given amplitude—herein set interac-

tively with the mouse.

12 Note that neither FFTnor IFFT and LocalBuf are invokedwith *ar/*krmethods;

the latter are only meaningful in the time-domain.

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

(
SynthDef("noOperation", { arg soundBuf, out = 0 ;
	var in, chain ;
	var fftBuf = LocalBuf(2048, 1) ;
	in = PlayBuf.ar(1, soundBuf, loop:1) ;
	chain = FFT(fftBuf, in) ; 	// time --> freq
	Out.ar(out,
		IFFT(chain) // freq --> time
);
}).play(s,[\soundBuf, b]) ;
)

code/sintesi/FFTnoOp.scd
code/sintesi/FFTnoOp.scd

314 Synthesis, II: introduction to basic real-time techniques

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

3 SynthDef(\noiseGate , { arg soundBuf ;

4 var sig;

5 sig = PlayBuf.ar(1, soundBuf, loop:1);

6 sig = sig.abs.thresh(MouseX.kr(0,1)) * sig.sign;

7 Out.ar(0, sig);

8 }).play(s, [\soundBuf , b]) ;

10 // what’s going on?

11 s.scope(1) ;

The important part of this code sample is in line 6. The negative part of

the signal is converted to positive via abs, therefore thresh lets unaltered all

those samples with amplitude greater that the one selected (via MouseX), even

if the latter is expressed as a negative number, and substitutes all the rest with

0. In this way all parts of the signal that are inferior to a certain amplitude are
silenced. Typically, such an operation is used to eliminated background noises

that are represented as a constant low-amplitude bias in the input signal. The

output signal, however, would be now a unipolar one, that would sound as if

transposed an octave up (because of the folding). The method sign converts all

negative values to −1 and all positive to 1. Therefore, multiplying each value
of the noise gated signal with the original to which we have applied sign will

result in a bipolar noise gated signal. It is worth noting that, as usual with SC,

we could get exactly the same result with a different implementation13. For

example:

13 In SC mailing list, Nathaniel Virgo proposes the first implementation while

Stephan Wittwer the following one.

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

SynthDef(\noiseGate, { arg soundBuf ;
 var sig;
 sig = PlayBuf.ar(1, soundBuf, loop:1);
 sig = sig.abs.thresh(MouseX.kr(0,1)) * sig.sign;
 Out.ar(0, sig);
}).play(s, [\soundBuf, b]) ;

// what's going on?
s.scope(1) ;

code/sintesi/noiseGate.scd
code/sintesi/noiseGate.scd

Introduction to SuperCollider 315

1 SynthDef("noiseGate2", { arg soundBuf = 0;

2 var pb, ir, mx;

3 mx = MouseX.kr;

4 pb = PlayBuf.ar(1, soundBuf, loop: 1);

5 ir = InRange.ar(pb.abs, mx, 1);

6 Out.ar(0, pb * ir)

7 }).play(s, [\soundBufnum , b]);

9 // what’s going on?

10 s.scope(1) ;

The UGen InRange.kr(in, lo, hi) returns 1 for each sample that lies with
the [𝑙𝑜, ℎ𝑖], 0 interval and 0 otherwise. In the example, lo is set via MouseXwhile
hi is always 1. Accordingly, the output signal ir is always a sequence of 0 or
1 with respect to the absolute value of the signal: if the absolute value of the
signal (abs) is greater than low—here assigned as the variable mx— the output

would be 1. The signal will be essentially the same or less than 1, which is

the absolute maximum for normalized signals. The original signal pb is then

multiplied with ir, which is reset if the amplitude is less that the selected one

(mx) (being multiplied with 0) and left unaltered if it is greater that the latter

(being multiplied with 1).
Youwill notice that, albeit efficient, the noise gate produces significant "holes"

in the signal. The following example, essentially a spectral noise gate, follows

a different approach. When applied on a spectrum (chain in this case), the

PV_MagAbove will allow the amplitude coefficients of the spectrum (typically

referred to as “bins”) to pass through unaffected if their value is greater than a

threshold (controlled by MouseX), and will silence them if their value is less that

the latter. It is possible to completely eliminate components and background

noises with respect to those parts of the spectrum that are foregrounded and

more spectrally significant. This is a very powerful, but not painless, opera-

tion, since certain frequency components might be completely removed this

way while still affecting the foreground sounds14.

14 Note that the threshold is defined by MouseX in terms of “magnitude”. The exact

definition and the measurement unit of the latter is rather vague in SC’s doc-

umentation; accordingly we typically set this value empirically since SC lacks

tools to tell us what these values should be. It should be noted that the maxi-

SynthDef("noiseGate2", { arg soundBuf = 0;
	var pb, ir, mx;
	mx = MouseX.kr;
	pb = PlayBuf.ar(1, soundBuf, loop: 1);
	ir = InRange.ar(pb.abs, mx, 1);
	Out.ar(0, pb * ir)
}).play(s, [\soundBufnum, b]);

// what's going on?
s.scope(1) ;

code/sintesi/noiseGate2.scd
code/sintesi/noiseGate2.scd

316 Synthesis, II: introduction to basic real-time techniques

1 // Spectral gate

2 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

4 (

5 // Mouse control over spectral threshold

6 SynthDef("magAbove", { arg bufnum, soundBuf ;

7 var in, chain;

8 var fftBuf = LocalBuf(2048, 1) ;

9 in = PlayBuf.ar(1, soundBuf, loop: 1);

10 chain = FFT(fftBuf, in);

11 chain = PV_MagAbove(chain, MouseX.kr(0, 40, 0));

12 Out.ar(0, 0.5 * IFFT(chain));

13 }).play(s,[\soundBuf , b]);

14)

Filtering also has a frequency-domain counterpart. Indeed, it is possible to

eliminate particular frequency bins in an spectrum—e.g. those above or below

a certain frequency threshold, to create low-pass and high-pass filters. In the

following example, the mouse controls the wipe argument of a PV_BrickWall

UGen; the latter is essentially a frequency-domain low/high-pass filter with a

very abrupt slope. When wipe is 0 there is no effect; when it is < 0 the UGen
works as a low pass filter; when it is > 0 as a high-pass. Possible values are
within the [−1, 1] range, which means that the cut-off frequency need to be es-
timated linearly in terms of desired frequency and Nyquist frequency (since

FFT bins are linear, a wipe of 0.5 at a sample rate of 44, 100 will give us a cutoff
around 0.5 × 22, 050 (the Nyquist at this sample rate), or 11025 Hz). The filter
is named “brickwall” because of the steepness of its slope, which is essentially

a vertical line: all components above the cut-off frequencies are zeroed, rather

than attenuatedwith a rolloff that is characteristic of the filters described earlier

in this chapter. In our example, before sending the filtered signal to the output

we also use a Normalizer UGen. The latter rescales the signal so that its peak

value equals level (here = 1) (i.e. it normalizes it). This way we compensate
for any energy loss due to the filtering.

mum value of a given bin would equal the sum of the points that construct the

FFT windowing function.

// Spectral gate
b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

(
// Mouse control over spectral threshold
SynthDef("magAbove", { arg bufnum, soundBuf ;
	var in, chain;
	var fftBuf = LocalBuf(2048, 1) ;
	in = PlayBuf.ar(1, soundBuf, loop: 1);
	chain = FFT(fftBuf, in);
	chain = PV_MagAbove(chain, MouseX.kr(0, 40, 0));
	Out.ar(0, 0.5 * IFFT(chain));
}).play(s,[\soundBuf, b]);
)

code/sintesi/fft1.scd
code/sintesi/fft1.scd

Introduction to SuperCollider 317

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

2 s.freqscope ; // what’s going on?

3 (

4 // FFT filter

5 SynthDef("brickWall", { arg soundBuf ;

6 var in, chain;

7 var fftBuf = LocalBuf(2048, 1) ;

8 in = PlayBuf.ar(1, soundBuf, loop: 1);

9 chain = FFT(fftBuf, in);

10 chain = PV_BrickWall(chain, MouseX.kr(-1.0,1.0, 0));

11 // -1.0 --> 0.0: LoPass ; 0.0 --> 1.0: HiPass

12 Out.ar(0, Normalizer.ar(IFFT(chain), level:1));

13 }).play(s,[\soundBuf , b]);

14)

PVUGens enable us to process frequencywithout regards to time. Amongst

the availableUGens one can find PV_BinShiftwhich is used in the following ex-

ample. PV_BinShift(buffer, stretch, shift) translates and scales bins with

respect to a shift and a stretch, respectively: for example, given a three-com-

ponent spectrum [100, 340, 450], a translation (shift) by +30 results in a new

spectrum [130, 370, 480]. In the following piece of code, the stretch argument
is 1 and the shift is controlled by MouseX which produces values within the

[−128, 128] range. Observe how the entire spectrum is shifted left or right ac-

cording to the way the mouse moves.

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;
s.freqscope ; // what's going on?
(
// FFT filter
SynthDef("brickWall", { arg soundBuf ;
	var in, chain;
	var fftBuf = LocalBuf(2048, 1) ;
	in = PlayBuf.ar(1, soundBuf, loop: 1);
	chain = FFT(fftBuf, in);
	chain = PV_BrickWall(chain, MouseX.kr(-1.0,1.0, 0));
	// -1.0 --> 0.0: LoPass ; 0.0 --> 1.0: HiPass
	Out.ar(0, Normalizer.ar(IFFT(chain), level:1));
}).play(s,[\soundBuf, b]);
)

code/sintesi/fft2.scd
code/sintesi/fft2.scd

318 Synthesis, II: introduction to basic real-time techniques

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

2 // what’s going on?

3 s.freqscope ;

4 s.scope ;

6 (

7 SynthDef(\fftShift , { arg soundBuf ;

8 var in, chain;

9 var fftBuf = LocalBuf(2048, 1) ;

10 in = PlayBuf.ar(1, soundBuf, loop: 1);

11 chain = FFT(fftBuf, in);

12 chain = PV_BinShift(chain, 1, MouseX.kr(-128, 128));

13 Out.ar(0, 0.5 * IFFT(chain).dup);

14 }).play(s, [\soundBuf , b]);

15)

In a similar manner, we can scale the values of bins via the stretch argu-

ment: as illustratedwith the following example (in particular whenmoving the

mouse from left to right), variations of scale within the interval [0.25, 4] cause
the entire spectrum to expand or contract while keeping the same ratio between

the component’s of the spectrum.

1 SynthDef("fftStretch", { arg soundBuf ;

2 var in, chain;

3 var fftBuf = LocalBuf(2048, 1) ;

4 in = PlayBuf.ar(1, soundBuf, loop: 1);

5 chain = FFT(fftBuf, in);

6 chain = PV_BinShift(chain,MouseX.kr(0.25, 4, \exponential));

7 Out.ar(0, 0.5 * IFFT(chain).dup);

8 }).play(s,[\soundBuf , b]);

Two final notes.

The dup(n)method, defined on Objectwhich is the superclass of all classes

in SC, returns an array that comprises 𝑛 copies of that object. The default n

value is 2. In the previous example, dup has been invoked on IFFTUGen, which

returns an [IFFT,IFFT] array. In this way, we use the array to create a multi-

channel expansion for a stereo signal.

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;
// what's going on?
s.freqscope ;
s.scope ;

(
SynthDef(\fftShift, { arg soundBuf ;
	var in, chain;
	var fftBuf = LocalBuf(2048, 1) ;
	in = PlayBuf.ar(1, soundBuf, loop: 1);
	chain = FFT(fftBuf, in);
	chain = PV_BinShift(chain, 1, MouseX.kr(-128, 128));
	Out.ar(0, 0.5 * IFFT(chain).dup);
}).play(s, [\soundBuf, b]);
)

code/sintesi/fft3.scd
code/sintesi/fft3.scd

SynthDef("fftStretch", { arg soundBuf ;
	var in, chain;
	var fftBuf = LocalBuf(2048, 1) ;
	in = PlayBuf.ar(1, soundBuf, loop: 1);
	chain = FFT(fftBuf, in);
	chain = PV_BinShift(chain,MouseX.kr(0.25, 4, \exponential));
	Out.ar(0, 0.5 * IFFT(chain).dup);
}).play(s,[\soundBuf, b]);

code/sintesi/fft4.scd
code/sintesi/fft4.scd

Introduction to SuperCollider 319

Finally, it has to be noted that the values of the arguments of the various

PV_ UGens are typically not expressed in Hz. They are sometimes expressed

in some normalized form (in the case e.g. of PV_BrickWall) and some others in

implementation-dependent ranges (e.g. in the case of PV_BinShift). As already

discussed, in the latter cases it is not always clear what the end result will be,

and users are encouraged to play with these parameters and observe what hap-

pens based on intuition or empirical estimations. But a word of caution: these

results will be sample-rate dependent!

8.4 Physical Modeling

Physical modeling techniques are intended as simulations of sound-generating

physical processes. The physical modeling paradigm aims at generating au-

dio by means of a series of equations which describe the physical behavior (in

acoustic and/ormechanical terms) of real world sound-producing phenomena.

Where with additive synthesis we would approximate the timbre of a clarinet

by means of a suitable conglomeration of sine waves to represent the odd har-

monics of some fundamental frequency, with physical modeling we make a

mathematical model that describes the operation of a real clarinet’s physical

components. The latter would, then, be described in respect to a series of argu-

ments such as the size of the tube, the behavior of the reed, the density of the

wood, etc.

Physical modeling techniques are computationally expensive, typically, be-

cause of the number of complex calculations that are necessary to resolve linear

equations. In SC, physical modeling is typically implementedwithin dedicated

UGens using primitive objects. The variety of such UGens that are available

with the official distribution is rather limited, but there several others available

as external extensions. The theoretical background of physical modeling is be-

yond the scope of this book—interested users should consult other resources

that are dedicated to the subject. The following two examples are, neverthe-

less, useful as an informal introduction to physical modeling synthesis in SC.

A physical model is a formal representation of an acoustic system. As a rule

of thumb, there are several ways to formalize acoustic systems. For example,

many acoustic devices can be described as systems of filters arranged in various

320 Synthesis, II: introduction to basic real-time techniques

combinations. The degree of precision in which the behavior of the filters is de-

scribed determines the accuracy of the modeling. From this point of view, sub-

tractive synthesis is a physical modeling technique.The human vocal appara-

tus, for instance, produces the vowels by means of modulating the structure of

a pipe complex that is composed of multiple components (oto-pharyngeal con-

duct, oral and nasal cavity, etc), in order to control the way an acoustic source is

filtered. Phonetics shows that a key feature in the organization of vowels is the

presence of formants, i.e. of spectral bands in which the energy is concentrated.

The spectrum of each vowel includes from 4 to 5 formants: typically, the first
two are used to linguistically recognize the vowel, and the others to identify the

speaker. Note that the formants are independent of the fundamental frequency:

in this way, an “a” pronounced by a child is recognized precisely as such even if

the fundamental frequency is muchmore acute than that of the phonation of an

adult. Phonetic studies define a two-dimensional space in which the axes rep-

resent the first two formants. On top of it, points (in reality, areas) representing

the various vowels that are defined for various languages. Each language fea-

tures a different number of important points which typically occupy different

areas in the diagram. Figure 8.15 illustrates the vowel space for Italian.

Figure 8.15 Vowel space for Italian15.

15 From Ferrero, Genre, Böe, Contini, Nozioni di fonetica acustica, Torino, Omega,

1978.

Introduction to SuperCollider 321

Digital voice synthesis is a difficult research topic. As an exercise, we introduce

a simplified “cartoonified” model for vowels based on the two-formant space.

In the following example the source is a sawtooth wave, which, up to a certain

extent, resemble the acoustic signal produced by the glottis. The frequency is

determined by fund, the value of which is predefined as 70 Hz, a typical value
for a male speaker. Then, the source signal is filtered by two band-pass filters

(in parallel) with respect to those two frequencies that represent the formants:

these are, f1 and f2. To compensate for the loss of energy, the outputs of the

filters are normalized before being mixed together.

