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The spindle assembly checkpoint (SAC) ensures correct chromo-
some segregation during mitosis by preventing aneuploidy, an
event that is detrimental to the fitness and survival of normal cells
but oncogenic in tumor cells. Deletion of SAC genes is incom-
patible with early mouse development, and RNAi-mediated de-
pletion of SAC components in cultured cells results in rapid death.
Here we describe the use of a conditional KO of mouse Mad2, an
essential component of the SAC signaling cascade, as a means to
selectively induce chromosome instability and aneuploidy in the
epidermis of the skin. We observe that SAC inactivation is toler-
ated by interfollicular epidermal cells but results in depletion of
hair follicle bulge stem cells. Eventually, a histologically normal
epidermis develops within ∼1 mo after birth, albeit without any
hair. Mad2-deficient cells in this epidermis exhibited abnormal
transcription of metabolic genes, consistent with aneuploid cell
state. Hair follicle bulge stem cells were completely absent, despite
the continued presence of rudimentary hair follicles. These data
demonstrate that different cell lineages within a single tissue re-
spond differently to chromosome instability: some proliferating
cell lineages can survive, but stem cells are highly sensitive.

mouse models | consequences of aneuploidy | whole chromosome
instability | epidermal stem cell biology

At each cell division, newly replicated chromosomes are evenly
distributed between daughter cells. If this process goes awry,

daughters inherit an aneuploid chromosome content. Aneuploidy
causes early developmental abnormalities in mice and is a leading
cause of mental retardation and miscarriage in humans (1, 2). At
the cellular level, imbalance in chromosome numbers disrupts
metabolic homeostasis, decreasing the rate of proliferation (3).
The mitotic spindle assembly checkpoint (SAC) is a key compo-
nent of the machinery that guards against aneuploidy. The SAC
functions by ensuring that all kinetochores are properly attached
to spindle microtubules before the onset of anaphase (4). Mad2
is a key signal transducer in the SAC pathway, shuttling between
unattached kinetochores and the anaphase promoting complex.
Germ-line deletion of Mad2, or of any other SAC gene, results in
massive aneuploidy and early embryonic lethality. In cell lines,
depletion of SAC components causes apoptosis (5). However, the
vast majority of human cancers exhibit extensive aneuploidy, sug-
gesting that aneuploidy can be tolerated by tumor cells in vivo (5–
9). In this paper, we investigate the in vivo consequences of
chromosomal instability by conditionally abrogating the SAC,
using the epidermis as a model.
The mammalian skin is a highly organized and mitotic tissue

consisting of layers of keratinocytes [interfollicular epidermis (IFE)]
interspersed with hair follicles. In the IFE, keratinocytes divide in
the basal layer and subsequently differentiate into stratified cells
while migrating toward the surface of the skin. Hair follicles
harbor several stem cell populations essential for hair formation
and capable of repopulating the IFE after wounding (10). In

normal conditions, homeostasis within the skin is maintained by
progenitor cells that reside in the basal layer of the IFE (11–13).

Results
To study the consequences of induced aneuploidy in the skin, we
generated a conditional allele of Mad2 in which loxP sites flank
exons 2 and 5, enabling Cre-mediated deletion of virtually the
entire Mad2 coding region. The structure of the deleted locus is
identical to that of the conventional Mad2 deletion we have
previously shown to be embryonic lethal and eliminates detect-
able Mad2 mRNA and protein (14). Mice carrying the loxP-
Mad2 allele (Mad2f) were intercrossed with Keratin14-Cre (Krt14-
Cre) transgenic mice (15) to generate animals in whichMad2 was
selectively deleted from multiple epidermal lineages. Mad2f/f,
Krt14-Cre+ mice were born at normal Mendelian ratios, but
unlike WT littermates, which acquired hair within 3–4 d after
birth, mutant mice remained completely devoid of hair (Fig. 1A;
Fig. S1A). Other than hair loss, the epidermis of mutant mice
appeared largely normal despite the complete absence of Mad2
RNA or protein in the epidermis (Fig. 1 B and C). However,
80% of Mad2f/f, Krt14-Cre+neonates died within the first month
of life because of malnutrition that apparently arose from a
combination of poor mothering and competition with control
littermates for food. The remaining 20% of mice survived into
adulthood (Fig. 1D).
To determine whether Mad2 deficiency indeed resulted in an-

