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Abstract

Background: Chronic Myeloid Leukemia was always referred as a unique cancer due to the apparent independence
from tumor suppressors’ deletions/mutations in the early stages of the disease. However, it is now well documented
that even genetically wild-type tumor suppressors can be involved in tumorigenesis, when functionally inactivated. In
particular, tumor suppressors’ functions can be impaired by subtle variations of protein levels, changes in cellular
compartmentalization and post-transcriptional/post-translational modifications, such as phosphorylation, acetylation,
ubiquitination and sumoylation. Notably, tumor suppressors inactivation offers challenging therapeutic opportunities.
The reactivation of an inactive and genetically wild-type tumor suppressor could indeed promote selective apoptosis
of cancer cells without affecting normal cells.

Main body: Chronic Myeloid Leukemia (CML) could be considered as the paradigm for non-genomic loss of function
of tumor suppressors due to the ability of BCR-ABL to directly promote functionally inactivation of several tumor
suppressors.

Short conclusion: In this review we will describe new insights on the role of FoxO, PP2A, p27, BLK, PTEN and other
tumor suppressors in CML pathogenesis. Finally, we will describe strategies to promote tumor suppressors reactivation
in CML.
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Background
Chronic Myeloid Leukemia (CML) was generally re-
ferred as an unique cancer, due to the apparent inde-
pendence from tumor suppressors’ deletions/mutations
in the early stages of the disease [1]. In agreement with
this concept, infection of murine stem cells with BCR-
ABL-expressing vectors was also associated with rapid
development of CML without the need of additional
genetic lesions [2]. Over the last few years, the involve-
ment of tumor suppressors (TS) in cancer pathogenesis
has been completely revised [3–5]. In particular, while in

the original Knudson’s model TS are involved in tumori-
genesis upon inactivation of both alleles (generally one
through point mutation and one through deletion), it is
now clear that even genetically wild-type TS can modu-
late tumorigenesis when down-regulated, aberrantly
compartmentalized and/or affected by phosphorylation/
acetylation/ubiquitination and others post transcrip-
tional modifications.
In line with these observations, CML could represent

the paradigm of how cancer can arise upon functional
inactivation of tumor suppressors. In this review, we will
describe how BCR-ABL directly promotes TS inactiva-
tion with important therapeutic implications. Finally, we
will also describe those TS that are inactive in CML but
without a clear direct regulation by BCR-ABL.
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Tumor suppressors directly inactivated by
BCR-ABL
FoxO
The Forkhead box subgroup O (FoxO) family of
transcription factors (TFs) is a subclass of Forkhead
transcription factors characterized by a winged helix
DNA binding domain known as a Forkhead box [6, 7].
This family comprises four members (FoxO1, FoxO3,
FoxO4 and FoxO6). In the presence of several Growth
Factors (GFs) or activated tyrosine kinases, the PI3K-
AKT signal transduction pathway promotes FoxO
phosphorylation, favoring nuclear exclusion and sup-
pression of transcriptional activity. Conversely, in the
absence of GFs, un-phosphorylated FoxOs translocate
into the nucleus where they modulate the expression of
several genes. Furthermore, FoxOs are regulated by
several protein modifications, such as acetylation, ubi-
quitination and arginine/lysine methylation. FoxOs
have been described as essential components of BCR-
ABL signal transduction [8–10]. In particular, BCR-
ABL is a strong activator of the PI3K-AKT pathway
and therefore promotes the inactivation of FoxO3a,
FoxO1 and FoxO4 though phosphorylation and shut-
tling into the cytoplasm. On the contrary, Tyrosine
Kinase Inhibitor (TKI) treatment promotes the reacti-
vation of FoxOs which in turn are able to mediate cell
cycle arrest. Reactivation of FoxOs is associated with
the down-regulation of CCND1/Cyclin D1 protein ex-
pression and affects the expression of stem cell genes
such as ATM, p57/CDKN1C, and BCL6 [10]. Similarly,
another report highlighted BCL6 as an essential FoxO
downstream mediator of cell renewal [11]. As a conse-
quence, FoxOs reactivation impacts on the mainten-
ance of the leukemia stem cells without affecting the
normal hemopoietic stem cell compartment. Other au-
thors have also shown that TGF-beta is involved in the
regulation of FoxOs with consequent regulation of the
LSC compartment [9, 12]. Notably, the BCR ABL/
PI3K/AKT/FoxO pathway is less dependent on BCR-
ABL activity in the stem cell compartment [10]. This
finding could explain the reason why stem cells remain
quiescence even in the presence of BCR-ABL and are
resistant to TKI treatment. The mechanism of FoxOs
nuclear retention in stem cells is still not explained in
detail, although it was associated with AKT-mediated
phosphorylation. Since FoxOs localization is also regu-
lated by mono-ubiquitination [13] and that BCR-ABL
activates the FoxOs-deubiquitinase HAUSP [14], it
could be speculated that FoxOs nuclear localization
could be affected by BCR-ABL/PML/HAUSP network
in a similar manner as for PTEN [14]. However, experi-
mental studies are mandatory to demonstrate this net-
work with important therapeutic implications, due to
the availability of HAUSP inhibitors (Fig. 1).