1 // A generator for vowel spectra

2 SynthDef(\vocali , { arg f1, f2, fund = 70, amp = 0.25 ;

3 var source = Saw.ar(fund); // source

4 var vowel =

5 Normalizer.ar(BPF.ar(source, f1, 0.1))

6 +

7 Normalizer.ar(BPF.ar(source, f2, 0.1))

8 * amp ; // general vol

9 Out.ar(0, vowel.dup)

10 }).add ;

One of the key points in physicalmodeling is control. Every physicalmodel

prerequisites the definition of a series of arguments with respect to which the

former is defined. In absence of such arguments, even the best model is useless.

The following example features a graphic interface that defines a two-dimen-

sional control space where formants can be expressed in Hz.

// A generator for vowel spectra
SynthDef(\vocali, { arg f1, f2, fund = 70, amp = 0.25 ;
	var source = Saw.ar(fund); // source
	var vowel =
	 Normalizer.ar(BPF.ar(source, f1, 0.1))
	 +
	 Normalizer.ar(BPF.ar(source, f2, 0.1))
	 * amp ; // general vol
	Out.ar(0, vowel.dup)
}).add ;

code/sintesi/formantiDef.scd
code/sintesi/formantiDef.scd

322 Synthesis, II: introduction to basic real-time techniques

1 (

2 ~synth = Synth(\vocali) ;

4 d = 600; e = 400;

5 w = Window("Formant space", Rect(100, 100, d+20, e+20)).front ;

6 Array.series(21, 2500, 100.neg).do{|i,j|

7 StaticText(w, Rect(j*(d/21)+5, 10, 30,10))

8 .font_(Font("Helvetica", 8))

9 .string_(i.asString)

10 } ;

11 Array.series(14, 200, 50).do{|i,j|

12 StaticText(w, Rect(d, j*(e/14)+20, 30, 10))

13 .font_(Font("Helvetica", 8))

14 .string_(i.asString)

15 } ;

16 u = UserView(w, Rect(0, 20, d, e)).background_(Color.white) ;

18 ~vow = (

19 // data for "sensitive" points in Hz

20 \i :[2300, 300], \e : [2150, 440], \E : [1830, 580],

21 \a : [1620, 780], \O : [900, 580], \o : [730, 440],

22 \u : [780, 290],\y : [1750, 300],\oe : [1600, 440],

23 \OE : [1400, 580]

24) ;

25 f = {|v, f2, f1| StaticText(u,

26 Rect(f2.linlin(500, 2500, d, 0),

27 f1.linlin(200, 800, 0, e)-18, 40,40))

28 .string_(v).font_(Font("Helvetica", 18))

29 } ;

30 ~vow.keys.asArray.do{|key|

31 var f2 = ~vow[key][0] ;

32 var f1 = ~vow[key][1] ;

33 f.value(key.asString, f2, f1)

34 } ;

36 w.acceptsMouseOver = true ;

37 u.mouseOverAction_({|v,x,y|

38 ~synth.set(

39 \f2 , x.linlin(0, d, 2500, 500).postln,

40 \f1 , y.linlin(0, e, 200, 850).postln,

41)

42 })

43)

(
~synth = Synth(\vocali) ;

d = 600; e = 400;
w = Window("Formant space", Rect(100, 100, d+20, e+20)).front ;
Array.series(21, 2500, 100.neg).do{|i,j|
	StaticText(w, Rect(j*(d/21)+5, 10, 30,10))
	.font_(Font("Helvetica", 8))
	.string_(i.asString)
} ;
Array.series(14, 200, 50).do{|i,j|
	StaticText(w, Rect(d, j*(e/14)+20, 30, 10))
	.font_(Font("Helvetica", 8))
	.string_(i.asString)
} ;
u = UserView(w, Rect(0, 20, d, e)).background_(Color.white) ;

~vow = (
	// data for "sensitive" points in Hz
	\i:[2300, 300], \e: [2150, 440], \E: [1830, 580],
	\a: [1620, 780], \O: [900, 580], \o: [730, 440],
	\u: [780, 290],\y: [1750, 300],\oe: [1600, 440],
	\OE: [1400, 580]
) ;
f = {|v, f2, f1| StaticText(u,
	Rect(f2.linlin(500, 2500, d, 0),
		f1.linlin(200, 800, 0, e)-18, 40,40))
	.string_(v).font_(Font("Helvetica", 18))
} ;
~vow.keys.asArray.do{|key|
	var f2 = ~vow[key][0] ;
	var f1 = ~vow[key][1] ;
	f.value(key.asString, f2, f1)
} ;

w.acceptsMouseOver = true ;
u.mouseOverAction_({|v,x,y|
	~synth.set(
		\f2, x.linlin(0, d, 2500, 500).postln,
		\f1, y.linlin(0, e, 200, 850).postln,
)
	})
)

code/sintesi/spazioFormantico.scd
code/sintesi/spazioFormantico.scd

Introduction to SuperCollider 323

The code is purposely a bit “dirty”, to illustrate how real-life prototypes of-

ten look. For example, a number of environment variables are used for brevity

(d,e,f,w,u) which should have more meaningful declared variable names. In

line 2 the synth ~synth is instantiated. The variable d and e determine the

length and width of the window w which contains the UserView (a user-con-

trolled graphic display). The two arrays (lines 6–15) only serve to generate la-

bels of the axes. Lines 36-42 define the actions related to user interaction via

mouse. First we need to indicate that all the children of the window w accept

mouse events (line 36), then we need to specify what happens when the mouse

is moved on the view u. As can be seen, the method mouseOverAction enables

access the horizontal (x) and vertical (y) coordinates of the mouse’s positioning

(in pixels) within the view. They are used to set the value of 𝑓1 and 𝑓2, respec-
tively, once scaled. Function f is the meant to label the space. This makes it

possible to generate a set of labels (lines 30-34) from the data ~vow.

Another technique that is typically associated with physical modeling is

the so-called Karplus-Strong algorithm. This technique is similar to the “wave-

guide” technique, which simulates the passage of a source signal in a physical

device in terms of a sequence of filters and delays that are supposed to sim-

ulate the reflections of the waves across various acoustic surfaces. Both tech-

niques revolve around filters and delays, however, while the waveguide par-

adigm is supposed to be a resonator’s physical model, the Karplus-Strong is

a much more abstract algorithm. Even a simple implementation, however, al-

low us to mimic the behavior of strings or pitched percussion instruments. As

can be seen in Figure 8.16, a noise generator fills a table (such as those encoun-

tered in the case of the wavetable synthesis) once for each event or note: at

this point the generator is disconnected and data is received from the modi-

fier. The latter reads the first value from the table, sends it to its output and

also adds it to the top of the table through a delay line. This way the table

is being constantly rewritten for the duration of the event: this is known as a

“recirculating wavetable”. For example, with a table of 256 points and a sam-
pling rate of 44, 100, the table is read (and edited) about 172 times a second

(𝑠𝑟
𝑛𝑡𝑎𝑏

= 44.100
256 = 172.265).

Changes can be very rapid because the table is being rewritten many times

per second. The gist of this operation is the particular way each value is modi-

fied before it is rewritten into the table: with appropriate filtering various tim-

bres can be obtained; plucked strings, for instance, have an intense attackwhich

decays rapidly both in amplitude and spectral richness. There are two conse-

quences in rewriting the processed sample back to the table. First, the resulting

signal is not necessarily a noise; unlike the pseudo-random sequence of values

324 Synthesis, II: introduction to basic real-time techniques

table

modifier

noise generator

switch

delay

output

Figure 8.16 Karplus-Strong algorithm.

that were initially placed into the table may suggest, it can be tuned sound as

well. Indeed, the resulting signal is rather periodic because the table is read

repeatedly over the given period and because its values will remain constant

after a number of cycles (this is similar to the design of digital oscillators; in

the above example, the frequency of the resulting waveform would be approx-

imately 172 Hz). Secondly, it is possible to easily simulate the dynamic and

spectral envelopes of pitched strings. The attack portion corresponds to the ini-

tial emission of pseudo-random numbers from the wavetable, which produces

a rather diffused spectrum. SC implements this algorithm in the Pluck UGen.

1 { Pluck.ar(

2 in:WhiteNoise.ar(0.25),

3 trig:Impulse.kr(1),

4 delaytime:60.midicps.reciprocal,

5 maxdelaytime:60.midicps.reciprocal,

6 decaytime:MouseY.kr(1,20,1),

7 coef:MouseX.kr(-0.75, 0.75))

8 }.play ;

As seen in the example, the parameters include the excitation source that

fills the table (here awhite noise) and a trigger that indicates precisely the filling

time (here given by the rate of an ImpulseUGen). The frequency is controlled by

specifying the delay time, which becomes the period of the desired frequency

(specified in terms of the reciprocalof the 60.midicps frequency). The argu-

ment maxdelaytime determines the size of the internal buffer, which must be

{ Pluck.ar(
	in:WhiteNoise.ar(0.25),
	trig:Impulse.kr(1),
	delaytime:60.midicps.reciprocal,
	maxdelaytime:60.midicps.reciprocal,
	decaytime:MouseY.kr(1,20,1),
 coef:MouseX.kr(-0.75, 0.75))
}.play ;

code/sintesi/pluck.scd
code/sintesi/pluck.scd

Introduction to SuperCollider 325

equal to or greater than the period of the frequency sought. The two most in-

teresting parameters are the decay time which is an indicator of the resonance

(expressed as the attenuation of 60 dB in seconds) and coeff, which controls

the internal filter applied to the values that are rewritten in the table. You may

notice that this affects how our perception of “pitched” the string is can be al-

tered with these controls. An interesting exercise can be the implementation of

systems inspired by KS algorithm.

1 (

2 // Karplus-Strong

3 SynthDef(\ks , {

4 arg freq = 440, amp = 1, out = 0, thresh = -90, decrease = -0.25 ;

5 var baseFreq = 48.midicps ; // base freq, arbitrary

6 var buf, index, sig, num = 2, scale = decrease.dbamp ;

7 var samples = 44100/baseFreq ;

8 var actualValue ;

9 buf = LocalBuf(samples) ;

10 // random table = white noise

11 buf.set(Array.fill(buf.numFrames, { 2.0.rand-1 }));

12 index = Phasor.ar(

13 trig:Impulse.ar(buf.numFrames/SampleRate.ir),

14 rate:freq/baseFreq,

15 // -> reading rate

16 start:0, end:buf.numFrames, resetPos:0);

17 actualValue = BufRd.ar(1, buf, index) ;

18 // circular reading, until signal goes under threshold

19 Out.ar(out, actualValue*amp) ;

20 DetectSilence.ar(actualValue, thresh.dbamp, 0.1, 2) ;

21 // circular rewriting

22 sig = Array.fill(num, {|i| BufRd.ar(1, buf, index-i)}).sum/num*scale;

23 BufWr.ar(sig, buf, index) ;

24 }).add ;

25)

27 Synth(\ks , [\freq , 50.midicps, \amp , 0.5, \out ,0]) ;

The SynthDef is based on an arbitrary reference frequency, defined as base-

Freq (a lowC) and assumes that the sampling rate is 44, 100. Then, a local buffer
buf is allocated with a size equal to 44,100

𝑏𝑎𝑠𝑒𝐹𝑟𝑒𝑞 samples. In other words, the buffer’s

size equals the period of the reference frequency. The buffer is, then, filled with

pseudo-random values in the [−1.0, 1.0] range which essentially represents an

(
// Karplus-Strong
SynthDef(\ks, {
	arg freq = 440, amp = 1, out = 0, thresh = -90, decrease = -0.25 ;
	var baseFreq = 48.midicps ; // base freq, arbitrary
	var buf, index, sig, num = 2, scale = decrease.dbamp ;
	var samples = 44100/baseFreq ;
	var actualValue ;
	buf = LocalBuf(samples) ;
	// random table = white noise
	buf.set(Array.fill(buf.numFrames, { 2.0.rand-1 }));
	index = Phasor.ar(
		trig:Impulse.ar(buf.numFrames/SampleRate.ir),
		rate:freq/baseFreq,
		// -> reading rate
		start:0, end:buf.numFrames, resetPos:0);
	actualValue = BufRd.ar(1, buf, index) ;
	// circular reading, until signal goes under threshold
	Out.ar(out, actualValue*amp) ;
	DetectSilence.ar(actualValue, thresh.dbamp, 0.1, 2) ;
	// circular rewriting
	sig = Array.fill(num, {|i| BufRd.ar(1, buf, index-i)}).sum/num*scale;
	BufWr.ar(sig, buf, index) ;
}).add ;
)

Synth(\ks, [\freq, 50.midicps, \amp, 0.5, \out,0]) ;

code/sintesi/ksDef.scd
code/sintesi/ksDef.scd

326 Synthesis, II: introduction to basic real-time techniques

initial white-noise signal. The problem now is how to read the table. The Pha-

sor UGen generates a signal which suits this purpose. Specifically, it is a ramp

signal that progressively increments in values that can be used as indexes into

the buffer. Here, Phasor is triggered by an Impulse UGen, the period of which

corresponds to the buffer’s size. In practice, every time the buffer reaches its

end, Phasor is re-triggered to read it again from the beginning (from position 0,

as determined by the resetPos argument). The rate argument indicates the

speed according to which the buffer is read and is calculated in terms of the ra-

tio between the desired freq and the reference frequencies. If freq is two times

baseFreq, the buffer will be read two times faster. Note that Phasor operates at

audio rate (*ar), so that with every sample a new index is calculated.

The variable index is used (line 18) to read the relevant sample (assigned

as actualValue) from the buffer with respect to BufRD UGen, and the result-

ing signal is sent to the output. The amplitude of the signal is then checked

using DetetSilence: if the amplitude is below a certain threshold thresh the

synth is deallocated (doneAction:2). So far we have merely read the buffer.

The last two lines of the code is where the values are actually modified. A sig

value is calculated as the sum of the values contained between index-i and

i divided by the total number of samples and scaled by scale. With 𝑛𝑢𝑚 =
2, just the current and the previous sample are considered. With 0.5 and 1
and scale set to 0.97162795157711 (remember that the predefined dB value is
−0.25 and is converted into linear amplitude): then 0.5+1.0

2 ×0.97162795157711 =
0.72872096368283. The new value is then written in the place of the previous

(1) which results in an attenuation effect. The diagram of the SynthDef is illus-

trated in Figure 8.17 (part of the buffer is not shown).

In this example, the modifying operation has essentially been an “averag-

ing filter” implementation of a low-pass filter: the value of the output sample

is obtained as the average of the current sample and the one that precedes it.

