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Abstract

In this paper a mathematical model for handling water pollution is introduced. We
assume that algae and fungi are in competition for resources that come from wastewater.
Both algae and fungi need dissolved oxygen (DO) for their biologial process of growth.
But there is a difference, indeed algae produce it too and in a higher quantity than the
one they use. It is shown that if the coexistence equilibrium exists, it is stable without
additional conditions. If the competition rate between algae and fungi is not high for
a chosen set of parameters the stability of the coexistence equilibrium is reached even
without an external constant input of DO in the system.
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1 Introduction

Algae are important in a lake, they can improve the quality of the aquatic ecosystem. Under
right conditions such as adequate nutrients (mostly phosphorus, but nitrogen is important
too) they grow. The nutrients that are present in the wastewater can derive from agricultural
and/or industrial discharges. Fungi can be used for biodegradation of organic pollutant in a
waterbody, and they grow using the nutrients obtained from the biodegradation, [1]. Some
mathematical models in the literature study the behavior of algae biomass in a waterbody
in the presence of organic pollutants, [4, 5]. In [2, 3] the case of fungi has been addressed.
In this paper we want to study what happens when both algae and fungi are present in
the same waterbody, for example in a lake. Furthermore we suppose that they are in
competition for the resources coming from the pollutants.
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2 The mathematical model

In this paper we introduce a mathematical system that models the behavior of algae and
fungi in a waterbody. The waterbody considered could be nutrient-rich waters, like mu-
nicipal wastewater or some industrial effluents. Both algae and fungi can feed on these
wastes and therefore purify the water, while also producing a biomass suitable for biofuels
production. Thus algae and fungi are in competition for food, since both share the same
resources. Further, fungi as well as algae need DO to thrive but we assume that the algae’s
production and input of DO into the system is much larger than their own use for their
growth.

The model consists of three equations that describe the time evolution of the algae
population, the fungi population and the DO respectively. The model, in which all the
parameters are nonnegative, reads:

dA

dt
= rAA− aAA− bAA

2 − cAF (1)

dF

dt
=

hOF

k + kOO
− aFF − bFF

2 − cAF

dO

dt
= qO + gA− aOO − f

hOF

k + kOO
.

In the first equation algae grow at a constant rate rA and are washed out at a constant rate
aA. We assume that algae are in competition among themselves at a constant rate bA and
also experience interspecific competition with fungi at rate c.

In the second equation the fungi’s growth depends on the presence of DO. They are
washed out at rate aF . The intraspecific competition occurs at rate bF while c denotes the
rate of the interspecific competition with the algae population.

The third equation shows the evolution in time of DO. We assume that it is supplied
from external sources at rate qO, but a part of it comes from the algae own production at
rate g. We take further into account its washing out, at rate aO and its depletion due to its
assumption by fungi at rate f � 1.

3 The qualitative analysis of the model

First of all to find the equilibrium points of the model, we need to solve the system obtained
by setting the right hand side of (1) to zero,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A(rA − aA − bAA− cF ) = 0

F

(
hO

k + kOO
− aF − bFF − cA

)
= 0

qO + gA− aOO − f
hOF

k + kOO
= 0.

(2)
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Further, for the stability analysis, we need to calculate the Jacobian matrix of the system
(1)

J =

⎡⎢⎢⎢⎣
rA − aA − 2bAA− cF −cA 0

−cF −aF − 2bFF − cA+
hO

k + kOO

hkF

(k + kOO)2

g − fhO

k + kOO
−aO −

fhkF

(k + kOO)2

⎤⎥⎥⎥⎦ .

(3)

Solving (2) we obtain the analytic expression of three equilibrium points. In addition,
we prove that two other equilibria exist. We also show that all these points are conditionally
locally asymptotically stable, while the coexistence equilibrium is stable if it is feasible.

Proposition 1. The trivial equilibrium point, E0 = (0, 0, 0), exists if

qO = 0. (4)

Furthermore, it is stable if the following condition holds:

rA < aA. (5)

Proof. For A = F = O = 0 in the system (2) we get that E0 exists if qO = 0. The
characteristic polynomial associated to the matrix (3) evaluated at E0 is

det(J − μ) = (rA − aA − μ)(−aF − μ)(−aO − μ) = 0.

To have the stability of E0 all the eigenvalues shoud be negative thus the condition (5) must
hold.

