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Abstract

We investigate the class of σ-stable Poisson-Kingman random probability mea-
sures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a
large class of discrete RPMs which encompasses most of the popular discrete RPMs
used in Bayesian nonparametrics, such as the Dirichlet process, Pitman-Yor process,
the normalized inverse Gaussian process and the normalized generalized Gamma pro-
cess. We show how certain sampling properties and marginal characterisations of σ-
stable Poisson-Kingman RPMs can be usefully exploited for devising a Markov chain
Monte Carlo (MCMC) algorithm for performing posterior inference with a Bayesian
nonparametric mixture model. Specifically, we introduce a novel and efficient MCMC
sampling scheme in an augmented space that has a fixed number of auxiliary vari-
ables per iteration. We apply our sampling scheme to a density estimation and cluster-
ing tasks with unidimensional and multidimensional datasets, and compare it against
competing MCMC sampling schemes.

Keywords: Bayesian nonparametrics; Mixture models; MCMC posterior sampling; Normalized
generalized Gamma process; Pitman-Yor process; σ-stable Poisson-Kingman random probability
measures.
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1 Introduction

Flexibly modeling the distribution of continuous data is an important concern in Bayesian nonpara-

metrics and it requires the specification of a prior model for continuous distributions. A fruitful

and general approach for defining such a prior model was first suggested by Lo (1984) in terms of

an infinite dimensional mixture model, nowadays, it is the subject of a rich and active literature.

Specifically, let P be a discrete random probability measure (RPM) with distribution P. Given a
collection of continuous and possibly multivariate observations X1, . . . , Xn, the infinite dimensional

mixture model is defined hierarchically by means of a corresponding collection of latent random

variables Y1, . . . , Yn from an exchangeable sequence directed by P, i.e.,

P „ P

Yi|P iid„ P

Xi|Yi ind„ Fp¨|Yiq (1)

where Fp¨|Yiq is a continuous distribution parameterized by Yi. The distribution Fp¨|Yiq is re-
ferred to as the kernel, whereas P is the mixing measure. The nonparametric hierarchical model

(1) defines a mixture model with a potentially countably infinite number of components. By the

discreteness of P, each pair pYi,Yjq takes on the same value with positive probability, this value
identifies a mixture component. In such a way, the Yi allocates the Xi to a component from a ran-

dom number of mixture components, thus providing a model for the unknown number of clusters

within the data. The formulation of (1) presented in Lo (1984) sets P to be the Dirichlet process

introduced by Ferguson (1973), hence the name of Dirichlet process mixture model’.

It is apparent that one can replace a Dirichlet process mixing measure with any other discrete

RPM. Ishwaran & James (2001) first replaced the Dirichlet process with stick-breaking RPMs.

As a notable example they focussed on the two parameter Poisson-Dirichet process, also known

as Pitman-Yor process, which is a discrete RPM introduced in Perman et al. (1992) and further

investigated in Pitman & Yor (1997) and James (2002). Nieto-Barajas et al. (2004) replaced the

Dirichlet process with normalized random measures (NRMs) and Lijoi et al. (2007) focused on

the normalized generalized Gamma process. See also James (2002) Lijoi et al. (2005), James et al.
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(2009) and James (2013). Both the Pitman-Yor process and the normalized generalized Gamma

process are valid alternatives to the Dirichlet process: they preserve almost the same mathematical

tractability but they provide clustering properties that make use of all of the information contained

in the sample. Indeed, the Dirichlet process allocates observations to the mixture model com-

ponents with a probability depending solely on the number of times that the mixture component

occurs. In contrast, under the Pitman-Yor process and the normalized generalized Gamma process,

the allocation probability depends heavily on the number of distinct mixture components. This

more flexible allocation mechanism turns out to be a distinguishing feature if we pick any of this

priors for the mixture model (1). See Lijoi et al. (2005) and Lijoi et al. (2007) for details.

Several Markov chain Monte Carlo (MCMC) methods have been proposed for posterior sam-

pling from the Dirichlet process mixture model. Marginal MCMC methods remove the infinite di-

mensionality of the problem by exploiting the tractable marginalization with respect to the Dirich-

let process. See Escobar (1994), MacEachern (1994) and Escobar & West (1995) for early works,

and Neal (2000) for an overview with some noteworthy developments such as the celebrated Al-

gorithm 8. Conversely, conditional MCMC methods maintain the infinite dimensional part and

find appropriate ways for sampling a sufficient but finite number of the atoms of the Dirichlet pro-

cess. See Ishwaran & James (2001), Walker (2007), Papaspiliopoulos & Roberts (2008). Recently,

marginal and conditional MCMC methods have been developed under more general classes of

mixing measures, such as stick-breaking RPMs and NRMs, among others. See Ishwaran & James

(2001), Griffin & Walker (2011), Barrios et al. (2013), Favaro & Teh (2013) and Favaro et al.

(2014) for details.