Obviously, such a filter would cause a progressive attenuation of the high-fre-

quency components in the input signal. When circulating such a signal through

the buffer, the result is a low-pass filter that progressively eliminates the spectral

richness of the initial white noise input. The resulting sound is characterized

Introduction to SuperCollider 327

freq:440

/ 130.8127826503

amp:1

*

out:0

Out

thresh:-90

DbAmp

decrease:-0.25

DbAmp

*

MaxLocalBufs 1

LocalBuf 1 337.12301738808

SetBuf 0 337 -0.7884259223938 0.84134745597839 -0.057488679885864 0.2309992313385 -0.051867961883545 0.041875839233398 0.67629599571228 0.76445984840393 -0.54246044158936 -0.5456554889679 -0.61979269981384 0.11055660247803 0.15944766998291 -0.22541046142578 -0.72916698455811 0.81305027008057 -0.91305804252625 -0.73731923103333 -0.21314644813538 0.89173626899719 -0.77929210662842 -0.47448921203613 0.66398191452026 0.12580728530884 0.51098656654358 0.33493781089783 0.18107390403748 -0.08723521232605 0.40900826454163 0.56980895996094 0.60849189758301 0.57312607765198 0.53511738777161 0.26553416252136 0.24435544013977 0.46123743057251 -0.17897391319275 0.51157259941101 -0.50598621368408 0.22899985313416 0.77255368232727 -0.2753324508667 0.74163818359375 0.27275848388672 -0.96460175514221 0.87728571891785 -0.64110398292542 -0.69464206695557 0.43620347976685 -0.76096940040588 0.3148467540741 -0.51541805267334 -0.034400224685669 0.30383586883545 0.2647693157196 -0.40691900253296 -0.78031754493713 0.22603011131287 -0.38509345054626 0.73692202568054 -0.77866792678833 0.19960498809814 -0.25735521316528 -0.92033576965332 0.18299674987793 -0.56680536270142 0.42618131637573 0.42072892189026 0.36883640289307 0.87639546394348 0.094588279724121 0.031418561935425 0.1391613483429 -0.67025685310364 -0.43271279335022 0.60811614990234 -0.90827107429504 -0.66905641555786 0.74915742874146 -0.4613893032074 0.73222589492798 -0.79306221008301 -0.16772866249084 0.19210267066956 0.48993062973022 0.7744517326355 -0.61755037307739 -0.71743845939636 -0.62016153335571 -0.046836614608765 -0.37634086608887 0.0073161125183105 0.87397027015686 0.59311771392822 -0.063793182373047 0.88582348823547 -0.29778027534485 0.61057305335999 0.62995147705078 -0.17304515838623 -0.62661194801331 -0.7746639251709 0.67704081535339 0.55279350280762 0.094167709350586 -0.55735182762146 -0.64693522453308 -0.76460218429565 -0.73925161361694 -0.31396532058716 0.91518187522888 0.50298094749451 -0.73005819320679 -0.95364594459534 -0.077873706817627 0.13273358345032 -0.33796548843384 0.39219403266907 -0.26131343841553 -0.22948408126831 -0.78613114356995 -0.81043171882629 0.91137194633484 0.81993865966797 0.10592722892761 -0.39656257629395 -0.28401684761047 0.94072914123535 0.44252324104309 0.95520067214966 0.44312858581543 0.53976011276245 -0.59717774391174 -0.63090491294861 -0.058388710021973 -0.20784997940063 0.16757345199585 0.67045426368713 -0.70277261734009 0.28110480308533 -0.054961681365967 0.70305609703064 0.064655065536499 -0.048315525054932 0.36747598648071 -0.39288902282715 -0.84316062927246 0.88099193572998 -0.6010890007019 -0.86993837356567 0.69494199752808 0.017633676528931 -0.98421835899353 -0.37982702255249 -0.8851854801178 -0.088315486907959 0.23636484146118 0.69812226295471 0.091365575790405 0.54318928718567 0.64428520202637 0.20987749099731 0.32083463668823 0.83844041824341 0.097825527191162 0.87244701385498 0.046121597290039 -0.66019320487976 -0.25082492828369 -0.32594323158264 -0.78260922431946 -0.27622365951538 0.11956167221069 0.02942156791687 -0.017441272735596 0.16953206062317 0.94259524345398 -0.66544651985168 0.13839221000671 -0.46738409996033 -0.94146871566772 0.29489827156067 0.64513063430786 -0.32063627243042 -0.086740493774414 -0.59586524963379 0.43668746948242 0.30694818496704 -0.73218321800232 -0.52472639083862 0.24854969978333 -0.25986409187317 -0.62771248817444 0.39220190048218 -0.63656449317932 0.084156513214111 0.70614147186279 0.43423008918762 0.5381121635437 -0.96270346641541 -0.76421165466309 -0.77348399162292 0.9182116985321 -0.28802251815796 0.78153777122498 0.53346037864685 -0.28631067276001 0.48259162902832 0.6824369430542 0.28813600540161 0.37801361083984 0.77117824554443 0.27304100990295 -0.84857845306396 -0.61482048034668 -0.90750598907471 0.37347602844238 0.34637546539307 -0.93530106544495 -0.13373804092407 0.65503072738647 -0.27687764167786 0.432537317276 -0.94216656684875 -0.75204300880432 0.92814040184021 -0.68980860710144 0.90839123725891 -0.83040285110474 -0.43413949012756 -0.75660872459412 -0.15845203399658 -0.62673306465149 -0.27805161476135 0.068691968917847 0.54505157470703 -0.8119101524353 0.0026702880859375 0.64488315582275 -0.17901492118835 -0.28819942474365 -0.51828932762146 -0.47562098503113 -0.061072587966919 -0.4869544506073 0.31035757064819 -0.99656939506531 -0.66895198822021 0.86118388175964 -0.9967896938324 -0.31066203117371 -0.63548612594604 0.5354630947113 0.99561643600464 0.10906076431274 -0.29863667488098 0.51705718040466 -0.1855742931366 -0.30406808853149 -0.53009366989136 -0.84616708755493 0.47602367401123 0.80819988250732 -0.26162958145142 0.65561556816101 0.65172600746155 -0.75556111335754 0.27715063095093 0.029425144195557 -0.49052834510803 -0.87258434295654 -0.95619797706604 -0.1481876373291 0.94292783737183 0.93968319892883 0.84808659553528 0.80194091796875 -0.080946683883667 -0.1472430229187 0.75427937507629 -0.0049448013305664 0.59539270401001 -0.13628959655762 -0.9693775177002 -0.94526052474976 -0.59903120994568 -0.13712310791016 0.12742614746094 -0.65569400787354 -0.50217890739441 0.54951763153076 -0.69439816474915 -0.33913064002991 0.9892144203186 -0.48986983299255 -0.74490237236023 0.13364219665527 -0.077876567840576 0.54584169387817 -0.17595481872559 -0.12703561782837 0.94368386268616 0.51771235466003 -0.22781825065613 0.90920925140381 0.49054098129272 0.10909271240234 0.53934121131897 -0.53194355964661 0.95884585380554 -0.5253164768219 -0.95955538749695 -0.29249215126038 -0.69892811775208 0.13292479515076 -0.029747486114502 0.3635528087616 0.83767342567444 0.53951334953308 0.95945835113525 -0.2501802444458 -0.29975962638855 0.38023281097412 0.12613773345947 -0.56792831420898 0.61305999755859 -0.83302164077759 -0.26059913635254 0.53805804252625 -0.78196263313293 -0.21081256866455 -0.55759119987488 0.83272933959961 0.58104681968689 0.80303025245667 -0.42253470420837 0.68758153915405

BufRd 1 2

BufRd 1 2

BufRd 1 2

BufWr 1

SampleRate

/ 337.12301738808

Impulse 0

Phasor 0 337.12301738808 0

- 1

DetectSilence 0.1 2

+

/ 2

freq:440

/ 130.8127826503

amp:1

*

out:0

Out

thresh:-90

DbAmp

decrease:-0.25

DbAmp

*

MaxLocalBufs 1

LocalBuf 1 337.12301738808

SetBuf 0 337 -0.7884259223938 0.84134745597839 -0.057488679885864 0.2309992313385 -0.051867961883545 0.041875839233398 0.67629599571228 0.76445984840393 -0.54246044158936 -0.5456554889679 -0.61979269981384 0.11055660247803 0.15944766998291 -0.22541046142578 -0.72916698455811 0.81305027008057 -0.91305804252625 -0.73731923103333 -0.21314644813538 0.89173626899719 -0.77929210662842 -0.47448921203613 0.66398191452026 0.12580728530884 0.51098656654358 0.33493781089783 0.18107390403748 -0.08723521232605 0.40900826454163 0.56980895996094 0.60849189758301 0.57312607765198 0.53511738777161 0.26553416252136 0.24435544013977 0.46123743057251 -0.17897391319275 0.51157259941101 -0.50598621368408 0.22899985313416 0.77255368232727 -0.2753324508667 0.74163818359375 0.27275848388672 -0.96460175514221 0.87728571891785 -0.64110398292542 -0.69464206695557 0.43620347976685 -0.76096940040588 0.3148467540741 -0.51541805267334 -0.034400224685669 0.30383586883545 0.2647693157196 -0.40691900253296 -0.78031754493713 0.22603011131287 -0.38509345054626 0.73692202568054 -0.77866792678833 0.19960498809814 -0.25735521316528 -0.92033576965332 0.18299674987793 -0.56680536270142 0.42618131637573 0.42072892189026 0.36883640289307 0.87639546394348 0.094588279724121 0.031418561935425 0.1391613483429 -0.67025685310364 -0.43271279335022 0.60811614990234 -0.90827107429504 -0.66905641555786 0.74915742874146 -0.4613893032074 0.73222589492798 -0.79306221008301 -0.16772866249084 0.19210267066956 0.48993062973022 0.7744517326355 -0.61755037307739 -0.71743845939636 -0.62016153335571 -0.046836614608765 -0.37634086608887 0.0073161125183105 0.87397027015686 0.59311771392822 -0.063793182373047 0.88582348823547 -0.29778027534485 0.61057305335999 0.62995147705078 -0.17304515838623 -0.62661194801331 -0.7746639251709 0.67704081535339 0.55279350280762 0.094167709350586 -0.55735182762146 -0.64693522453308 -0.76460218429565 -0.73925161361694 -0.31396532058716 0.91518187522888 0.50298094749451 -0.73005819320679 -0.95364594459534 -0.077873706817627 0.13273358345032 -0.33796548843384 0.39219403266907 -0.26131343841553 -0.22948408126831 -0.78613114356995 -0.81043171882629 0.91137194633484 0.81993865966797 0.10592722892761 -0.39656257629395 -0.28401684761047 0.94072914123535 0.44252324104309 0.95520067214966 0.44312858581543 0.53976011276245 -0.59717774391174 -0.63090491294861 -0.058388710021973 -0.20784997940063 0.16757345199585 0.67045426368713 -0.70277261734009 0.28110480308533 -0.054961681365967 0.70305609703064 0.064655065536499 -0.048315525054932 0.36747598648071 -0.39288902282715 -0.84316062927246 0.88099193572998 -0.6010890007019 -0.86993837356567 0.69494199752808 0.017633676528931 -0.98421835899353 -0.37982702255249 -0.8851854801178 -0.088315486907959 0.23636484146118 0.69812226295471 0.091365575790405 0.54318928718567 0.64428520202637 0.20987749099731 0.32083463668823 0.83844041824341 0.097825527191162 0.87244701385498 0.046121597290039 -0.66019320487976 -0.25082492828369 -0.32594323158264 -0.78260922431946 -0.27622365951538 0.11956167221069 0.02942156791687 -0.017441272735596 0.16953206062317 0.94259524345398 -0.66544651985168 0.13839221000671 -0.46738409996033 -0.94146871566772 0.29489827156067 0.64513063430786 -0.32063627243042 -0.086740493774414 -0.59586524963379 0.43668746948242 0.30694818496704 -0.73218321800232 -0.52472639083862 0.24854969978333 -0.25986409187317 -0.62771248817444 0.39220190048218 -0.63656449317932 0.084156513214111 0.70614147186279 0.43423008918762 0.5381121635437 -0.96270346641541 -0.76421165466309 -0.77348399162292 0.9182116985321 -0.28802251815796 0.78153777122498 0.53346037864685 -0.28631067276001 0.48259162902832 0.6824369430542 0.28813600540161 0.37801361083984 0.77117824554443 0.27304100990295 -0.84857845306396 -0.61482048034668 -0.90750598907471 0.37347602844238 0.34637546539307 -0.93530106544495 -0.13373804092407 0.65503072738647 -0.27687764167786 0.432537317276 -0.94216656684875 -0.75204300880432 0.92814040184021 -0.68980860710144 0.90839123725891 -0.83040285110474 -0.43413949012756 -0.75660872459412 -0.15845203399658 -0.62673306465149 -0.27805161476135 0.068691968917847 0.54505157470703 -0.8119101524353 0.0026702880859375 0.64488315582275 -0.17901492118835 -0.28819942474365 -0.51828932762146 -0.47562098503113 -0.061072587966919 -0.4869544506073 0.31035757064819 -0.99656939506531 -0.66895198822021 0.86118388175964 -0.9967896938324 -0.31066203117371 -0.63548612594604 0.5354630947113 0.99561643600464 0.10906076431274 -0.29863667488098 0.51705718040466 -0.1855742931366 -0.30406808853149 -0.53009366989136 -0.84616708755493 0.47602367401123 0.80819988250732 -0.26162958145142 0.65561556816101 0.65172600746155 -0.75556111335754 0.27715063095093 0.029425144195557 -0.49052834510803 -0.87258434295654 -0.95619797706604 -0.1481876373291 0.94292783737183 0.93968319892883 0.84808659553528 0.80194091796875 -0.080946683883667 -0.1472430229187 0.75427937507629 -0.0049448013305664 0.59539270401001 -0.13628959655762 -0.9693775177002 -0.94526052474976 -0.59903120994568 -0.13712310791016 0.12742614746094 -0.65569400787354 -0.50217890739441 0.54951763153076 -0.69439816474915 -0.33913064002991 0.9892144203186 -0.48986983299255 -0.74490237236023 0.13364219665527 -0.077876567840576 0.54584169387817 -0.17595481872559 -0.12703561782837 0.94368386268616 0.51771235466003 -0.22781825065613 0.90920925140381 0.49054098129272 0.10909271240234 0.53934121131897 -0.53194355964661 0.95884585380554 -0.5253164768219 -0.95955538749695 -0.29249215126038 -0.69892811775208 0.13292479515076 -0.029747486114502 0.3635528087616 0.83767342567444 0.53951334953308 0.95945835113525 -0.2501802444458 -0.29975962638855 0.38023281097412 0.12613773345947 -0.56792831420898 0.61305999755859 -0.83302164077759 -0.26059913635254 0.53805804252625 -0.78196263313293 -0.21081256866455 -0.55759119987488 0.83272933959961 0.58104681968689 0.80303025245667 -0.42253470420837 0.68758153915405

BufRd 1 2

BufRd 1 2

BufRd 1 2

BufWr 1

SampleRate

/ 337.12301738808

Impulse 0

Phasor 0 337.12301738808 0

- 1

DetectSilence 0.1 2

+

/ 2

Figure 8.17 Diagram of the ks SynthDef.

by a complex spectrum on its attack phase which progressively fades and tunes

to a rather pitched one.

8.5 Time-based methods

In this category we ascribe a set of methods that deal with time domain signal

representations. Such methods are typically computational and are often im-

plemented at very high temporal resolutions, ones that cannot be managed by

328 Synthesis, II: introduction to basic real-time techniques

analogue systems. To boot, time-based signals often exploit the very discrete

nature of digital audio in various ways.

8.5.1 Granular synthesis

From a granular synthesis point of view, sound is not just a waveform but also

a “corpuscle”. The usual metaphor is that of pointillism: a series of concate-

nated microscopic sonic fragments that are perceived as a single continuous

sound, in the same way that the adjacent dots of various colors are perceived

as a single hue. Grains are sound fragments with a duration between 1 and 100

milliseconds. Each grain is characterized by a particular amplitude envelope,

which greatly affects the resulting sound. Given the number of grains typically

required to synthesize some sound, their various properties (e.g. duration, fre-

quency, envelope, waveform) need to be defined in some automated manner.

Stochastic methods are often used so that the user determines average, rather

than absolute, values for the various parameters. Additionally, it is necessary to

define some higher level compositional model: not surprisingly, granular syn-

thesis is a techniquemost often encounteredwithin an algorithmic composition

context. For instance, it is possible to organize the mass of a grain-cloud fol-

lowing the distribution laws of ideal gasses (like Iannis Xenakis did), or by em-

ploying clusters that simulate meteorological phenomena such as the structure

of clouds (like Curtis Roads did), or finally, with respect to “tendency masks”

that govern the properties of grain streams (like Barry Truax did). In general,

granular synthesis is computationally expensive, given that the properties of

hundreds, if not thousands, of individual grains have to be controlled simul-

taneously. Accordingly, there are numerous ways to implement granular syn-

thesis: even if they may differ significantly in scope, all techniques that revolve

around quasi-impulsive signals can be thought of as granular ones.