PP2A
In the last years, it was demonstrated that BCR-ABL,
irrespectively to its tyrosine kinase activity, is able to
promote the recruitment and the activation of the Janus
kinase 2 (JAK2) [15]. JAK2 is in turn able to enhance β-
catenin activity which is responsible of SET-mediated in-
activation of protein phosphatase 2A (PP2A). PP2A is a
ubiquitous serine/threonine phosphatase that targets
Raf, MEK, AKT and other essential mediators of onco-
genic signals [16]. Besides having linked β-catenin sig-
naling to the inactivation of a tumor suppressor, the
relevance of these observations relies on the fact that
PP2A activity can be restored by PP2A activating drugs
[17]. In particular, the orally available FTY720 promotes
the activation of PP2A favoring CML cells and CML
stem cells apoptosis [18, 19]. Most importantly, this drug
was shown to induce apoptosis in the tyrosine kinase re-
sistant stem cell pool [19] (Fig. 2).

p27
p27 is an inhibitor of cyclin-dependent kinases (Cdk2)
involved in the control of cell-cycle [20]. As most of the
regulator of cell-cycle, p27 is tightly regulated at differ-
ent levels. P27 has been referred as a tumor suppressor,
although a paradoxical dual role (oncogenic/tumor sup-
pressor role) has been postulated. Notably, changes in
p27 cellular compartmentalization appears to play an es-
sential role in tumorigenesis: nuclear exclusion was in-
deed associated with adverse prognosis in several
cancers [21]. BCR-ABL was shown to regulate p27 at dif-
ferent levels. In particular, BCR-ABL affects p27 expres-
sion and promotes degradation of nuclear p27 [22–25].
Moreover, BCR-ABL promotes FoxO3a inhibition through
PI3K-AKT with consequent impairment of p27 transcrip-
tion. Furthermore, PI3K regulates the activity of SKP2
which mediates p27 degradation. BCR-ABL is also able to
promote p27 phosphorylation on tyrosine 88 which is in-
volved in the control of cyclinE/Cdk2 activity. More re-
cently, BCR-ABL was shown to promote oncogenic gain
of functions of cytoplasmic p27 [26]. The overall role of
p27 in CML pathogenesis is that nuclear p27 acts as a
tumor suppressor promoting cell cycle regulation; on the
contrary, cytoplasmic p27 is acting as an oncogene. The
relevance of p27 network relies on the fact that forcing
p27 into the nucleus can dictate cancer selective growth
arrest and apoptosis [26] (Fig. 3).

PTEN
The tumor suppressor PTEN is involved in either the
regulation of the PI3K-AKT pathway and phosphatase
independent functions [27]. Several recent reports have
demonstrated that PTEN plays an essential role in the
pathogenesis of CML [28], as reviewed elsewhere [29].
In particular, PTEN was reported to be i) under-
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expressed through a Ras-MEK pathway [30, 31], ii) inac-
tivated through tail phosphorylation [32] and iii) deloca-
lized into the cytoplasm [14] (Fig. 1).