In this paper we introduce a marginal MCMC method for posterior sampling from (1) with P

belonging to the class of σ-stable Poisson-Kingman RPMs introduced in Pitman (2003). We refer

to such a model as a σ-stable Poisson-Kingman mixture model. A conditional MCMC method

for σ-stable Poisson-Kingman mixture model has been recently introduced in Favaro & Walker

(2012). The class of σ-stable Poisson-Kingman RPMs forms a large class of discrete RPMs

which encompasses most of the popular discrete RPMs used in Bayesian nonparametrics, e.g.,

the Pitman-Yor and the normalized generalized Gamma processes. It also includes the Dirichlet

process as a special limiting case. Our main contribution is to provide a general purpose framework
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for performing posterior inference with any member of this class of priors. In contrast to Favaro &

Walker (2012), we exploit marginal characterisations of σ-stable Poisson-Kingman RPMs in or-

der to remove the infinite dimensionality of the sampling problem. Efficient algorithms often rely

upon simplifying properties of the priors just as inference algorithms for graphical models rely

upon the conditional independencies encoded by the graph. Thus, in our experiments, we found

this improved the algorithmic performance. We applied our algorithm for a density estimation

and clustering tasks with unidimensional and multidimensional datasets, and compare it against

competing MCMC sampling schemes.

The paper is structured as follows. In Section 2, we recall the definition of σ-stable Poisson-

Kingman RPM, as well as some of its marginal properties which are fundamental for devising

our marginal MCMC method. In Section 3, we present the marginal MCMC method for poste-

rior sampling σ-stable Poisson-Kingman mixture models. Section 4 contains unidimensional and

multidimensional experiments and Section 5 concludes with a brief discussion.

2 Preliminaries on σ-stable Poisson-Kingman RPMs

We start by recalling the definition of completely random measures (CRMs), the reader is referred

to Kingman (1967) for a detailed account on CRMs. Let X be a complete and separable metric

space endowed with the Borel σ-field BpXq. A CRM µ is a random element taking values on the
space of boundedly finite measures onX such that, for any A1, . . . , An inBpXq, with AiXAj “ H for

i ! j, the random variables µpA1q, . . . , µpAnq are mutually independent. Kingman (1967) showed
that µ is discrete almost surely so it can be represented in terms of nonnegative random masses

pukqkě1 at X-valued random locations pφkqkě1, that is µ “ ř
kě1 ukδφk . The distribution of µ is

characterized in terms of the distribution of the random point set puk, φkqkě1 as a Poisson random
measure on R` ˆ X with mean measure ν, which is referred to as the Lévy intensity measure. In
this paper we focus on homogeneous CRMs, namely, CRMs such that νpds, dyq “ ρpdsqH0pdyq
for some Lévy measure ρ on R` and some non-atomic base distribution H0 on X. Homogeneity

implies independence between pukqkě1 and pφkqkě1, where pφkqkě1 are independent and identically
distributed as H0 while the law of pukqkě1 is governed by ρ and we denote by CRMpρ,H0q the
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distribution of a homogeneous CRM.

Homogeneous CRMs provide a fundamental tool for defining almost surely discrete random

probability measures (RPMs) via the normalization approach. Specifically, let µ be a homogeneous

CRM with Lévy measure ρ and base distribution H0. Furthermore, let T “ µpXq “ ř
kě1 uk be

the total mass of µ. Both positiveness and finiteness of the random variable T are ensured by the

following conditions:
ş
R` ρpdsq “ `8 and

ş
R`p1 ´ e´sqρpdsq ă `8. Once these conditions are

satisfied, one can define an almost surely discrete RPM as

P “ µ
T

“
ÿ

kě1
pkδφk (2)

with pk “ uk{T . Since µ is homogeneous, the law of the random probabilities ppkqkě1 is governed
by the Lévy measure ρ, and the atoms pφkqkě1 are random variables independent of ppkqkě1 and
independent and identically distributed according to H0. The RPM displayed in (2) is known

from James et al. (2009) as the normalized random measure (NRM) with Lévy measure ρ and

base distribution H0. We refer to James (2002) and Regazzini et al. (2003) for a comprehensive

account on homogeneous NRMs and denote by NRMpρ,H0q the distribution of P.
Since P “ µ{T is almost surely discrete, there is a positive probability of Yi “ Yj for each pair

of indexes i ! j. This induces a random partition Π on N, where i and j are in the same block

in Π if and only if Yi “ Yj. Kingman (1978) showed that Π is exchangeable and its distribution,

the so-called exchangeable partition probability function (EPPF), can be deduced from the law of

the NRM. See Pitman (2006) for a comprehensive account of EPPFs. A second object induced

by pYiqiě1 is a size-biased permutation of the atoms in µ. Specifically, order the blocks in Π by
increasing order of the least element in each block, and for each k P N let Zk be the least element
of the kth block. Zk is the index among pYiqiě1 of the first appearance of the kth unique value in
the sequence. Let Vk “ µptYZkuq be the mass of the corresponding atom in µ. Then pVkqkě1 is a
size-biased permutation of the masses of atoms in µ, with larger masses tending to appear earlier

in the sequence. It is easy to see that
ř

kě1 Vk “ T , and that the sequence can be understood as

a stick-breaking construction: starting with a stick of length S 0 “ T ; break off the first piece of

length V1; the stick’s leftover length is S 1 “ S 0 ´ V1; then, the second piece with length V2 is

broken off, etc.
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Theorem 2.1 of Perman et al. (1992) states that the sequence of surplus masses pS kqkě0 forms
a Markov chain and gives the corresponding initial distribution and transition kernels. See the

supplementary material for a proof of this theorem. Let us denote by fρptq the density function
of T . The EPPF of the random partition Π can be derived from this theorem by enriching the

generative process for the sequence pYiqiě1 as follows, where we simulate parts of the CRM as and

when required.

i) Start with drawing the total mass from its distribution Pρ,H0pT P dtq “ fρptqdt.

ii) The first draw Y1 from µ{T is a size-biased pick from the masses of µ. The actual value of
Y1 is simply Y˚

1 „ H0, while the mass of the corresponding atom in µ is V1, with conditional

distribution given by

Pρ,H0pV1 P dv1|T P dtq “ v1
t
ρpdv1q

fρpt ´ v1q
fρptq

.

