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Abstract: We introduce a Bayesian hierarchical model for mitochondrial
DNA sequence data, which is fitted via acceptance-rejection algorithms. The
model incorporates parametric models of population history explicitly as well
as a mutational process allowing for a simultaneous parameter estimation
whose importance has become increasingly clear in many recent studies. The
model is applied to a sample of DNA sequences from the Italian population.

Abstract: Wir stellen ein Bayes’sches hierarchisches Modell für mitochon-
drialen DNA Sequenzdaten vor, das mittels Acceptance-Rejection Algorith-
men angepasst wird. Das Modell enthält explizit parametrische Modelle für
die Entwicklung der Population wie auch einen Veränderungsprozess und er-
lauben eine simultane Parameterschätzung. Die Wichtigkeit dieser Vorge-
hensweise ist durch viele aktuelle Studien ganz deutlich nachgewiesen wor-
den. Das Model wird auf eine Stichprobe von DNA Sequenzen der Italieni-
schen Population angewandt.

Keywords: Bayesian Modelling, Coalescent Process, Acceptance-Rejection
Algorithm.

1 Introduction
Inference about population histories and evolutionary processes are not only of intrinsic
interest but are also crucial to the interpretation of genetic data in a wide range of applica-
tions which vary from molecular biology and genetic medicine to forensic sciences (see
Bataille et al., 1999; Foreman et al., 1997; Jorde et al., 2001).

The control region (sometimes referred as D-loop) of the mitochondrial genome is
widely used in studies of human population to address question concerning genetic vari-
ation within species. This is due to the maternal inheritance of mitochondrial DNA, the
absence of recombination and the high mutation rate (Cann et al., 1987).

Human control region sequences evolve according to a complex pattern that makes
analysis difficult. In fact underlying a sample of DNA sequences data is a structure shaped
by dependencies that reflect the ancestral relationships between the sequences and are af-
fected by historical patterns of migration, mating behavior and population growth, as well
as mutation and selection (Cavalli-Sforza et al., 1994). In the absence of recombination,
these relationships can be represented by a genealogical tree for which each leaf corre-
sponds to a sequence at the present time while the root of the tree represents the most
recent common ancestor of all the sequences in the sample (Wilson et al. (2003)).

Although the underlying relationships are crucial in modelling the dependence struc-
ture of a sample of DNA sequences, they are in fact ignored by traditional methods, most
of which are based on the distribution of pairwise differences, obtained by comparing
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pairs of sequences and recording the number of pairs with 0, 1, . . . differences, or sum-
mary statistics like the number of segregating sites, i.e. the number of single positions
or loci in a sequence which experienced a mutation (see Bonneuill, 1998; Tavaré et al.,
1997).

In recent years important advances have been made in developing tree reconstruction
methods and computational techniques such as Markov chain Monte Carlo and impor-
tance sampling (Stephens, 2001). Tree reconstruction methods can give insights into the
mode of evolution of the genomic region studied. In particular, coalescent theory provides
a framework with which to incorporate parametric models of population history explic-
itly. Coalescent models, which describe the evolution of a sample of DNA sequences
in terms of stochastic processes, allow application of statistical techniques for parameter
estimation and model testing (Stephens and Donnelly, 2000).

The trade-off is that the computational complexity of the analysis can increase sub-
stantially and implementing these models and algorithms is challenging. Furthermore
they assume a constant rate at which mutations occur while an important feature of mi-
tochondrial sequence evolution is the variation of rates among sites. To gauge the con-
tribution of hot spot, i.e. positions at which substitutions accumulate predominantly, to
the high rate estimate, it is necessary to infer the rate for each polymorphic locus in the
sequence (see Wakeley, 1994; Swofford et al., 1995).

The aim of this paper is to introduce a Bayesian hierarchical model to estimate de-
mographic and mutational parameters of a sample of mitochondrial DNA sequences. In
order to take into account the underlying ancestral relationships between sequences we
use coalescent models as prior distributions.