DOK genes
DOK1 and DOK2 are rasGAP-associated docking pro-
teins, that are preferentially expressed in the
hematopoietic cells, and behave as tumor suppressors in
both myeloproliferative disorders and lung cancer [33].
DOK proteins contain a NH2-terminal Pleckstrin hom-
ology domain (PH), a Phosphotyrosine-binding domain
(PTB) and a COOH-terminal SH2 target motif. DOK
proteins bind to p120 rasGAP and therefore counteract
the activation of the RAS-RAF-MEK pathway. DOK1,
also known as p62dok, and DOK2 were originally cloned
as a BCR-ABL substrate in CML [34–37]. Expression of

both Dok1 and Dok2 opposes BCR-ABL mediated
leukemogenesis [38, 39]. Although DOK1 and DOK2
have not been extensively studied in human CML sam-
ples, it was demonstrated that DOK phosphorylation by
BCR-ABL is associated with the inactivation of its activ-
ity as a Ras-GAP [40]. Furthermore, BCR-ABL was also
shown to promote DOK1 ubiquitination and degrad-
ation [41]. All together, these data indicate that DOK
proteins act as tumor suppressors through the inhibition
of the RAS-MEK-ERK pathway, but in CML their func-
tion is directly inhibited by BCR-ABL (Fig. 2).

p53
TP53 is a tumor suppressor exerting a pivotal role for the
maintenance of genomic integrity in response to several
cellular stresses [42]. According to the damage, p53 induces
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the transcription of several genes that block cell cycle, or
that promote apoptosis, like p21/WAF1 and Bax [43]. The
p53 protein is generally expressed at low levels in normal
cells and has a short half-life [44]. P53 function is counter-
acted by MDM2 oncoprotein, that by binding the p53
transactivation domain, inhibits its transcriptional activity,
and promotes p53 nuclear export. Moreover, MDM2 acts
like a E3 ubiquitin ligase, mediating p53 degradation in a
proteasome-dependent manner. Furthermore MDM2 gene
is a direct transcriptional target of p53, thereby p53 and
MDM2 form a negative feedback loop where p53 regulates
the expression of MDM2, that in turn blocks p53 functions
and promotes its degradation. The tumor suppressor TP53
plays an essential role in the pathogenesis of several can-
cers. Within myeloid malignancies, TP53 was also impli-
cated in the progression of CML into the blast phase [45].
In particular, almost 20 % of CML blast phases express
TP53 mutations, but no mutations/deletions were reported
in the chronic phase of CML. Although un-mutated and

not deleted, p53 is functionally inactivated in the chronic
phase of CML patients [46]. A mechanism described by
Calabretta’s group shows that BCR-ABL upregulates the ex-
pression of MDM2 by increasing its translation that is
dependent on high levels of the La antigen, an RNA bind-
ing protein. The BCR-ABL/MDM2 regulation could indeed
affect p53 function. P53 activity could also be regulated by
the phospho-status of its negative regulator MDM2. AKT-
mediated phosphorylation of MDM2 promotes its nuclear
localization that favors the inhibition of p53 [47]. Recently,
we have shown that BCR-ABL is able to stabilize an IkB-
alpha/p53 complex which is responsible for the sequestra-
tion of p53 into the cytoplasm of CML cells [48]. In
particular, the NF-kB inhibitor IkB-alpha is able to interact
with either NF-kB p65 subunit or the p53 protein. This
complex prevents p53 to interact with DNA response
elements and to promote apoptosis. Notably, BCR-ABL
is able to interact and stabilize IkB-alpha in the cyto-
plasm therefore promoting p53 sequestration into the
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cytosol. As a consequence, IkB-alpha prevents p53 me-
diated apoptosis (Fig. 3).

IRF-8 and IRF-4
The interferon regulatory factor-8 (IRF-8) is an essential
myeloid transcription factor involved in the regulation of
the myeloid lineage commitment [49]. Notably, IRF-8
deletion in the mouse is associated with the develop-
ment of CML like MPD [50]. Interestingly, IRF-8 is
under-expressed in CML [51]. BCR-ABL activates
STAT5 which in turn represses IRF-8. The BCR-ABL/
STAT5/IRF-8 network is another example of the BCR-
ABL ability to promote tumor suppressors inactivation.
Similarly, BCR-ABL regulates the function of another
interferon regulatory factor (IRF-4), suggesting that these
transcription factors are downstream effectors of the
chimeric translocation [52] (Fig. 2).