The leftover mass is S 1 “ T ´ V1.

iii) For subsequent draws i ě 2:

– Let K be the current number of distinct values among Y1, . . . , Yi´1, and Y˚
1 , . . . , Y

˚
K the

unique values, i.e., atoms in µ. The masses of these first K atoms are denoted V1, . . . ,VK
and the leftover mass is S K “ T ´ řK

k“1 Vk.

– For each k ď K, with probability Vk{T , we set Yi “ Y˚
k .

– With probability S K{T , Yi takes on the value of an atom in µ besides the first K atoms.
The actual value Y˚

K`1 is drawn from H0, while its mass is drawn from

Pρ,H0pVK`1 P dvK`1|S K P dsKq “ vK`1
sK
ρpdvK`1q

fρpsK ´ vK`1q
fρpsKq .

The leftover mass is again S K`1 “ S K ´ VK`1.

By multiplying the above infinitesimal probabilities one obtains the joint distribution of the random

elements T , Π, pViqiě1 and pY˚
i qiě1. Such a joint distribution was first obtained in Pitman (2003)

and it is recalled in the next proposition, see also Pitman (2006) for details.
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Proposition 1. Let Πn be the exchangeable random partition of rns :“ t1, . . . , nu induced by a
sample pYiqiPrns from P „ NRMpρ,H0q. Let pY˚

j q jPrKs be the K distinct values in pYiqiPrns with

masses pVjq jPrKs. Then

Pρ,H0pT P dt,Πn “ pckqkPrKs,Y˚
k P dy˚

k ,Vk P dvk for k P rKsq (3)

“ t´n fρpt ´ řK
k“1 vkqdt

Kź

k“1
v|ck|
k ρpdvkqH0pdy˚

k q,

where pckqkPrKs denotes a particular partition of rnswith K blocks, c1, . . . , cK, ordered by increasing

least element and |ck| is the cardinality of block ck. The distribution (3) is invariant to the size-
biased order.

2.1 σ-stable Poisson-Kingman RPMs

Poisson-Kingman RPMs have been introduced in Pitman (2003) as a generalization of homoge-

neous NRMs. Let µ „ CRMpρ,H0q and let T “ µpXq be finite, positive almost surely, and abso-
lutely continuous with respect to Lebesgue measure. For any t P R`, let us consider the conditional

distribution of µ{t given that the total mass T P dt. This distribution is denoted by PKpρ, δt,H0q.
It is the distribution of a RPM and δt denotes the Dirac delta function. Poisson-Kingman RPMs

form a class of RPMs whose distributions are obtained by mixing PKpρ, δt,H0q, over t, with re-
spect to some distribution γ on the positive real line. Specifically, a Poisson-Kingman RPM has

the hierarchical representation

T „ γ

P|T “ t „ PKpρ, δt,H0q. (4)

The RPM P is referred to as the Poisson-Kingman RPM with Lévy measure ρ, base distribution

H0 and mixing distribution γ. Throughout the paper we denote by PKpρ, γ,H0q the distribution
of P. If γpdtq “ fρptqdt then the distribution PKpρ, fρ,H0q coincides with NRMpρ,H0q. Since
µ is homogeneous, the atoms pφkqkě1 of P are independent of their masses ppkqkě1. They form
a sequence of independent random variables identically distributed according to H0. Finally, the

masses of P have distribution governed by the Lévy measure ρ and the distribution γ.
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In this paper we focus on the class of σ-stable Poisson-Kingman RPMs. This is a noteworthy

subclass of Poisson-Kingman RPMs which encompasses most of the popular discrete RPMs used

in Bayesian nonparametrics, e.g., the Pitman-Yor process and the normalized generalized Gamma

process. For any σ P p0, 1q, fσptq “ 1
π

ř8
j“0

p´1q j`1
j! sinpπσ jqΓpσ j`1q

tσ j`1 is the density function of a

positive σ-stable random variable, let us denote it by fσ. A σ-stable Poisson-Kingman RPMs is a

Poisson-Kingman RPM with Lévy measure

ρpdxq “ ρσpdxq :“ σ

Γp1´ σq x
´σ´1dx, (5)

base distribution H0 and mixing distribution γpdtq “ hptq fσpdtq{
ş`8
0 hptq fσptqdt, for any non-

negative measurable function h. Accordingly, σ-stable Poisson-Kingman RPMs form a class of

discrete RPMs indexed by the parameters pσ, hq. The Dirichlet process can be recovered as a
limiting σ-stable Poisson-Kingman RPM if σ Ñ 0, for some choices of h. Throughout the paper

we denote by PKpρσ, h,H0q the distribution of a σ-stable Poisson-Kingman RPM with parameters

pσ, hq.
Examples of σ-stable Poisson-Kingman RPMs are obtained by specifying the tilting function

h. The normalized σ-stable process (NS) in Kingman (1975) corresponds to hptq “ 1. The

normalized generalized gamma process (NGG) in James (2002) and Pitman (2003) corresponds to

hptq “ exptτ ´ τ1{σtu, for any τ ą 0. See also Lijoi et al. (2005), Lijoi et al. (2007), Lijoi et al.

