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Abstract

In this paper, we generalize the notion of the performance measure
by using a variety of coherent risk measures. We prove that these classes
of coherent risk measures assure the properties of the acceptability in-
dexes. In separate sections classes associated to Expected Shortfall and
Shortfall Risk are examined both with their sensitivity, and also the
general static optimization problem of these ratios is studied.
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1 Introduction

In the present paper, we extend the notion of the performance ratios, by us-
ing a variety of coherent risk measures and pricing functionals of a portfolio
under a static framework. Specifically, we suppose that the space E in which
the ”tomorrow” value variables of a portfolio lie in, is a subspace of some
L0(Ω,F ,P), where (Ω,F ,P) is a non-atomic probability space which describes
the uncertainty ”today”. E is some partially ordered normed space. It is
well-known that a seminal paper on the topic of the acceptability indexes is
[4]. In the present paper, the properties of the performance ratios considered,
are compared to the properties of the acceptability indexes considered in [4].
Specifically, the main properties are: monotonicity, scale -invariance, arbitrage-
consistency, concavity and Fatou continuity. About the risk measures being
used in the paper for the performance ratio formulation, are actually general
coherent risk measures defined on ordered dual systems consisted by reflex-
ive and sepcifically non -reflexive spaces and also the expected shortfall and
risk measures related to shortfall risk. The presence of non-reflexive spaces
is important due to the fact that ESa is defined on L1. The sesitivity of
performance ratios being built on coherent isk measures relying on Expected
Shortfall, such as spectral risk measues is also studied in a separate section.
The general problem of the maximization of a performance ratio over a set
of not necessarily convex set of constraints is also solved under interior point
methods and for L2-spaces. This is also the way that the main content of the
paper is organized. Finally, the Appendix is separated into the first part, in
which the basics about strictly positive functionals in spaces with the Riesz
Decomposition Property are mentioned. In the second part, the weak compact-
ness of the representation set of the Expected Shortfall functionals’ is deduced,
while in the third part of the Appendix the basics about the Henig Dilating
Cones are mentioned -which are used in the section regarding the optimization
problem. In financial practice, RAROC is a performance ratio, which is widely
used. The results of the present paper generalize the RAROC, especially in the
form which expresses the ratio of the expected value of some financial position
divided by the economic capital of it. In this exact form, may by equal to
RAROC(x) = E(x)

ρ(x)
, where ρ corresponds to some coherent risk measure, or in

a better way to the Expected Shortfall ESa.

2 General Performance Ratios

We consider the ordered Banach space E, a cone with interior points P in E
and x0 ∈ intP . We also consider the coherent risk measure ρ with respect to
P and x0:

ρ(y) = inf{m ∈ R|y +m · x0 ∈ P},
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and also a subspace G of E. We also suppose that 0 belongs to the σ(E∗, G)-
closure of the base Bx0 of P 0, then by [15, Cor.13], G has the property that
ρ(G) ≥ 0. Hence we may define the following performance measure:

Definition 1. aρ,f : E → R ∪ {∞}, such that

aρ,f (x) =
f(x)

ρ(x)
,

where f is some strictly positive functional of E.

Notice that the division c
0

= ∞, if c > 0 and 0 is a result of a calculation
on some positive variable.

Definition 2. aρ,f is called arbitrage consistent with respect to G, if for
any x ∈ P ∩G, aρ,f (x) =∞.

Theorem 3. aρ,f scale invariant, monotone and arbitrage-consistent with re-
spect to G.

Proof: For abbreviation we denote aρ,f by a. We also take some t ∈ R+.

(i) For the Monotonicity Property, if x ≤ y with respect to the partial
ordering which is defined by the cone P on E, and ρ(x)ρ(y) > 0, ρ(y) ≤
ρ(x) < 0 or 0 < ρ(y) ≤ ρ(x). This implies f(x)

ρ(x)
≤ f(y)

ρ(y)
. For the case

where ρ(x)ρ(y) < 0 the proof is analogous. Finally,

a(x) =
f(x)

ρ(x)
≤ f(x)

ρ(y)
≤ f(x)

ρ(x)
= a(y).