Introduction to SuperCollider 329

1 (

2 {

3 // granular synchronous synthesis

4 var baseFreq = MouseX.kr(50, 120, 1).midicps ;

5 var disp = MouseY.kr ;

6 var strata = 30 ;

7 var minDur = 0.05, maxDur = 0.1 ;

9 Mix.fill(strata,

10 {

11 // source

12 SinOsc.ar(

13 freq: baseFreq +

14 LFNoise0.kr(20)

15 .linlin(-1.0,1.0, baseFreq*disp*1.neg, baseFreq*disp),

16 mul: 1/strata)

17 // envelope

18 * LFPulse.kr(

19 freq:

20 LFNoise0.kr(20)

21 .linlin(-1.0,1.0, minDur.reciprocal, maxDur.reciprocal))

22 })

23 }.freqscope

24)

The above example demonstrates a synchronous approach to granular syn-

thesis. It employs a sine-wave with a square-wave amplitude envelope (LF-

Pulse); the latter generates a unipolar signal (within a [0.0, 1.0] range): when
the amplitude is > 0, the signal passes through, otherwise it it silenced, result-
ing in a “windowing” of the signal. The size of each window depends on the

cycle of LFPulse, which is determined by minDur and maxDur. Since the duration

defines the period of the window, LFPulse’s frequency will be 1
𝑇 . In this case,

the envelope of the grain is given by the positive cycle of the square wave.

As seen, a number of strata signals are mixed using Mix: the frequency

of each signal is given by the addition of baseFreq (controlled by MouseX) with

a pseudo-random value between 0 and disp (controlled by MouseY) generated

by LFNoise0; this frequency represents a normalized percentage of the base fre-

quency (if 𝑏𝑎𝑠𝑒𝐹𝑟𝑒𝑞 = 100 and 𝑑𝑖𝑠𝑝 = 0.5 , then the oscillator’s frequency will
vary in the [100 − 50, 100 + 50] range). Note that each SinOsc is associated with

a unique LFNoise0.

(
{
// granular synchronous synthesis
var baseFreq = MouseX.kr(50, 120, 1).midicps ;
var disp = MouseY.kr ;
var strata = 30 ;
var minDur = 0.05, maxDur = 0.1 ;

Mix.fill(strata,
	{
	// source
	SinOsc.ar(
		freq: baseFreq +
			LFNoise0.kr(20)
			.linlin(-1.0,1.0, baseFreq*disp*1.neg, baseFreq*disp),
		mul: 1/strata)
	// envelope
	* LFPulse.kr(
			freq:
			LFNoise0.kr(20)
			.linlin(-1.0,1.0, minDur.reciprocal, maxDur.reciprocal))
})
}.freqscope
)

code/sintesi/syncGrain.scd
code/sintesi/syncGrain.scd

330 Synthesis, II: introduction to basic real-time techniques

The former approach can be implemented in real time, if some continuous

input is “windowed” appropriately by employing some pulse signal. Note that

the generation of the pseudo-random signals has to be taken care by LFNoise0

which requires a refresh rate; here, the latter is arbitrarily set to 20 Hz herein.
Another possible approach would be to think of every individual grain as

a “composed” event. That is to say that each grain has to be scheduled proce-

durally. Such an approach is rather expensive computationally due to the high

number of grain-events that need to be scheduled.

Granular synthesis techniques are not necessarily used for ad nihilo synthe-

sis; they are often used in order to process some input signal—an operation

referred to as “granulation”. Granulation can be used to decompose an input

signal into grains which can then be re-constructed in all sorts of way. Such an

operation necessarily introduces some latency: we first need a proper part of

the actual input signal before we can granulate it. Accordingly, real time imple-

mentations typically revolve around the use of a buffer where part of the input

is recorded.

1 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

3 SynthDef(\grainBuf , { arg sndbuf;

4 Out.ar(0,

5 GrainBuf.ar(2,

6 trigger: Impulse.kr(MouseX.kr(10, 20)),

7 dur: MouseY.kr(0.01, 0.1),

8 sndbuf: sndbuf,

9 rate: LFNoise1.kr.range(0.5, 2),

10 pos: LFNoise2.kr(0.1).range(0.0, 1.0),

11 interp:1,

12 pan:LFNoise1.kr(3)

13))

14 }).add ;

16 x = Synth(\grainBuf , [\sndbuf , b]) ;

The former example is a simplified version of the example found in the

GrainBuf’s help file. The buffer b keeps part of the input signal and Grain-

Buf granulates it accordingly. The syntax of the latter is explicit in the code.

The first argument specifies the number of channels to output, and each grain

will be panned according to the signal in the pan argument; unlike other buffer

b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav") ;

SynthDef(\grainBuf, { arg sndbuf;
	Out.ar(0,
		GrainBuf.ar(2,
			trigger: Impulse.kr(MouseX.kr(10, 20)),
			dur: MouseY.kr(0.01, 0.1),
			sndbuf: sndbuf,
			rate: LFNoise1.kr.range(0.5, 2),
			pos: LFNoise2.kr(0.1).range(0.0, 1.0),
			interp:1,
			pan:LFNoise1.kr(3)
))
}).add ;

x = Synth(\grainBuf, [\sndbuf, b]) ;

code/sintesi/grainBuf.scd
code/sintesi/grainBuf.scd

Introduction to SuperCollider 331

playback UGens, this UGen can only process mono signals directly. The sec-

ond argument is a triggering signal; each trigger produces a new grain: in

the example, this is a train of impulses with a frequency between 10 and 20
Hz. The argument dur determines each grain’s duration (herein, between 0.01
and 0.1, that is 10 and 100 ms). The subsequent argument specifies the buffer
used (herein b). The arguments rate, pos, interp, pan, envbufnum control

the buffer’s reading rate (like in the case of PlayBuf), the position of reading

(normalized between 0, for the start of the buffer, and 1.0, for its end), the in-
terpolation method, the position in the stereo image (such as in the case of Pan2

and as far as stereo signals are concerned) and, optionally, a buffer with an en-

velope for each grain.

Several of those arguments are controlled with low-frequency (LF) kind of

generators. The method range enables us to scale a signal (assumed to be in

the [−1, 1] range) to the interval specified by the two arguments passed: this is
more intuitive that using mul and add16. The LFNoise2UGen produces a low-fre-

quency noise with quadratic interpolation between the output values, unlike

LFNoise1 which has linear interpolation. This results is a more rounded wave.

These signals are polled once when a trigger indicates a new grain should be

created.

8.5.2 Techniques based on the direct generation of the waveform

It is worth closing with a brief overview of one of the most useful or the most

historically important techniques that revolve around the direct computation of

the digital values that constitute a signal. There have been relevant examples

since the 1960s (by Gottfried Michael Koenig, Iannis Xenakis, Herbert Brün),

which mostly take a modeling approach. In those cases, rather that attempt-

ing to simulate some acoustic or other model, we directly manipulate streams

of raw numbers. Such approaches could be though of as “constructivist”. The

signal could be thought of as a sequence of straight line segments, each com-

prised of n samples, that are algorithmically joined. Individual operations can

be thought of in terms of inversion, permutation and transformation of sam-

ple blocks. If there is a common thread to these approaches, this would be a

willingness to explore digital signals in the way that these are represented by

16 Since range expects the signal to be in the [−1, 1] range, it cannot be used in

conjunction with mul/add.

332 Synthesis, II: introduction to basic real-time techniques

computers. The resulting signals are often rich in asperities, in terms of both

spectral components and temporal discontinuities. In the chapter devoted to

the fundamentals of synthesis, we discussed a relevant example: the “permu-

tative distortion”, where blocks of samples are shuffled so that the the sam-

ple sequence [a,b,c,d] becomes [b,a,d,c]. The real-time implementation of

a similar instance faces an inherent limitation of SC (and of virtually all au-

dio synthesis software environments, really): the server can not access indi-

vidual samples—i.e. it is not sample-accurate. The server only deals with

the output of UGens which output blocks of samples, rather than individual

samples17. Therefore, the algorithms described in this chapter cannot be im-

plemented server-side. A possible implementation inspired by the patching

distortion technique would be the following18:

17 Actually, it is to some extent possible to implement sample-accurate synthesis

in SC; for example by means of exploiting LocalIn and LocalOut UGens with a

block size of 1 for the control period, or using DbufRd and DbufWrUGens which,

given certain conditions, also let us write/read individual samples.
18 Anevenmore comprehensive and efficient implementationwould involvewrit-

ing a dedicated UGen, see Giacomo Valenti, Andrea Valle, Antonio Servetti,

Permutation synthesis, Proceedings XXCIM - Colloquio di InformaticaMusicale,

Rome 2014.

Introduction to SuperCollider 333

1 (

2 b = Buffer.alloc(s, s.sampleRate * 1.0, 1); // buffer mono, 1 sec

4 SynthDef(\sin , {|freq = 100, buf|

5 RecordBuf.ar(SinOsc.ar(freq), buf, loop:1)}).add ;

7 SynthDef(\perm , { arg buf, permFreq = 10 ;

8 var trig = Impulse.ar(permFreq) ;

9 var startPos = LFSaw.ar(permFreq, iphase:1,mul:0.5, add:0.5); // 0 - 1

10 var periodInSamples = permFreq.reciprocal*SampleRate.ir ;

11 var sig =

12 BufRd.ar(1, buf, Phasor.ar(trig, 1,

13 startPos*periodInSamples,

14 startPos*periodInSamples*2, startPos*periodInSamples)

15) ;

16 Out.ar(0, sig) ;

17 }).add ;

18)

20 // writing on a circular buffer

21 x = Synth(\sin , [\buf , b])

22 // after

23 y = Synth.after(x, \perm , [\buf , b]) ;

25 // control

26 y.set(\permFreq , 20) ;

27 x.set(\freq , 1000) ;

28 // what’s going on?

29 s.scope ;

Initially we allocate a buffer b, which contains a 1-second signal that is

synced to the sampling rate of the server. The buffer will be used to record

a signal and make it available for further processing. In order to exchange two

sets of samples [a, b] in real time, we must register them as two blocks, re-

verse them then send them to an output—hence the usefulness of the b used

by the synth x (line 21). The SynthDef uses RecordBuf, a UGen that takes the

following arguments: an input signal (herein generated by SinOsc), a buffer

where the signal should be recorded (b) and loop, which indicates whether the

buffer should be read in a circular manner (1) or not (0). In principle, our synth

continuously records the signal on a circular buffer. Note that there is no Out

in our SynthDef. The generated signal is simply recorded on the buffer: it is

(
b = Buffer.alloc(s, s.sampleRate * 1.0, 1); // buffer mono, 1 sec

SynthDef(\sin, {|freq = 100, buf|
	RecordBuf.ar(SinOsc.ar(freq), buf, loop:1)}).add ;

SynthDef(\perm, { arg buf, permFreq = 10 ;
	var trig = Impulse.ar(permFreq) ;
	var startPos = LFSaw.ar(permFreq, iphase:1,mul:0.5, add:0.5); // 0 - 1
	var periodInSamples = permFreq.reciprocal*SampleRate.ir ;
	var sig =
	BufRd.ar(1, buf, Phasor.ar(trig, 1,
		startPos*periodInSamples,
		startPos*periodInSamples*2, startPos*periodInSamples)
) ;
	Out.ar(0, sig) ;
}).add ;
)

// writing on a circular buffer
x = Synth(\sin, [\buf, b])
// after
y = Synth.after(x, \perm, [\buf, b]) ;

// control
y.set(\permFreq, 20) ;
x.set(\freq, 1000) ;
// what's going on?
s.scope ;

code/sintesi/permSC.scd
code/sintesi/permSC.scd

334 Synthesis, II: introduction to basic real-time techniques

not routed to an audio bus. The idea is to record the sine-wave so that we may

subsequentlymanipulate it. Recording, of course, introduces latencywhich de-

pends upon the size of the buffer at the time when the parameters of SinOsc are

set. The modified signal is available on b only after recording.

The following SynthDef follows a permutation-driven approach. Control is

implemented in terms of frequency, rather than in terms of number of samples.

The LFSaw UGen generates a ramp which is normalized to a unipolar signal in

the [0, 1.0] range through mul and add. More, the iphase sets the initial phase

of the signal to 1: this means that the UGen starts from after the first half of

the cycle. Accordingly, it takes into account the amplitudes from 0.5 to 1, then
from 0.0 to 0.5. The frequency is that of the desired permutation, permFreq. For
convenience, the period is calculated according to the latter, periodInSamples.

At this point, the buffer buf (b in this case) is read using Phasor. As each trig

received, the latter advances the reading by 1 sample (2nd argument). As seen,
these two are calculated with respect to the multiplication of startPos (where

the value is a result of the signal from LFSaw) for the desired permutation period.

Then it is read from startPos and until the next period. The final argument

of Phasor indicates the reset point each time a trig is received. In line 21 a

sinusoid is written on the buffer, then we instantiate the synth that reads from

this buffer. Finally, we can control the parameters of the sinusoid and the entire

permutation process.

The entire process is shown in Figure 8.18.

bufferRecorder

Player Out

In

Phasor

wrap around

ramp signal

Record

Playback

Figure 8.18 Permutation Synthesis.

This way, it is possible to generate complex spectra using simple sinuoids (of

course other signals can be also used) and while eschewing any references to

Introduction to SuperCollider 335

acoustics but, rather, simply operating on the temporal structure of the input

signal.

8.6 Conclusions

Audio synthesis in the digital domain is an open field to creativity. Accordingly,

the possibilities for composers and sound-designers are vast. The examples dis-

cussed in this chapter are just a small taste of what audio synthesis in general,

and SC in particular, may offer. The most interesting aspect of such techniques

is, probably, the way they may be controlled. It is often necessary to incorpo-

rate them in broader compositional contexts. This brings us back to what was

already discussed as the most important aspect of sound synthesis: the con-

trol of audio signals and the control of the overall organization of the sound

material.

336 Synthesis, II: introduction to basic real-time techniques

9 Communication

This chapter aims to quickly discuss the problem of communication in Super-

Collider. Specifically, communication as it is defined between some agents. As

we said from the beginning, SC immediately identifies two agents, a client and

a server. Yet, we have not discussed the details of their communication so far,

because it has been conveniently conveniently made transparent by the layer

provided by the SC language. However, there are many cases in which to some

extent it is necessary to explicitly define amode of communication between dif-

ferent objects and SC. After several examples of communication between the

client and the server, the chapter will provide some preliminary indications

with respect to communication between SC and the “outside”: for the latter

cases, the discussed examples are functional but not entirely autonomous since

they often refer to formats, services and applications that are external to SC.

9.1 From server to client: use of control buses

Communication as discussed so far concerned the exchange of messages be-

tween client and server. In an expression such as s.boot, the interpreter is the

client that converts the SC syntax in amessage to the server indicating the latter

to start. A similar situation applies to all those constructs that control aspects of

the audio synthesis (on server side): the communication is one-way, from the

client to the server. Note that the client defers all the calculation of the audio

to the server, and the former has no information on the activities of the latter.

However, in many cases it is indeed very helpful to have information on what

is going on in the audio. A trivial but practical case is plotting inside a GUI

338 Communication

window the content of audio signals. If the signal is calculated on the server

side, how can it be accessed by the GUI classes that reside on the client side?