(2008), James et al. (2009) and James (2013). The Pitman-Yor process (PY) in Perman et al.

(1992) corresponds to hptq “ Γpθ`1q
Γpθ{σ`1q t

´θ with θ ě ´σ, see Pitman & Yor (1997). The Gamma-
tilted process (GT) corresponds to hptq “ t´θ expt´ηtu, for any η ą 0 or η “ 0 and θ ą ´σ. The
Poisson-Gamma class (PG) in James (2013) corresponds to hptq “

ş
R` exptτ ´ τ1{σtuFpdτq, for

any distribution function F over the positive real line. See also Pitman & Yor (1997) and James

(2002). Let T a positive random variable, the composition of classes class (CC) in Ho et al. (2008)
corresponds to hptq “ Er f ptT 1{σqs

ş`8
0 Er f ptT 1{σqs fσptqdt , where f is any positive function, see James (2002) for

details. Let S σ a positive σ-stable random variable, the Lamperti class (LT) in Ho et al. (2008)

corresponds to the choice

hptq “ LσE
`
gpS σt´1q

˘
, (6)

where 1Lσ “ sinpπσq
π

ş`8
0

f pyqyσ´1

y2σ`2yσ cospπσq`1dy and g is any positive function such that (6) is well-defined,
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see James (2002) for details. The Mittag-Leffler class (ML) in Ho et al. (2008) corresponds to the

choice of gpxq “ expt´xσu in the tilting function (6). Figure 1 shows the relationships between
these examples of σ-stable Poisson-Kingman RPMs.

The distribution of the exchangeable random partition induced by a sample from a σ-stable

Poisson-Kingman RPMs is obtained by a direct application of Proposition 1. See the supple-

mentary material for examples of EPPFs obtained from this proposition. The next proposition

specializes Proposition 1 to σ-stable Poisson-Kingman RPMs.

Proposition 2. Let Πn be the exchangeable random partition of rns induced by a sample pYiqiPrns

from P „ PKpρσ, h,H0q. Then,

Pρσ,h,H0pΠn “ pckqkPrKsq “ Vn,K
Kź

k“1
W|ck| (7)

where we set Vn,K “
ş
R`

şt
0 t

´npt ´ sqn´1´kσhptq fσpsqdtds and Wm “ Γpm ´ σq{Γp1 ´ σq “
r1´ σsm´1 :“

śm´2
i“0 p1´ σ` iq.

Proposition 2 provides one of the main tools for deriving the marginal MCMC sampler in

Section 3. We refer to Gnedin & Pitman (2006) and Pitman (2006) for a comprehensive study

of exchangeable random partitions with distribution of the form (7). These random exchangeable

partitions are typically referred to as Gibbs-type with parameter σ P p0, 1q.

3 Marginal samplers for σ-stable Poisson-Kingman mixture

models

In this section we develop a marginal sampler that can be effectively applied to all members of the

σ-stable Poisson-Kingman process family. Our sampler does not require any numerical integra-

tions, nor evaluations of special functions, e.g. the density fσ of the positive σ-stable distribution

as in Wuertz et al. (2013). It applies to non-conjugate hierarchical mixture models based on σ-

stable Poisson-Kingman RPMs by extending the Reuse data augmentation scheme of Favaro &

Teh (2013).

9
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

3.1 Effective representation with data augmentation

If γpdtq9hptq fσptq, the joint distribution over the induced partition Πn, total mass T and surplus
mass S is given by:

Pρσ,γ,H0pT P dt, S P ds,Πn “ pckqkPrKsq

“t´npt ´ sqn´1´Kσ fσpsqhptqdt σK

Γpn ´ Kσq
Kź

k“1

Γp|ck| ´ σq
Γp1´ σq Ip0,tqpsqIp0,8qptq.

With the exception of two difficulties, this joint distribution easily allows us to construct marginal

samplers. The first difficulty is that it is necessary to compute fσ if working with anMCMC scheme

using the above representation. Current software packages compute this density using numerical

integration techniques, which can be unnecessarily expensive. The following is an integral repre-

sentation (Kanter, 1975, Zolotarev, 1966) with a view to introducing an auxiliary variable into our

system thus, removing the need to evaluate the integral numerically. Let σ P p0, 1q. Then,

fσptq “ 1
π

σ

1´ σ

ˆ
1
t

˙ 1
1´σ ż π

0
Apzq exp

˜

´
ˆ
1
t

˙ σ
1´σ

Apzq
¸

dz (8)

where Zolotarev’s function is

Apzq “
„
sinpσzq
sinpzq

 1
1´σ

„
sinpp1´ σqzq
sinpσzq


, z P p0, πq.