Proposition 2. The fungi-and-algae-free point E1 =
(
0, 0, qOa

−1
O

)
exist always. It is

stable if the following conditions hold:

rA < aA and
hqO

kaO + kOqO
< aF . (6)

Proof. In fact for A = F = 0 in (2) from the last equation we get O = qOa
−1
O . While the

characteristic polynomial associated to E1 is

det(J − μ) = (rA − aA − μ)(−aO − μ)

(
hqO

kaO + kOqO
− aF − μ

)
= 0.

To have all the eigenvalues negative the conditions (6) must hold.
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Figure 1: The equilibrium E1 is stably achieved with the parameter values rA = 10.1273,
aA = 16.93072, bA = 11.7382, c = 19.3012, h = 1.61592, k = 0.454245, kO = 5.87845,
aF = 2.55798, bF = 0.0344478, qO = 2, g = 3.63317, aO = 5.41771, f = 1.

In Figure 1 one can see that for a chosen set of parameters the equilibrium E1 is stably
achieved.

Proposition 3. The fungi-free equilibrium E2 =

(
rA − aA

bA
, 0,

qObA + g(rA − aA)

bAaO

)
is

feasible if
rA > aA (7)

and it is stable if
hO2

k + kOO2
< aF + cA2 (8)

hold.

Proof. If F = 0 in the system (2) we get⎧⎪⎨⎪⎩
rA − aA − bAA = 0

F = 0

qO + gA− aOO = 0.

(9)

From the first equation of (9) it follows

A =
rA − aA

bA
.

Thus for the nonnegativity of the algae population, (7) must hold. From the third equation
instead we get the equilibrium value of the oxygen.

O =
qObA + g(rA − aA)

bAaO
.
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The characteristic polynomial associated to E1 is once again easily obtained,

det(J − μ) = (−rA + aA − μ)(−aO − μ)

(
hO2

k + kOO2
− aF − cA2 − μ

)
= 0,

as well as its eigenvalues

μ1 = −ra + aA < 0

μ2 = −aO < 0

μ3 =
hO2

k + kOO2
− aF − cA2

Requiring μ3 < 0 we get (8).

In Figure 2 we show that for a chosen set of parameters the stability of the fungi-free
equilibrium, E2, is attained.

Figure 2: The equilibrium E2 is stable for the parameter values rA = 8.90096, aA = 4.14886,
bA = 1.62848, c = 0.0691916, h = 11.8402, k = 1.92602, kO = 16.7554, aF = 18.7713,
bF = 15.4976, qO = 69.5303, g = 13.847, aO = 19.037, f = 1.

Proposition 4. The algae-free point is in fact a set of multiple equilibria, namely
(0, F3, O3), (0, F4, O4) and (0, F5, O5). Of them, only one is feasible, if

O >
aFk

h− aFkO
, (10)

and it is stable if
rA < aA + cF3. (11)
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Proof. Part 1: existence

For A = 0 the system (2) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A = 0

hO

k + kOO
− aF − bFF = 0

qO − aOO − f
hOF

k + kOO
= 0.

(12)

Solving the second equation with respect to F we get

F =
O(h− aFkO)− aFk

bF (k + kOO)
. (13)

Condition (10) arises by requiring the positivity of the expression (13). Note that the
opposite case obtained when h− aFkO < 0, cannot arise,

O <
aFk

h− aFkO
,

because from it, O < 0 follows, which is impossible.
Substituting the expression (13) for F into the third equation of the system (12) we

obtain the following third degree equation in O

aO3 + bO2 + cO + d = 0, (14)

with

a = −aObFk2O < 0

b = qObFk
2
O − 2aObFkkO − fh2 + fhaFkO

c = 2qObFkkO − aObFk
2 + fhaFk

d = qObFk
2 > 0.

Since a < 0 and d > 0 by Descartes’ rule of signs the third degree polynomial (14) in O has
at least one positive root. We are able to show that there is exactly one such root. In the
next Table the only four possible cases are summarized.

Cases a b c d number of real positive roots

1) − + − + 3 (impossible)
2) − + + + 1
3) − − − + 1
4) − − + + 1
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The first case is impossible, in fact assuming that b > 0 and c < 0 we find

aObFk +
fh2

kO
< qObFkO − aObFk + fhaF < −qObFkO.

But this is a contradiction, because the term in the middle should be less than a negative
term (on the right) and greater than a positive one (on the left side).