(ii) Since f is strictly positive, f(λ · x) = λ · f(x), and ρ(λ · x) = λ · ρ(x)
since ρ is coherent. Then, a is scale invariant.

(iii) If x ∈ P \ {0}, f(x) > 0 and ρ(x) ≥ 0, because x ∈ G. On the other
hand, ρ(x) ≤ 0, because x ∈ P . Finally, ρ(x) = 0 and a(x) =∞.

�

Theorem 4. We assume some t ∈ R+. If f, ρ take positive values, then aρ,f
is a concave function, if ρ is a convex risk measure.

Proof: If ρ(λx + (1 − λ)y) ≤ λρ(x) + (1 − λ)ρ(y), λ ∈ (0, 1), x, y ∈ E,
and these values are positive, this implies 1

ρ(λx+(1−λ)y)
≥ 1

λρ(x)+(1−λ)ρ(y)
and

moreover

f(λx+ (1− λ)y)

ρ(λx+ (1− λ)y)
≥ λf(x) + (1− λ)f(y)

λρ(x) + (1− λ)ρ(y)
= a(x, y).
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a(x, y) ≥ λf(x)
ρ(x)

+ (1− λ)f(y)
ρ(y)

. If f(x)
ρ(x)

, f(y)
ρ(y)
≥ t, then λf(x)

ρ(x)
+ (1− λ)f(y)

ρ(y)
≥ t and

this finally implies
f(λx+ (1− λ)y)

ρ(λx+ (1− λ)y)
≥ t.

�

Proposition 5. For each coherent risk measure of the form ρ(x) = supπ∈D π(−x), π ∈
E0

+, we have

aρ,f (x) ≤ inf{−f(x)

π(x)
, π ∈ D},

where if D is σ(E∗, E)-compact, the ′ ≤′ in this representation becomes ′ =′.

Proof: f(x)
ρ(x)

= f(x)
supπ∈D π(−x)

≤ inf{ f(x)
π(−x)

, π ∈ D}. If D is σ(E∗, E) -compact,

then ρ(x) = πx(−x), πx ∈ D. Then, in the above inequality, equality holds. �

3 Performance Ratios on Lp Spaces

3.1 Expected -Shortfall Based Perfomance Ratios

First of all, we assume a probability space (Ω,F ,P). Looking back at the
seminal article on Performance Measures -[4] and specifically going to [4, Th.1]
of Section 2.2, we notice that a possible family of Dx, x ∈ R+ can be

Dx = {Q|Q << P, 0 ≤ dQ

dP
≤ x}, x ∈ R+.

The family Dx, x ∈ R+ may define the acceptability index

αD(x) = sup{x ∈ R+| inf
Q∈Dx

EQ(x) ≥ 0}.

The functional ρx(x) = − infQ∈Dx EQ(x), x ∈ R+, is related to the Expected
Shortfall if it is defined on L1(Ω,F ,P), due to the dual representation of the
Expected Shortfall, see in [11, Th.4.1]. Specifically,

ρx(x) = ES 1
x
(x), x ∈ L1(Ω,F ,P), x ∈ R+.

The existence of the extreme measure Q∗x(x) is implied in this case by the
weak- star compactness of the order-interval [0, x1]. The relevant cones Ax
may be defined as

Ax = {x ∈ L1|ρx(x) ≤ 0},
either via, or without Expected Shortfall. As a consequence

α(x) = sup{x ∈ R+|x ∈ Ax}.

For a detailed proof of the above, see Appendix 6.1.
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Definition 6. We define the Expected Shortfall Ratio of the cash flow
x ∈ L1(Ω,F ,P), as follows: ESRt(x) = E(x)

ESt(x)
if E(x) > 0, and ESRt(x) = 0

otherwise, where t ∈ (0, 1).

Theorem 7. ESRt is monotone, scale-invariance, and law invariance.

Proof: Except the law-invariance, which is a consequence of the Expected
Shortfall, the proof of the other arguments arises from Theorem 3. �

Theorem 8. ESRt is concave.

Proof: It arises from the Theorem 4. �

Theorem 9. ESRt satisfies the Fatou property, probably passing to subse-
quences.