euploidy, we harvested back skin epidermis from neonates (1 and 3
wk of age) and adults, generated single cell suspensions, and
measured DNA content by flow cytometry. Whereas epidermal
samples from control littermates exhibited a narrow G1 peak in-
dicative of euploid DNA content, Mad2-deficient cells consistently
exhibited a wider distribution with a significant increase in the
number of cells with a 4n DNA content. This phenotype was most
prominent at 3 wk of age and is suggestive of aneuploid cell di-
vision (Fig. 2A). To confirm this hypothesis we assayed chromo-
some number in the mutant epidermis using interphase FISH
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against chromosomes 4, 15, and 19 (Fig. 2 B andC; Fig. S1B; Table
S1). We observed a two- to threefold increase in the number of
cells trisomic for the assayed chromosomes compared with WT
controls, confirming widespread aneuploidy in Mad2-deficient
epidermis. We measured up to 10% of the WT IFE cells to be
aneuploid, which is similar to aneuploidy rates observed in WT
mouse embryonic fibroblasts (MEFs) but higher than aneuploidy
rates in for instance hematopoietic cells (6–8, 16), suggesting that
IFE cells tolerate aneuploidy better than some other cell types.
Histological examination of Mad2-null epidermis revealed hy-

perkeratosis during the first 3 wk of life, followed by the acqui-
sition of a relatively normal morphology at later stages (Fig. 3A).
Consistent with hyperkeratosis, we observed that some keratinocytes

in the Mad2-null epidermis in neonates coexpressed the basal
marker Krt14 along with the differentiation marker Krt10. Ex-
pression of these markers is normally mutually exclusive, with
proliferating basal cells exhibiting Krt14 staining and cells in the
stratified, differentiated layer Krt10 staining (Fig. 3B), but coex-
pression can occur in hyperproliferative epidermis (17). Hair
follicles appeared abnormal at all ages, explaining the persistent
absence of hair. In agreement with the increased cellularity of the
epidermis, we observed an increase in proliferation in the basal
layers of the IFE and in hair follicles (Fig. S1C). However, both the
pattern of Krt10/Krt14 and levels of Ki67 staining returned to
normal in the subset of Mad2f/f, Krt14-Cre+ animals that survived
until adulthood.
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Fig. 1. Mad2 deficiency provokes hair loss in mouse epidermis. (A) Macroscopic phenotype of Mad2 conditional KO (cKO) mice in neonates and adults. (B)
Quantitative PCR comparing Mad2 RNA levels in Mad2f/f, Krt14-Cre+ (Mad2-deficient), and control epidermis in neonates and adults. Error bars indicate SE of
the mean (SEM) of at least two biological replicates. (C) Western blot for Mad2 in Mad2-deficient and control epidermis. (D) Kaplan-Meier curve depicting
survival of Mad2-deficient mice within the first year.
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Fig. 2. Krt14-Cre; Mad2 conditional
mice display dramatic aneuploidy in the
epidermis. (A) DNA content distribution
in control and Mad2-deficient epider-
mal cells in neonates and adults. The CV
is used as a measure of the variance of
DNA content within the G1 peak. (B)
Interphase FISH for chromosomes 15
(red) and 19 (green) on freshly isolated
control and Mad2-deficient keratino-
cytes. (C) Percentage of cells showing
more than two copies of chromosome
15 or 19 assessed by interphase FISH
(aneuploidy index) in Mad2-deficient
or control epidermis. Error bars indicate
SE of the mean (SEM) values for at least
three biological replicates. Individual
values can be found in Table S1.
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Following a wave of cell proliferation at postnatal week 2, we
observed increasing levels of apoptosis in hair follicles and the
IFE; this continued through postnatal week 3 (Fig. S1D). We
also observed infiltration of immune cells into the underlying
dermis, suggesting inflammation. Such inflammation can arise
if the barrier function of the skin is compromised, thereby
allowing microorganisms to penetrate into the dermis. However,
when we tested epidermal barrier integrity in mutant mice, we
observed that the skin barrier was intact (Fig. S2), implying that
immune infiltration was a consequence of abnormal mitosis and
cell death. We conclude that Mad2 deficiency provokes aneu-
ploidy and apoptosis in IFE and hair follicle cells and that this
promotes a temporary inflammatory reaction in the dermis,
explaining the hyperkeratosis.
To analyze the responses of epidermal cells to Mad2 deletion,