Zolotarev’s representation has been used by Devroye (2009) to construct a random number

generator for polynomially and exponentially tilted σ-stable random variables and in a rejection

sampling scheme by Favaro & Walker (2012). Our proposal here is to introduce an auxiliary vari-

able Z using a data augmentation scheme (Tanner & Wong (1987)), with conditional distribution

given T P dt described by the integrand in (8).
The second difficulty is that the variables T and S are dependent and that computations with

small values of T and S might not be numerically stable. To address these problems, we propose

the following reparameterization: W “ σ
1´σ logT , and R “ S {T whereW P R and R P p0, 1q. This

10
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gives our final representation:

Pρσ,γ,H0pW P dw,R P dr,Z P dz,Πn “ pckqkPrKsq

“ 1
π
e´wp1`p1´σqKqp1´ rqn´1´Kσr´ 1

1´σhpe 1´σ
σ wqApzqe´e´wr´ σ

1´σ Apzq σK

Γpn ´ σKq
Kź

k“1
r1´ σs|ck|´1.

3.2 σ-stable Poisson-Kingman mixture models

To make the derivation of our sampler explicit, we will consider a σ-stable Poisson-Kingman RPM

as the random mixing distribution in a Bayesian nonparametric mixture model:

T „ γ

P|T „ PKpρσ, δT ,H0q

Yi | P iid„ P

Xi | Yi ind„ Fp¨ | Yiq.

Fp¨ | Yq is the observation’s distribution and our dataset consists of n observations pxiqiPrns of the

corresponding variables pXiqiPrns. We will assume that Fp¨ | Yq is smooth.
In the following we will derive two marginal samplers for our nonparametric mixture models.

As opposed to conditional samplers, which maintain explicit representations of the random proba-

bility measure P, marginal samplers marginalize out P, retaining only the induced partition Πn of

the dataset. In our case, we will include as well the auxiliary variables W, R, Z in the final repre-

sentation. Denoting the unique values (component parameters) by pY˚
k qkPrKs, the joint distribution

over all variables is given by:

PpW P dw,R P dr,Z P dz,Πn “ pckqkPrKs,Y˚
k P dy˚

k for k P rKs, Xi P dxi for i P rnsq

“1
π
e´wp1`p1´σqKqp1´ rqn´1´Kσr´ 1

1´σhpe 1´σ
σ wqApzqe´r´ σ

1´σ e´wApzqdw dr dz

ˆ σK

Γpn ´ σKq
Kź

k“1
r1´ σsnk´1H0pdy˚

k q
ź

iPck
Fpdxi|y˚

k q. (9)

The system of predictive distributions governing the distribution over partitions given the other

variables can be read from the joint distribution (9). Specifically, the conditional distribution of a
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new variable Yn`1 is:

PpYn`1 P dyn`1 |Πn “ pckqkPrKs,Y˚
k P dy˚

k for k P rKs,W P dw,R P dr,Z P dzq

9σepσ´1qwp1´ rq´σ Γpn ` 1´ σKq
Γpn ` 1´ σpK ` 1qqH0pdyn`1q `

Kÿ

k“1
p|ck| ´ σqδy˚

k
pdyn`1q.

The conditional probability of the next observation joining an existing cluster ck is proportional to

|ck|´σ, which is the same for all exchangeable random probability measures based on the σ-stable
CRM. The conditional probability of joining a new cluster is more complex and is dependent upon

the auxiliary variables. Such system of predictive distributions were first studied by Blackwell &

McQueen (1973) for the chinese restaurant process, see also Aldous (1985) for details and Ewens

(1972) for an early account in population genetics.

3.3 Sampler updates

In this section we will first describe Gibbs updates to the partition Πn, conditioned on the auxiliary

variablesW,R,Z before describing updates to the auxiliary variables. We describe a non-conjugate

case where the component parameters pY˚
k qkPrKs cannot be marginalized out, and we derive an

extension of Favaro & Teh (2013). In the case where the base distribution H0 is conjugate to the

observation’s distribution Fp¨q, the component parameters can be marginalized out as well, which
leads to an extension to Algorithm 3 of Neal (2000).

3.3.1 Non-Conjugate Marginalized Sampler

In general, the base distribution H0 might not be conjugate to the observation’s distribution F, and

the cluster parameters cannot be marginalized out tractably. In this case the state space of our

Markov chain consists of pckqkPrKs,W, R, Z, as well as the cluster parameters pY˚
k qkPrKs. The Gibbs

updates to the partition involve updating the cluster assignment of one observation, say the ith one,

at a time. We can adapt the Reuse algorithm of Favaro & Teh (2013) to update our partitions.

In this algorithm a fixed number M ą 0 of potential new clusters is maintained along with

those in the current partition pckqkPrKs. The parameters for each of these potential new clusters are

denoted by pYnew# q#PrMs. When updating the cluster assignment of the ith observation, we consider

12
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the potential new clusters as well as those in pc!i
k qkPrK!is. If one of the potential new clusters is

chosen, it is moved into the partition, and in its place a new cluster is generated by drawing a new

parameter from H0. Conversely, when a cluster in the partition is emptied, it is moved into the list

of potential new clusters, displacing a randomly chosen one. The parameters of the potential new

clusters are refreshed by iid draws from H0 after a full iteration through the dataset, see Algorithm

1 for details. The conditional probability of the cluster assignment of the ith observation is:

Ppi joins cluster c!i
k | rest q9p|c!i

k | ´ σqFpXi P dxi|y˚
k q

Ppi joins new cluster " | rest q9 1
M
σepσ´1qwp1´ rq´σ Γpn ´ σK!iq

Γpn ´ σpK!i ` 1qqFpXi P dxi|ynew" q.