Thus there is only one positive equilibrium

E3 =

(
0,

O3(h− aFkO)− aFk

bF (k + kOO3)
, O3

)
if O3 >

aFk

h− aFkO
,

with O3 the real positive root of (14).

Part 2: stability
To study the stability of the equilibrium point we evaluate the Jacobian matrix (3) at E3.
The resulting characteristic polynomial is

det(J − μ) = (rA − aA − cF3 − μ)

{
μ2 +

(
aF + 2bFF3 + aO +

fhkF3

(k + kOO3)2
+

− hO3

k + kOO3

)
μ+

(
aO +

fhkF3

(k + kOO3)2

)
(aF + 2bFF3)−

aOhO3

k + kOO3

}
= 0.

The eigenvalue μ1 = rA−aA− cF3 is negative if (11) holds, while the roots of the quadratic
polynomial in μ are negative with no further conditions. It turns out that both coefficients
of the terms of the two lowest degrees in μ are positive. In fact, substituting F3, (13), for
the coefficient of μ we get(

aF +
2hO3

k + kOO3
− 2(O3aFkO + aFk)

k + kOO3
+ aO +

fhkF3

(k + kOO3)2
− hO3

k + kOO3

)
=

(
aF +

hO3

k + kOO3
− 2aF + aO +

fhkF3

(k + kOO3)2

)
=

O3(h− aFkO)− aFk

bF (k + kOO3)
+ aO +

fhkF3

(k + kOO3)2
= F3 + aO +

fhkF3

(k + kOO3)2
> 0.

Similarly, for the constant term, by dividing by aO, denoting by H is a positive term, we
have:

aF + 2bFF3 −
hO3

k + kOO3
+H > 0.

Figure 3 shows that for a chosen set of parameters the algae-free equilibrium, E3, is
stably achieved.
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Figure 3: The equilibrium E3 is stabile for the parameters rA = 4.85571, aA = 13.2729,
bA = 11.6077, c = 12.7024, h = 11.4803, k = 2.3815, kO = 1.11246, aF = 1.40551,
bF = 1.95987, qO = 65.3973, g = 16.7907, aO = 15.374, f = 1.

For the coexistence equilibrium point we have the following result

Proposition 5 There exists at least one feasible coexistence equilibrium E4 = (A∗, F ∗, O∗)
if the following three conditions hold:

rA − aA − bAA
∗ > 0, bF bA − c2 > 0, (aF c+ bF )(k + kOO

∗)(rA − aA) > chO∗ (15)

and whenever it exists, it is stable.

Proof. To find the conditions for the existence of the coexistence equilibrium point from
the first equation of the system (2) we get

F =
rA − aA − bAA

c

and substitute it into the remaining two equations. We solve these two equations with
respect to A and we match the resulting expressions

A =
(aF c+ bF )(rA − aA)(k + kOO)− chO

(k + kOO)(bF bA − c2)
=

fhO(rA − aA) + c(aOO − qO)(k + kOO)

cg(k + kOO) + fhbAO
.

Thus, we now have the following cubic polynomial in O:

a1O
3 + b1O

2 + c1O + d1 = 0, (16)
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with

a1 = −aOk2O(bF bA − c2) < 0 for bF bA − c2 > 0

b1 = kO(fhc+ bFkOg)(rA − aA) + kO(kOqO − 2aOk)(bF bA − c2) +

+(aFkO − h)(fhbA + ckOg)

c1 = k(fhc+ 2bFkOg)(rA − aA) + k(2kOqO − aOk)(bF bA − c2) +

+chg(2aFkO − h) + aFkhbA

d1 = aF ck
2g + k2qO(bF bA − c2) + bFk

2g(ra − aA) > 0.

Since for bF bA − c2 > 0, a1 < 0 and d1 > 0 the polynomial (16) has at least one positive
root O∗ by the Descartes’ rule of signs. For the feasibility of the equilibrium we need to
have F ∗ > 0 and A∗ > 0, providing thus the first and the third conditions in (8).