we isolated mRNA from samples of epidermis [including both
hair follicle (HF) and IFE] of newborns at 3, 6, 13, and 21 d after
birth and of adults and then compared the transcript profiles of
Mad2-deficient skin with Cre− Mad2-positive littermates using
Illumina microarrays (Fig. 4A). We next extracted all probes that
were significantly deregulated (P < 0.05) at two or more time
points. To assess the quality of the microarray data, we also val-
idated a selection of outlier genes (Fig. S3A) by qPCR, in all cases
confirming our microarray results (Fig. S3B). Data from Mad2-
null 3-d-old neonates were excluded from the analysis because
transcript profiles were very similar to aged-matched controls,
presumably because Mad2 transcripts had not completely dis-
appeared yet [Fig. 1B, postnatal day (P)3]. The analysis of days 6–
21 and adult mice generated a set of 1,619 down-regulated and
1,347 up-regulated genes (Dataset S1), which we processed to
recover enriched biological pathways based onWiki pathways and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(using Bonferroni-corrected P < 0.05) and gene ontologies using
Webgestalt (18) (Fig. 4B; Table S2; Datasets S2 and S3). This
analysis revealed significant up-regulation of genes involved in
apoptosis and inflammation (most clearly at days 6 and 13) and
the appearance of an aneuploidy fingerprint involving enrichment
for genes and pathways known to be altered by aneuploidy. This
fingerprint was first described in yeast strains and MEFs carrying

supernumerary chromosomes and involves a substantial deregu-
lation of genes that play a role in basic metabolic processes (19,
20). We now show that this response also occurs in vivo, because
our dataset showed enrichment for similar pathways in Mad2-de-
ficient skin: up-regulation of metabolic pathways and endocytosis
and down-regulation of cell cycle genes, mRNA processing genes,
and genes encoding spliceosome components. The latter pathways
were recently associated with the response to aneuploidy in other
organisms as well (plants, yeast, and humans) (21).
We also observed significant up-regulation of genes involved

in epidermal differentiation and epidermal growth factor re-
ceptor (EGFR) signaling, and down-regulation of genes involved
in Sonic Hedgehog (Shh), Wnt signaling, and hair follicle de-
velopment. This down-regulation suggests that in skin, aneuploidy
leads to depletion of the stem cell compartment. To test this
hypothesis, we quantified the levels of stem cell lineage markers
Krt15, Lgr5, Lrig1, and Sox9 by qPCR. We observed substantial
reductions in the levels of all four genes, showing that HF stem
cells that normally reside in the bulge compartment of the hair
follicle are depleted (Fig. 5A). We also labeled whole-mount tail
epidermal samples with antibodies against Krt14 and α-6-integrin,
which label the IFE, and Krt15 and CD34, which label bulge HF
stem cells. This confirmed depletion of the bulge stem cell
compartment as a result of Mad2 depletion, whereas the IFE cells
survived abrogation of the SAC. We conclude that HF stem cells
are specifically depleted in the skin of Mad2-null animals (Fig.
5B; Fig. S3C). The differential response between these two cell
lineages is not the result of differential Mad2 expression, because
FACS-sorted WT HF stem cells and IFE cells express similar
levels of Mad2 as determined by qPCR (Fig. S4 A and B). We
conclude that stem cells cannot survive Mad2 loss, whereas IFE
cells can.
To test whether we could propagate Mad2 deficient keratino-

cytes in vitro, we transferred primary keratinocytes (not enriched
for any epidermal cell lineage) fromWT andMad2-deficient back
skin into tissue culture (22) and propagated these cells for 3 wk.
Whereas control cultures contained many colonies that grew to
confluence, no viable colonies were present in mutant cultures
(Fig. 5C) despite having plated similar numbers of viable cells
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from mutant and control animals (viability was assessed by trypan
blue staining; Fig. S4 C and D). These findings are in line with
earlier findings that Mad2 deficiency provokes rapid cell death
in vitro (5) and, even more important, emphasize that the in vivo
response to chromosomal instability is fundamentally different
from the in vitro response.