Proof: If some sequence xn converges to x in P, then there exists some
subsequence xkn → x, P -a.e. This implies E(xkn) → E(x) and ESt(xkn) →
ESt(x), since ESt is Lipschitz continuous with respect to ‖.‖1-norm. Hence
ESRt(xkn) ≥ x, if ESt(x) 6= 0. �

Theorem 10. ESRt is arbitrage-consistent with respect to any solid subspace
of L1(Ω,F ,P).

Proof: If x > 0, P − a.e. then since ESt is coherent, ESt(x) ≤ 0. If x is
an element of any solid subspace S of L1((Ω,F ,P), then from Theorem [15,
Th.11], ESt(x) ≥ 0x ∈ S, hence ESt(x) = 0, x ∈ S ∩ L1

+(Ω,F ,P). Also

E(x) > 0 in this case, hence E(x)
ESt(x)

=∞. �

3.2 Performance ratios related to coherent risk mea-
sures in Lp spaces

In [10, Th.1.1], the dual representation of any continuous coherent risk mea-
sure ρ : Lp → R (1

p
+ 1

q
= 1, where if p = 1, then q =∞ is given by

ρ(x) = supg∈G E((−x)g),

where G ⊆ Lq+, such that supg∈G ‖g‖q <∞, and E(g) = 1 for any g ∈ G. This

Theorem denotes both by Krein -Ŝmulian Theorem, that the sup remains the
same, if we take the set K = co(G). Then the set G may be assumed to be
convex, closed and norm-bounded, hence weakly (or weak -star, in the case
of L∞) compact. The performance ratio aρ,f , where ρ(x) = supg∈K E((−x)g)
and f is a strictly positive, continuous functional of Lp+, has the following
properties:
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Theorem 11. aρ,f is concave, scale-invariant and monotone. Also, any aρ,f
satisfies the Fatou property.

Proof: The concavity is implied by Theorem 4. For the scale invariance
f(λx)
ρ(λx)

= λf(x)
λρ(x)

= f(x)
ρ(x)

, x ∈ Lp, λ ∈ R+. If x ≥ y and ρ(x)ρ(y) > 0, ρ(y) ≤
ρ(x) < 0 or 0 < ρ(y) ≤ ρ(x). This implies f(x)

ρ(x)
≤ f(y)

ρ(y)
. For the case where

ρ(x)ρ(y) < 0 the proof is analogous. Suppose that aρ,f (xn) ≥ t, t > 0. If the
sequence xn converges to x in P, then there exists some subsequence xkn → x,

P -a.e. This implies xkn
Lp→ x and ρ(xkn)→ ρ(x), since ρ is Lipschitz continuous

with respect to ‖.‖p-norm. Hence aρ,f (x) ≥ t, if ρ(x) > 0. �

3.3 Performance ratios related to Shortfall Risk

According to the recent literature on elicitable risk measures, see [3], and their
relation to shortfall risk, mentioned widely in [8, Sect.3]. Consider some in-
creasing, convex loss function ` : R → R and the expected loss E(`(−x)) if x
lies in the space L∞(Ω,F ,P).

Definition 12. The Expected Loss Ratio, associated to the loss fucntion `
is defined as follows:

ELR`(x) =
E(x)

E(`(−x))
,

if E(x) > 0, while ELR`(x) = 0, if E(x) = 0.

Theorem 13. ELR` is monotone and law invariance if ` is continuous and
strictly increasing, either on (−∞, ε) or on (ε,+∞) for some ε > 0.

Proof: If x ≤ y,P-a.e., then E(x) ≤ E(y). Since ` is increasing and −y ≤
−x, then E(`(−y)) ≤ E(`(−x)). Then 1

E(`(−x))
≤ 1

E(`(−y))
, hence E(x)

E(`(−x))
≤

E(x)
E(`(−y))

≤ E(y)
E(`(−y))

. From [3, Def.4.2], the shortfall measure being defined by `
as

ρ`(F ) = inf{x ∈ R|
∫
R
`(−y − x)dF (y) ≤ x0},

is law invariance since by [8] ` is continuous, the value ρ`(F ) on the distribution
F is the solution of the equation∫

R
`(−y − ρ`(F ))dF (y) = x0.