In the next section we give a brief outline of the standard coalescent process and
the coalescent with population growth and then we introduce the hierarchical model. In
Section 3 we discuss the choice of the prior distributions along with the results obtained
by the application of the model to a sample from Italian population.

2 Theory and Methods

2.1 Standard Coalescent Process
The coalescent is a stochastic model for the genealogical tree representing the ancestral
relationships between a sample of DNA sequences. It approximates the distribution of
genealogical trees under an important class of neutral population genetics models, includ-
ing the celebrated Wright-Fisher model of a random-mating population of constant size
N (see Hudson, 1990; Kingman, 1982). To recover this approximation, 1 unit of ‘coales-
cent’ must be interpreted as N generations, where N is the effective population size, say
the number of adults in a population contributing offspring to the next generation (Hartl
and Clark, 1997).

Coalescences occur only between pairs of individuals. This process may be thought
of as generating a binary tree, with leaves representing the sample sequences and vertices
where ancestral lines coalesce.

Coalescent time runs backward, with time t0 ≡ 0 denoting the present and time tk,
k ∈ {1, 2, . . . , n − 1}, denoting the time of the k-th most recent coalescent event which
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take place between n individuals. In particular, tn−1 denotes the time of the most recent
common ancestor (TMRCA) of the sample.

The between-coalescent intervals Wk = tn−k+1− tn−k during which the sample has k
distinct ancestors have independent exponential distributions

Pr(tn−k+1 > t|tn−k = t′) = exp (γk(t
′ − t)) , γk =

(
k

2

)
(1)

for t > t′. An important quantity associated to a coalescent tree is the height, defined as

T =
n∑

k=2

Wk .

By definition the expectations of Wk are equal to 2/k(k − 1) and so the expectation of T
is given by

E(T ) = 2
(
1− 1

n

)

which approaches 2 units of coalescent time, equivalent to 2N generations as the sample
size gets large.

2.2 Coalescent with Population Growth
The effect of variable population size is to change the joint distribution of the times tk.
Suppose that the population size at the time of sampling is N . The population size at time
N

∫ t
0 λ(s)ds generations ago will be written as Nλ(t). The standard coalescent model is

a special case with λ(s) ≡ 1 of the model in which equation (1) is replaced by

Pr(tk > t|tk−1 = t′) = exp(γk(Λ(t′)− Λ(t))) , (2)

where Λ(t) ≡ ∫ t
0 ds/λ(s) (Hudson, 1990).

Let us consider pure exponential growth at rate R, i.e.

λ(t) = exp(−Rt) . (3)

Since tn−k = Wk+1 + · · ·+ Wn, using (3) in equation (2) gives

Pr(Wk > s|Wk+1 + · · ·+ Wn = t′) = exp

{
−γk

exp(Rt′)
R

[exp(Rs)− 1]

}
, (4)

where s = t− t′.
A more realistic scenario is a two parameter model for which

λ(t) =

{
exp(R(tg − t)) if 0 < t < tg
1 if t > tg

corresponding to a population of constant size N until Ntg generations ago, after which
it grows at rate R per generation to reach its current size Nc, where

Nc ≈ N exp(Rtg) .
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Under this model the coalescent time distribution (2) becomes

Pr(Wk > s|Wk+1 + · · ·+ Wn = t′) =





exp{γk

R
[exp(Rt′)− exp(R(t′ + s))] exp(−Rtg)} if t′ < t′ + s < tg

exp{γk(tg − (t′ + s) + 1
R
(exp[R(t′ − tg)]− 1])} if t′ < tg < t′ + s

exp{−γks} if tg < t′ < t′ + s .

2.3 A Hierarchical Model
Mitochondrial DNA sequences data are a string of letters each of ones denotes the allele,
i.e. the possible state of the DNA sequence at a locus. Letter A stay for adenine, C for
cytosine, G for guanine, and T for thymine. However, it is a common situation that a
locus exhibits just two variants across individuals, for example T ⇔ C or A ⇔ G. Then
for each locus we arbitrarily choose and fix one of the two variants as usual in single-
nucleotide polymorphism allele frequencies models (Nicholson et al., 2002).