The solution lies in communication that is the reverse of the model we have

seen insofar, where information is sent from the server to the client. The first

way in which such a communication can be implemented and utilized in SC

is based on the use of control buses. In the following example, the SynthDef

is designed as a synthesizer which generates a control signal through a noise

generatorwhich interpolates quadratically between successive pseudo-random

values, LFNoise2: the result is a particularly smoothed noisy signal. Lines 8-10

create a synth x from the SynthDef, which is routed to the control bus ~bus. The

synth y reads from the bus the values generated by xwhich are then written on

the bus. The synth y re-maps these values to the frequency of a sine wave. All

this communication, even if linguistically described on the client side, happens

between the synths via the bus, that is, on the server side. The next block (12-31)

retrieves the values of the control signal from the bus to plot them in a GUI. The

heart of the operation is a routine r that every 20 ms (0.05.wait, 29) uses the
method get, available for ~bus. This method asks the server to return the client

the value that is written on the bus, that is, the signal generated by x. The argu-

ment of get represents the value of the bus. Note that get receives a function

because it is asynchronous: in other words, it asks a value to the server, but it

may not know exactly when it will arrive. Therefore, the function is evaluated

only when the server has answered the call. In this case, the (shared) environ-

ment variable v stores the value from the bus, the counter is incremented, and

then the UserView u is updated. Note that the defer method is necessary be-

cause the routine r is scheduled (implicitly) on SystemClock. The UserView u

has an associated function drawFuncwhich draws a circle in which the position

𝑥 depends on amodulo 500, which represents thewidth of thewindow u: when

this values is exceeded, the counter is reset to zero, and the next circle will be

on the 0 point of the x axis. The value of 𝑦 depends instead on the value of

the control signal, v, which is updated through each call to ~bus.get. Through

u.clearOnRefresh_(false), the window will not be cleaned up, and then we

see the overlapping of the plottings once i is more than 500.

Introduction to SuperCollider 339

1 (

2 SynthDef(\cntr , {arg out = 0, dbGain = 0;

3 Out.kr(out, LFNoise2.kr(0.5))

4 }).add ;

5)

7 (

8 ~bus = Bus.control(s,1) ;

9 x = Synth(\cntr , [\out , ~bus]) ;

10 y = {SinOsc.ar(In.kr(~bus).linlin(-1, 1, 48, 72).midicps, mul:0.2)}.play ;

12 i = 0; v = 0.0 ;

13 w = Window.new("Plotter", Rect(10, 10, 500, 500)).front ;

14 u = UserView(w, Rect(0,0, 500, 500)).background_(Color.grey(0.75)) ;

15 u.drawFunc_{

16 Pen.fillColor = Color.red(0.5);

17 Pen.addOval(Rect((i%500), v.linlin(-1.0,1.0, 500,0), 2,2)) ;

18 Pen.fill

19 } ;

20 u.clearOnRefresh_(false) ;

22 r = {

23 inf.do{

24 ~bus.get({ arg amp ;

25 v = amp ;

26 i = i+1 ;

27 {u.refresh}.defer

28 });

29 0.05.wait ;

30 }

31 }.fork

32)

The following example uses a similar mechanism to display the signal am-

plitude. The UGen Amplitude returns a control signal that estimates the ampli-

tude of the input signal (it is an “amplitude follower”). The control signal can

be used directly on the server via patching with other UGens. In the following

example, the synth a is an amplitude follower that reads an input audio sig-

nal from the bus ~audio and writes the audio signal obtained from the analysis

on the control bus ~ampBus. The next block defines a window. Through the

function drawFunc, we draw a circle in the center, its size and color depend-

ing on four environmental variables (~dim, ~hue, ~sat, ~val , initialized in

(
SynthDef(\cntr, {arg out = 0, dbGain = 0;
	Out.kr(out, LFNoise2.kr(0.5))
}).add ;
)

(
~bus = Bus.control(s,1) ;
x = Synth(\cntr, [\out, ~bus]) ;
y = {SinOsc.ar(In.kr(~bus).linlin(-1, 1, 48, 72).midicps, mul:0.2)}.play ;

i = 0; v = 0.0 ;
w = Window.new("Plotter", Rect(10, 10, 500, 500)).front ;
u = UserView(w, Rect(0,0, 500, 500)).background_(Color.grey(0.75)) ;
u.drawFunc_{
	Pen.fillColor = Color.red(0.5);
	Pen.addOval(Rect((i%500), v.linlin(-1.0,1.0, 500,0), 2,2)) ;
	Pen.fill
} ;
u.clearOnRefresh_(false) ;

r = {
	inf.do{
		~bus.get({ arg amp ;
			v = amp ;
			i = i+1 ;
			{u.refresh}.defer
		});
		0.05.wait ;
	}
}.fork
)

code/comunicazione/busVisualizer.scd
code/comunicazione/busVisualizer.scd

340 Communication

lines 10-12). In lines 24-27, an infinite routine is defined that assigns values

to the variables by retrieving the value on the bus ~ampBus at a rate ~update

and performing a simple mapping between the domain of the amplitude (esti-

mated linearly by Amplitude, but here converted in dB) and pixel dimensions

and color parameters. Note that theoretically the amplitude range in dB would

be [−96, 0], but [−60, 0] is empirically amore appropriate value for this example.

1 ~ampBus = Bus.control(Server.local) ;

2 ~audio = Bus.audio(Server.local) ;

3 a = {

4 var sig = In.ar(~audio) ;

5 var amp = Lag.kr(Amplitude.kr(sig)) ;

6 Out.kr(~ampBus, amp) ;

7 }.play ;

9 ~update = 0.1 ; // update rate

10 ~dim = 50 ; // circle radius

11 // color parameters

12 ~hue = 0; ~sat = 0.7; ~val = 0.7;

13 // window and drawing function

14 w = Window("tester", Rect(10, 10, 500, 500))

15 .background_(Color(1,1,1,1)).front ;

16 w.drawFunc = {

17 var oo = 250-(~dim*0.5) ; // to place the circle in the center

18 Pen.addOval(Rect(oo, oo, ~dim, ~dim)) ; // the circle

19 Pen.color_(Color.hsv(~hue, ~sat, ~val)) ; // colors

20 Pen.fill ; // fill it

21 } ;

23 // an infinite routine to update the window

24 {

25 inf.do{

26 // for infinite times look into ~bus

27 ~ampBus.get({ arg amp ; // it represents the value in ~bus

28 // conversion in db

29 ~dim = amp.ampdb.linlin(-60, 0, 10, 500) ;

30 ~hue = amp.ampdb.linlin(-60, 0, 0.4, 0) ;

31 ~sat = amp.ampdb.linlin(-60, 0, 0.8, 1) ;

32 ~val = amp.ampdb.linlin(-60, 0, 0.8, 1) ;

33 {w.refresh}.defer ; // update the window

34 }) ;

35 ~update.wait ;

36 }

37 }.fork ;

Introduction to SuperCollider 341

At this point it is possible to write on the control bus ~ampBus. The first

synth x performs a test in which the mouse on the y axis controls the amplitude

of a sine wave. By shifting the mouse vertically, the size and color of the circle

changes. The synth is deallocated (7), and the variable is assigned to a new

synth, reading from a buffer (12), on which a soundfile has been loaded (9).

Note that the update rate increases (by reducing ~update, 10), and the synth

writes on two audio channels, 0 and the private bus that is routed to the analysis

synth a.

1 x = {

2 var sig = SinOsc.ar(mul: MouseY.kr(0,1)) ;

3 //Out.ar(0, sig) ; // we don’t send it out

4 Out.ar(~audio, sig) ; // but we just write it to bus

5 }.play ;

7 x.free ; // we free the synth, but the routine is still on

9 ~buf = Buffer.read(Server.local, Platform.resourceDir

10 +/+ "sounds/a11wlk01.wav") ;

11 ~update = 0.025 ; // more precise

12 x = {

13 var sig = PlayBuf.ar(1, ~buf, loop:1) ;

14 Out.ar([0, ~audio], sig) ; // on first public bus and on our private bus

15 }.play ;

Obviously, the values of the signals “caught” by ~bus.get, and from then

on available to the client side –this is the point– do not have to be used for

graphics at all. They are available for any required, client-side computation.

9.2 From server to client: use of OSC messages

Until now, it has been stated many times that the client and the server com-

municate via OSC messages. But so far these messages have remained com-

pletely hidden. Where are they? In fact, in our privileged, “linguistic” ap-

proach, messages are hidden beneath a layer prepared by the SC language.

The OSC protocol, originally developed for audio applications (the acronym

~ampBus = Bus.control(Server.local) ;
~audio = Bus.audio(Server.local) ;
a = {
	var sig = In.ar(~audio) ;
	var amp = Lag.kr(Amplitude.kr(sig)) ;
	Out.kr(~ampBus, amp) ;
}.play ;

~update = 0.1 ; // update rate
~dim = 50 ; // circle radius
// color parameters
~hue = 0; ~sat = 0.7; ~val = 0.7;
// window and drawing function
w = Window("tester", Rect(10, 10, 500, 500))
.background_(Color(1,1,1,1)).front ;
w.drawFunc = {
	var oo = 250-(~dim*0.5) ; // to place the circle in the center
	Pen.addOval(Rect(oo, oo, ~dim, ~dim)) ; // the circle
	Pen.color_(Color.hsv(~hue, ~sat, ~val)) ; // colors
	Pen.fill ; // fill it
} ;

// an infinite routine to update the window
{
inf.do{
		// for infinite times look into ~bus
		~ampBus.get({ arg amp ; // it represents the value in ~bus
			// conversion in db
			~dim = amp.ampdb.linlin(-60, 0, 10, 500) ;
			~hue = amp.ampdb.linlin(-60, 0, 0.4, 0) ;
			~sat = amp.ampdb.linlin(-60, 0, 0.8, 1) ;
			~val = amp.ampdb.linlin(-60, 0, 0.8, 1) ;
			{w.refresh}.defer ; // update the window
		}) ;
		~update.wait ;
	}
}.fork ;

code/comunicazione/ampVisualizer.scd
code/comunicazione/ampVisualizer.scd

x = {
	var sig = SinOsc.ar(mul: MouseY.kr(0,1)) ;
	//Out.ar(0, sig) ; // we don't send it out
	Out.ar(~audio, sig) ; // but we just write it to bus
}.play ;

x.free ; // we free the synth, but the routine is still on

~buf = Buffer.read(Server.local, Platform.resourceDir
	+/+ "sounds/a11wlk01.wav") ;
~update = 0.025 ; // more precise
x = {
	var sig = PlayBuf.ar(1, ~buf, loop:1) ;
	Out.ar([0, ~audio], sig) ; // on first public bus and on our private bus
}.play ;

code/comunicazione/ampVisualizer2.scd
code/comunicazione/ampVisualizer2.scd

342 Communication

stands for Open Sound Control) is now a standard in multimedia communi-

cation between applications belonging to various domains, including audio

(SuperCollider, Max/MSP, PD), graphics (Processing), image processing (Eye-

sweb, VVVV), programming languages (practically all, e.g. Python, Java, Ruby),

and also advanced multitrack audio environments (for example, OSC is sup-

ported by Ardour and Reaper). It is a protocol that does not provide any se-

mantics, but rather a syntax to create messages. In other words, OSC states how

messages should be written to be “well-formed”, but not what they should say.

The semantics is defined by the application that sends or receives the message.

So, scsynth communicates via OSC, but defines its own semantics: it establishes

what certain messages mean in relation to its own ontology as an audio server.

This is not a place for a tutorial on OSC: the reader should look on the web

for information and tutorials. Meanwhile, to get an idea of the client-server

communication, the following code can be evaluated:

1 OSCFunc.trace(true) ;

2 // enough

3 OSCFunc.trace(false) ;

The class OSCFunc is the general manager of the OSC communication on

the client side. In other words, with OSCFunc the user can define what happens

in case sclang receives OSC messages. A very useful feature is defined by the

method trace, which according to its boolean argument, prints (or not) on the

post window all OSC messages received by sclang (and therefore potentially

interpretable). If line 1 is evaluated, a situation similar to the following should

appear on the post window:

OSCFunc.trace(true) ;
// enough
OSCFunc.trace(false) ;

code/comunicazione/trace.scd
code/comunicazione/trace.scd

Introduction to SuperCollider 343

1 OSC Message Received:

2 time: 111609.33037712

3 address: a NetAddr(127.0.0.1, 57110)

4 recvPort: 57120

5 msg: [/status.reply, 1, 0, 0, 2, 63, 0.031290706247091, 0.16726991534233,

6 44100, 44099.998039566]

8 OSC Message Received:

9 time: 111610.0269853

10 address: a NetAddr(127.0.0.1, 57110)

11 recvPort: 57120

12 msg: [/status.reply, 1, 0, 0, 2, 63, 0.037191119045019, 0.12907001376152,

13 44100, 44100.000112071]

Similar messages will follow. These messages are the ones that scsynth reg-

ularly sends to sclang to indicate that the communication between the two is

active.

Sclang warns that a message has been received: time represents the time

since the interpreter has been active. Themessage is sent from the sender 127.0.0.1,

57110, where the first element indicates an IP address that represents the local

communication on the same machine, and the second value is the port from

which it has been sent. Remember that when scsynth is booted, it is assigned

by default the port 57110 (the one that is printed on the post window while

the server boots). The message is received on the port 57120, that is instead

assigned by default to the sclang process. This means that if the user wants

to send a message to sclang from another application, s/he must use the port

57120 as its port address. The actual message follows (5): it includes a name

(/status.reply, note the character / at the beginning of all OSC messages by

protocol definition) and a set of elements, all packed into an array. In this case,

the message is sent by scsynth to tell sclang that it is active, and some basic

information about its state.

In the next example, the Ugen SendReply is introduced. It belongs to a fam-

ily that we never encountered before, that of UGens that deal with sendingOSC

messages from the server. SendReply sends messages back to the client at every

trigger: the latter is here specified by the first argument that the chosen trig-

ger UGen, Impulse, receives: in the example, 10 times per second. The second
argument indicates the name of the message that is sent, /ping. The third argu-

ment is a value, which here is retrieved from the signal (generated on the server,

OSC Message Received:
	time: 111609.33037712
	address: a NetAddr(127.0.0.1, 57110)
	recvPort: 57120
	msg: [/status.reply, 1, 0, 0, 2, 63, 0.031290706247091, 0.16726991534233,
	44100, 44099.998039566]

OSC Message Received:
	time: 111610.0269853
	address: a NetAddr(127.0.0.1, 57110)
	recvPort: 57120
	msg: [/status.reply, 1, 0, 0, 2, 63, 0.037191119045019, 0.12907001376152,
	44100, 44100.000112071]

code/comunicazione/post/tracePost.scd
code/comunicazione/post/tracePost.scd

344 Communication

of course) by WhiteNoise. In other words, every tenth of a second, a message

/ping that contains the sampled amplitude value of the generated white noise

signal is sent back to the client. Note that the SynthDef does not generate au-

dio (better: it calculates an audio signal to send its amplitude to sclang, but

also a different value could be sent, e.g a constant numeric value). If the OSC

messages are traced by OSCFunc.trace and the synth x is allocated, it becomes

possible to see what is going on in the communication. It is time to exploit it,

and OSCFunc serves this need. The next example reimplements the one already

discussed above.

1 (

2 SynthDef(\impl , {arg in = 0, out = 0, dbGain = 0;

3 var sig = LFNoise2.ar(0.5) ;

4 Out.ar(0, SinOsc.ar(sig.linlin(-1, 1, 48, 72).midicps, mul:0.2)) ;

5 SendReply.ar(Impulse.ar(10), ’/amp’, values: sig)

6 }).add ;

7)

9 (

10 x = Synth(\impl) ;

12 i = 0; v = 0.0 ;

13 w = Window.new("", Rect(10, 10, 500, 500)).front ;

14 u = UserView(w, Rect(0,0, 500, 500)).background_(Color.grey(0.75)) ;

15 u.drawFunc_{

16 Pen.fillColor = Color.red(0.5);

17 Pen.addOval(Rect((i%500), v.linlin(-1.0,1.0, 0,500), 2,2)) ;

18 Pen.fill

19 } ;

20 u.clearOnRefresh_(false) ;

21 o = OSCFunc({ |msg|

22 v = msg[3] ;

23 i = i+1 ;

24 {u.refresh}.defer

25 }, ’/amp’);

26)

This time the signal sig is used to control SinOsc that is immediately routed

on the bus 0. Then, SendReply sends amessage /amp back to the client including

the value of the signal sig. The only new thing in the rest of the code is OSC-

Func. Starting from the last argument, it can be seen how it responds only to

messages with the name /amp. If messages with a different name would arrive

(
SynthDef(\impl, {arg in = 0, out = 0, dbGain = 0;
	var sig = LFNoise2.ar(0.5) ;
	Out.ar(0, SinOsc.ar(sig.linlin(-1, 1, 48, 72).midicps, mul:0.2)) ;
	SendReply.ar(Impulse.ar(10), '/amp', values: sig)
}).add ;
)

(
x = Synth(\impl) ;

i = 0; v = 0.0 ;
w = Window.new("", Rect(10, 10, 500, 500)).front ;
u = UserView(w, Rect(0,0, 500, 500)).background_(Color.grey(0.75)) ;
u.drawFunc_{
	Pen.fillColor = Color.red(0.5);
	Pen.addOval(Rect((i%500), v.linlin(-1.0,1.0, 0,500), 2,2)) ;
	Pen.fill
} ;
u.clearOnRefresh_(false) ;
o = OSCFunc({ |msg|
	v = msg[3] ;
	i = i+1 ;
	{u.refresh}.defer
	 }, '/amp');
)

code/comunicazione/oscVisualizer.scd
code/comunicazione/oscVisualizer.scd

Introduction to SuperCollider 345

to sclang, they would simply be ignored. Rather, if a message /amp is received,

the function is evaluated. The latter has as its default argument the message

itself (here named msg) which thus becomes accessible within the function. In

the message, the fourth element is the value of sig, which is assigned to v, and

used by drawFunc to plot (as in the example above). Note that by running Cmd

+. the OSC responder is removed.