To study the stability, the characteristic polynomial of (3) evaluated at E4 gives the
cubic equation

det(J − μ) = μ3 +Rμ2 + Sμ+ P = 0

with

R =

(
bAA

∗ + aO + bFF
∗ +

fhkF ∗

(k + kOO∗)2

)
> 0

S =

(
A∗F ∗(bAbF − c2) + bFaOF

∗ +
fhkF ∗(bAA∗ + bFF

∗)
(k + kOO∗)2

+
h2kF ∗O∗

(k + kOO∗)3

)
> 0

P =

(
(bF bA − c2)

(
aOA

∗F ∗ +
fhkF ∗2A∗

(k + kOO∗)2

)
+

bAA
∗h2kF ∗O∗

(k + kOO∗)3
+

cghkA∗F ∗

(k + kOO∗)2

)
> 0.

For bF bA − c2 > 0, which holds by feasibility, the three eigenvalues are negative. Thus E4

is stable whenever it is feasible.

In Figure 4 we show that the coexistence equilibrium is stable for a selected set of
parameter values.

In the next Table we summarize the feasibility conditions for the five equilibrium points
of model (1).

In Figure 5 for a chosen set of parameters and the same initial conditions changing
the value of qO, the constant input of DO in the system, we obtain the stability of the
coexistence equilibrium, E4 on the left and of E2 on the right. Thus, starting from the
coexistence equilibrium, by decreasing the rate qO at which oxygen is supplied into the
system, we can obtain the fungi-free equilibrium.
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Figure 4: Two possible configurations for the equilibrium E4, qO = 0 and qO = 1. It is
stable in the following cases. Left: qO = 0, (1.20, 0.30, 0.55) is achieved for the parameters
rA = 1, aA = 0.001, bA = 0.8, c = 0.1224, h = 1.1, k = 1, kO = 1, aF = 0.001, bF = 0.8,
qO = 0, g = .1, aO = 0.001, f = 1. Right: qO = 1, (1.08, 1.08, 10.15) is obtained for the
parameters rA = 1, aA = 0.001, bA = 0.8, c = 0.1224, h = 1.1, k = 1, kO = 1, aF = 0.001,
bF = 0.8, qO = 1, g = .1, aO = 0.001, f = 1.

Eq. Feasibility conditions Stability conditions

E0 q0 = 0 rA < aA

E1 none rA < aA and
hqO

kaO + kOqO
< aF

E2 rA > aA
hO2

kaO + kOO2
< aF + cA2

E3 O3 >
aFk

h− aFkO
rA < aA + cF3

E4 rA − aA − bAA
∗ > 0, bF bA − c2 > 0

(aF c+ bF )(k + kOO
∗)(rA − aA) > chO∗ none

4 Conclusions and future work

A three dimensional, nonlinear mathematical model has been introduced and analysed.
In addition to the trivial equilibrium, four additional equilibrium points have been found.
Their stability was been completely analysed. For a chosen set of parameters with the same
initial conditions we get the stability of the coexistence equilibrium, E4, both in the absence,
qO = 0, and with full, qO = 1, external oxygen supply, Figure 4. Thus the constant input
of DO is not necessarily needed if the parameters are chosen appropriately, to have a viable
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Figure 5: Left: the equilibrium E4 is stable for qO = 30; rA = 19.6445, aA = 1.73234,
bA = 11.5828, c = 3.34324, h = 16.676, k = 12.4305, kO = 0.517493, aF = 3.04963,
bF = 1.3597, qO = 30, g = 11.5323, f = 0.835718, aO = 5.42261 Right: the equilibrium
E2 at the stability qO = 20 for rA = 19.6445, aA = 1.73234, bA = 11.5828, c = 3.34324,
h = 16.676, k = 12.4305, kO = 0.517493, aF = 3.04963, bF = 1.3597, qO = 20, g = 11.5323,
f = 0.835718, aO = 5.42261.

system. In fact algae contribution of DO to the system is enough for the fungi utilization.
The simulations of Figure 5 instead show that the DO concentration should not drop below
a critical threshold, because in such situation the fungi may disappear. Such a loss would
be detrimental for the ecosystem.

One of the hypothesis of the model is the competition for food between algae and fungi,
but in an indirect way the results indicate that algae help the fungi growth by producing
DO.

In our future research we will compare the model introduced here (1) with another one
in which the nutrient equation is also considered, as follows:

dA

dt
=

hANA

kA + kNN
− eAA−mAA

2 (17)

dF

dt
= k(N,O)F − eFF −mFF

2

dN

dt
= qN − r

hANA

kA + kNN
− sk(N,O)F − eNN

dO

dt
= qO + gAA− eOO − cOk(N,O)F

with

k(N,O) =
k1NO

k2 + k3N + k4O + k3k4NO
.
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