�
According to the recent leterature on elicitable risk measures, see [3], and

their relation to shortfall risk, mentioned widely in [8, Sect.3]. Consider some
increasing, convex loss function ` : R→ R and the expected loss E(`(−x)) if x
lies in the space L∞(Ω,F ,P).
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Definition 14. The Expected Loss Ratio, associated to the loss fucntion `
is defined as follows:

ELR`(x) =
E(x)

E(`(−x))
,

if E(x) > 0, while ELR`(x) = 0, if E(x) = 0.

Theorem 15. ELR` is monotone and law invariance if ` is continuous and
strictly increasing, either on (−∞, ε) or on (ε,+∞) for some ε > 0.

Proof: If x ≤ y,P-a.e., then E(x) ≤ E(y). Since ` is increasing and −y ≤
−x, then E(`(−y)) ≤ E(`(−x)). Then 1

E(`(−x))
≤ 1

E(`(−y))
, hence E(x)

E(`(−x))
≤

E(x)
E(`(−y))

≤ E(y)
E(`(−y))

. From [3, Def.4.2], the shortfall measure being defined as∫
R`(−y − x)dF (y) ≤ x0},

is law invariance since by [8] ` is continuous, the value ρ`(F ) on the distribution
F is the solution of the equation∫

R
`(−y − ρ`(F ))dF (y) = x0.

�

Theorem 16. ELR` satisfies the Fatou property, probably passing to subse-
quences, if ` is continuous and strictly increasing, either on (−∞, ε) or on
(ε,+∞) for some ε > 0.

Proof: If some sequence xn converges to x in P, then there exists some
subsequence xkn → x, P -a.e. This implies E(xkn) → E(x) and ELR`(xkn) →
ELR`(x), since 1

`(xkn )
→ 1

`(x)
. If E(`(x)) 6= 0, and

E(xkn )

E(`(xkn ))
≥ x, then E(x)

E(`(x))
≥ x.

�

4 Strong Sensitivity of Performance Ratios

We recall the following Definition of Strict Sensitivity obtained by [9]:

Definition 17. ρ is called strictly sensitive if x ≥ x′, µ- a.e., ρ(x) = ρ(x′)⇒
x = x′, µ-a.e.

We also need another notion of sensitivity on L1:

Definition 18. A monetary risk measure ρ on L1 is strongly sensitive, if and
only if x = y, µ-a.e. ⇒ ρ(x) = ρ(y).
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Also, the sensitivity of a peformance ratio aρ,f may be defined in an equiv-
alent way:

Definition 19. A performance ratio aρ,f on L1 is strongly sensitive, if and
only if x = y, µ-a.e. ⇒ aρ,f (x) = aρ,f (y).

Theorem 20. For any a ∈ (0, 1], the Expected Shortfall ESa is strongly sen-
sitive.

Proof: By the dual representation theorem of Expected Shortfall [?, Th.4.1],
we have

ESa(x) = max
π∈[0, 1

a
1]
π(−x),

such that π is a Radon -Nikodym derivative of some probability measure
Qπ << µ,

ESa(|x|) ≤
1

a
‖x‖1,

which implies that ESa is strongly sensitive. �

Theorem 21. For any a ∈ (0, 1], b > 1 such that 1
b
< 1

a
, the Adjusted Expected

Shortfall is strongly sensitive.

Proof: By [16, Lem.6] regarding the dual representation of Adjusted Ex-
pected Shortfall, we get that

AESa,b(|x|) =
1

b
‖x‖1,

hence the specific risk measure is strongly sensitive on L1. �

Theorem 22. Any spectral risk measure of the form Mm(x) =
∫ 1

0
aESa(x)dm(a)

defined on L1 is strongly sensitive.