We consider the setting in which we have a collection of L loci from a modern popula-
tion. Suppose nj is the number of individuals typed at the j-th locus in the population. At
the lowest levels of the hierarchical model, the number of copies xj of the chosen variant
at locus j has a binomial distribution

xj ∼ Binomial(nj, αj) , j = 1, 2, . . . , L

where αj ∈ [0, 1] is the probability of the chosen variant at locus j.
We model the dependence structure between the modern population and the ancestral

population to that sampled through a mutational and a demographic process. First intro-
duce a collection of unobserved quantities, one for each locus: πj , j = 1, 2, . . . , L which
plays the role of the allele frequencies in the ancestral population. Then

βj = (1− exp(−µjt))πj

is the probability of a mutation after tN generations (see Weir, 1990), whereas

αj = (1− exp(−µjtN))πj + (1− πj) exp(−µjtN) (5)

is the probability of changes between the two variants in the j-th locus. Finally to com-
plete the hierarchy we put independent priors on π, µ, N, t. The choice of the prior distri-
bution is discussed in the results section.

3 Simulation Methods
In this section we describe a simulation approach which is based on the acceptance-
rejection method (see Ripley, 1987) to generate observations from the posterior distri-
bution of demographic and mutational parameters.

We assume that, before observing the data, N and µ are mutually independent ran-
dom quantities and independent of coalescent times t and the ancestral population allele
frequencies π. The prior distributions of N and µ should be chosen so as to summarize
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the information available, for example from relevant genetic and anthropological stud-
ies. Typically, such information will not uniquely specify the distribution, therefore it
is prudent to consider several different plausible choice and investigate the sensitivity of
conclusions.
Algorithm 1

1. simulate N and µ from their specified prior distribution;

2. simulate πj and T from a symmetric Beta(p) and an Exponential(2) distribution,
respectively;

3. calculate αj according to the equation (5);

4. keep (πj, T, N, µ) with probability u defined by

u =
Binomial(y, αj)

Binomial(y, y/n)
. (6)

When considering the coalescence time T the algorithm can be modified as follows

Algorithm 2

1. simulate N and µ from their specified prior distribution;

2. simulate πj from a symmetric Beta(p) distribution and the Wk as independent
Exponential(k(k − 1)/2) variables, k = 1, 2, . . . , n;

3. evaluate T by T =
∑n

k=2 Wk;

4. calculate αj according to equation (5);

5. keep (πj, T, N, µ) with probability u defined by (6).

When allowing for population growth, the above algorithm can be readily modified in
the following one.

Algorithm 3

1. simulate R from its prior distribution;

2. for k = n, n− 1, . . . , 2 simulate tn − k + 1 by

tn−k+1 =
1

R
log

[
exp(Rtn−k)− R

γk

log Uk

]
, t0 = 0 ;

and evaluate T =
∑n

k=2 Wk = tn−1;

3. calculate N(t) = N0 exp(−RT ), where N0 is the current population size;

4. simulate µ and π;

5. keep (πj, T, N, µ) with probability u defined by (6).

Finally the preceding algorithm can be modified as follows to allow for the demo-
graphic scenario provided by the two-parameter exponential growth.
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Algorithm 4

1. simulate R and then simulate time tg which corresponds to the time at which the
population starts its exponential growth and N by

log
(

Nc

N

)
= RtgN ; (7)

2. for k = n, n− 1, . . . , 2 simulate tn − k + 1 by

tn−k+1 =





1
R

log
[
exp(Rtn−k)− R

γk
exp(Rtg) log U

]
if tn−k < tn−k+1 < tg

tg + 1
R

[exp(R(tn−k − tg))− 1]− 1
γk

log U if tn−k < tg < tn−k+1

∼ Exponential(1/γk) if tg < tn−k < tn−k+1

and evaluate T =
∑n

k=2 Wk = tn−1;

3. simulate µ and π from their prior distributions;

4. keep (πj, T, N, Nc, R, µ) with probability u defined by (6).