If H0 is conjugate, we can replace the likelihood term in the cluster assignment rule by the condi-

tional density of x under cluster c, denoted by FpX P dx|xcq, given the observations Xc “ pXjq jPc
currently assigned to that cluster:

FpX P dx|xcq “
ş
H0pdyqFpX P dx|yq ś

jPc FpX P dx j|yqş
H0pdyq

ś
jPc FpX P dx j|yq

.

3.3.2 Updates to Auxiliary Variables

The updates to the auxiliary variables W, R and Z are straightforward. Their conditional densities

can be read off the joint density (9):

PpW P dw | rest q9e´wp1`p1´σqKqhpe 1´σ
σ wqe´r´ σ

1´σ e´wApzqdw, w P R

PpR P dr | rest q9p1´ rqn´1´Kσr´ 1
1´σ e´r´ σ

1´σ e´wApzqdr, r P p0, 1q

PpZ P dz | rest q9Apzqe´r´ σ
1´σ e´wApzqdz, z P p0, πq.

Although these are not in standard form, their states can be updated easily using genericMCMC

methods. We used slice sampling by Neal (2003) in our implementation, see the supplementary

material for details. If we have a prior on the index parameter σ, it can be updated as well. Due to

the heavy tailed nature of the conditional distribution, we recommend transforming σ to log σ
1´σ .
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Algorithm 1 ReUsepΠn,M, tXiuiPrns, tY˚
c ucPΠn ,H0 | restq

Draw tYejuMj“1
i.i.d.„ H0

for i “ 1 Ñ n do
Let c P Πn be such that i P c
c Ð cztiu
if c “ H then

k „ UniformDiscretep 1M q
Yek Ð Y˚

c
Πn Ð Πnztcu

end if
Set c1 according to Prri joins cluster c1 | tXiuiPc,Y˚

c , rests
if c1 P rMs then
Πn Ð Πn Y ttiuu
Y˚

tiu Ð Yec1
Yec1 „ H0

else
c1 Ð c1 Y tiu

end if
end for

3.4 Differences with Favaro & Walker (2012) conditional sampler

If we start with Proposition 1, we can do the following 2 changes of variables: Pj “ Vj
T´ř

!ă j V!
and

Uj “ Pj
1´ř

!ă j P!
. Then, we obtain the corresponding joint in terms of N p0, 1q-valued stick-breaking

weights tUjuNj“1 which corresponds to equation (19) of Favaro & Walker (2012). The truncation
level N needs to be randomised to have an exact MCMC scheme. The authors propose to do so

with Kalli et al. (2011)’s efficient slice sampler. The number of auxiliary variables, N ` 2, is

a random quantity as opposed to keeping it fixed when using our marginal sampler. This could

potentially lead to slower running times and larger memory requirements to store these quantities

when the number of data points is large. Furthermore, in our implementation of this conditional

sampler, we found that some of the auxiliary variables are highly correlated which leads to slow

mixing of the chain. A quantitative comparison is presented in Table 2 in terms of running times

in seconds and effective sample size (ESS).
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Algorithm 2MarginalSamplerNonConj(hT ,σ,M,H0)
for t “ 2 Ñ iter do

Update zptq: Slice sample P̃ pZ P dz | restq
Update pptq : Slice sample P̃ pP P dp | restq
Update wptq: Slice sample P̃ pW P dw | restq
Update πptq, txc̊ uptq

cPπ: ReUsepΠn,M, tYiuiPrns, tXc̊ ucPΠn ,H0 |rest)
end for

4 Numerical illustrations

In this section, we illustrate the algorithm on unidimensional and multidimensional data sets. We

applied our MCMC sampler for density estimation of a σ-stable PK pσ,H0, hT ptqq mixture model,
for various choices of hptq. In the experiments where we used a conjugate prior for the mixture
component’s parameter we sampled the parameters rather than integrating them out. We kept the

hyperparameters of each h-tilting function fixed.

4.1 Unidimensional experiment

The dataset from Roeder (1990) consists of measurements of velocities in km/sec of 82 galaxies

from a survey of the Corona Borealis region. We chose the base distribution H0 and the corre-

sponding likelihood F for the kth cluster:

H0pdµk, dτkq “Fµ pdµk | µ0, τ0τkq Fτpdτk | α0, β0q

Fpdx1, . . . , dxnk | µk, τkq “
nkź

i“1
N

`
xi | µk, τ´1

k

˘

where X1, . . . , Xnk are the observations currently assigned to cluster k. N denotes a Normal

distribution with given mean µk and variance τ´1
k . In the first sampler (Marg-Conj I), we used

H0pdµk, dτkq “ N
`
dµk | µ0, τ´1

0

˘
δtτk “ τu with a common precision parameter τ among all clus-

ters and set it to 1
4 of the range of the data. In the second sampler (Marg-Conj II), we used