Proof: By [1, Th.2.5], any spectral risk measure Mm is a continuous, coher-

ent risk measure on L1, since
∫ 1

0
adm(a) = 1 and ESa is a continuous, coherent

risk measure on L1. The coherence of Mm is implied by [1]. The continuity of
Mm is implied by relation (6) in [1]. More specifically,

|Mm(|x|)| =
∫ 1

0

ESa(|x|)adm(a) ≤ 1

b
‖x‖1 ·

1

b
,

for some b > 1 such that 0 < a ≤ 1 < b. �

Theorem 23. The pointwise limit of spectral risk measures on L1 under the
same measure of risk spectrum m is a srongly sensitive coherent risk measure.
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Proof: If

ρ(x) = lim
n

∫ 1

0

ESan(x)andm(an),

then since ESan(|x|) ≤ 1
b
‖x‖1, for some b > 1 such that 0 < an ≤ 1 ≤ b, while∫ 1

0
andm(an) = 1, for any n ∈ N, hence there is some c > 1 ≥ an > 0 for any

n, such that

ESan(x) ≤ 1

b · c
‖x‖1,

for any n ∈ N. The last inequality implies

ρ(x) ≤ 1

b · c
‖x‖1,

which completes the proof. �

Theorem 24. Any Kusuoka Representable risk measure on L1 is strongly
sensitive.

Proof: By [18, Pr.1], any such risk measure ρ is a coherent risk measure on
L1, which admits the representation

ρ(Z) = supµ∈M

∫ 1

0

ESa(Z)dµ(a),

where Z ∈ L1 and M denotes the closure under weak topology of a set of
probability measures M on [0, 1]. More specifically,

|ρ(|Z|)| ≤
∫ 1

0

ESa(|Z|)dµ(a) ≤ 1

b
‖Z‖1,

for some b > 1 such that 0 < a ≤ 1 < b, which implies strong sensitivity. �

Theorem 25. The pointwise limit of a sequence of Kusuoka Representable
risk measures on L1 is a strongly sensitive coherent risk measure.

Proof: By [18, Pr.1], any such risk measure ρn of the sequence (ρn)n∈N is a
coherent risk measure on L1, which admits the representation

ρn(Z) = supµ∈Mn

∫ 1

0

ESa(Z)dµ(a),

where Z ∈ L1 and Mn denotes the closure under weak topology of a set of
probability measures Mn on [0, 1]. More specifically,

|ρn(Z)| ≤
∫ 1

0

ESa(|Z|)dµ(a) ≤ 1

b
‖Z‖1,
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for some b > 1 such that 0 < a ≤ 1 < b. Since ρn(Z) → ρ(Z), for the same
b > 1, we get |ρ(|Z|)| ≥ 1

b
‖Z‖1. �We may quote on the coherence of poitwise

limits of a sequence of coherent risk measures -being defined for example on
L1- at this point.

Proposition 26. The pointwise limit ρ of a sequence of coherent risk measures
(ρn)n∈N : L1 → R, is a coherent risk measure on L1.

Proof: It suffices to prove that ρ satisfies the four properties of coherence.
ρn(Z + a1) = ρn(Z) − a, Z ∈ L1, a ∈ R denotes the Translation Invariace of
ρn, n ∈ N. From the uniqueness of the limit of the sequence of real numbers
(ρn(Z + a1))n∈N, which is ρ(Z + a1) is equal to ρ(Z) − a. By the same way
we deduce the Positive Homogeneity of ρ. About Subadditivity of ρ, we notice
that for any x, y ∈ L1 and n ∈ N, the inequality

ρn(x+ y)− ρn(x)− ρn(y) ≤ 0,

holds in the set on real numbers. This implies that for the limit of this sequence

ρ(x+ y)− ρ(x)− ρ(y),

the same inequality is true. Finally, if x ≥ y,P − a.e. for any n ∈ N, the
inequality

ρn(x)− ρn(y) ≤ 0,

holds in the set of real numbers. This implies that for the limit ρ(x) − ρ(y),
the same inequality holds. �

About the notion of strong sensitivity of risk measures, see [14].

Proposition 27. If ρ : L1 → R is strongly sensitive, then the associated
performance ratio arho,f : L1 → R, where aρ,f (x) = f(x)

ρ(x)
and f ∈ L∞+ being a

strictly positive functional of L1, is strongly sensitive.