All the simulation routines were written using the R programming language (R Devel-
opment Core Team, 2006).

4 Results
A data set consisting of mitochondrial DNA sequences from a sample of 49 Italian in-
dividuals was collected to illustrate the hierarchical model described above. Data are
available on the FBI Mitochondrial DNA Population Database (Monson et al., 2002).
Each sequence is composed of the first 360 base pair segment of the control region, cor-
responding to positions 16024-16383 in the human reference sequence of Anderson et al.
(1981).

In the mtDNA sequences, 28 polymorphic loci which showed variation across indi-
viduals were identified. The settings of loci was considered evolving independently. Such
condition typically arises unless loci are very close on the same molecule.

For setting up prior distribution in the standard coalescent model with a constant pop-
ulation size, we refer to Tavaré et al. (1997) They estimate the effective population size
N to be of order 5000 individuals. To allow uncertainty a gamma prior distribution with
mean 5000 and shape 5 was considered (Table 1). Such distribution concentrates largely
on values between 0 and 6000 and it is approximately centered around the value 4900
which is also supported by Hammer (1995) and Fullerton et al. (1994). Alternatively a
log-normal distribution with mean and standard deviation equal to 9 and 1 respectively
was considered (see Wilson et al., 2003). Since the resulting posterior distributions were
similar, results were summarized only for the posterior distribution obtained by assuming
the gamma prior in Table 2.

In the coalescent model with exponential population growth, uncertainty of growth
parameter R was modelled by means of a gamma distribution with mean 0.005, shape 2
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Table 1: Demographic parameters from prior distribution for algorithms 1 and 2

Parameters
1st Qu. Median Mean 3rd Qu.

Prior
(a) Standard coalescent model-algorithm 1
effective population size 3408 4677 5017 6320
TMRCA (× years × generation) 6.054 1.515 2.485 3.275

(b) Standard coalescent model-algorithm 2
effective population size 3354 4644 4980 6246
TMRCA (× years × generation) 1.235 1.995 2.475 3.155

Table 2: Demographic parameters from posterior distribution for algorithms 1 and 2

Parameters
1st Qu˙ Median Mean 3rd Qu.

Posterior
(a) Standard coalescent model-algorithm 1
Effective population size 3405 4733 5095 6370
TMRCA (× years × generation) 6.574 1.645 2.745 3.515

(b) Standard coalescent model-algorithm 2
Effective population size 3257 4562 4866 6101
TMRCA (× years × generation) 1.37 1.997 2.237 2.977

Table 3: Demographic parameters from prior distribution for algorithm 3

Parameters
1st Qu. Median Mean 3rd Qu.

Prior
Ancestral population size 1676 2702 2983 3889
Modern population size 2.524 6.974 1533 166.43

Growth rate R (% per generation) 0.24 0.41 0.49 0.67
TMRCA (× years × generation) 202.83 560.93 123.14 133.84

Table 4: Demographic parameters from posterior distribution for algorithm 3

Parameters
1st Qu. Median Mean 3rd Qu.

Posterior
Ancestral population size 1823 2750 3088 3996
Modern population size 18970 54670 143000 146700
Growth rate R (% per generation) 0.24 0.43 0.51 0.7
TMRCA (× years × generation) 174.73 380.73 607.83 736.43

and rate 400. According to Wilson et al. (2003) it was reasonable to assume an effective
population size N distributed as a gamma with mean 3000 and shape and rate parameters
equal to 3 and 10−3 respectively, while for the ancestral population size Nc, parameter
log(Nc/N) was modelled as a gamma distribution with shape and rate equal to 5 and
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Table 5: Demographic parameters from prior distribution for algorithm 4

Parameters
1st Qu. Median Mean 3rd Qu.