In the next example, communication takes place in two steps, from server

to client and from this back again to the server. The SynthDef player simply

reads from the buffer (as usual, b) and envelops the signal with a percussive

envelope, which deallocates the synth at its end. The SynthDef listener is

more interesting. The SynthDef reads from the first input of the sound card

(on a standard computer, the microphone) and analyzes the incoming signal

through Onsets, a UGen that detects an attack in the input signal (by perform-

ing also a FFT analysis, as shown). Onsets acts as trigger for SendReply. In other

words, for every retrieved attack, Onsets triggers SendReply to send a message

’/attack’ to sclang. The message contains the value of Loudness, a UGen (at

control rate) again based on FFT like Onsets (and, in fact, it is simply passed

chain): Loudness performs an estimate of the “loudness’, i.e. the perceived vol-

ume, in a range from 0 to 100. On the client side, each time amessage ’/attack’
is recevied, OSCFunc reads the received value (i.e. the computed loudness) and

maps it between 1 and 2 (25). This value becomes the control parameter for the
argument rate of a synth of type player that is generated (and here the implicit

communication will go from sclang to scsynth). Essentially, for every attack

that is detected in the microphone signal a “note“ is generated, and its pitch

varies according to the volume of the input signal. It is a sort of Geiger counter

reacting to attack/loudness.

346 Communication

1 (

2 b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");

4 SynthDef(\player , { arg buf, out = 0, rate = 1 ;

5 Out.ar(out,

6 FreeVerb.ar(in:PlayBuf.ar(1, buf, rate)

7 *EnvGen.kr(Env.perc, doneAction:2)*2)

8)

9 }).add ;

11 SynthDef(\listener , {

12 var sig = SoundIn.ar(0) ;

13 var loc = LocalBuf(1024, 1) ;

14 var chain = FFT(loc, sig);

15 SendReply.kr(

16 Onsets.kr(chain, 0.75, \rcomplex),

17 ’/attack’,

18 Loudness.kr(chain));

19 }).add ;

20)

22 (

23 OSCFunc({

24 arg msg;

25 var rate = msg[3].linlin(20, 40, 1, 2) ;

26 Synth(\player).set(\rate , rate, \buf , b) ;

27 }, ’/attack’);

29 Synth(\listener)

31)

9.3 OSC to and from other applications

The object OSCFunc is obviously the key to communicate with sclang via OSC.

As discussed, sclang usually receives on port 57120. It is therefore possible to

send messages to sclang from other applications on a network. For example,

(
b = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");

SynthDef(\player, { arg buf, out = 0, rate = 1 ;
	Out.ar(out,
		FreeVerb.ar(in:PlayBuf.ar(1, buf, rate)
			*EnvGen.kr(Env.perc, doneAction:2)*2)
)
}).add ;

SynthDef(\listener, {
	var sig = SoundIn.ar(0) ;
	var loc = LocalBuf(1024, 1) ;
	var chain = FFT(loc, sig);
	SendReply.kr(
		Onsets.kr(chain, 0.75, \rcomplex),
		'/attack',
		Loudness.kr(chain));
}).add ;
)

(
OSCFunc({
	arg msg;
	var rate = msg[3].linlin(20, 40, 1, 2) ;
	Synth(\player).set(\rate, rate, \buf, b) ;
}, '/attack');

Synth(\listener)

)

code/comunicazione/controllerViaMic.scd
code/comunicazione/controllerViaMic.scd

Introduction to SuperCollider 347

let us suppose to have a smartphone and a local network. Obviously, it is nec-

essary to know some data about the local network. In the example, the com-

puter that hosts SC has an address 172.20.10.3 (data recoverable from various

system utilities). A popular OSC application for mobile devices is TouchOSC,

which allows for the use of a touch interface of smartphones and tablets as an

external controller. It is therefore necessary to set in TouchOSC the network ad-

dress of the computer hosting SuperCollider and the port where to send OSC

messages (in our case, 172.20.10.3 and 57120, where sclang receives). By us-

ing OSCFunc.trace some useful information can be spotted. For example, the

address from which the messages originate (in the specific case, 172.20.10.1).

Also of interest is the name of the sent message, as in TouchOSC it is not spec-

ified elsewhere: for example ’/1/fader1’ is associated with a slider in one of

the available GUI screens. The following code intercepts these messages and

prints their content. It is trivial to change the function to perform other actions

(e.g. audio related).

1 OSCFunc(

2 { arg msg, time, addr, recvPort;

3 [msg, time, addr, recvPort].postln;

4 }, ’/1/fader1’) ;

But OSC communication does not have to be one-way, on the contrary it

can be bidirectional. Sending messages from sclang to other addresses is pos-

sible: indeed, it is what normally happens in communication between sclang

and scsynth. The next example shows a new object which is tailored toward

network communication, NetAddr, which lets us specify an address in terms of

ip and port, and send messages to it.

1 ~phone = NetAddr.new("172.20.10.1", 9000);

3 ~phone.sendMsg("/1/fader1", 0);

4 ~phone.sendMsg("/1/fader1", 0.5);

Here ~phone is the device that was sending OSC messages in the previous

example: the variable is assigned an object of type NetAddr that includes the

OSCFunc(
	{ arg msg, time, addr, recvPort;
		[msg, time, addr, recvPort].postln;
}, '/1/fader1') ;

code/comunicazione/osc.scd
code/comunicazione/osc.scd

~phone = NetAddr.new("172.20.10.1", 9000);

~phone.sendMsg("/1/fader1", 0);
~phone.sendMsg("/1/fader1", 0.5);

code/comunicazione/netAddr.scd
code/comunicazione/netAddr.scd

348 Communication

address (the one already discussed) and a port number where to send the mes-

sage: here we hypothetically use 9000, but the identification will depend on the

settings on the TouchOSC side on the device. At this point it becomes possible

to send OSC messages to ~phone: the name of the message is the one that rep-

resents the graphic slider that in the previous example was sending messages.

Obviously, the semantics of the message depends in this case on TouchOSC,

which allows a two-way communication by means of the same message: if

the slider position is changed, TouchOSC sends a message with the name and

value; if TouchOSC instead receives a message with the name and a value, then

it changes the position of the slider accordingly to the value. The situation is

depicted in Figure 9.1.

TouchOSC

smartphone computer

ip: 172.20.10.1
port: 9000

ip: 172.20.10.3
port: 57120

OSCFuncNetAddr

SuperCollider
name: /1/fader1

val: 0.765

OSC:

Figure 9.1 OSC communication between a computer and a mobile device.

This example is a bit complicated because its implementation requires a refer-

ence to an external object, with the consequent complications (here, TouchOSC).

However it made it possible to clarify how network communication can be de-

fined. The next example (from the documentation of NetAddr) works by default

because here sclang communicates with itself, but it becomes understandable

only in the light of what has been discussed before.

1 n = NetAddr("127.0.0.1", 57120); // 57120 is sclang default port

2 r = OSCFunc({ arg msg, time; [time, msg].postln }, ’/good/news’, n);

4 n.sendMsg("/good/news", "you", "not you");

5 n.sendMsg("/good/news", 1, 1.3, 77);

The local ’loop back’ address is always 127.0.0.0 or 127.0.0.1. Line 1 spec-

ifies via NetAddr to which address sclang will send: that is, the same machine

on the port 57120. Then an OSCFunc is defined (2), that responds (on sclang) to

messages ’/good/ news’. At this point (4, 5), sclang sends to the address speci-

fied by NetAddr two messages. But then, two messages will arrive to sclang (as

n = NetAddr("127.0.0.1", 57120); // 57120 is sclang default port
r = OSCFunc({ arg msg, time; [time, msg].postln }, '/good/news', n);

n.sendMsg("/good/news", "you", "not you");
n.sendMsg("/good/news", 1, 1.3, 77);

code/comunicazione/netLocal.scd
code/comunicazione/netLocal.scd

Introduction to SuperCollider 349

a receiver) on the port 57120, and consequently the function defined in OSCFunc

will be executed.

9.4 The MIDI protocol

Themost widely usedmode for communicating between audio devices is prob-

ably still the MIDI protocol, in use since the early 80s.

The MIDI protocol is in fact the standard for communication between mu-

sic hardware and it is implemented in all dedicated softwares. As with the OSC

protocol, this is not the place for a detailed discussion about MIDI. SuperCol-

lider provides a substantially complete implementation of the protocol, both in

input and in output, although probably in this second case the implementation

is less exhaustive: the most typical use of MIDI in SC is indeed to allow com-

munication from external devices (typically, gestural controllers) to SC. From a

hardware perspective, MIDI devices initially required a specific connector, but

now they simply use the USB port.

In order to be able to use MIDI, it is first necessary to activate a dedicated

software component, MIDIClient: then, it is possible to access the available de-

vices (if any).

1 MIDIClient.init ;

2 MIDIIn.connectAll ;

Thepostwindow typically prints something like the following,which refers

to the connected device.

1 MIDI Sources:

2 MIDIEndPoint("USB X-Session", "Port 1")

3 MIDIEndPoint("USB X-Session", "Port 2")

4 MIDI Destinations:

5 MIDIEndPoint("USB X-Session", "Port 1")

6 MIDIClient

MIDIClient.init ;
MIDIIn.connectAll ;

code/comunicazione/midiInit.scd
code/comunicazione/midiInit.scd

MIDI Sources:
	MIDIEndPoint("USB X-Session", "Port 1")
	MIDIEndPoint("USB X-Session", "Port 2")
MIDI Destinations:
	MIDIEndPoint("USB X-Session", "Port 1")
MIDIClient

code/comunicazione/post/midiPost.scd
code/comunicazione/post/midiPost.scd

350 Communication

At this point, the SuperCollider approach to MIDI input communication

luckily follows the model already seen for OSC: the MIDI counterpart of OS-

CFunc is MIDIFunc. Similarly to OSCFunc, MIDIFunc is equipped with a method

trace that allows to track the communication in input (and clearly, also the

absence of the same). This is a very useful tool because, just as in the case of

OSC, there are often unknown features in the messages sent by external MIDI

devices. The example below shows the result of trace. Three messages are

displayed: they includes the type of the message (control, noteOn, noteOff),

the channel on which it is received (this is a feature of MIDI), the number and

the value. Typically (but not always) the channel is 0 or homogeneous for the

device in use, while the number lets us discriminate the identifier of the mes-

sage. By definition of the MIDI protocol, the value is in the range [0, 127], i.e. it
has a resolution of 7 bits (128 available values, not a large resolution in many
cases). As shown, the last twomessages have the same number (43) but a value

of respectively 127 and 0. The values actually refer to a button pressed on a

hardware controller which activates a noteOnmessage while pressed and a no-

teOff message on release. Here the values 0 and 127 are just the equivalent of

on/off. The number is the same precisely because the two messages are associ-

ated on the controller to the same physical object (but this is still a choice, even

if a sensed one, in the design of the device). The first message, of control type,

instead originates from the rotation of a knob.

Introduction to SuperCollider 351

1 MIDI Message Received:

2 type: control

3 src: -2025843672

4 chan: 0

5 num: 26

6 val: 88

8 MIDI Message Received:

9 type: noteOn

10 src: -2025843672

11 chan: 0

12 num: 43

13 val: 127

15 MIDI Message Received:

16 type: noteOff

17 src: -2025843672

18 chan: 0

19 num: 43

20 val: 0

As it happened in the case of OSCFunc, with trace incoming MIDI mes-

sages can be explored, and then used with the MIDIFunc. This class has a set of

methods already arranged according to the most used MIDI types. The MIDI

protocol defines messages such as note on, note off, control, touch, bend, poly-

touch. The following example shows two uses of MIDIFunc.cc (catching MIDI

control messages). In both cases, the object prints the received message on the

post window. In the first example, it responds to all the incoming control mes-

sages, in the second one only to those with number 26 on channel 0 (as in the

case of the previous knob).

1 MIDIFunc.cc({arg ...args; args.postln});

2 MIDIFunc.cc({arg ...args; args.postln}, 26, 0);

The next example discusses the connection of a controller (it is the same

hardware controller as above) with the knob associated with the number 26,

for the management of audio parameters. The SynthDef midiSynth has two

MIDI Message Received:
	type: control
	src: -2025843672
	chan: 0
	num: 26
	val: 88

MIDI Message Received:
	type: noteOn
	src: -2025843672
	chan: 0
	num: 43
	val: 127

MIDI Message Received:
	type: noteOff
	src: -2025843672
	chan: 0
	num: 43
	val: 0

code/comunicazione/post/midiTracePost.scd
code/comunicazione/post/midiTracePost.scd

MIDIFunc.cc({arg ...args; args.postln});
MIDIFunc.cc({arg ...args; args.postln}, 26, 0);

code/comunicazione/midiFunc.scd
code/comunicazione/midiFunc.scd

352 Communication

parameters, a frequency for a squarewave generator and a rate that controls the

panning oscillation between the left and right channels. These two parameters

are associated with the knob on theMIDI controller. At each change of position

in the knob, a message is sent and received by MIDIFunc, which evaluates the

function, and then updates the two parameters by passing the values to the

synth x.

1 (

2 SynthDef(\midiSynth , {|freq = 440, rate = 1|

3 Out.ar(0,

4 Pan2.ar(Pulse.ar(freq)*LFSaw.ar(rate).unipolar,

5 LFPulse.kr(rate)

6)

7)

8 }).add ;

9)

11 x = Synth(\midiSynth) ;

13 MIDIFunc.cc({arg ...args;

14 var v = args[0] ;

15 x.set(\freq , ((v*0.5)+30).midicps,

16 \rate , v.linlin(0,127, 1, 10))

17 }, 26, 0) ;

MIDI output communication uses the object MIDIOut, that is implemented

at a a lower level (i.e. closer to the hardware). Its use is not particularly complex,

as can be seen in this example from the documentation:

1 MIDIClient.init;

3 m = MIDIOut(0);

4 m.noteOn(16, 60, 60);

5 m.noteOn(16, 61, 60);

6 m.noteOff(16, 61, 60);

7 m.allNotesOff(16);

(
SynthDef(\midiSynth, {|freq = 440, rate = 1|
	Out.ar(0,
		Pan2.ar(Pulse.ar(freq)*LFSaw.ar(rate).unipolar,
			LFPulse.kr(rate)
)
)
}).add ;
)

x = Synth(\midiSynth) ;

MIDIFunc.cc({arg ...args;
	var v = args[0] ;
	x.set(\freq, ((v*0.5)+30).midicps,
		\rate, v.linlin(0,127, 1, 10))
	}, 26, 0) ;

code/comunicazione/midiSynth.scd
code/comunicazione/midiSynth.scd

MIDIClient.init;

m = MIDIOut(0);
m.noteOn(16, 60, 60);
m.noteOn(16, 61, 60);
m.noteOff(16, 61, 60);
m.allNotesOff(16);

code/comunicazione/midiout.scd
code/comunicazione/midiout.scd

Introduction to SuperCollider 353

In order to send messages to a MIDI device, it is necessary to instantiate

an object MIDIOut from the available MIDI devices: 0 indicates in fact the first

device listed by evaluating MIDIClient.init. It is therefore possible to send

messages to the object by using a typical SC interface (i.e., methods such as

noteon, noteoff etc). It must be noted that, in the current SC implementation,

MIDI output communication is more related to the set of features of the MIDI

hardware in use and to the reference operating system. Additionally, MIDIOut

is not considered very reliable in terms of accurate timing.