Proof: If ρ is strongly sensitive, this implies that if x = y, µ, a.e. this implies
ρ(x) = ρ(y). But if x = y, µa.e. this implies f(x− y) = 0, f(y − x) = 0, since
f is strictly positive. This implies aρ,f (x) = aρ,f (y). �

Corollary 28. The performance ratio ESRt : L1 → R, where ESRt(x) =
E(x)
ESa(x)

, is strongly sensitive.

Proof: It arises from the Proposition 27. �

Corollary 29. The performance ratio SRφ : L1 → R, where SRφ(x) = E(x)
phi(x)

and φ is a spectral risk measure, is strongly sensitive.

Proof: It arises from the Proposition 27. �
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5 Optimization of Performance Ratios

The general static optimization problem for some performance ratio aρ,f is the
following:

Maximize aρ,f (x) s.t. x ∈ S,

where S is a proper subset of some normed linear space E.

Theorem 30. If E has a well-based cone K, and for the constraints’ set that

S ∩ (−int(Kn)) = ∅,

where Kn, n ≥ 2 is some of the Henig Dilating Cones, (see Appendix 6.2), then
the problem takes the form

Maximize aρ,f (x)− zS(x) s.t. x ∈ E,

where zS is continuous, convex.

Proof: We apply the Separation Theorem [6, Th.2.3.6]. Namely, we pose
A = S,D = Kn, n ≥ 2. Also, we take some k0 ∈ Kn+2, k

0 6= 0, and ac-
cording to the same Lemma C = Kn+2, being a cone, satisfying the condition
C + int(D) ⊆ C. Hence, the conclusion of [6, Th.2.3.6], (since the recession
conditions 2.22, 2.28 also hold for Kn, k

0), implies the existence of a contin-
uous, convex functional zKn,k0 , such that the scalarization of the constraint of
the above problem, as follows:

Maximize aρ,f (x) s.t. zKn(x) ≥ 0,

where zS : E → R is the continuous, convex functional separating S and
−int(Kn). If we would like to transfer the scalar constraint itself inside the
objective function, the problem becomes

Maximize aρ,f (x)− zKn,k0(x) s.t. x ∈ E,

namely an unconstrained maximization problem of some continuous, concave
functional. By following [6], zKn,k0(x) = inf{t ∈ R|x ∈ tk0 −Kn}. �

Theorem 31. The functional zKn , k
0) is a coherent risk measure with

respect to the pair (−Kn,−k0). The dual representation of zKn,k0 is

zKn,k0(x) = supπ∈Π π(−x),

where Π = {y ∈ A0
ρ(−Kn,−k0)

|(−k0)(y) = 1}. The set A0
ρ(−Kn,−k0)

denotes the

polar wedge of the acceptance set Aρ(−Kn,−k0) of ρ(−Kn,−k0) = zKn , k
0).
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Proof: According to [13, Lem.3.2, Cor.3.3, Th.3.4], zKn,k0(x) = inf{t ∈
R|y ∈ tk0 − Kn} == inf{t ∈ R|x + t(−k0) ∈ −Kn} = ρ(−Kn,−k0)(x). Hence,
(−Kn) ⊆ Aρ(−Kn,−k0) and for the corresponding polar wedges, A0

ρ(−Kn,−k0)
⊆

(−Kn)0. The cone (−Kn)0 is the ordering cone in E∗, and (−k0) defines a
closed, bounded base on it. Π is the part of it, which belongs to the polar
A0
ρ(−Kn,−k0)

of the acceptance set. �

It is well known that the solution of a maximization problem of a concave
function, which in this case is aρ,f (x) − zKn,k0(x) over the entire space E is
equivalent to the solution of the minimization problem of the convex function

g(x) = zKn,k0(x)− aρ,f (x)

all over E. For this reason we would like to determine these x ∈ E, such that
0 ∈ ∂g(x), where ∂g ⊆ E∗ denotes the subdifferential correspondence of g, see
[19, Th.2.5.7].

We notice that in E = L2, the product xy of two elements x, y of L2 is an
element of L2.

Theorem 32. In E = L2, the above optimality condition 0 ∈ ∂g becomes
πx = πy for any x, y ∈ E, if the representation set D of the coherent risk
measure ρ of a = aρ,f is weakly compact.