Prior
Ancestral population size 1676 2702 2983 3889
Modern population size 1.664 2.674 2.954 3.85
Growth rate R (% per generation) 0.24 0.41 0.49 0.67
Time since start growth 8519 1.394 2.254 2.354

TMRCA (× years × generation) 1.046 1.756 2.346 2.936

Table 6: Demographic parameters from posterior distribution for algorithm 4

Parameters
1st Qu. Median Mean 3rd Qu.

Posterior
Ancestral population size 429 576 747 763
Modern population size 2484 4212 6348 6764
Growth rate R (% per generation) 0.223 0.398 0.478 0.623
Time since start growth 6.713 1.194 2.614 2.864

TMRCA (× years × generation) 1.405 2.475 5.115 5.335

1, respectively. From the relationship 7 along with the assumption that log(Nc/N), N ,
and R were mutually independent (see Wilson et al., 2003) the distribution of time tg
at which population started its growth was derived. According to considerations as in
Tavaré et al. (1997), uncertainty of the mutation rate µj was given in the form of a
gamma ∼ (2, 4.94 × 10−8) for all j (see Tables 3 and 5). A value of 25 years was
assumed for the generation time (Hein, 2004).

Finally a prior distribution on allele frequencies in the ancestral population was taken
to be a symmetric beta and alternatively a uniform distribution (Nicholson et al., 2002).
Sensitivity analysis showed that conclusions did not depend on the choice of the prior
distribution, thus results in Table 7 were summarized for the choice of a symmetric beta
with parameter p = 0.1, only.

In Table 2, the estimated TMRCA using algorithm 2 was two order of magnitude
higher than TMRCA estimated via algorithm 1. This is mainly due to the effect of muta-
tions which stretch out the intervals between coalescence times.

From Table 7, positions 16146-16173-16190-16194-16257 showed a mean mutational
rate which was lesser than other positions both for algorithm 3 and algorithm 4 revealing
a mutation rate heterogeneity of the mitochondrial DNA control region.

To test the ability of the inference procedure introduced and recover accurate estimates
of parameters a simulation study was undertook. We simulated 50 data sets from algo-
rithm 2. The parameters underlying each simulation were obtained via the independent
prior distributions discussed above.

In Table 8 let χ be the indicator function which assume value equal 1 if the 100p%
posterior interval includes the correct value, 0 otherwise. The observed average of χ
over the data sets formed a Binomial(50, p) proportion. Since there were not appreciable
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Table 7: Mutational parameters from posterior distribution for algorithms 3 and 4

Position Algorithm 3 Algorithm 4
1st Qu. Median Mean 3rd Qu. 1st Qu. Median Mean 3rd Qu.

16052 5.747−8 9.627−8 1.129−7 1.499−7 5.838−8 9.788−8 1.141−7 1.545−7

16070 5.318−8 9.152−8 1.091−7 1.463−7 5.313−8 9.655−8 1.116−7 1.508−7

16146 4.907−8 8.391−8 1.015−7 1.369−7 4.788−8 8.572−8 1.005−7 1.367−7

16173 4.743−8 8.021−8 9.865−8 1.330−7 4.626−8 8.079−8 9.829−8 1.329−7

16190 5.028−8 8.727−8 1.018−7 1.370−7 4.911−8 8.309−8 1.009−7 1.349−7

16194 4.913−8 8.416−8 1.010−7 1.383−7 4.788−8 8.235−8 9.758−8 1.314−7

16224 5.066−8 9.258−8 1.100−7 1.523−7 5.340−8 9.478−8 1.092−7 1.492−7

16257 5.246−8 8.873−8 1.059−7 1.394−7 4.778−8 8.396−8 1.007−7 1.383−7

16279 5.332−8 9.204−8 1.104−7 1.470−7 5.517−8 9.139−8 1.105−7 1.479−7

16312 5.565−8 9.717−8 1.131−7 1.508−7 5.330−8 9.452−8 1.110−7 1.486−7

16363 5.548−8 9.462−8 1.120−7 1.493−7 5.366−8 9.286−8 1.101−7 1.467−7

differences results were summarized for TMRCA, effective population size N and just for
one mutational and one ancestral allele frequencies parameter. The number of data sets
for which 100p% posterior interval included the true parameter value was slightly lesser
than the mean, however the differences did not exceed three standard deviation. Ancestral
population allele frequencies πj were the parameters with the greatest differences among
achieved and nominal coverage.