9.5 Reading and writing: File

A classical form of communication in computer science uses reading and writ-

ing files. The class SoundFile, specialized for audio files, has already been dis-

cussed. Here it is worth introducing a generic, but very useful, class –File– for

writing/reading files in ASCII (i.e. “text”) and binary format. The following is

an excerpt from the hourly weather report for the Turin airport, obtained from

an internet query. The first column represents the time of retrieving, the third

and fourth, respectively, temperature and humidity.

354 Communication

1 02:50 1014 9 87 VAR-2 Buona Sereno -

2 03:50 1014 8 93 VAR-2 Buona Sereno -

3 05:20 1014 8 81 - Buona Sereno -

4 05:50 1014 7 81 W-3 Buona Sereno -

5 06:20 1014 8 75 WNW-3 Buona Sereno -

6 06:50 1015 8 87 VAR-2 Buona Sereno -

7 07:20 1015 12 66 - Buona Sereno -

8 07:50 1015 12 71 VAR-2 Buona Sereno -

9 08:20 1015 13 66 - Buona Sereno -

10 08:50 1015 14 62 SSE-3 Buona Sereno -

11 09:20 1015 14 62 ESE-3 Buona Sereno -

12 09:50 1015 15 62 - Buona Sereno -

13 10:20 1014 15 58 E-2 Buona Sereno -

14 10:50 1015 16 55 ESE-3 Buona Sereno -

15 11:20 1014 16 59 S-4 Buona Sereno -

16 11:50 1014 17 51 SE-4 Buona Sereno -

17 12:20 1014 18 52 S-5 Buona Sereno -

18 12:50 1014 18 55 VAR-2 Buona Sereno -

19 13:20 1013 18 55 ESE-4 Buona Sereno -

20 13:50 1013 18 52 E-6 Buona Sereno -

21 14:20 1013 19 48 E-5 Buona Sereno -

22 14:50 1012 20 45 ENE-4 Buona Poco nuvoloso -

23 15:20 1012 19 48 E-5 Buona Poco nuvoloso -

24 15:50 1012 19 48 ENE-3 Buona Poco nuvoloso -

25 16:20 1012 19 45 ENE-3 Buona Poco nuvoloso -

26 16:50 1012 18 55 ENE-5 Buona Poco nuvoloso -

27 17:20 1012 17 55 SE-7 Buona Poco nuvoloso -

28 17:50 1012 15 62 SE-6 Buona Poco nuvoloso -

29 18:50 1013 14 67 S-4 Buona Poco nuvoloso -

30 19:20 1014 14 67 S-4 Buona Nubi sparse -

31 19:50 1013 14 67 SSW-4 Buona Poco nuvoloso -

32 20:20 1014 13 71 SSW-6 Buona Poco nuvoloso -

33 20:50 1014 13 76 SSW-5 Buona Poco nuvoloso -

34 21:20 1015 13 76 SSW-3 Buona Poco nuvoloso -

35 21:50 1013 12 81 WSW-4 Buona Poco nuvoloso -

36 22:20 1014 12 81 SW-3 Buona Poco nuvoloso -

37 22:50 1014 11 87 SSW-3 Buona Poco nuvoloso -

38 23:20 1015 11 87 - Buona Poco nuvoloso -

39 23:50 1014 11 87 - Buona Nuvoloso -

40 00:50 1014 11 87 NE-2 Buona Nuvoloso -

41 01:20 1014 11 87 - Buona Nuvoloso -

42 01:50 1014 10 93 NE-3 Buona Nubi sparse -

		02:50		1014		9		87		VAR-2		Buona		Sereno		-

		03:50		1014		8		93		VAR-2		Buona		Sereno		-

		05:20		1014		8		81		-		Buona		Sereno		-

		05:50		1014		7		81		W-3		Buona		Sereno		-

		06:20		1014		8		75		WNW-3		Buona		Sereno		-

		06:50		1015		8		87		VAR-2		Buona		Sereno		-

		07:20		1015		12		66		-		Buona		Sereno		-

		07:50		1015		12		71		VAR-2		Buona		Sereno		-

		08:20		1015		13		66		-		Buona		Sereno		-

		08:50		1015		14		62		SSE-3		Buona		Sereno		-

		09:20		1015		14		62		ESE-3		Buona		Sereno		-

		09:50		1015		15		62		-		Buona		Sereno		-

		10:20		1014		15		58		E-2		Buona		Sereno		-

		10:50		1015		16		55		ESE-3		Buona		Sereno		-

		11:20		1014		16		59		S-4		Buona		Sereno		-

		11:50		1014		17		51		SE-4		Buona		Sereno		-

		12:20		1014		18		52		S-5		Buona		Sereno		-

		12:50		1014		18		55		VAR-2		Buona		Sereno		-

		13:20		1013		18		55		ESE-4		Buona		Sereno		-

		13:50		1013		18		52		E-6		Buona		Sereno		-

		14:20		1013		19		48		E-5		Buona		Sereno		-

		14:50		1012		20		45		ENE-4		Buona		Poco nuvoloso		-

		15:20		1012		19		48		E-5		Buona		Poco nuvoloso		-

		15:50		1012		19		48		ENE-3		Buona		Poco nuvoloso		-

		16:20		1012		19		45		ENE-3		Buona		Poco nuvoloso		-

		16:50		1012		18		55		ENE-5		Buona		Poco nuvoloso		-

		17:20		1012		17		55		SE-7		Buona		Poco nuvoloso		-

		17:50		1012		15		62		SE-6		Buona		Poco nuvoloso		-

		18:50		1013		14		67		S-4		Buona		Poco nuvoloso		-

		19:20		1014		14		67		S-4		Buona		Nubi sparse		-

		19:50		1013		14		67		SSW-4		Buona		Poco nuvoloso		-

		20:20		1014		13		71		SSW-6		Buona		Poco nuvoloso		-

		20:50		1014		13		76		SSW-5		Buona		Poco nuvoloso		-

		21:20		1015		13		76		SSW-3		Buona		Poco nuvoloso		-

		21:50		1013		12		81		WSW-4		Buona		Poco nuvoloso		-

		22:20		1014		12		81		SW-3		Buona		Poco nuvoloso		-

		22:50		1014		11		87		SSW-3		Buona		Poco nuvoloso		-

		23:20		1015		11		87		-		Buona		Poco nuvoloso		-

		23:50		1014		11		87		-		Buona		Nuvoloso		-

		00:50		1014		11		87		NE-2		Buona		Nuvoloso		-

		01:20		1014		11		87		-		Buona		Nuvoloso		-

		01:50		1014		10		93		NE-3		Buona		Nubi sparse		-

code/comunicazione/post/meteo.scd
code/comunicazione/post/meteo.scd

Introduction to SuperCollider 355

The ability to read files in SC allows easy access to various data that can be

processed in order to reconstruct a certain data structure. Let us suppose we

have stored the previous data in a text file. In the following example, the object

File f accesses the text file at the path p in read-only mode, as indicated by "r".

The method readAllString returns the entire content of the file as a string, as-

signed to t (4). Then the file p is closed. The following four lines are dedicated

to string-content processing with the aim of reconstructing a data structure (of

course, known in advance). Line 6 uses split: invoked on a string, it returns an

array of substrings that are split (in this case)when the character $\n is detected,

that is the “invisible” character for a line break1. In this way, we get an array

of strings representing lines from the file. Then, through the method collect

each line becomes an array of elements, in this case separated by the tab char-

acter ($\t) (7). Rows and columns are now reversed, and will therefore be an

array of values of a homogeneous type (8). Finally, only the columns related to

temperature and humidity are chosen, converted into integers (since they are,

in fact, still strings).

Note that in this way we have gone fromASCII characters in a file to a data

structure of integers2.

1 p = "/Users/andrea/SC/introSC/code/comunicazione/dati/tocas01042014" ;

3 f = File(p, "r") ; // open the file

4 t = f.readAllString ; // entire content as a string

5 f.close ; // close the file

6 t = t.split($\n) ; // we get an array of lines

7 t = t.collect{|i| i.split($\t)} ; // each line -> an array of elements

8 t = t.flop ; // we swap rows and columns

9 t = t[2..3].asInteger ; // we keep only temperature and humidity

The whole can be more elegantly encapsulated into a function, like ~meteo

in the following example, which requires a path as an argument and returns the

discussed data structure:

1 The character $ indicates the class Char in SC.
2 Moreover SC defines other classes that make it easier to read from file in a spe-

cific format, for example, FileReader, TabFileReader, CSVFileReader.

p = "/Users/andrea/SC/introSC/code/comunicazione/dati/tocas01042014" ;

f = File(p, "r") ; // open the file
t = f.readAllString ; // entire content as a string
f.close ; // close the file
t = t.split($\n) ; // we get an array of lines
t = t.collect{|i| i.split($\t)} ; // each line -> an array of elements
t = t.flop ; // we swap rows and columns
t = t[2..3].asInteger ; // we keep only temperature and humidity

code/comunicazione/meteo0.scd
code/comunicazione/meteo0.scd

356 Communication

1 ~meteo = {|path|

2 var f = File(path, "r") ;

3 var t = f.readAllString ; f.close ;

4 t.split($\n).collect{|i| i.split($\t)}.flop[2..3].asInteger ;

5 } ;

Finally, the retrieved data can be represented through sound, that is, with

a procedure known as “sonification”. In sonification, a set of data is displayed

through the sound, rather than e.g. graphically. In the following example, the

SynthDef exploits an additive approach, in which, in addition to the funda-

mental frequency, the fact argument determines the rate of damping of the

harmonic components, a feature which could be defined as brightness.

The parameter m is then calculated, resulting from ~meteo (9). The next rou-

tine sequentially reads couplets of temperature/humidity and associates them

to frequency and brightness. In this way, it is possible to grasp by ear that there

is a progressive increase in temperature and a decrease in humidity (the sound

events grow in pitch and brightness) followed by an opposite movement, pre-

cisely in accord to what occurs in the daily data.

1 SynthDef(\meteo , { |freq = 440, fact = 0.1|

2 var sig = Mix.fill(40, {|i|

3 SinOsc.ar(freq*(i+1))

4 *(i.neg*fact).dbamp

5 })*EnvGen.kr(Env.perc, doneAction:2) ;

6 Out.ar(0, FreeVerb.ar(sig))

7 }).add ;

9 m = ~meteo.(p) ;

11 {

12 m.flop.do{|i|

13 Synth(\meteo , [

14 \freq , i[0].linlin(-10, 40, 48, 98).midicps,

15 \fact , i[1].linexp(30, 90, 0.1,4)]) ;

16 0.15.wait

17 }

18 }.fork ;

~meteo = {|path|
	var f = File(path, "r") ;
	var t = f.readAllString ; f.close ;
	t.split($\n).collect{|i| i.split($\t)}.flop[2..3].asInteger ;
} ;

code/comunicazione/meteo1.scd
code/comunicazione/meteo1.scd

Introduction to SuperCollider 357

Through File it is also possible to write data, as shown in the next example,

in which a verse from a poem by Toti Scialoja is written on a file. Note that the

file extension is irrelevant (and absent here). In the second block the previously

written file is read from the disk and its contents assigned to the variable~text.

1 (

2 t = "Il coccodrillo artritico che scricchiola" ;

4 p = "/Users/andrea/coccodrillo" ;

5 f = File(p, "w") ; f.write(t); f.close ;

6)

8 (

9 f = File(p, "r") ;

10 ~text = f.readAllString ; f.close ;

11)

The entire poem by Scialoja is the following:

Il coccodrillo artritico che scricchiola

arranca lungo il greto verso un croco

giallo cromo, lo fiuta, fa una lacrima

se il croco raggrinzisce a poco a poco.

Here we find another example of sonification, this time related to the al-

phabetical data. The example assumes that the variable ~text is assigned all

the text from Scialoja’s poem. The (multi-line) string is read and then progres-

sively written onto a textual GUI. Every event-letter is also “played”.

SynthDef(\meteo, { |freq = 440, fact = 0.1|
	var sig = Mix.fill(40, {|i|
		SinOsc.ar(freq*(i+1))
		*(i.neg*fact).dbamp
	})*EnvGen.kr(Env.perc, doneAction:2) ;
	Out.ar(0, FreeVerb.ar(sig))
}).add ;

m = ~meteo.(p) ;

{
	m.flop.do{|i|
		Synth(\meteo, [
			\freq, i[0].linlin(-10, 40, 48, 98).midicps,
			\fact, i[1].linexp(30, 90, 0.1,4)]) ;
		0.15.wait
		}
}.fork ;

code/comunicazione/meteo2.scd
code/comunicazione/meteo2.scd

(
t = "Il coccodrillo artritico che scricchiola" ;

p = "/Users/andrea/coccodrillo" ;
f = File(p, "w") ; f.write(t); f.close ;
)

(
f = File(p, "r") ;
~text = f.readAllString ; f.close ;
)

code/comunicazione/scialoja0.scd
code/comunicazione/scialoja0.scd

358 Communication

1 (

2 SynthDef(\reader ,

3 { arg freq = 100, vol = 1;

4 Out.ar(0,

5 Pan2.ar(

6 FreeVerb.ar(

7 MoogFF.ar(

8 Pulse.ar(freq, mul:1)

9 *

10 EnvGen.kr(Env.perc, timeScale:2, doneAction:2),

11 freq*2,

12)

13),

14 LFNoise1.kr(1),

15 vol

16)

17)}).add

18)

20 (

21 ~time = 60/72/4 ;

22 ~minus = 20 ;

24 w = Window.new("da Toti Scialoja, Il gatto bigotto (1974-1976)" ,

25 Rect(0,0, 500, 300)).front ;

26 d = TextView.new(w, w.view.bounds)

27 .stringColor_(Color(1,1,1))

28 .background_(Color(0, 0, 0))

29 .font_(Font.monospace(16)) ;

31 // routine scans the text with rate = ~time

32 Routine({

33 var txt = "" ;

34 ~text.do {arg letter, index ;

35 var f = (letter.ascii-~minus).midicps ; // ascii

36 txt = txt++letter ; // text is incremented

37 d .string_(txt) // it replaces the previous text

38 .stringColor_(Color.hsv(0, 0, 1-(index/~text.size*0.8))) ;

39 // everything gets progressively darker

40 Synth(\reader , [\freq , f.max(20)]) ;

41 ~time.wait ;

42 };

43 1.wait;

44 w.close // the window is closed

45 }).play(AppClock) // we need AppClock for the GUI

46)

Introduction to SuperCollider 359

Without entering into details, here are just a few considerations: ~time is

expressed in sixteenths with bpmmm 72; ~minus is a transposition factor; pitch
is obtained by converting each character of the text into its (numerical) ASCII

value (34). The Reader is invited to further examine this example.