BCR-ABL/oncogenic miRNA mediated tumor suppressors
down-regulation
The involvement of miRNAs in CML pathogenesis is
highly complex and include both oncogenic miRNA and

tumor suppressive miRNAs [53]. In line with the aim of
this review, it should be noted that BCR-ABL is able to
positively regulate several oncogenic miRNAs which in
turn affect the expression of tumor suppressors [54],
with consequent inactivation.
In line with these considerations, for instance, BCR-

ABL is able to regulate the expression of oncogenic
miR-130a and miR-130b which in turn affect the expres-
sion of the tumor suppressor CCN3 [55].

Tumor suppressors, involved in CML
pathogenesis, not directly regulated by BCR-ABL
In this section, we will report on tumor suppressors that
have been described as inactive in CML, although in a
genetically wild-type status. In particular, we focus on
those tumor suppressors that are not directly regulated
by BCR-ABL but that cooperate with BCR-ABL in the
development of CML.

Morgana/chp-1
Morgana/chp-1 is a chaperon protein involved in the
regulation of centrosome duplication and genomic

NUCLEUS

CYTOPLASM
PROLIN RICH

SH

AKT

P

P

PI3K

PIP2

PIP3

PDK1

GAB2

GRB2
SOS

SKP2

RAS RAS
GDP

GTP

P

p27
P

Tyr88

ONCOGENIC 
FUNCTION

JAK2

miR-29 a/b

IkBα
p53NUCLEAR 

ESCLUSION
p53

MYC

PAX5

MDM2

p53BLK

PROTEASOME

P27 BCL2

MLC1

BCL2

MLC1

Fig. 3 BCR-ABL/p53 connection, p27 network and miRNAs in CML. BCR-ABL promotes either sequestration of p53 in the cytoplasm through the
interaction with IkB-alpha and the p53 degradation through MDM2. Furthermore, the interaction BCR-ABL with p27 is reported

Crivellaro et al. BMC Cancer  (2016) 16:314 Page 5 of 8



stability [56]. Morgana forms a complex with ROCKI and
ROCKII promoting the inhibition of their kinase activity
and therefore suppressing centrosome over-duplication.
We have recently demonstrated that morgana haploinsuf-
ficiency is associated with the development of a trans-
plantable myeloproliferative disorder [57]. Furthermore,
we have observed that a portion of CML exhibits morgana
under-expression, which is associated with increased
centrosome amplification and aneuploid metaphases. Not-
ably, patients expressing low levels of morgana are associ-
ated with a worse response to TKIs. Due to the ability of
morgana to regulate ROCK activity, the sensitivity to TKI
of cell obtained from morgana underexpressing patients
can be rescued by treating cells with ROCK inhibitors.
These data suggest that morgana/chp-1 can cooperate
with BCR-ABL in the pathogenesis of CML and in the de-
velopment of TKI resistant CML. However, the mecha-
nisms of morgana downregulation in CML still have to be
clarified (Fig. 2).

BLK
By using microarray analyses of leukemic stem cells, it
was showed that the Blk gene is markedly down-regulated
in the CML stem cell pool. BLK expression was dependent
on BCR-ABL protein but independent of its kinase activity
[58]. Notably, Blk was shown to be involved in the regula-
tion of Leukemic stem cells maintenance. Blk is a member
of the Src tyrosine kinase. Although Src proteins behave
as oncogenes, Blk was shown to act as a tumor suppressor
through the regulation of CML cells proliferation, in a
pathway involving c-myc and p27 (Fig. 3).

Tumor suppressive miRNAs
Various miRNAs with known tumor suppressive roles
have been found de-regulated in CML. In particular, miR-
29a and miR-29b were shown to be down-modulated in
CML and anti-correlated with the expression levels of tar-
get genes, Bcl-2 and Mcl-1 [59]. Interestingly, miR-424
and miR-320a that directly target the 3′UTR of the ABL
gene are under-expressed in CML and miR-320a is also
downregulated in CML cancer stem cells [60, 61]. Up-
regulation of these miRNAs inhibits cell proliferation, in-
duces apoptosis and, in the specific case of miR-424, also
increases the sensibility to the Imatinib treatment. Others
miRNAs have also been involved in the pathogenesis of
CML [61, 62]. However, it should be noted that further
analyses should be performed to address the mechanisms
of miRNA deregulation in CML and the real in vivo
contribution in CML pathogenesis (Fig. 3).