Proof: For any π ∈ Π and if D is weakly compact, we have

g(x)−g(y) ≥ π(y−x)−a(x)+a(y) ≥ (π(−x)− f(x)

πx(−x)
)−(π(−y)− f(y)

πy(−y)
) =

= (−π(x) +
f(x)

πx(x)
)− (−π(y) +

f(y)

πy(y)
) = 〈x− y, x∗〉 .

Then, x∗ = π+ f
πx

= π+ f
πy

is the optimality condition, which becomes πx = πy
for any x, y ∈ E. �
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6 Appendix

6.1 The compactness of the representation set of ESa

Lemma 33. {dQ
dP |Q ∈ ca(Ω), Q(Ω) = 1, Q << P, dQ

dP ∈ [0, 1
a
],P − a.e.} is a

weak-star compact set of L∞(Ω,F ,P).

Proof:

Za = {dQ
dP
|Q ∈ ca(Ω), Q(Ω) = 1, Q << P,

dQ

dP
∈ [0,

1

a
],P− a.e.}.

and the order-interval [0, 1
a
1] of L∞ is σ(L∞, L1) -compact due to [2, Th.8.60].

We also have to prove that Za is weak-star closed in L∞. Let us consider a net
(Qλ)λ∈Λ ⊆ Za such that

dQλ

dP
σ(L∞,L1)→ f.

From the fact that dQλ
dP , λ ∈ Λ, we obtain that dQλ

dP ∈ L
1(Ω,F ,P). We have to

prove that f is a Radon-Nikodym derivative of some measure Q1 ∈ Za with
respect to P. Let us consider the map Q1 : F → [0, 1] where

Q1(A) =

∫
A

f · IAdP



Generalized performance ratios and risk optimization 2723

and IA is the characteristic random variable of A. In order to show that Q1 is
a probability measure,

Q1(Ω) =

∫
Ω

fdP,

which is the limit limλ∈Λ

∫
Ω
dQλ and every of the terms of the net of real

numbers (∫
Ω

dQλ

)
λ∈Λ

,

is equal to 1. By the same argument, we may deduce that Q1(∅) = 0. If
(An)n∈N is a sequence of sets in F which are disjoint, then

Qλ(∪nk=1Ak) =
n∑
k=1

Qλ(Ak), λ ∈ Λ.

Hence,

Q1(∪nk=1Ak) =
n∑
k=1

Q1(Ak), n ∈ N,

where N denotes the set of natural numbers. For n→∞

Q1(∪∞n=1An) =
∞∑
n=1

Q1(An),

from the σ(L∞, L1)-convergence

dQλ

dP
σ(L∞,L1)→ f,

and the definition of Q1, the fact that any characteristic function IA, A ∈
F belongs to L1(Ω,F ,P). We may also refer to the Monotone Convergence
Theorem [2, Th.11.18], where the restriction of the Q1 on the set ∪∞n=1An is
the integrable function which is mentioned in the Theorem, while fn is the
restriction of Q1 on a set of the form ∪nk=1Ak. For the P-continuity of Q1,
we have that if for a set A ∈ F P(A) = 0 holds, then since Qλ, λ ∈ Λ is
P-continuous,

Qλ(A) = 0 =

∫
A

dQλ

dP
dP,

for any λ ∈ Λ. But since
dQλ

dP
σ(L∞,L1)→ f,

then

Q1(A) =

∫
A

fdP = lim
λ∈Λ

∫
A

dQλ

dP
dP = 0.
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Hence Q1 is P-continuous. Since Qλ, λ ∈ Λ are probability measures,

dQλ

dP
(ω) ≥ 0,

P-a.e. Also, sinceQ1 is a P-continuous probability measure, by Radon-Nikodym
Theorem we have

dQ1

dP
= f,

P-a.e. and f(ω) ≥ 0, P-a.e. In order to show that

0 ≤ f ≤ 1

a
1,

with respect to the usual (point-wise) partial ordering on L∞(Ω,F ,P), we use
the convergence argument ∫