Discussion
Chromosomal instability (CIN) and the resulting aneuploidy are
hallmarks of cancer cells, yet they are detrimental to untrans-
formed cells in vitro, where they result in decreased proliferation
capacity, disrupted cell physiology, and ultimately when CIN is
very severe, cell death (5, 19, 20, 23). In this study, we report the
consequences of SAC abrogation and the resulting aneuploidy in
vivo. To circumvent the embryonic lethality associated with SAC
inactivation through the germ line (6–8), we created a conditional
KO allele for Mad2, a key player in the SAC and used this allele
to abrogate the SAC in the epidermis. Remarkably, we found that
Mad2 deletion is surprisingly well tolerated by IFE cells, resulting
in mice with a functional Mad2-deficient epidermis, albeit without
hair. The ability of IFE cells to tolerate Mad2 loss is not a re-
flection of their limited proliferative potential and reduced
requirement for mitosis, because basal cells that contribute to the
IFE are at least equally proliferative in Mad2 KO animals com-
pared with controls, and they can generate all of the structures
in the adult skin with the exception of functional hair follicles.
Moreover, the majority of IFE cells divide asymmetrically, pro-
ducing one proliferating and one differentiated cell (24), further
arguing that a subpopulation of IFE cells is highly proliferative.
Last, we show that Mad2-deficient IFE cells are highly aneuploid,

arguing that they must have undergone several rounds of cell
division in the absence of a functional SAC.
However, cell survival does not simply imply that aneuploidy is

inconsequential for IFE cells: we observe significant changes in
gene transcription including up-regulation of metabolic pathways
and down-regulation of mRNA processing, changes that have
previously been proposed to be part of an aneuploidy signature
in yeast and cultured murine cells. Presumably, this aneuploidy
fingerprint is caused by a stress response induced by the burden
of extra transcripts and proteins from the supernumerary chro-
mosomes (19, 20), and our data provide evidence that this re-
sponse also occurs in vivo.
However, although SAC deficiency is well tolerated in IFE cells,

we found that it is incompatible with survival of HF stem cells,
resulting in the complete absence of bulge stem cells in Mad2-
deficient hair follicles. This observation suggests that different cell
lineages exhibit different responses to aneuploidy in vivo. Indeed,
there is increasing evidence that some somatic cell lineages can
tolerate high levels of aneuploidy. For instance, in the healthy
brain, 1 in 10 neurons is reported to be aneuploid, with increasing
rates upon aging and in pathologies such as Alzheimer’s disease
(25–27). Furthermore, we observe up to 10% of aneuploid cells in
normal mouse epidermis. On the other hand, other cell lineages
(e.g., lymphocytes) show very little aneuploidy in vivo (6–8, 28).
What can explain this differential response toward Mad2 de-

pletion? First, different cell lineages might exhibit different sen-
sitivities toward apoptosis, with stem cells being more sensitive to
apoptosis than more differentiated dividing cells. Alternatively,
the signaling pathways that transduce the aneuploidy-induced
stress response are more active in stem cells, thus triggering a
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stronger stress response and thereby driving them into apoptosis.
A third possible explanation is that IFE cells spend more time in
prometaphase than HF stem cells, providing them with more time
to biorient their chromosomes properly and making them less
dependent on a functional SAC. In this scenario, SAC inactiva-
tion would provoke more dramatic aneuploidy in HF stem cells
than in IFE cells, specifically driving HF stem cells to cell death.
We speculate that aneuploidy specifically induces apoptosis in

stem cells through a specific unknown mechanism that is absent,
or less active, in other proliferating cells in the epidermis. This
stem cell apoptosis triggers the marked inflammatory response
observed in the skin of Mad2 KO mice, possibly as a consequence
of the accumulation of cell debris. The inflammatory response
then causes a wave of proliferation and apoptosis in neonates,
explaining the hyperkeratosis and aberrant K14 expression (17).
The inflammatory response dampens over time, ultimately allowing
the appearance of a relatively normal adult epidermis. Although we
were able to carefully map the response to aneuploidy in IFE cells,
our current model precluded us from performing a similar analysis
for HF stem cells, as all bulge stem cells had disappeared before
we could isolate sufficient numbers. Therefore, we are now de-
veloping a unique mouse model in which Mad2 inactivation can
be triggered in adults, which will allow us to isolate bulge stem cell
and IFE cell populations directly following Mad2 inactivation, en-
abling us to identify the mechanism underlying the differential
responses to Mad2 deletion–induced aneuploidy.
Altogether, we show that full SAC abrogation can be tolerated

in vivo, despite a robust change in cell metabolism and despite the
resulting aneuploidy. Up to two-thirds of all human cancers are
aneuploid (29). It is likely that aneuploid cancer cells use similar
pathways as IFE cells to cope with this aneuploidy. Our findings
are a first step toward identifying such pathways by identifying
the skin as a tissue that can cope with remarkable levels of an-
euploidy and by carefully mapping the responses to aneuploidy
in this tissue. Importantly, we found that the surviving IFE cells
exhibit an aneuploidy-induced stress response in vivo, which

might have a large impact on the future treatment of aneuploid
cancers, because this stress response could be exploited to spe-
cifically target aneuploid tumor cells (30).