H0pdµk, dτkq “ N
`
dµk | µ0, τ´1

0 τ
´1
k

˘
Gammapτk | α0, β0q. In the third sampler (Marg-NonConj),

we used a non conjugate distribution for the mean per cluster, µ “ logϕ where ϕ „ Gammapϕ |
a0, b0q, and for the precision τk „ Gammapτk | α0, β0q.
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In Table 1, we reported a modest increase in the running times if we use a non-conjugate prior

(Marg-NonConj) versus a conjugate prior (Marg-Conj II) . In Table 2, the algorithm’s sensitivity

to the number of new components M was tested and compared against the conditional sampler

of Favaro & Walker (2012). As we increase the marginal sampler’s number of new components

per iteration, the ESS increases. Intuitively, the computation time increases but also leads to a

potentially better mixing of the algorithm. In contrast, we found that the conditional sampler

was not performing very well due to high correlations between the auxiliary variables. Finally,

in Table 3 we present that different values for σ can be effectively chosen without modifying the

algorithm as opposed to Favaro & Walker (2012), which is only available for σ “ 0.5.

After assessing the algorithmic performance, we used it for posterior inference with a non-

parametric mixture model where the top level is a prior from the σ-Stable Poisson-Kingman class.

Since any prior in this class can be chosen, one possible criterion for model selection is predictive

performance. In Table 4, we reported the average leave-one-out predictive probabilities. See the

supplementary material for details on how to compute these quantities. We can see that all priors in

this class have similar average predictive probabilities but the NGG slightly outperforms the rest.

In Figure 2, the mode of the posterior distribution is reported, it is around 10 clusters, and

there are 6 clusters in the coclustering probability matrix. Indeed, a good estimate of the density

might include superfluous components having vanishingly small weights as explained in Miller

& Harrison (2013). The third plot shows the corresponding density estimate which is consistent

under certain conditions as shown in De Blasi et al. (2015).

4.2 Multidimensional experiment

The dataset from de la Mata-Espinosa et al. (2011) consists of n D-dimensional triacylglyceride

profiles of different types of oils where n “ 120 and D “ 4000. The observations consist of

profiles of olive, monovarietal vegetable and blends of oils. Within each type there could be several

subtypes so we cannot know the number of varieties a priori. We preprocessed the data by applying

Principal Component Analysis (PCA) (Jolliffe, 2002) to get the relevant dimensions in it; a useful

technique when the signal to noise ratio is small. We used the first d “ 8 principal components

which explained 97% of the variance and encoded sufficient information for the mixture model to
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recover distinct clusters.

Then a σ-stable Poisson-Kingman mixture of multivariate Normals with unknown covariance

matrix and mean vector was chosen for different h-tilting functions. A multivariate Normal-Inverse

Wishart was chosen as a base measure and the corresponding likelihood F for the kth cluster is:

H0pdµk, dΣkq “Nd
`
dµk | µ0, r0Σ´1

k

˘
IWd pdΣk | ν0, S 0q

Fpdx1, . . . , dxnk | µk,Σkq “
nkź

i“1
Nd pdxi | µk,Σkq

where X1, . . . , Xnk are the observations currently assigned to cluster k. Nd denotes a d-variate

Normal distribution with given mean vector µk and covariance matrix Σ´1
k , IWd denotes an inverse

Wishart over dˆd positive definite matrices with given degrees of freedom ν0 and scale matrix S 0.

The Inverse Wishart is parameterised as in Gelman et al. (1995). S 0 was chosen to be a diagonal

matrix with each diagonal element given by the maximum range of the data across all dimensions

and degrees of freedom ν0 “ d ` 3, a weakly informative case.

In Table 5, the average 5-fold predictive probabilities are reported, see supplementary material

for details. Again, we observe that all priors in this class have similar average predictive probabil-

ities. In Figure 3, the mean curve per cluster and the coclustering probability matrix are reported.

This mean curve reflects the average triacylglyceride profile per oil type. The coclustering proba-

bility matrix was used as an input to an agglomerative clustering algorithm to obtain a hierarchical

clustering representation as in Medvedovic & Sivaganesan (2002). In certain contexts, it is use-

ful to think of a hierarchical clustering rather than a flat one since it may be natural to think of

superclasses.

In Figure 3, the mean curves per cluster are shown. These were found by thresholding the

hierarchy and ignoring clusters of size one. The first plot corresponds to the olive oil cluster, it is

well represented by the mean curve. The last two plots correspond to data that belongs to non-olive

blends of oil. The second and third plots correspond to non-olive monovarietal oil clusters. We

could interpret these two clusters as different varieties of vegetable oil since their corresponding

mean curves are indeed different. In the dendrogram it is clear that most of the data belongs to 3

large clusters and that 60% of the triacylglycerides are olive oil.
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5 Discussion

A completely random measure completely specifies its total mass, but if we allow the total mass

to come from a different distribution, we obtain the larger class of Poisson-Kingman RPMs in-

troduced by Pitman (2003). Successively, if pick the σ-stable Lévy measure we obtain the σ-

stable Poisson Kingman class. This class of random probability measures is natural, but certain

intractabilities have hindered its use. For instance, the intractability associated to the σ-stable den-

sity, as noted by Lijoi et al. (2008). The aim of this paper was to review this class of priors and

some characterisations which allowed us to build a novel algorithm for posterior simulation that is

efficient and easy to use.

Our algorithm is the first sampler of marginal type for mixture models with σ-stable Poisson-

Kingman priors. Previously, a conditional sampler has been proposed by Favaro & Walker (2012).