A

dQλ

dP
dP→

∫
A

fdP,

for any A ∈ F . This implies that
∫
A
fdP ∈ [0, 1

a
] for any A ∈ F . This implies

0 ≤ f ≤ 1
a
1 P-a.e., since if we suppose that this does not hold, then there

exists some B ∈ F with P(B) > 0 such that either f(ω) > 1
a
, or f(ω) < 0

for any ω ∈ B. Then, we would have either
∫
B
fdP > 1

a
, or

∫
B
fdP < 0, a

contradiction. Finally, the set Za is a weak-star closed subset of a weak-star
compact set which is the set Da. �

6.2 Henig Dilating Cones

We remind of [5, Lem.2.1]

Lemma 34. If the closed cone K has a base B, such that 0 /∈ B, we define

Kn = cone(B +
δ

n
B(0, 1)),

where B(0, 1) is the closed unit ball of E and δ > 0, such that 2δB(0, 1)∩B = ∅,
namely ‖b‖ > 2δ, b ∈ B and 0 /∈ B + δB(0, 1). Then, the following are true:

(i) K ⊆ Kn+1 ⊆ Kn, n ≥ 1.

(ii) Kn+1 ⊆ cone(B + δ
n
B(0, 1)), n ≥ 1.

(iii) K \ {0} ⊆ int(Kn), n ≥ 1.

(iv) Kn is a cone n ≥ 2.

Proof:
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(i) Obvious.

(ii) Let n a specific one and y ∈ Kn+1 \ K. Then, there exists a sequence
{ym} ⊆ cone(B + 1

n+1
δB(0, 1)), such that ym → y, such that ym =

λm(bm + δ
n+1

um), um ∈ B(0, 1), bm ∈ B, λm > 0. Let ε0 > 0, such that
λm ≥ ε0, for any m. We select a ε : 0 < ε < ε0

(n+1)2
and we notice that

ε

λm
<

ε

λm(n+ 1)2
≤ ε0

(n+ 1)2ε0
=

1

(n+ 1)2
,

for any m. Since ym → y, there exists m0 such that

y ∈ ym0 + εδB(0, 1) = λm0(bm +
δ

n+ 1
um0) + εδB(0, 1) =

λm0(bm0 +
δ

n+ 1
um0) +

ε

λm0

δB(0, 1))

⊆ λm0(bm0 +
δ

n+ 1
um0) +

1

(n+ 1)2
δB(0, 1))

⊆ λm0(bm0 +
1

n
δB(0, 1)) ⊆ cone(B +

1

n
δB(0, 1)).

(iii) We will show that

cone(B +
δ

n+ 1
B(0, 1)) \ {0} ⊆ int(Kn), n ≥ 1.

Let y ∈ cone(B + δ
n+1

B(0, 1)) \ {0}. Then, there exist λ > 0, b ∈ B, u ∈
B(0, 1), such that y = λ(b+ δ

n+1
u). Then we will have that

y +
λδ

(n+ 1)2
B(0, 1) = λ(b+

δ

n+ 1
u) +

λδ

(n+ 1)2
B(0, 1) =

λ(b+
δ

n+ 1
u)+

λδ

(n+ 1)2
B(0, 1) ⊆ λ(b+

δ

n
B(0, 1)) ⊆ cone(B+

δ

n
B(0, 1)).

Since y + λδ
(n+1)2

B(0, 1) is an open neighborhood of y ,y ∈ int(cone(B +
δ
n
B(0, 1))). Then,

K \ {0} ⊆ Kn+2 \ {0} ⊆ cone(B +
δ

n+ 1
B(0, 1)) \ {0}

⊆ int(cone(B +
δ

n
B(0, 1))) ⊆ int(Kn), n ≥ 1.
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(iv) The set B + δB(0, 1) is closed, convex and 0 /∈ B + δB(0, 1). Separating
in the strict sense these sets by an element h ∈ E∗, we notice that
h(y) > 0, y ∈ cone(B + δB(0, 1)) \ {0}. By (i), (ii) we have

Kn \ {0} ⊆ K2 \ {0} ⊆ cone(B + δB(0, 1)) \ {0} ⊆ {y ∈ E : h(y) > 0}.

Hence, Kn is a cone, if n ≥ 2.
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