9.6 Pipe

One of the interesting applications of File is to use SuperCollider as a “script-

ing” or “gluing” language. A scripting language is one that serves as a high-level

control for another language. The user writes in the scripting language, which

internallymanages the communicationwith the other language. “Gluing" indi-

cates the use of a language to “glue” together in a unitary form functions or ac-

tivities performed by other languages or applications. For example, Postscript

is a programming language for graphics. A Postscript file contains Postscript

code (i.e., simply ASCII text, such as the SuperCollider code) that, once inter-

preted, returns an image file as its output. If a Postscript file is open with the

SC IDE, the Postcript code will show up. The following fragment is an example

of a minimal Postscript code. Once copied into a text file and saved with the

extension ps, we get a Postscript file. By opening the file (and assuming that a

PostScript interpreter is available, as typically happens on most operating sys-

tems), its contents are interpreted and the resulting image is generated. In this

case the Postscript interpreter will produce from the code the drawing of a line.

1 %!

2 144 72 moveto

3 288 216 lineto

4 stroke

5 showpage

An example of application of such an approach is this book itself. All the

example blocks (both syntax colored code and post window outputs) were gen-

erated automatically from the SuperCollider code, through a custom class that

analyzes the SC code and generates the appropriate Postscript code. The class

(
SynthDef(\reader,
{ arg freq = 100, vol = 1;
	Out.ar(0,
	Pan2.ar(
		FreeVerb.ar(
			MoogFF.ar(
				Pulse.ar(freq, mul:1)
				*
				EnvGen.kr(Env.perc, timeScale:2, doneAction:2),
				freq*2,
)
),
	LFNoise1.kr(1),
	vol
)
)}).add
)

(
~time = 60/72/4 ;
~minus = 20 ;

w = Window.new("da Toti Scialoja, Il gatto bigotto (1974-1976)",
	Rect(0,0, 500, 300)).front ;
d = TextView.new(w, w.view.bounds)
	.stringColor_(Color(1,1,1))
	.background_(Color(0, 0, 0))
.font_(Font.monospace(16)) ;

// routine scans the text with rate = ~time
Routine({
	var txt = "" ;
	~text.do {arg letter, index ;
	var f = (letter.ascii-~minus).midicps ; // ascii
	txt = txt++letter ; // text is incremented
	d	.string_(txt) // it replaces the previous text
		.stringColor_(Color.hsv(0, 0, 1-(index/~text.size*0.8))) ;
		// everything gets progressively darker
	Synth(\reader, [\freq, f.max(20)]) ;
	~time.wait ;
	};
	1.wait;
	w.close // the window is closed
}).play(AppClock) // we need AppClock for the GUI
)

code/comunicazione/scialoja.scd
code/comunicazione/scialoja.scd

code/comunicazione/post/minimal.scd
code/comunicazione/post/minimal.scd

360 Communication

is responsible for introducing in the Poscript file the colors of text and back-

ground, the colored frame, and the line numbers. Analogously, in this book all

the figures plotting actual signalswere generated fromdata structures in Super-

Collider, analyzed to produce the required Postscript code. Such an application

is pretty obvious if the reader thinks of the previous Postscript code as a a text

string: with File, that code string can be written onto a file with the extension

ps. This possibility is widely usable for all those parts in a program that are

descriptive, and can be used, for example, to generate code in many environ-

ments that are provided with textual interfaces, such as Processing, NodeBox,

R, and so on. At the extreme, it is indeed possible to generate, from within SC,

files containing SC code.

The next example demonstrates how to write a file from SuperCollider

(scripting), and then call a program referring to the same file (gluing).

1 ~psCode = "
%!
144 72 moveto
288 216 lineto
stroke
showpage
";

3 ~path = "/Users/andrea/minimal.ps" ;

5 ~file = File(~path, "w") ;

6 ~file.write(~psCode);

7 ~file.close ;

9 ~pipe = Pipe("pstopdf %".format(~path),"w") ;

10 ~pipe.close ;

The variable ~psCode is a string that contains the Postscript code discussed

earlier, while ~path is a path on the file system. The block 11-13 opens a file

from ~path, writes the code, and closes it. Lines 15-16 use a new object, Pipe,

that allows to intercept the terminal, an interaction mode for the operating sys-

tem that, rather than using GUIs, is based on the so-called shell (as it happened

in the past). User interaction with the shell occurs by writing command lines.

Rather than opening a terminal andwriting by hand the desired commands,it is

possible to ask SuperCollider to do it for us. Pipe is the object designed to per-

form such a task: it opens a “pipe” (hence the name) to communicate with the

shell. In the example, Pipe writes on the shell (note the parameter "w", which

stands for "write") the string pstopdf concatenated with the path ~path. The

string is obtained by calling the method format that simply replaces %with the

~psCode = "
%!
144 72 moveto
288 216 lineto
stroke
showpage
";

~path = "/Users/andrea/minimal.ps" ;

~file = File(~path, "w") ;
~file.write(~psCode);
~file.close ;

~pipe = Pipe("pstopdf %".format(~path),"w") ;
~pipe.close ;

code/comunicazione/postscripting.scd
code/comunicazione/postscripting.scd

Introduction to SuperCollider 361

first passed argument. The string in question, which could obviously bewritten

directly into a terminal, calls the program pstopdf, which converts a PostScript

file into a PDF file (of course, assuming that the pstopdf program is installed

on the operating system and available to the shell –as normally it is in POSIX

(Unix-like) systems. Line 16 closes the pipe opened with Pipewhich is manda-

tory. If the process has been successful, then the post window will print 03.

A simple access to the shell is also possible by means of the unixCmd method,

defined on String. The block 15-16 could then be replaced with the following

one:

1 "pstopdf %".format(~path).unixCmd ;

The next example shows another application of Pipe, starting from an ex-

ample in the relative help file. Given a folder, the function returns an arraywith

the names of the files that it contains.

1 ~sampleList = { arg samplesPath ;

2 var p, l, labelList = [], fileName ;

3 p = Pipe.new("ls" + samplesPath, "r") ;

4 l = p.getLine ;

5 while({l.notNil}, {

6 l.postln;

7 if (l.contains("."))

8 { labelList = labelList.add(l) } ;

9 l = p.getLine;

10 }) ;

11 p.close ;

12 labelList

13 } ;

15 ~sampleList.("/Users/andrea/")

3 This is one of the numeric codes that Unix returns to the user after each process:

it indicates the result of the process itself. The use of the Unix shell is of course

far beyond this discussion.

"pstopdf %".format(~path).unixCmd ;

code/comunicazione/postscripting2.scd
code/comunicazione/postscripting2.scd

~sampleList = { arg samplesPath ;
	var p, l, labelList = [], fileName ;
	p = Pipe.new("ls" + samplesPath, "r") ;
	l = p.getLine ;
	while({l.notNil}, {
		l.postln;
		if (l.contains("."))
			{ labelList = labelList.add(l) } ;
		l = p.getLine;
	}) ;
	p.close ;
	labelList
} ;

~sampleList.("/Users/andrea/")

code/comunicazione/sampleList.scd
code/comunicazione/sampleList.scd

362 Communication

TheUnix command ls requires to specify a folder location of the file system,

and returns a list of the contained files and folders. The function ~sampleList

takes as argument a path (as can be seen in line 15). On line 3, Pipe passes the

shell the command lswith the path. Note that the second argument of Pipe this

time is "r", which means that we want to read back the results on the shell (in

Unix parlance, the so-called stdout), that is, the data concerning file names and

folders. The variable l is assigned the string returned by the method getLine,

which returns, line by line, the output of ls (4). The cycle while runs out the

call to stdout as long as getLine has nothing to return. The conditional checks

through the presence of the dot when a file or a folder is retrieved (7-10). This

idea is of course a questionable heuristics (the filesmay not have any extension),

but it typically works, for example, if you consider audio files. The resulting

array can be used to load audio files, to create GUI with file names, etc.

The use of File and Pipemakes the SuperCollider environment extremely

flexible, as the latter can be integrated into the vast ecosystemofUnix programs.

9.7 SerialPort

Finally, one last possibility of communication, which further extends the com-

munication options between SC and other environments, is the serial port. The

USB (Universal Serial Bus) port is still the industry standard for communica-

tion between digital devices. It is based on serial transmission, which in fact, as

we have seen, is well suited to replace the hardware layer for the MIDI proto-

col, originally based also on a serial logic. As previously discussed with respect

to MIDI, the operating system recognizes a MIDI device physically connected

through the USB port, and thus treats him accordingly. However, the USB port

also allows us to connect other, nonMIDI, devices tha are constantly growing in

their use, especially microcontrollers and single board computers. Examples of

the latter category are Raspberry Pi and UDOO, while the microcontroller par

excellence is Arduino (in all its versions, although there are many other options).

Arduino uses the USB port in order to perform program loading: Arduino pro-

grams are developed on the host computer in a dedicated development envi-

ronment, compiled and then sent to the the board via USB port. However, com-

munication with Arduino can also be done interactively in real-time: in other

words, Arduino can exchange data, in input and output, with a software on a

host computer. That software can certainly be SuperCollider. There are several

ways in which communication with Arduino can take place. For example it is

Introduction to SuperCollider 363

possible to hide the communication at the lowest level in order to provide the

user with a more friendly interface. A typical approach is to use libraries that

must be loaded on Arduino, side to side with SuperCollider companion classes

that refer to the former. In other words, the situation is similar to what hap-

pens in the communication from sclang to scysnth in the approach favored in

this text: the user interacts by taking advanced of a set of methods to access the

features of Arduino defined at the SC language level.

However, what is exchanged between Arduino and the host computer is a

set of bytes. It is therefore possible (instructive, useful, and sometimes neces-

sary) to directly manage this low-level communication, through the class Seri-

alPort. By evaluating:

1 SerialPort.devices ;

a list of devices available to the serial interface is printed on the post win-

dow. For example:

1 [/dev/tty.Bluetooth-Incoming-Port, /dev/tty.Bluetooth-Modem,

2 /dev/tty.usbmodem641]

The list includes all the devices that make use of the serial bus (i.e. the com-

munication channel), including services such as bluetooth. The last element of

the list is instead anArduinomicrocontroller connected to a USB port. Once the

ID for the device is known (which is returned as a string), it becomes possible

to access it and open the communication.

1 ~ard = SerialPort("/dev/tty.usbmodem641", 115200, crtscts:true) ;

The object SerialPort features a set of parameters that depend directly on

the hardware specifications of the bus. Apart from the name, the example spec-

ifies the data transfer rate and a parameter that deals with the the so-called

“flow control” (crtscts). Its value true indicates that, if the amount of data

SerialPort.devices ;

code/comunicazione/serialList.scd
code/comunicazione/serialList.scd

[/dev/tty.Bluetooth-Incoming-Port, /dev/tty.Bluetooth-Modem,
/dev/tty.usbmodem641]

code/comunicazione/post/serialListPost.scd
code/comunicazione/post/serialListPost.scd

~ard = SerialPort("/dev/tty.usbmodem641", 115200, crtscts:true) ;

code/comunicazione/arduino1.scd
code/comunicazione/arduino1.scd

364 Communication

to be transferred is higher than the transfer rate, the same will be placed in a

buffer to be progressively emptied when resources are available. At this point,

it is possible to read and write values (i.e. bytes) through the serial port. The

semantics of the communication of course depends on the program loaded on

the Arduino side. Let us consider the following example:

1 ~port = 2; ~value = 255 ;

2 ~ard.putAll([253, port, value, 255]) ;

The code assumes that the program on Arduino accepts 4-byte blocks. The

first and the last byte are control bytes: in otherwords, the presence of two bytes

equal to 253 and 255 respectively at the beginning and the end of a block of four

bytes indicates to theArduino program that amessage is coming. The other two

values, represented by the variables ~port and ~value, are interpreted as values

which select an output port on Arduino and set it to a value (expressed with a

8-bit resolution, that is, in the range [0, 255]). In other words, the program on

the Arduino receives four bytes: if the first and the fourth are respectively 253

and 255, then a port is selected (here, 2) and set with a value (here, 255). Ar-

duino will generate on port 2 (associated with circuits capable of generating

PWM signals) a PWM electrical signal of the maximum available quantity. The

interpretation of the message sent by SC through the serial port depends on the

Arduino code: the latter here has been described only with respect to its logic,

otherwise we should have dove into Arduino’s language. Note that luckily Se-

rialPort converts integers into bytes. Reversely, it is possible to communicate

fromArduino to SuperCollider. An examplewould be sending to SC the values

generated by a sensor connected to Arduino. In that case, SC would read the

bytes sent from Arduino and will define how to interpret them. Thus, the com-

munication through the serial port is simple in itself, assuming, however, that

the user knows how to write/read the information in the Arduino program.

Finally, the serial portmust be closedwhen the device is to be disconnected.

In the example below the first line closes the communication with the previous

device, while the second one closes all the ports.

~port = 2; ~value = 255 ;
~ard.putAll([253, port, value, 255]) ;

code/comunicazione/arduino2.scd
code/comunicazione/arduino2.scd

Introduction to SuperCollider 365

1 ~ard.close ;

2 SerialPort.closeAll ;

9.8 Conclusions

Classes and objects discussed in this chapter allow us to greatly expand the in-

formation ecosystem where SuperCollider is located and operates. There are

two important aspects of this expansion. On the one hand, many additional

features can be integrated in complex multimedia projects. On the other, sym-

metrically, SuperCollider’s high-level algorithmic approach can be extended to

other hardware and software environments.

~ard.close ;
SerialPort.closeAll ;

code/comunicazione/arduino3.scd
code/comunicazione/arduino3.scd

	1 Getting started with SuperCollider
	1.1 About SuperCollider
	1.2 SC overview
	1.3 Installation and use
	1.4 Objectives, references, typographical conventions

	2 Programming in SC
	2.1 Programming languages
	2.2 Minima objectalia
	2.3 Objects in SC
	2.4 Methods and messages
	2.5 The methods of type {\tt post} and {\tt dump}
	2.6 Numbers
	2.7 Conclusions

	3 Syntax: basic elements
	3.1 Brackets
	3.2 Expressions
	3.3 Comments
	3.4 Strings
	3.5 Variables
	3.6 Symbols
	3.7 Errors
	3.8 Functions
	3.9 Classes, messages/methods and keywords
	3.10 A graphic example
	3.11 Control Structures
	3.12 Yet another GUI example
	3.13 Conclusions

	4 Synthesis, I: Fundamentals of Signal Processing
	4.1 A few hundred words on acoustics
	4.2 Analog vs. digital
	4.3 Synthesis algorithms
	4.4 Methods of {\tt Signal}
	4.5 Other signals and other algorithms
	4.6 Still on signal processing
	4.7 Control signals
	4.8 Conclusions

	5 SC architecture and the server
	5.1 Client vs. Server
	5.2 Ontology of the server as an audio synthesis plant
	5.3 The server
	5.4 SynthDefs
	5.5 UGens and UGen graphs
	5.6 Synths and Groups
	5.7 A theremin
	5.8 An example of real-time synthesis and control
	5.9 Expressiveness of the language: algorithms
	5.10 Expressiveness of the language: abbreviations
	5.11 Conclusions

	6 Control
	6.1 Envelopes
	6.2 Generalizing envelopes
	6.3 Sinusoids \& sinusoids
	6.4 Pseudo-random signals
	6.5 Busses
	6.6 Procedural structure of SynthDef
	6.7 Multichannel Expansion
	6.8 Conclusions

	7 Organized sound: scheduling
	7.1 Server-side, 1: through UGens
	7.2 Server side, 2: Demand UGen
	7.3 Language-side: Clocks and routines
	7.4 Clocks
	7.5 Synthesizers vs. events
	7.6 Graphic interlude: drawings and animations
	7.7 Routines vs. Tasks
	7.8 Patterns
	7.9 Events and Event patterns
	7.10 Conclusions

	8 Synthesis, II: introduction to basic real-time techniques
	8.1 Oscillators and tables
	8.2 Direct generation
	8.3 Spectral modelling
	8.4 Physical Modeling
	8.5 Time-based methods
	8.6 Conclusions

	9 Communication
	9.1 From server to client: use of control buses
	9.2 From server to client: use of OSC messages
	9.3 OSC to and from other applications
	9.4 The MIDI protocol
	9.5 Reading and writing: File
	9.6 Pipe
	9.7 SerialPort
	9.8 Conclusions