Materials and Methods
Animals and Keratinocyte Culture. Animal protocols were approved by the
Home Office (UK) and specified in the Home Office Project Licence. Mad2
conditional mice were generated by introducing LoxP sites surrounding
exons 1 and 5, which when combined with Cre recombinase creates the same
full KO as described previously (14). Krt14-Cre mice are described elsewhere
(15). For genotyping, mice were ear clipped, and DNA was isolated using ear
lysis buffer (Viagen). PCR primers are provided in Table S3, and primers were
optimized for annealing temperatures at 60 °C. At selected time points, mice
were killed, and back skin samples and tail samples were harvested for
paraffin embedding or further processing. For further processing, sub-
cutaneous fat was removed from the dermal side, and skin samples were
incubated floating with the dermal side on Trypsin overnight at 4 °C. Epi-
dermis was separated from the dermis using a scalpel, and epidermal sam-
ples were then prepared for interphase FISH, mRNA isolation, flow
cytometry, or keratinocyte culture. In case of tail samples, skin was stripped
from the bone and incubated in 5 mM EDTA for 1 h at 37 °C. The epidermis
was then peeled from the dermis and fixed in 2% (vol/vol) paraformal-
dehyde for 1 h at room temperature. Keratinocytes for in vitro culture were
harvested under sterile conditions and processed as described (22). Cell
numbers were measured using an automated cell counter (Invitrogen) and
viability by determining Trypan blue penetration.

Interphase FISH. For interphase FISH, epidermal samples were minced and
filtered through a 40-μm filter (Falcon) to obtain single cells. Cells were fixed
in methanol/glacial acid after swelling in 0.075 M KCl for 30 min at 37 °C.
Cells were dropped on slides, dehydrated, and treated with 0.1 mg/mL
RNaseA (Sigma) in 2× SSC for 30 min at 37 °C, followed by 0.01% Pepsin
(Sigma) treatment in 0.01 M HCl for 3 min at room temperature. Slides
were then baked at 65 °C for 1 h and denatured at 63 °C for 80 s in 70% (vol/
vol) formamide in 0.6× SSC. For probe preparation, the following bacterial
artificial chromosomes (BACs) were used: RP23-341B14, RP23-32C12, RP23-
463N9, RP23-24E11, RP23-67O11, and RP23-69G24 (recognizing chromosome
4); RP24-84H16, RP24-160M22, and RP24-160H6 (recognizing chromo-
some 15); and RP24-144K17, RP23-183J2, and RP23-292H23 (recognizing
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Fig. 5. Aneuploidy provokes bulge HF stem cell depletion leaving IFE cells unaffected. (A) Quantitative PCR reveals a dramatic decrease of established HF
stem cell markers Krt15, Lgr5, Lrig1, and Sox9. (B) Whole mount tail epidermis labeled for α-6 integrin or Krt14 (labeling IFE in red) and Krt15 or CD43 (both
labeling bulge HF stem cells in green) showing HF stem cell depletion in vivo at P25. (C) Mad2-deficient primary keratinocytes do not form colonies in vitro.
(Left) 1% Rhodamine-B–stained cultures, showing bright red colonies in control cultures. (Right) Phase contrast images, showing epidermal colonies in control
cultures, but not in Mad2-deficient cultures. Note that cells were cultured on a MEF feeder layer. Arrows indicate one microcolony that emerged in a Mad2-
deficient keratinocyte culture.

2932 | www.pnas.org/cgi/doi/10.1073/pnas.1217388110 Foijer et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1217388110/-/DCSupplemental/pnas.201217388SI.pdf?targetid=nameddest=ST3
www.pnas.org/cgi/doi/10.1073/pnas.1217388110


chromosome 19). Probes were labeled with green dUTP (Abott) or Texas red
chromotide (Invitrogen) and hybridized at 37 °C overnight in hybridization
buffer [62.5% formamide (Sigma), 2× SSC, 10% (wt/vol) dextran sulfate
(Sigma), 0.5 M phosphate buffer, pH 7.4] containing 1 μL mouse Cot 1 DNA
(Invitrogen) and 1.5 μL of each probe. Slides were mounted in the presence
of DAPI-containing mounting media (Vectashield) following washing steps
in 50% (vol/vol) formamide and 1× SSC and analyzed on a IX81 Olympus
widefield microscope. Chromosome numbers (events per cell) were counted
on an IX81 Olympus microscope using Excellence Software and scored an-
euploid in the case of three or more events per cell by hand. Statistical
analysis was performed in Microsoft Excel to calculate the SD of the mean
values, and GraphPad Prism was used to calculate P values (t test).