Table 8: Simulation study consisting of 50 data sets from the algorithm 2

p%
Parameters

N µ(16070) T π(16070)
χ-mean (SD%)

10 3 (2.12) 4 (2.12) 3 (2.12) 2 (2.12)
30 12 (3.20) 17 (3.20) 16 (3.20) 10 (3.20)
50 27 (3.54) 23 (3.54) 19 (3.54) 19 (3.54)
70 35 (3.20) 29 (3.20) 31 (3.20) 29 (3.20)
90 40 (2.12) 46 (2.12) 38 (2.12) 39 (2.12)

5 Discussion
We fitted a hierarchical model for mitochondrial DNA sequences data by using a fully
Bayesian approach implemented via acceptance-rejection algorithms. A feature of these
algorithms is that they are usually efficient in term of time consuming. Otherwise, when
the acceptance probability is very small the algorithm can be computational expensive
and alternatively the model may be fitted via Markov chain Monte Carlo methods. How-
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ever, the method described allows much more flexibility to explore the effects of different
modelling assumptions. It is straightforward to adapt the algorithms given to include
other demographic scenarios such as coalescent with population splitting (see Wilson et
al., 2003). Furthermore the model itself allows for different sample size across loci.

Several authors (see Tavaré et al., 1997; Wilson and Balding, 1998) have implemented
Bayesian methods in order to make inferences on the mutation rate µ and the effective
population size N separately while, in the absence of other information, the statistical
features of the sequence data are affected by the value of the compound mutation param-
eter 2Nµ (Yang, 1996). On the other hand demographic parameter estimates along with
site-specific rate estimates could be used to refine models of molecular structure allowing
for a better understanding of the forces and mechanisms that affect sequence evolution,
Wakeley (1994). The proposed hierarchical model is thus motivated by the importance
of simultaneous parameter estimation, especially whether mutational rate heterogeneity
exists among sites. In fact, it allows to get an estimation of the substitution rate at the nu-
cleotide level pointing out those sites which are more likely to experiencing a mutation.

Results obtained from the implementation of the model are consistent with other stud-
ies. In fact, the estimated value of the effective population size in the standard coalescent
model (Table 2) is about 5000 which is consistent with the results of Jorde et al. (2001).
On the other hand TMRCA estimated using algorithms 3 and 4, see Tables 4 and 6, is
consistent with the coalescence time estimated in the European population using the last
intron of the ZFX gene (Jaruzelska et al., 1999).

Recent studies (see Denver et al., 2000; Heyer et al., 2001) reveal a mitochondrial
substitution rate that is two orders of magnitude higher than previous indirect estimates.
This is mainly due to multiple mutations affecting coding function as well as mutational
hotspots. Denver et al. (2000) gives an overall mutation rate equal to 1.6 × 10−7 per site
per generation (±3.1 × 10−8) which support results summarized in Table 7, except for
position 16173 which is a slow site accordingly to Heyer et al. (2001).

An interesting generalization of this approach relies on the fact that it naturally handles
missing data and could be extended to incorporate correlations between loci.

With regard to the simulation study, from Table 8 should be observed that ancestral
population allele frequencies πj are those parameters with the greatest differences among
achieved and nominal coverage. This is probably due to the fact we simulated them using
a symmetric beta distribution which assign the same probability to rare and common
variant. Anyway this seem unlikely to have a large effect on inferences since for most
parameters of interest there is a good agreement between the predicted and the actual
coverage.

A limitation of this work concerns the sampling strategy. In our analysis we supposed
that the sample was indeed “random”. In practice this is difficult to arrange and the
sensitivity of estimates and inferences to non-random sampling should be quantified.
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