One of the advantages of our approach is that the number of auxiliary variables per iteration is

smaller than the conditional sampler’s, hence, it has smaller memory and storage requirements. It

also has better ESS and running times as shown in our experiments. Both conditional and marginal

samplers for this class are general purpose: they do not depend on a particular characterisation of

a specific Bayesian nonparametric prior as opposed to previous approaches. This makes them very

useful and should be added to our Bayesian nonparametrics toolbox. Our approach could be used

as a building-block in a more complex model using the proposed algorithm. This is an interesting

avenue for future research.
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de Saint-Flour XIII–1983. Springer, Berlin.

Barrios, E., Lijoi, A., Nieto-Barajas, L. E., & Prüenster, I. 2013. Modeling with Normalized
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Figure 1: Mixture of DPs (MDP), Mixture of finite symmetric Dirichlet (MFSD).
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Figure 2: 210,000 iterations, 10,000 burn in and 20 thinning factor.
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Figure 3: Dendrogram and mean profile per cluster (in red), profiles in each cluster (blue) using a
NGG prior.
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Table 1: Running times in seconds and number of cluster’s ESS averaged over 5 chains. Unidi-
mensional dataset, 30,000 iterations, 10,000 burn in.

Algorithm σ M Running time ESS(˘std)
Pitma-Yor process (θ “ 10)

Marginal-Conj II 0.5 4 23770.3(2098.22) 4857.644(447.583)
Marginal-NonConj 0.5 4 46352.4(252.27) 5663.696(89.264)

Normalized Generalized Gamma process (τ “ 1)
Marginal-Conj II 0.5 4 22434.1(78.191) 3400.855(110.420)
Marginal-NonConj 0.5 4 28933.5(133.97) 5361.945(88.521)
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Table 2: Running times in seconds and number of cluster’s ESS averaged over 10 chains. Unidi-
mensional dataset, 50,000 iterations per chain, 20,000 burn in.

Algorithm σ M Running time ESS(˘std)
Pitman-Yor process (θ “ 50)

Marginal-Conj I 0.5 2 1.1124e+04 4121.94(821.562)
Marginal-Conj I 0.5 6 1.1216e+04 11215.55(596.249)
Marginal-Conj I 0.5 10 1.1355e+04 12469.87(548.981)
Marginal-Conj I 0.5 15 1.1385e+04 13087.92(504.595)
Marginal-Conj I 0.5 20 1.1415e+04 12792.78(391.123)
Conditional-Conj I 0.5 - 1.5659e+04 707.82 (95.754)

Normalized Generalized Gamma process (τ “ 50)
Marginal-Conj I 0.5 2 1.1617e+04 4601.63(574.339)
Marginal-Conj I 0.5 6 1.1650e+04 10296.85(425.333)
Marginal-Conj I 0.5 10 1.1692e+04 11415.41(377.418)
Marginal-Conj I 0.5 15 1.1795e+04 11473.44(374.031)
Marginal-Conj I 0.5 20 1.1875e+04 11461.08(506.744)
Conditional-Conj I 0.5 - 1.5014e+04 848.73 (135.138)
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Table 3: Running times in seconds and number of cluster’s ESS averaged over 5 chains. Unidi-
mensional dataset, 30,000 iterations per chain, 10,000 burn in.

Algorithm σ M Running time ESS(˘std)
Pitma-Yor process (θ “ 10)

Marginal-Conj I 0.3 4 4685.7(84.104) 2382.799(169.359)
Marginal-Conj I 0.5 4 4757.2(37.077) 2944.065(195.011)
Marginal-Conj I 0.7 4 4655.2(52.514) 2726.232(132.828)
Conditional-Conj I 0.5 - 10141.6(237.735) 905.444(41.475)

Normalized Stable process
Marginal-Conj I 0.3 4 7658.3(193.773) 2630.264(429.877)
Marginal-Conj I 0.5 4 8203.1(106.798) 3139.412(351.788)
Marginal-Conj I 0.7 4 8095.7(85.2640) 2394.756(295.923)
Conditional-Conj I 0.5 - 10033.1(22.647) 912.382(167.089)

Normalized Generalized Gamma process (τ “ 1)
Marginal-Conj I 0.3 4 7685.8(208.98) 3587.733(569.984)
Marginal-Conj I 0.5 4 8055.6(93.164) 4443.905(367.297)
Marginal-Conj I 0.7 4 8117.9(113.188) 4936.649(411.568)
Conditional-Conj I 0.5 - 10046.9(206.538) 1000.214(70.148)
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Table 4: Unidimensional experiment’s average leave-one-out predictive probabilities.
Examples Average predictive probability
PY 0.1033p0.052q
NGG 0.1228(0.065)

Gamma Tilted 0.1186p0.065q
NS 0.1123p0.057q
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Table 5: Multidimensional experiment’s average 5-fold predictive probabilities.
Examples Average predictive probability
DP 5.5484e-12 (7.6848e-13)
PY 4.1285e-12 (7.5549e-13)
NGG 9.6266e-12 (3.4035e-12)

Gamma tilted 6.7099e-12(1.5767e-12)
NS 8.3328e-12(9.7106e-13)

Lamperti tilted 5.4251e-12 (1.0538e-12)
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