Barrier Assay. For barrier assays, neonates were killed and fixed in increasing
series of ice-cold methanol in water. Next, carcasses were incubated in 0.1%
toluidine blue (Sigma), and excess dye was washed away by three PBSwashes.

Immunohistochemistry, Flow Cytometry, and Antibodies. For DNA content
analysis, freshly isolated epidermal cells were fixed in 70% (vol/vol) ethanol
overnight and stained in 10 μg/mL propidium iodide (Invitrogen) in PBS in
the presence of 0.1 mg/mL RNaseA (Sigma). For IFE and HF stem cells sorts,
fresh keratinocytes were isolated from back skin and labeled with antibodies
following sorting. Western blots were performed using standard protocols.
For immunostaining of paraffin sections, slides were dewaxed, and epitopes
were retrieved by boiling samples for 10 min in 10 mM sodium citrate.
Samples were blocked using mouse serum (Vector Laboratories) and labeled
overnight with primary antibodies in the presence of 1% BSA (Sigma), 10%
(vol/vol) FCS (Invitrogen), and 0.01% TritonX100 (Sigma). Samples were then
washed and incubated with secondary antibodies and mounted in the
presence of DAPI-containing mounting media (Vectashield; Vector Labora-
tories) following confocal microscopy analysis (Zeiss). For whole mounts,
epidermal samples were blocked [0.5% skimmed milk powder, 0.25% fish
skin gelatin (Sigma), and 0.5% TritonX100 (Sigma) in 20 mM Hepes and 0.9%
NaCl] for 1 h following overnight incubation at 4 °C and incubation with
secondary antibodies. Samples were mounted in the presence of DAPI and
analyzed by confocal microscopy (Leica). The primary antibodies used were
Mad2 (BD), Actin (Cell Signaling), Krt14 (clone LL002; Abcam), Krt10 (Cova-
nce), Ki67 (Dako), CD34 (Ebioscience), α-6-integrin (Abcam), and Krt15 (clone
LHK15). Secondary antibodies were Alexa 555– and 488–labeled anti-mouse

and anti-rabbit antibodies (Invitrogen) and HRP-labeled goat anti-mouse
(Cell Signaling). TUNEL assays on paraffin sections were performed using a
Promega kit following the manufacturer’s protocol.

qPCRs and Microarrays. RNA was isolated using the RNeasy kit (Qiagen). Bi-
otin-labeled cRNA was synthesized using the Illumina totalprep RNA am-
plification kit (Ambion). Biotinylated cRNA was hybridized to llumina Sentrix
Bead Chips and labeled with streptavidin-conjugated Cy3 (Amersham)
according to the manufacturer’s protocol. Data were quantile normalized
(31) following scanning and analyzed using Bioconductor lumi (32) and
limma packages (33). Data were P value adjusted to yield a sorted list of
differentially expressed genes (34) and sorted in chromosomal position or
frequency of deregulation in Microsoft Excel. Enrichment analyses were
performed using Webgestalt software (18) using Bonferroni correction for
multiple testing. For diagrams in Fig. 4B, genes in deregulated pathways
were downloaded using Webgestalt, and matching expression Log2 rations
were extracted from Dataset S1 using Excel. Extracted values (values per
category shown in Dataset S3) were then imported into Genesis software
(35) to generate expression diagrams. All raw and normalized Illumina
microarray data can be found at the NCBI Gene Expression Omnibus (GEO)
under accession no. GSE42698. For qPCR reactions, cDNA was generated
from 1 μg of total RNA (Superscript II; Invitrogen) and used as a template for
qPCR (ABI PRISM 7700 Sequence Detector) in the presence of SYBR green
(Invitrogen) to label the products. Actin was used for normalization. The
average expression values and SD of the mean were calculated as indicated
in the figure legends and compared with the expression values in control
mice (normalized to a value of 1). Primer sequences are provided in Table S3.
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