PML
The tumor suppressor PML plays an essential role in the
regulation of CML stem cell [63], and various reviews
have been published on this topic [64, 65]. Furthermore,

PML plays an essential role in the regulation of the
tumor suppressive function of PTEN, through HAUSP
[66]. The tumor suppressive functions of PML in CML
are associated with the differential PML expression dur-
ing the leukemic differentiation. While PML retains high
levels of expression in the stem cell compartment, where
it mediates stem cell quiescence, PML levels progres-
sively drop during differentiation into progenitor and
terminally differentiated cells. As a consequence, loss of
PML is associated with both increased proliferation [63]
and PTEN nuclear pool exclusion [14]. While the mech-
anism of PML tumor suppressive functions in CML are
highly complex, it should be noted that PML is a target-
able tumor suppressor due to the ability of arsenic triox-
ide to promote its degradation. Even if apparently
contradictory in the context of cancer therapy, the deg-
radation of PML promotes cell cycle induction of CML
stem cells with consequent their exhaustion. PML tar-
geting strategies offer the chance to achieve the eradica-
tion of CML [63].

Strategies to promote tumor suppressor
reactivation
The inability to overcome genetic inactivation of tumor
suppressors with anticancer therapies is currently chal-
lenging. Conversely, targeting mechanisms implicated in
non genomic tumor suppressor loss of function could
become a new potential strategy to enhance or support
target therapy responses. In particular, inhibitors of CKII
are able to promote PTEN tumor suppressive functions
[32]. Accordingly, HAUSP inhibitors, as well as arsenic
trioxide [63] could restore PTEN nuclear localization
with pro-apoptotic and antiproliferative effects. Simi-
larly, reactivation of PP2A was show to antagonize onco-
genic BCR-ABL properties in vitro [17]. Direct
pharmacological activation of PP2A by Forskolin, or in-
direct targeting of inhibitor components of PPA2 path-
way (such as SET inhibitors) reduced proliferation and
clonogenic potential, and induced apoptosis in myeloid
malignances [19]. The loss of a tumor suppressor gene
can also cause the activation of a side pathway. This is
what happens in CML patients expressing low levels of
Morgana. The increase of ROCK activity consequent to
Morgana modulation confers imatinib resistance. Treat-
ment with ROCK inhibitor was shown to rescue the
apoptotic response to imatinib [57].

Discussion
The oncogenic BCR-ABL signal is part of a complex net-
work of interactions that mediate proliferation and survival.
Parallel to these signaling transduction pathways, BCR-ABL
is also able to mediate the inactivation of several tumor
suppressors, through either i) regulation of gene expression,
or ii) changes in cellular compartmentalization or iii)
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directly or indirectly, favoring protein modifications, such
as phosphorylation/ubiquitination/acetylation. The rele-
vance of these networks relies on the fact that targeting
mechanisms that promote tumor suppressors inactivation
can restore their function with consequent strong and se-
lective cancer apoptosis. In our opinion, the development
of strategies to reactivate tumor suppressors is a really chal-
lenging therapeutic option and CML could represent an es-
sential model to verify the efficacy of this novel targeted
molecular therapy. In particular, those cases characterized
by resistance to TKI could benefit with combined therapy
to achieve synthetic lethality [67].

Conclusion
CML chronic phase is not associated with known TS
genetic loss of function, suggesting that BCR-ABL is suf-
ficient for the development of this disease. However, as
we have reviewed here, BCR-ABL has the ability to func-
tionally inactivate several tumor suppressors allowing to
promote tumorigenesis through an highly complex sig-
nal transduction network. The functional inactivation of
TS is a great opportunity to design combinatorial ther-
apies to achieve synthetic lethality together with BCR-
ABL tyrosine kinase inhibitors.
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